[go: up one dir, main page]

CN108753799A - A kind of mibemycin synthesis positive regulating gene kelR, coding albumen, genetic engineering bacterium and its preparation method and application - Google Patents

A kind of mibemycin synthesis positive regulating gene kelR, coding albumen, genetic engineering bacterium and its preparation method and application Download PDF

Info

Publication number
CN108753799A
CN108753799A CN201810615720.7A CN201810615720A CN108753799A CN 108753799 A CN108753799 A CN 108753799A CN 201810615720 A CN201810615720 A CN 201810615720A CN 108753799 A CN108753799 A CN 108753799A
Authority
CN
China
Prior art keywords
milbemycin
kelr
streptomyces
gene
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810615720.7A
Other languages
Chinese (zh)
Other versions
CN108753799B (en
Inventor
向文胜
王海燕
刘雨晴
王相晶
张继
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plant Protection of CAAS
Original Assignee
Institute of Plant Protection of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plant Protection of CAAS filed Critical Institute of Plant Protection of CAAS
Priority to CN201810615720.7A priority Critical patent/CN108753799B/en
Publication of CN108753799A publication Critical patent/CN108753799A/en
Application granted granted Critical
Publication of CN108753799B publication Critical patent/CN108753799B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/181Heterocyclic compounds containing oxygen atoms as the only ring heteroatoms in the condensed system, e.g. Salinomycin, Septamycin

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A kind of mibemycin synthesis positive regulating gene kelR, coding albumen, genetic engineering bacterium and its preparation method and application, belong to field of microbial pharmacy, the present invention constructs the over-express vector containing the gene and upstream promoter sequence, and it is transformed into Escherichia coli, obtained transformant carries out Conjugal transfer with Harbin streptomycete, there is picking the joint element of apramycin resistance to be overexpressed genetic engineering bacterium to get to kelR.The present invention is suitable for the biosynthesis of mibemycin.

Description

一种米尔贝霉素合成正调控基因kelR、编码蛋白、基因工程菌 及其制备方法和应用A milbemycin synthesis positive regulatory gene kelR, encoded protein, genetically engineered bacteria And its preparation method and application

技术领域technical field

本发明属于微生物制药领域,具体涉及一种米尔贝霉素合成正调控基因kelR、该基因编码的蛋白、过表达kelR的基因工程菌及其制备方法和应用。The invention belongs to the field of microbial pharmacy, and in particular relates to a milbemycin synthesis positive regulation gene kelR, a protein encoded by the gene, a genetically engineered bacterium overexpressing kelR, a preparation method and application thereof.

背景技术Background technique

生物药物尤其是大环内酯类正在并且越来越多地应用于兽医学和农业。米尔贝霉素(Milbemycin)是其中一个有代表性的对害虫具有广谱抑制同时具有较好的生态友好性的商业化农药及兽药。米尔贝霉素是一类十六元大环内酯类抗生素,化学结构与阿维菌素相似。米尔贝霉素1967年首次在日本被发现,并最先在日本登记为杀螨剂,用于农作物及经济作物等的害虫防治。之后在2006年于澳大利亚被登记用作集中花卉的二斑叶螨的杀螨剂。到现在,米尔贝霉素已在美国、中国、意大利等43个国家和地区被批准用于共24种农作物、经济作物及花卉的害虫防治。米尔贝霉素(A3:A4=30:70)比销售量最多的高效杀螨剂阿维菌素(Avermectin)杀螨活性略高,同时对大鼠的毒性比阿维菌素低40倍。其因此被美国环保署认定为危险性小的杀虫剂。而荷兰批准其成为作物生产过程中的天然产物,属于生态友好型农药。在美国、加拿大等许多国家中米尔贝霉素也已成为一种非常受欢迎的杀螨剂,具有很好的应用前景。还有一些米尔贝霉素的衍生物也表现出非常好的生物活性,并进行了商业化的应用。如米尔贝肟是米尔贝霉素半合成产品,为米尔贝霉素A3、A4的5-肟衍生物(A3:A4=20:80),具有抗微丝蚴活性,它被欧美评价为最安全的抗寄生虫药物。其通常被用来预防恶丝虫病以及治疗钩虫和线虫等引起的猫和犬类疾病,同时还可以控制犬类的鞭虫病。米尔贝肟的销售额为欧美市场抗寄生虫药物中的第2位,应用前景十分好。此外,还有米尔贝霉素半合成药物乐平霉素(Lepimectin)被登记用于蔬菜和水果的鳞翅目、半翅类等害虫的防治,另外还有研究认为乐平霉素的衍生物可以用于治疗人类的皮肤病;半合成拉替菌素(Latidectin)也已商业化,用于防治动物寄生虫。Biopharmaceuticals, especially macrolides, are being and are increasingly being used in veterinary medicine and agriculture. Milbemycin is one of the representative commercialized pesticides and veterinary drugs with broad-spectrum inhibition of pests and good eco-friendliness. Milbemycin is a class of sixteen-membered macrolide antibiotics with a chemical structure similar to abamectin. Milbemycin was first discovered in Japan in 1967, and was first registered as an acaricide in Japan for pest control of crops and commercial crops. It was then registered in Australia in 2006 as an acaricide against the flower-concentrating Tetