CN108759769B - An underwater geomembrane monitoring method using a pentagonal monitoring disc - Google Patents
An underwater geomembrane monitoring method using a pentagonal monitoring disc Download PDFInfo
- Publication number
- CN108759769B CN108759769B CN201810631954.0A CN201810631954A CN108759769B CN 108759769 B CN108759769 B CN 108759769B CN 201810631954 A CN201810631954 A CN 201810631954A CN 108759769 B CN108759769 B CN 108759769B
- Authority
- CN
- China
- Prior art keywords
- monitoring
- stress
- geomembrane
- strain
- pentagonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 246
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 238000012806 monitoring device Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 64
- 238000010586 diagram Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 208000032912 Local swelling Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000005053 stress perception Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/32—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0096—Testing material properties on thin layers or coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种采用五边形监测盘的水下土工膜监测方法。The invention relates to an underwater geomembrane monitoring method using a pentagonal monitoring disc.
背景技术Background technique
土工膜作为一种以高分子聚合物,较大的抗拉强度和延伸率承受水压和适应坝体变形, 因其不透水性广泛应用在水利工程中,以隔断水流的渗漏通道。我国早期将土工膜用于库 底或渠底的垂直铺塑防渗工程,近几年在平原水库等水利工程应用较广泛;在平原水库、面板堆石坝、河渠、围堰等工程中,采用土工膜防渗是一种有效的技术。As a high molecular polymer, geomembrane has a large tensile strength and elongation to withstand water pressure and adapt to the deformation of the dam body. Because of its impermeability, it is widely used in water conservancy projects to block the leakage channel of water flow. In the early days of our country, geomembrane was used for vertical plastic anti-seepage projects at the bottom of reservoirs or canal bottoms. In recent years, it has been widely used in water conservancy projects such as plain reservoirs; in plain reservoirs, face rockfill dams, river channels, cofferdams and other projects, The use of geomembrane anti-seepage is an effective technology.
通常情况下,若在土工膜下敷设多个监测节点以期获得库底或渠底的状态数据,往往 需要逐个进行控制,造成控制系统复杂化,若采用网络结构,则需要采用总线结构进行数 据传输,一旦某个监测节点损坏不能正常工作,则采集数据就会出现空白,存在监测节点的孤岛,仍然不能完全保证对库底或渠底和土工膜的完好性的监测,若采用绳索将各个监 测节点链起来组成监测节点阵列是个可行的方式,但在监测节点阵列中,不同位置的监测 节点结构会有不同,有的在阵列的边缘,往往只需要与一侧的监测节点用绳索链接,有的 则在阵列的中心,则需要与前、后、左、右、四周的节点进行链接,因此,需要采用多种结构的监测节点以供选用。Usually, if multiple monitoring nodes are laid under the geomembrane in order to obtain the state data of the bottom of the reservoir or the bottom of the canal, it is often necessary to control them one by one, which makes the control system complicated. If a network structure is used, a bus structure is required for data transmission. , once a certain monitoring node is damaged and cannot work normally, the collected data will be blank, and there are isolated islands of monitoring nodes, which still cannot fully guarantee the integrity of the reservoir bottom or canal bottom and geomembrane. It is a feasible way to link nodes together to form a monitoring node array, but in the monitoring node array, the structure of monitoring nodes at different positions will be different, and some are on the edge of the array, and often only need to be connected with the monitoring nodes on one side with ropes. If it is in the center of the array, it needs to be linked with the front, back, left, right, and surrounding nodes. Therefore, it is necessary to use monitoring nodes with various structures for selection.
目前,在城市建设和部分水利工程中,对于地质条件较差、缺乏理想不透水层的地区 采用土工膜进行防渗多成为首选方案。原因是,土工膜属于柔性材料,对水下地基变形的 适应能力很强,在未遭受外力刺穿、撕裂的情况下,其老化速度能够满足多数水利工程的经济寿命需求,特别适用于多地震地区和岩溶地区作为库底防渗方案。At present, in urban construction and some water conservancy projects, the use of geomembrane for anti-seepage has become the preferred solution for areas with poor geological conditions and lack of ideal impermeable layers. The reason is that the geomembrane is a flexible material and has a strong adaptability to the deformation of the underwater foundation. Its aging speed can meet the economic life requirements of most water conservancy projects without being pierced or torn by external forces. It is especially suitable for many water conservancy projects. Seismic areas and karst areas are used as anti-seepage schemes for reservoir bottom.
在实际运用中,土工膜的完整性会面对水下地基变形等考验,水下地基变形一般有两 类情况,一类是膜下地基陷落,造成土工膜部分悬空,膜体的抗拉、抗剪强度较低,另一 类是膜下地基隆起以及气体膨胀导致土工膜局部受力、位移等。总之,水下库底土工膜一旦在地质环境、水土生物、衬垫外力和胀气等作用下受损,其“开裂部位难以确定”这一重大缺陷立即显现出来。由于渗水穿越土工膜后迅速在土体内扩散,即使预埋监测仪器也无法在小范围内确定损伤部位。这一弊端使得膜体开裂初期短暂的抢修时机丧失,使土工膜撕裂和渗透破坏急剧扩展,严重威胁到水利工程的安全。In practical application, the integrity of the geomembrane will be tested by the deformation of the underwater foundation. There are generally two types of deformation of the underwater foundation. The shear strength is low, and the other is the local force and displacement of the geomembrane caused by the uplift of the foundation under the membrane and the expansion of gas. In short, once the geomembrane at the bottom of the underwater reservoir is damaged by the geological environment, water and soil organisms, external force of the liner, and flatulence, the major defect of "difficult to determine the cracking position" will appear immediately. Due to the rapid diffusion of seepage water in the soil after passing through the geomembrane, even pre-embedded monitoring instruments cannot determine the damage site in a small area. This shortcoming makes the short-term emergency repair opportunity in the early stage of membrane cracking lose, and makes the tearing and seepage damage of geomembrane expand rapidly, which seriously threatens the safety of water conservancy projects.
总之,土工膜一旦产生破坏,会加剧库水渗漏,造成大量水量损失,并影响水库的正 常运营,危及工程安全。因此,必须对土工膜运行采取有效的监测技术。In short, once the geomembrane is damaged, it will increase the leakage of reservoir water, cause a large amount of water loss, affect the normal operation of the reservoir, and endanger the safety of the project. Therefore, effective monitoring techniques must be adopted for geomembrane operation.
发明内容Contents of the invention
本发明所解决的技术问题是:针对水下起防渗作用的土工膜意外破损后,如何能做到 迅速发现并精确定位的技术问题。The technical problem solved by the invention is: after the geomembrane which acts as an anti-seepage under water is accidentally damaged, how to quickly find out and accurately locate the technical problem.
为实现上述目的,本发明提出一种采用五边形监测盘的水下土工膜监测方法,包括的 步骤如下:In order to achieve the above object, the present invention proposes a kind of underwater geomembrane monitoring method that adopts pentagonal monitoring disc, and the steps that comprise are as follows:
步骤一,在库底或渠底水域内设置至少三行监测节点,构成奇数行或偶数行的监测节 点阵列,其中,所述偶数行的各个监测节点分别设置在所述奇数行的各个相邻的两个监测 节点间距区域之间,各个所述监测节点中包括设有的应力应变监测装置,位于偶数行的首个和尾个监测节点的应力应变检测装置中包括五边形监测盘和与所述五边形监测盘配套的 五边形盖,在各个行内的监测节点中的应力应变监测装置之间连接有绳索,相邻行的相邻 监测节点中的应力应变监测装置之间通过绳索连接构成三角形网孔,其中,相邻奇数行中 的首个监测节点中的应力应变监测装置之间也连接绳索,相邻奇数行中的末端监测节点中的应力应变监测装置之间也通过绳索进行连接;Step 1, at least three rows of monitoring nodes are set in the bottom of the reservoir or the water area of the canal bottom to form an array of monitoring nodes of odd or even rows, wherein each monitoring node of the even rows is respectively arranged in each adjacent row of the odd rows Between the two monitoring node spacing areas, each of the monitoring nodes includes a stress-strain monitoring device, and the stress-strain detection device at the first and last monitoring node in an even row includes a pentagonal monitoring disk and a The supporting pentagonal cover of the pentagonal monitoring plate is connected with ropes between the stress-strain monitoring devices in the monitoring nodes in each row, and the stress-strain monitoring devices in adjacent monitoring nodes in adjacent rows are connected by ropes. The connection forms a triangular mesh, in which the stress-strain monitoring devices in the first monitoring node in adjacent odd-numbered rows are also connected with ropes, and the stress-strain monitoring devices in the end monitoring nodes in adjacent odd-numbered rows are also connected by ropes make a connection;
步骤二,监测节点阵列中的各个绳索之间保持张紧并将各个监测节点上设有的应力应 变检测装置固定安装在土工膜朝下的一面上,将土工膜连同朝下一面上的监测节点的应力 应变检测装置一起敷设在水下的库底或渠底表面上,各个行中的监测节点中的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与堤坝上设置的控制箱电连接;Step 2: Keep tension between the ropes in the array of monitoring nodes and fix the stress-strain detection devices provided on each monitoring node on the downward facing side of the geomembrane, and place the geomembrane together with the monitoring nodes on the downward side The stress and strain detection devices are laid together on the surface of the underwater reservoir bottom or channel bottom. The stress and strain monitoring devices in the monitoring nodes in each row are all connected to the control bus of the row, and the control buses of each row are connected to the embankment Electrical connection of the control box set above;
步骤三,当任意一处土工膜发生形变,位于土工膜背面的相应位置的监测节点中的应 力应变监测装置首先感受到应力作用而发出数据信号,同时,与该应力应变监测装置相连 接的绳索受到牵扯,使周边监测节点中的应力应变监测装置也感受到土工膜的形变而发出数据信号,各个所述数据信号都会通过各自所在行的控制总线传输至控制箱中,控制箱中 的控制器将各个数据信号上传至云端服务器,控制中心的中心服务器的内部程序对发出信 号进行时间排序以及将信号与土工膜所受应力峰值的阈值下限比较,舍弃小于阈值下限的 应力峰值信号,记录大于阈值下限的应力峰值信号,阈值下限设为80~140N/125px,其中 N单位为牛顿,PX为像素;
将信号峰值最大或最先发出信号的应力应变监测装置所在监测节点的坐标作为土工膜 形变或破损位置的位置坐标;获悉该坐标信号的技术人员对相应的监测节点及其周围区域 进行排查,即可获得相对精准的土工膜形变或破损位置,为进一步应急处理提供技术支持。The coordinates of the monitoring node where the stress-strain monitoring device with the largest signal peak value or the first signal is used as the position coordinates of the deformation or damage of the geomembrane; the technician who knows the coordinate signal checks the corresponding monitoring node and its surrounding area, that is Relatively accurate geomembrane deformation or damage location can be obtained to provide technical support for further emergency treatment.
另外,根据本发明实施例可以具有如下附加的技术特征:In addition, according to the embodiment of the present invention, it may have the following additional technical features:
根据本发明的一个实施例,面向所述五边形监测盘,五边形监测盘的五个边包括相互 平行的上直边和下直边,与所述上、下直边分别垂直的左直边,右侧边包括上段边和下段 边,所述上段边的一端与上直边的右端部连接,所述下段边的一端与下直边的右端部连接,所述上段边和下段边的各自的另一端相互连接在一起并且上段边和下段边的连接交点远离 所述五边形监测盘的左直边形成外凸,在所述五边形监测盘内的中部设有集线台,所述集 线台上设有接线塞,在靠近所述集线台的上侧和下侧的边缘分别各设置一对螺栓孔,两对 螺栓孔均关于集线台中心对称,所述五边形监测盘中在靠近所述集线台的右侧的边缘设有一个螺栓孔,其中,集线台的右侧的边缘的螺栓孔的径向中心正对所述上段边和下段边的 连接交点形成的顶角且位于该顶角的角平分线的延长线上,而所述集线台的上侧、下侧边 缘各设置的一对螺栓孔的径向中心,处在所述五边形监测盘上、下直边的两端所在的两对 顶角相互交叉连接的对角线上,According to an embodiment of the present invention, facing the pentagonal monitoring disk, the five sides of the pentagonal monitoring disk include upper straight sides and lower straight sides parallel to each other, and left and right sides perpendicular to the upper and lower straight sides respectively. The straight side, the right side includes an upper section and a lower section, one end of the upper section is connected to the right end of the upper straight side, one end of the lower section is connected to the right end of the lower straight side, and the upper section and the lower section The other ends of each are connected to each other and the connection intersection point of the upper segment and the lower segment is away from the left straight edge of the pentagonal monitoring panel to form an outward protrusion, and a hub is provided in the middle of the pentagonal monitoring panel , the wiring plug is provided on the hub, and a pair of bolt holes are respectively arranged on the upper side and the lower edge of the hub close to the hub, and the two pairs of bolt holes are symmetrical about the center of the hub, and the five A bolt hole is arranged on the edge of the right side close to the hub platform in the side shape monitoring plate, wherein the radial center of the bolt hole on the right side edge of the hub platform is facing the upper edge and the lower edge The vertex formed by connecting the intersections is located on the extension line of the angle bisector of the vertex, and the radial center of a pair of bolt holes respectively provided on the upper side and the lower edge of the hub is located on the five On the diagonal where the two pairs of vertices where the two ends of the upper and lower straight sides of the polygonal monitoring plate cross each other,
五个连接片的一端通过螺栓分别与螺栓孔配合而紧固在集线台上,五个连接片的另一 端分别各自独立连接有应力应变传感器,在每个应力应变传感器的远离所述连接片的另一 端设有紧固孔,压板通过螺栓与紧固孔的配合将绳索的一端压接在应力应变传感器远离所述连接片的另一端上,所述五边形监测盘的侧壁上设有防水塞,五个所述绳索通过防水塞 穿出侧壁与相邻的其他监测节点连接,五个所述应力应变传感器的信号线分别通过所述接线塞与本行内的控制总线电连接。One end of the five connecting pieces is fastened to the hub platform through bolts respectively matching with the bolt holes, and the other ends of the five connecting pieces are respectively independently connected with stress and strain sensors, and each stress and strain sensor is far away from the connecting piece. The other end is provided with a fastening hole, and the pressure plate crimps one end of the rope on the other end of the stress-strain sensor away from the connecting piece through the cooperation of the bolt and the fastening hole. The side wall of the pentagonal monitoring plate is provided There is a waterproof plug, and the five ropes pass through the side wall through the waterproof plug to connect with other adjacent monitoring nodes, and the signal lines of the five stress and strain sensors are respectively electrically connected to the control bus in the bank through the junction plug.
此外,位于奇数行中的首个所述监测节点的应力应变检测装置中包括扇形监测盘,所 述扇形监测盘和扇形盖配套,在所述扇形盖的两条直边的外侧设置有翻沿,所述翻沿上设 有安装孔,在所述扇形监测盘内与弧线边正对一侧的位置设有集线台,所述集线台上设有接线塞,在集线台靠近扇形监测盘的弧线边的一侧的台面边缘上设有三个螺栓孔,三个连 接片的一端分别通过螺栓与三个螺栓孔配合而紧固在集线台上,三个连接片的另一端分别 各自连接有应力应变传感器,在每个应力应变传感器的远离所述连接片的另一端也设有螺 栓孔,压板通过螺栓与螺栓孔的配合将绳索的一端压接在应力应变传感器远离所述连接片的另一端上,所述扇形监测盘的侧壁上设有防水塞,所述绳索通过防水塞穿出扇形监测盘 与相邻的其他监测节点连接,所述应力应变传感器的信号线分别通过所述接线塞与本行内 的控制总线电连接。In addition, the stress-strain detection device of the first monitoring node located in an odd row includes a fan-shaped monitoring disk, which is matched with a fan-shaped cover, and a turning edge is provided on the outside of the two straight sides of the fan-shaped cover , the turning edge is provided with a mounting hole, and a wire collection platform is provided on the side opposite to the arc edge in the fan-shaped monitoring panel, and a wiring plug is provided on the wire collection platform. There are three bolt holes on the edge of the table on one side of the arc edge of the fan-shaped monitoring plate. One end of the three connecting pieces is respectively fastened to the hub table through the cooperation of the bolts and the three bolt holes. The other end of the three connecting pieces One end is respectively connected with a stress-strain sensor, and a bolt hole is also provided at the other end of each stress-strain sensor away from the connecting piece. On the other end of the connecting piece, the side wall of the fan-shaped monitoring plate is provided with a waterproof plug, and the rope passes through the fan-shaped monitoring plate through the waterproof plug to connect with other adjacent monitoring nodes. The signal line of the stress-strain sensor They are respectively electrically connected to the control bus in the bank through the junction plugs.
水下土工膜监测方法所采用的系统,包括在库底或渠底内的水域中设置至少三行监测 节点,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点分别设置 在所述奇数行的各个相邻的两个监测节点间距区域之间,各个所述监测节点中包括设有的应力应变监测装置,在各个行内的监测节点中的应力应变监测装置之间连接有绳索,相邻 行的相邻监测节点中的应力应变监测装置之间通过绳索连接构成三角形网孔,其中,相邻 奇数行中的首个监测节点中的应力应变监测装置之间也连接绳索,相邻奇数行中的末端监 测节点中的应力应变监测装置之间也通过绳索进行连接;所述应力应变监测装置中包括应力应变传感器;The system used in the underwater geomembrane monitoring method includes setting at least three rows of monitoring nodes in the water area at the bottom of the reservoir or the bottom of the channel to form an array of monitoring nodes in odd or even rows, wherein each monitoring node in the even rows respectively arranged between two adjacent monitoring node spacing areas of the odd rows, each of the monitoring nodes includes a stress and strain monitoring device, and between the stress and strain monitoring devices in the monitoring nodes in each row Connected with ropes, the stress-strain monitoring devices in adjacent monitoring nodes in adjacent rows are connected by ropes to form a triangular mesh, wherein the stress-strain monitoring devices in the first monitoring node in adjacent odd-numbered rows are also connected Ropes, the stress and strain monitoring devices in the end monitoring nodes in adjacent odd rows are also connected by ropes; the stress and strain monitoring devices include stress and strain sensors;
监测节点阵列中的各个绳索之间保持张紧并将监测节点固定安装在土工膜朝下的一面 上,土工膜连同朝下一面上的监测节点一起敷设在水下的库底或渠底表面上,各个行中的 监测节点的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与堤坝上设置的控制箱电连接;所述控制箱与云端服务器通讯,所述云端服务器通过网关与控制 中心的中心服务器通信,所述云端服务器还与移动终端通信。The ropes in the array of monitoring nodes are kept in tension and the monitoring nodes are fixedly installed on the downward facing side of the geomembrane, and the geomembrane together with the monitoring nodes on the downward facing side are laid on the underwater reservoir bottom or channel bottom surface , the stress and strain monitoring devices of the monitoring nodes in each row are all connected to the control bus of the bank, and the control bus of each row is electrically connected to the control box provided on the embankment; the control box communicates with the cloud server, and the The cloud server communicates with the central server of the control center through the gateway, and the cloud server also communicates with the mobile terminal.
所述控制箱中包括设有的控制器,还包括与控制器连接的无线发射模块,无线发射模 块通过无线路由器与云端服务器通讯。所述控制器为PLC控制器,所述绳索为不锈钢丝绳。Include the controller that is provided with in the control box, also include the wireless transmitting module that is connected with controller, wireless transmitting module communicates with cloud server through wireless router. The controller is a PLC controller, and the rope is a stainless steel wire rope.
本技术方案的工作原理是,在采用敷设土工膜对水下工程进行防渗处理的具体应用中, 针对土工膜的膜体在地基变化以及外力等作用下容易受损,严重时将导致库底或渠底渗漏 等事故发生的实际情况,采取在土工膜朝下的一面上安装多个监测节点,并将相邻监测节点之间通过绳索连接起来构成网孔网络结构,当水下的土工膜受力发生形变乃至破损的初 期,最近的监测节点的应力应变监测装置受到途经形变区域相应绳索的牵引而产生警示信 号,同时与该应力应变监测装置相连接的其他绳索也受到牵扯,使周边的应力应变监测装 置也会或多或少的感受到土工膜的形变信号,各个信号通过控制总线先后上传至云端服务器,再经云端服务器与控制中心的服务器通信,控制中心的服务器通过内部程序对获得信 号,按照时间先后,峰值大小进行判断,将最先发出警示信号或峰值较大的监测节点的位 置坐标初步确定为土工膜破损位置的坐标,相关决策部门人员对该监测节点及其周围区域 进行排查,即可获得相对精准的土工膜破损位置,为及时处理争取了时间,满足相关部门人员的需要;这里,设立的绳索在参与构建监测节点阵列网孔并起到应力信号联动作用的 同时还起到加强筋的作用,可以增强水下土工膜抗拉能力,变相提高土工膜抵御外力避免 破损的能力,从而实现最好的应力监测方式:就是使土工膜永远不受或少受应力作用的良 好效果。不利的情况是当水下的土工膜受应力发生形变乃至破损的初期,由于绳索导致有可能获取的应力数据信号值较小,这可以通过在后期的控制中心服务器的程序中,降低监 测信号阈值下限的方式,弥补因绳索导致监测灵敏度降低的问题,通常情况下,土工膜的 应力抗拉强度为≥250N/125px,这里采取阈值下限设为80~140N/125px,人为降低阈值, 在不增加现有设备的情况下,提高接收土工膜所受应力信号的灵敏度。从而保障对土工膜 受应力发生形变乃至破损的初期就可以及时响应。The working principle of this technical solution is that in the specific application of anti-seepage treatment of underwater engineering by laying geomembrane, the membrane body of the geomembrane is easily damaged under the action of foundation changes and external forces, and in severe cases it will cause the bottom of the reservoir to be damaged. In the actual situation of accidents such as seepage at the bottom of the canal, multiple monitoring nodes are installed on the downward side of the geomembrane, and the adjacent monitoring nodes are connected by ropes to form a mesh network structure. When the underwater geomembrane At the initial stage of deformation or even damage of the membrane under force, the stress-strain monitoring device at the nearest monitoring node is pulled by the corresponding rope passing through the deformation area to generate a warning signal, and at the same time other ropes connected to the stress-strain monitoring device are also involved, causing the surrounding The stress and strain monitoring device will also feel the deformation signal of the geomembrane more or less. Each signal is uploaded to the cloud server through the control bus, and then communicates with the server of the control center through the cloud server. The server of the control center communicates with the server through the internal program. Obtain the signal, judge according to the time sequence and peak value, and preliminarily determine the position coordinates of the monitoring node with the first warning signal or the larger peak value as the coordinates of the geomembrane damage position. After investigation, a relatively accurate location of geomembrane damage can be obtained, which buys time for timely processing and meets the needs of personnel in relevant departments; here, the established ropes participate in the construction of the monitoring node array mesh and play the role of stress signal linkage. It also acts as a reinforcing rib, which can enhance the tensile capacity of the underwater geomembrane, improve the ability of the geomembrane to resist external forces and avoid damage in disguise, so as to achieve the best stress monitoring method: that is, the geomembrane will never be subject to or less stress. good effect. The unfavorable situation is that when the underwater geomembrane is deformed or even damaged by stress, the value of the stress data signal that may be obtained due to the rope is small. This can be achieved by lowering the monitoring signal threshold in the later program of the control center server The lower limit is used to make up for the problem of reduced monitoring sensitivity caused by ropes. Usually, the stress tensile strength of geomembrane is ≥ 250N/125px. Here, the lower limit of the threshold is set to 80-140N/125px, and the threshold is artificially lowered. In the case of the existing equipment, the sensitivity of receiving the stress signal of the geomembrane is improved. In this way, it is ensured that the geomembrane can respond in time at the initial stage of stress deformation and even damage.
当水下土工膜下的某处地基隆起或有气体积聚时,在重重水压以及其他外力的作用下, 土工膜同样会变形甚至破裂,距离该位置的最近的应力应变检测装置感受到形变信号,同 时与该应力应变检测装置相连接的绳索也受到牵扯,使周边的应力应变检测装置也会或多或少的感受到土工膜的形变信号,这些信号都会通过各自所在行的控制总线与控制箱中的 控制器连接,控制器上传至云端服务器,直至控制中心的服务器,中心服务器的内部程序 进行判断和比较,解算出最先到达以及峰值最大的土工膜形变信号作为故障点坐标值,相 关决策部门人员对该监测节点及其周围区域进行排查,即可获得相对精准的土工膜破损位置,为及时处理争取了时间,满足相关部门人员的需要。When the foundation under the underwater geomembrane rises or there is gas accumulation, the geomembrane will also be deformed or even ruptured under the action of heavy water pressure and other external forces, and the nearest stress and strain detection device at this position will feel the deformation At the same time, the rope connected to the stress-strain detection device is also involved, so that the surrounding stress-strain detection device will also feel the deformation signal of the geomembrane more or less, and these signals will pass through the control bus and The controller in the control box is connected, the controller is uploaded to the cloud server, and reaches the server in the control center. The internal program of the central server judges and compares, and calculates the geomembrane deformation signal that arrives first and has the largest peak value as the coordinate value of the fault point. The personnel of relevant decision-making departments can check the monitoring node and its surrounding areas to obtain relatively accurate geomembrane damage locations, which buys time for timely processing and meets the needs of relevant department personnel.
相关决策人员也可以通过移动终端直接访问云端服务器,实时掌握水下土工膜的变形 状态信息,做到在第一时间即可进行预判,获得膜体开裂初期宝贵的抢修时机,努力将风 险降到最小,防止事故的扩大,Relevant decision-makers can also directly access the cloud server through the mobile terminal to grasp the deformation state information of the underwater geomembrane in real time, so that they can make predictions at the first time, obtain valuable emergency repair opportunities in the early stage of membrane cracking, and strive to reduce risks. To the minimum, to prevent the expansion of the accident,
本发明的工作原理成熟、可靠,在不需要增加太多投入的前提下,实现对水下土工膜 形变或破损位置的定位,相比现有漫无目标的判断方式,本技术方案,对渗漏点的判定位 置更为精准,位于偶数行的首个和尾个监测节点的应力应变检测装置中包括五边形监测盘和与所述五边形监测盘配套的五边形盖,满足多方向信号的采集,更有利于库底或渠底渗 漏隐患的监测,并且大大减少人力物力的投入,具有较大的经济效益和应用前景。The working principle of the present invention is mature and reliable, and it can locate the deformation or damaged position of the underwater geomembrane without adding too much investment. The location of the leak point is more accurate. The stress and strain detection devices at the first and last monitoring nodes in the even rows include a pentagonal monitoring disc and a pentagonal cover matching the pentagonal monitoring disc to meet multiple The collection of direction signals is more conducive to the monitoring of hidden dangers of seepage at the bottom of reservoirs or canal bottoms, and greatly reduces the input of manpower and material resources, which has great economic benefits and application prospects.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解,The above-mentioned and/or additional aspects and advantages of the present invention will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings,
图1是一种采用五边形监测盘的水下土工膜监测方法的流程示意图;Fig. 1 is a kind of schematic flow chart of the underwater geomembrane monitoring method that adopts pentagonal monitoring disc;
图2是监测节点阵列中位于奇数行中的首个所述监测节点的扇形监测盘结构示意图;Fig. 2 is a schematic structural diagram of the fan-shaped monitoring disk of the first monitoring node in the odd-numbered row in the monitoring node array;
图3是图2的扇形监测盘侧视示意图;Fig. 3 is a schematic side view of the fan-shaped monitoring panel in Fig. 2;
图4是监测节点阵列中位于首行或位于未行内部的中段监测节点的方形监测盘结构示 意图;Fig. 4 is the square monitoring disc structure schematic diagram that is positioned at the first row or is positioned at the middle section monitoring node of not row inside in monitoring node array;
图5是图4的方形监测盘结构侧视示意图;Fig. 5 is a schematic side view of the structure of the square monitoring panel in Fig. 4;
图6是监测节点阵列中位于偶数行的首个和尾个监测节点的五边形监测盘示意图;Fig. 6 is a schematic diagram of the pentagonal monitoring disk of the first and last monitoring nodes in the even-numbered row in the monitoring node array;
图7是图6的五边形监测盘侧视示意图;Fig. 7 is a schematic side view of the pentagonal monitoring panel of Fig. 6;
图8是监测节点阵列中除首行和未行以外,且在行内除首个和尾个监测节点的中间监 测节点的正六边形监测盘示意图;Fig. 8 is the regular hexagonal monitoring plate schematic diagram of the middle monitoring node except the first and last monitoring node in the row except the first line and the non-row in the monitoring node array;
图9是图8的正六边形监测盘侧视示意图;Fig. 9 is a schematic side view of the regular hexagonal monitoring panel of Fig. 8;
图10是图8带地锚的正六边形监测盘侧视示意图;Fig. 10 is a schematic side view of the regular hexagonal monitoring panel with ground anchors in Fig. 8;
图11是一种水下土工膜应力应变监测系统的示意图;Fig. 11 is a schematic diagram of an underwater geomembrane stress-strain monitoring system;
图12是接线塞局部放大结构示意图;Fig. 12 is a schematic diagram of a partially enlarged structure of a wiring plug;
图13是绳索限位装置示意图;Fig. 13 is a schematic diagram of a rope limiting device;
图14是图13中的棘轮与绳索配合示意图;Fig. 14 is a schematic diagram of cooperation between the ratchet and the rope in Fig. 13;
其中:1.水库底或渠底,2.监测节点,3.绳索,4.控制总线,5.无线路由器,6.云端服务器,7.移动终端,8.中心服务器,9.网关,10.控制箱,11.土工膜,12.扇形监测盘, 13.翻沿,14.应力应变传感器,15.防水塞,16.螺栓,17.压板,18.连接片,19.集线台, 20.接线塞,21.扇形盖,22.方形监测盘,23.方形盖,24.五边形监测盘,25.五边形盖,26. 信号线,27.气囊,28.凸起柱,29.联通管,30.上安装座,31.棘轮,32.下安装座,33.径 向缺口,34.锥形体,35.横扭杆,36.棘轮主轴,37.下凹槽,38.上凹槽管,39.侧壁镂空 孔.40.正六边形监测盘,41.正六边形盖,42.固定锚。Among them: 1. Reservoir bottom or canal bottom, 2. Monitoring node, 3. Rope, 4. Control bus, 5. Wireless router, 6. Cloud server, 7. Mobile terminal, 8. Central server, 9. Gateway, 10. Control box, 11. Geomembrane, 12. Fan-shaped monitoring plate, 13. Turning edge, 14. Stress and strain sensor, 15. Waterproof plug, 16. Bolt, 17. Pressing plate, 18. Connecting piece, 19. Hub, 20 .Wiring plug, 21. Fan-shaped cover, 22. Square monitoring plate, 23. Square cover, 24. Pentagonal monitoring plate, 25. Pentagonal cover, 26. Signal line, 27. Air bag, 28. Raised column, 29. Unicom tube, 30. Upper mount, 31. Ratchet, 32. Lower mount, 33. Radial notch, 34. Cone, 35. Transverse torsion bar, 36. Ratchet main shaft, 37. Lower groove, 38 . Upper groove tube, 39. Hollow hole on the side wall. 40. Regular hexagonal monitoring plate, 41. Regular hexagonal cover, 42. Fixed anchor.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。下面结合附图进一步说明;Embodiments of the present invention are described in detail below, examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention. Further explanation below in conjunction with accompanying drawing;
本监测方法及系统可被应用在水库底或渠底1,在对水库的库底或渠道的渠底中敷设 的土工膜11的应力监测中,图1至图14中提供了一种采用五边形监测盘的水下土工膜监 测方法,包括的步骤如下:This monitoring method and system can be applied to the bottom of the reservoir or the bottom of the canal 1. In the stress monitoring of the
步骤一包括,在库底或渠底水域内设置至少三行监测节点2,构成奇数行或偶数行的 监测节点阵列,其中,所述偶数行的各个监测节点2分别设置在所述奇数行的各个相邻的 两个监测节点2间距区域之间,各个所述监测节点2中包括设有的应力应变检测装置,位于偶数行的首个和尾个监测节点的应力应变检测装置中包括五边形监测盘和与所述五边形 监测盘配套的五边形盖,在各个行内的监测节点2中的应力应变检测装置之间连接有绳索 3,相邻行的相邻监测节点2中的应力应变检测装置之间通过绳索3连接构成三角形网孔, 其中,相邻奇数行中的首个监测节点2中的应力应变检测装置之间也连接绳索3,相邻奇 数行中的末端监测节点2的应力应变检测装置之间也通过绳索3进行连接;Step 1 includes setting at least three rows of
步骤二包括,监测节点阵列中的各个绳索3之间保持张紧并将各个监测节点2上设有 的应力应变检测装置固定安装在土工膜11朝下的一面上,将土工膜11连同安装在朝下一 面的监测节点2的应力应变检测装置一起敷设在水库底或渠底表面上,各个行中监测节点 2的应力应变检测装置均与本行的控制总线4连接,各个行的所述控制总线4均与堤坝上设置的控制箱10电连接;
步骤三包括,当任意一处土工膜11发生形变,位于土工膜11背面的相应位置的监测 节点2中的应力应变检测装置受到应力作用而发出数据信号,同时,与该应力应变检测装 置相连接的绳索3也受到牵扯,使周边的应力应变检测装置也会感受到土工膜11的形变而发出数据信号,各个所述数据信号都会通过各自所在行的控制总线4传输至控制箱10中,控制箱10中的控制器将各个数据信号上传至云端服务器6,控制中心的中心服务器8的内部程序进行判断和比较,对数据信号发出时间排序以及将数据信号与土工膜所受应力峰值的阈值下限比较,舍弃小于阈值下限的应力峰值信号,记录大于阈值下限的应力峰值信号,阈值下限可设为80或100或140N/125px,N为牛顿,PX为土工膜的像素;将最先发出数 据信号或者数据信号峰值最大的监测节点2的位置坐标初步确定为土工膜11形变或破损的 位置坐标,获悉该坐标信号的技术人员对相应的监测节点2及其周围区域进行排查,即可 获得相对精准的土工膜11形变或破损位置,为进一步应急处理提供技术支持。
图11中的C处所示,在监测节点阵列中,如图6、7中所示,位于偶数行的首个和尾个监测节点的应力应变检测装置中包括五边形监测盘24和与所述五边形监测盘24配套的五边形盖25,面向所述五边形监测盘24,在水平方向,两条相互平行的上端边和下端边分别位于所述五边形盖25的上侧和下侧,且上端边和下端边的外侧各自设置有翻沿13,在所 述翻沿13上设有安装孔,五边形监测盘24的五个边包括相互平行的上直边和下直边,与 所述上、下直边分别垂直的左直边,右侧边包括上段边和下段边,所述上段边的一端与上 直边的右端部连接,所述下段边的一端与下直边的右端部连接,所述上段边和下段边的各 自的另一端相互连接在一起并且上段边和下段边的连接交点远离五边形监测盘24的左直 边形成外凸,上段边和下段边之间存在大于零而小于180度的夹角,在所述五边形监测盘 24内的中部设有集线台19,所述集线台19上设有接线塞20,在靠近所述集线台19的上 侧和下侧的边缘分别各设置一对螺栓孔,两对螺栓孔均关于集线台19对称,所述五边形监 测盘中在靠近所述集线台的右侧的边缘设有一个螺栓孔,为满足偶数行的首个和末个监测 节点的五边形监测盘的方向需要,可以将五边形监测盘通过翻转180度使用即可;其中, 集线台的右侧的边缘的螺栓孔的径向中心正对所述上段边和下段边的连接交点形成的顶角 且位于该顶角的角平分线的延长线上,而所述集线台19的上侧、下侧边缘各设置的一对螺 栓孔的径向中心,处在所述五边形监测盘24上、下直边的两端所在的两对顶角的相互交叉连接的对角线上。螺栓孔的径向中心处于交叉的对角线上,这样方便连接在应力应变传感 器14上的绳索无需折弯即可顺着顶角处穿出。有利于提高传感器对应力感知的灵敏性。五 边形盖包括在水平方向,两条相互平行的上端边和下端边分别位于所述五边形盖的上侧和 下侧,且上端边和下端边的外侧各自设置有翻沿,在所述翻沿上设有安装孔。As shown at the C place in Fig. 11, in the monitoring node array, as shown in Fig. 6 and 7, the stress-strain detecting device of the first and the last monitoring node in the even-numbered row includes a
五个连接片18的一端通过螺栓16分别与螺栓孔配合而紧固在集线台19上,五个连接 片18的另一端分别各自独立连接有应力应变传感器14,在每个应力应变传感器14的远离 所述连接片18的另一端设有紧固孔,压板17通过螺栓16与紧固孔的配合将绳索的一端压 接在应力应变传感器14远离所述连接片18的另一端上,所述五边形监测盘24的侧壁上设 有防水塞15,五个所述绳索通过防水塞15穿出侧壁与相邻的其他监测节点连接,五个所述应力应变传感器14的信号线26分别通过所述接线塞20与本行内的控制总线4电连接。One end of five connecting
另外,图11中的B处所示,在监测节点阵列中,如图4、5中所示,所述方形监测盘 22上配套有方形盖23,所述方形盖23的左、右两边之间的上、下两条直边的外侧设置有 翻沿13,所述翻沿13上设有安装孔,面向所述方形监测盘22,包括在所述方形监测盘22 内关于左、右两边对称的对称中心轴线上且靠近偏上侧的所述直边位置设有集线台19,所 述集线台19上设有接线塞20,在所述集线台19上设有以所述方形监测盘22内的左、右 两边的对称中心轴线为对称轴的两对螺栓孔,两对连接片18的一端通过螺栓16分别与该 两对螺栓孔配合且紧固在集线台19上,两对连接片18的另一端分别各自独立连接两对应 力应变传感器14,其中的一对应力应变传感器14的轴向轴线的连线共线,且与所述方形 监测盘22的左、右两边之间的上、下两条直边相平行,另外一对应力应变传感器14的轴 向轴线关于所述方形监测盘22内的左、右两边的对称中心轴线对称呈八字型,在每个应力 应变传感器14的远离所述连接片18的另一端也设有螺栓孔,压板17通过螺栓16与该螺 栓孔的配合将绳索3的一端压接在应力应变传感器14远离所述连接片18的另一端上,所 述方形监测盘22的侧壁上设有防水塞15,所述绳索3通过防水塞15穿出方形监测盘22 与相邻的其他监测节点2的应力应变检测装置连接,所述应力应变传感器14的信号线26 分别通过所述接线塞20与本行内的控制总线4电连接。In addition, as shown at B in FIG. 11, in the monitoring node array, as shown in FIGS. The outer sides of the upper and lower two straight sides between are provided with a turning
图11中的A处所示,位于奇数行中的首个所述监测节点2的应力应变检测装置中包括 扇形监测盘12,如图2、3中所示,所述扇形监测盘12和扇形盖21配套,在所述扇形盖 21的两条直边的外侧设置有翻沿13,所述翻沿13上设有安装孔,这样可以利用翻沿13上 的安装孔,通过缝制或铆接等方式将扇形监测盘12连接在土工膜11上的朝下一面上,即 土工膜11的背面。在所述扇形监测盘12内与弧线边正对一侧的位置设有集线台19,所述 集线台19上设有接线塞20,在集线台19靠近扇形监测盘12的弧线边的一侧的台面边缘 上设有三个螺栓孔,三个连接片18的一端分别通过螺栓16与三个螺栓孔配合而紧固在集 线台19上,三个连接片18的另一端分别各自连接有应力应变传感器14,在每个应力应变 传感器14的远离所述连接片18的另一端也设有螺栓孔,压板17通过螺栓16与螺栓孔的 配合将绳索3的一端压接在应力应变传感器14远离所述连接片18的另一端上,所述扇形 监测盘12的侧壁上设有防水塞15,所述绳索3通过防水塞15穿出扇形监测盘12与相邻 的其他监测节点2中的应力应变检测装置连接,所述应力应变传感器14的信号线26分别 通过所述接线塞20与本行内的控制总线4电连接。As shown in the A place in Fig. 11, the stress-strain detecting device of the first described
图11中,展示了一种水下土工膜监测系统,包括在水库底或渠底1内的水域中设置至 少三行监测节点2,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点2分别设置在所述奇数行的各个相邻的两个监测节点2间距区域之间,各个所述监测节点2中包括设有的应力应变检测装置,在各个行内的监测节点2中的应力应变检测装置 之间连接有绳索3,相邻行的相邻监测节点2中的应力应变检测装置之间通过绳索3连接 构成三角形网孔,其中,相邻奇数行中的首个监测节点2中的应力应变检测装置之间也连接绳索3,相邻奇数行中的末端监测节点2的应力应变检测装置之间也通过绳索3进行连 接;In Fig. 11, a kind of underwater geomembrane monitoring system is shown, including setting at least three rows of
监测节点阵列中的各个绳索3之间保持张紧并将监测节点2固定安装在土工膜11朝下 的一面上,土工膜11连同朝下一面上的监测节点2一起敷设在水下的水库底或渠底1表面 上,各个行中的监测节点2的应力应变检测装置均与本行的控制总线4连接,各个行的所 述控制总线4均与堤坝上设置的控制箱10电连接;所述控制箱10与云端服务器6通讯,所述云端服务器6通过网关9与控制中心的中心服务器8通信,所述云端服务器6还与移 动终端7通信。Each
所述控制箱10中包括设有的控制器,还包括与控制器连接的无线发射模块,无线发射 模块通过无线路由器5与云端服务器6通讯。Include the controller that is provided with in the described
所述控制器为PLC控制器,所述绳索3为不锈钢丝绳。The controller is a PLC controller, and the
PLC控制器安装在控制箱10中,与电源、启动开关、指示灯等相应外围电气配件电连 接均属于本领域技术人员常规技术,因此不再赘述。The PLC controller is installed in the
最后,图11中的D处所示,在监测节点阵列中,如图8、9中所示,除首行和未行以外,且在行内除首个和尾个监测节点的中间监测节点包括正六边形监测盘40和与所述正六边形监测盘40配套的正六边形盖41,面向所述正六边形监测盘40,在水平方向,两条相互 平行的直边分别位于所述正六边形盖41的上侧和下侧,且两条所述直边的外侧各自设置有翻沿13,在所述翻沿13上设有安装孔,所述正六边形监测盘40的六个顶角为三对关于盘 内的对称中心对称的对称顶角,在所述正六边形监测盘40内的对称中心处设有集线台19, 所述集线台19上设有接线塞20,在靠近所述集线台19的上侧和下侧以及左侧和右侧的边 缘设置六个螺栓孔,六个螺栓孔构成关于盘内的对称中心对称的三对,每对螺栓孔的径向 中心分别对应位于正六边形监测盘40的三对对称顶角之间的对角线在集线台19上的投影上,Finally, as shown at D in Figure 11, in the monitoring node array, as shown in Figures 8 and 9, except the first row and the last row, and the middle monitoring nodes in the row except the first and last monitoring nodes include The regular
六个连接片18的一端分别通过螺栓16与螺栓孔配合而紧固在集线台19上,六个连接 片18的另一端分别各自独立连接有应力应变传感器14,在每个应力应变传感器14的远离 所述连接片18的另一端设有紧固孔,压板17通过螺栓16与紧固孔的配合将绳索的一端压 接在应力应变传感器14远离所述连接片18的另一端上,所述正六边形监测盘40的侧壁上 设有防水塞15,六个所述绳索通过防水塞15穿出侧壁与相邻的其他监测节点连接,六个所述应力应变传感器14的信号线26分别通过所述接线塞20与本行内的控制总线4电连接。One ends of the six connecting
如图10中所示,正六边形监测盘还可以设有固定锚42,因为正六边形监测盘往往设 置在整个土工膜11的中部区域,相比土工膜11的边缘区域,位移量小,因此可以利用固定锚42相对保持定位,固定锚42可以抓在水底的泥中,使各个正六边形监测盘相对固定 在水底,也就相当于人为建立多个原点坐标,当土工膜11有破损或形变时,绳索对节点内 的应力应变传感器14实施力道,中心服务器8根据传输来的数据信号,直接获得这些固定 的正六边形监测盘原点的相对坐标并作为参照点,相比遍历整个水底区域的找寻破损或形变位置,相当于将水底区域化整为零,可以用较少的程序运行更为迅速的获得土工膜11的破损或形变位置。As shown in Figure 10, the regular hexagonal monitoring disc can also be provided with a fixed anchor 42, because the regular hexagonal monitoring disc is often arranged in the middle area of the
图12中,提供一种接线塞20,所述接线塞20分别设置在扇形监测盘12、方形监测盘22、五边形监测盘24、正六边形监测盘40的盘体中的集线台19位置,所述接线塞20包 括由盘体内穿出的中空管以及与中空管露出盘体一端连接的法兰盘,在所述中空管内壁上 安装多个凸起柱28,所述凸起柱28位于中空管的径向方向上,多个所述凸起柱28沿所述 中空管的轴向方向排布,在所述中空管露出盘体外部的管口位置以及管内凸起柱28之间设 有若干气囊27,所述气囊27之间通过联通管29联通,信号线26穿过所述气囊27和凸起柱28的间隙伸到盘体外,以方形监测盘22为例,当方形监测盘22连同土工膜11安装在 水下后,在水压力的作用下,位于盘体外部的管口处的气囊27被压缩,由于气囊27之间 通过联通管29相互联通,管口外的气囊27被压缩后,位于接线塞20的中空管内的气囊 27膨胀,进一步包裹在经接线塞20通过的信号线26的周圈,在气囊27的包围下,信号 线26途径管径内交错设置的凸起柱28而变得更加逶迤曲折,这样,气囊27和凸起柱28 配合增加了管内的曲折程度,一方面保障监测盘内防水密封效果,另一方面,由于凸起柱 28为质柔的橡胶材质,当方形监测盘22中的应力应变传感器14受到应力作用,发生微弱位移时,信号线26可以在中空管内自由伸缩,避免信号线26与内部的应力应变传感器14 的接线端因受力过大而断掉,致使无法传送应力信号的情况发生,这样大大提高了监测盘 工作的可靠性。In Fig. 12, a kind of
图13、14中,提供一种绳索限位装置,为保障监测阵列中的绳索在应力作用下,有效 位移,不因附着物的羁绊发生偏离,可以在绳索途经的水库底或渠底的地面设置绳索限位 装置,绳索限位装置包括上安装座30,所述上安装座30的左、右两个侧边设置翻沿13,所述翻沿13上设有安装孔,在所述上安装座30的下底面设有上凹槽管38,所述上凹槽管 38通过并平行所述上安装座30的左、右对称中心轴线,所述上凹槽管38为下方开口的凹 槽管,在上凹槽管38的中段一侧上设有侧壁镂空孔39,所述上安装座30与位于正下方的 下安装座32配合连接,所述下安装座32上与所述上凹槽管38对应位置设有下凹槽37, 在所述下凹槽37对应上凹槽管38的侧壁镂空孔39位置设有棘轮31,所述棘轮31通过棘 轮主轴36与下安装座32正下方的锥形体34配合,所述锥形体34包括上部平面和下部的锥形钻,锥形钻的侧壁上设有螺旋纹,起到使用中钻头作用,省时省力,在所述上部平面 的径向中心位置设有沿下部的锥形钻的轴向轴线方向的沉孔,位于所述锥形钻上且靠近上 部平面的两个相对侧壁上设有径向缺口33,所述径向缺口33和所述沉孔之间联通,所述棘轮主轴36与所述沉孔配合,所述棘轮主轴36的下端与下方的横扭杆35的中部连接,所 述横扭杆35的两个端部位于所述径向缺口33内,当把绳索扣合在上安装座30和下安装座 32的下凹槽37和上凹槽管38中,并将锥形体34植入水库底或渠底的泥内,当绳索在受 到应力作用发生位移时,会触动棘轮31转动,棘轮31是单向轮,只会朝一个方向转动, 在棘轮31的带动下,棘轮主轴36带动径向缺口33内的横扭杆35转动并将力矩作用在锥 形体34上,导致锥形体34下部的锥形钻往泥内钻,因应力作用在绳索上的位移有限,因此锥形钻也不会发生太大的进给,仅使绳索组成的节点阵列连同其上敷设的土工膜11紧密 贴合在水库底或渠底上,避免土工膜11自身位移;即便土工膜11下方有气体时,在绳索 以及锥形体34作用下,土工膜11仍然会贴敷在水库底或渠底上,相当于将气体均摊在土 工膜11的下方较大区域内,避免土工膜11局部鼓包,也就延缓或避免了气体积聚在土工 膜11较小的一点上,导致局部受力而破损,在绳索和绳索限位装置的作用下,土工膜11具备较强的抗拉效果和较牢靠的“抓地”效果,从两个方面减少水下土工膜11的意外破损。 此外,棘轮主轴36与下安装座32之间还可以设置扭矩传感器,与应力应变传感器处理类 似,将扭矩传感器的信号线同样通过相应的数据总线接至控制箱内以及信号上传网络送至 中心服务器8,成为对水下土工膜应力监测的补充,从而建立起应力监测新的途径。In Figures 13 and 14, a rope limiting device is provided. In order to ensure that the ropes in the monitoring array are effectively displaced under stress and will not deviate due to the fetters of attachments, they can be placed on the ground at the bottom of the reservoir or the bottom of the canal where the rope passes. A rope limiting device is set, and the rope limiting device includes an
这里,当绳索受另一个方向的相反的应力拉动时,绳索反方向运动,单向运动的棘轮 31将不参与运动,从而保障了锥形钻只向水库底或渠底的底部钻洞,避免整个绳索限位装 置从水库底或渠底的泥里被旋出来;Here, when the rope is pulled by the opposite stress in another direction, the rope moves in the opposite direction, and the
通过绳索限位装置可以保障绳索的不打绞的状态,同时凹槽结构还能清除附着在绳索 上的泥或其他附着物,使土工膜连同绳索可以满足水库底或渠底或者部分有起伏的水底工 况的敷设。此外,虽然各个绳索对各个盘体已经有束缚,盘体本身不会有较大的位移,但若将绳索限位装置连接在扇形盘12或方形监测盘22或五边形监测盘24或正六边形监测盘 40的盘体的下方并扎入泥中,在不影响应力监测的情况下实现对盘体位移幅度的限制,进 一步减少或避免应力应变中盘体对土工膜本体的牵拽幅度,这样,整个系统将获得更为可 靠的运行保障。The non-twisted state of the rope can be guaranteed by the rope limit device. At the same time, the groove structure can also remove mud or other attachments attached to the rope, so that the geomembrane and the rope can meet the needs of the reservoir bottom or canal bottom or some undulating areas. Laying in underwater conditions. In addition, although each rope has been bound to each disk, the disk itself will not have a large displacement, but if the rope limiter is connected to the fan-shaped
在本说明书的描述中,参考术语“一个实施例”等的描述意指结合该实施例或示例描 述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明 书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。In the description of this specification, a description referring to the term "one embodiment" and the like means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810631954.0A CN108759769B (en) | 2018-06-19 | 2018-06-19 | An underwater geomembrane monitoring method using a pentagonal monitoring disc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810631954.0A CN108759769B (en) | 2018-06-19 | 2018-06-19 | An underwater geomembrane monitoring method using a pentagonal monitoring disc |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108759769A CN108759769A (en) | 2018-11-06 |
CN108759769B true CN108759769B (en) | 2023-06-16 |
Family
ID=63978892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810631954.0A Active CN108759769B (en) | 2018-06-19 | 2018-06-19 | An underwater geomembrane monitoring method using a pentagonal monitoring disc |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108759769B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114509217B (en) * | 2022-01-24 | 2023-10-20 | 中国长江三峡集团有限公司 | Reservoir leakage detection device and detection method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567932A (en) * | 1995-08-01 | 1996-10-22 | Sandia Corporation | Geomembrane barriers using integral fiber optics to monitor barrier integrity |
DE10151021A1 (en) * | 2001-10-16 | 2003-04-30 | Infineon Technologies Ag | Sensor arrangement |
CN103575664A (en) * | 2013-10-08 | 2014-02-12 | 南京航空航天大学 | Structural multiscale health monitoring device and structural multiscale health monitoring method on basis of novel integrated type composite sensor array |
CN206583402U (en) * | 2017-03-06 | 2017-10-24 | 东莞前沿技术研究院 | A kind of deformation detecting device |
CN107389531A (en) * | 2017-08-18 | 2017-11-24 | 上海甚致环保科技有限公司 | Monitoring of leakage system for geomembrane |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221570A (en) * | 1991-09-03 | 1993-06-22 | Cem Gokcen | Multilayered coextruded geomembrane |
GB2405934A (en) * | 2003-09-09 | 2005-03-16 | Qinetiq Ltd | Resistance strain/moisture gauge |
KR101262233B1 (en) * | 2004-03-24 | 2013-05-08 | 파이버 옵틱 센서스 앤드 센싱 시스템스 | Method of detecting and measuring strain in civil engineering and geotextile |
CN101539396B (en) * | 2009-04-09 | 2011-01-12 | 北京佳讯飞鸿电气股份有限公司 | Application system for monitoring stress deformation of tunnel |
CN101561430B (en) * | 2009-05-25 | 2013-06-12 | 重庆交通大学 | System for monitoring crack of piezoelectric-array converged alertness network structure and monitoring and installing methods |
US8547534B2 (en) * | 2009-09-03 | 2013-10-01 | Honda Motor Co., Ltd. | Optical fiber sensor, pressure sensor, end effector and sensor signal processor |
CN101793502B (en) * | 2010-02-20 | 2013-05-15 | 昆明理工大学 | Method for Determining Damaged Position of Built-in Geomembrane by Using Optical Fiber Strain |
US10697760B2 (en) * | 2015-04-15 | 2020-06-30 | General Electric Company | Data acquisition devices, systems and method for analyzing strain sensors and monitoring component strain |
US20170176269A1 (en) * | 2015-12-17 | 2017-06-22 | General Electric Company | Components with array-based strain sensors and methods for monitoring the same |
CN106931896B (en) * | 2017-03-31 | 2020-04-17 | 四川大学 | Optical fiber sensing technology and system for deformation monitoring of geomembrane anti-seepage earth-rock dam |
CN107702689A (en) * | 2017-10-11 | 2018-02-16 | 北京国华恒源科技开发有限公司 | The monitoring system and monitoring method of a kind of surface subsidence monitoring |
-
2018
- 2018-06-19 CN CN201810631954.0A patent/CN108759769B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567932A (en) * | 1995-08-01 | 1996-10-22 | Sandia Corporation | Geomembrane barriers using integral fiber optics to monitor barrier integrity |
DE10151021A1 (en) * | 2001-10-16 | 2003-04-30 | Infineon Technologies Ag | Sensor arrangement |
CN103575664A (en) * | 2013-10-08 | 2014-02-12 | 南京航空航天大学 | Structural multiscale health monitoring device and structural multiscale health monitoring method on basis of novel integrated type composite sensor array |
CN206583402U (en) * | 2017-03-06 | 2017-10-24 | 东莞前沿技术研究院 | A kind of deformation detecting device |
CN107389531A (en) * | 2017-08-18 | 2017-11-24 | 上海甚致环保科技有限公司 | Monitoring of leakage system for geomembrane |
Also Published As
Publication number | Publication date |
---|---|
CN108759769A (en) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101793502B (en) | Method for Determining Damaged Position of Built-in Geomembrane by Using Optical Fiber Strain | |
CN201060186Y (en) | A foundation and slope engineering model test platform | |
LU503555B1 (en) | Method for plugging water inrush and mud outburst in tunnels | |
CN108759769B (en) | An underwater geomembrane monitoring method using a pentagonal monitoring disc | |
CN208533464U (en) | An underwater geomembrane monitoring system using a fan-shaped monitoring disc | |
CN106094011A (en) | Dome dam Microseismic monitoring system and method | |
CN108547261B (en) | A monitoring method for underwater geomembrane monitoring system using fan-shaped monitoring disk | |
CN110144898A (en) | The real-time security alarm system of Foundation Pit Construction and method | |
CN108844515B (en) | Monitoring method and system for underwater geomembrane | |
CN208238772U (en) | A kind of monitoring system of underwater geomembrane | |
CN116558474A (en) | Gravity type wharf foundation bed settlement monitoring system and installation method thereof | |
CN108548512B (en) | An underwater geomembrane monitoring method using regular hexagonal monitoring discs with fixed anchors | |
CN108801349B (en) | Underwater geomembrane monitoring method adopting square monitoring disc | |
CN108571945B (en) | A method of monitoring underwater geomembrane using node array | |
CN110849555B (en) | Core wall dam leakage monitoring system and method | |
CN208847164U (en) | A system for monitoring underwater geomembrane using node array | |
CN107644141B (en) | Design method of anchoring system for floating photovoltaic power station on water surface | |
CN100371530C (en) | Intelligent protection system for high dam water cushion pond | |
CN211183336U (en) | Telescopic and bendable section-assembled underground cable protection pipe | |
CN103105333A (en) | In-situ test measuring system for cross-fault buried pipeline | |
CN219829975U (en) | Water level and water pressure monitoring system for drainage of blind ditches | |
CN208183816U (en) | A kind of default section support pile experimental rig for simulating different bending strengths | |
CN212721390U (en) | Distributed dike safety monitoring system | |
CN216717595U (en) | Device for quickly mounting vibration sensor on pipe culvert structure | |
CN219137786U (en) | Arrangement structure of key parameter monitoring points of pile pulling of self-elevating wind power installation ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |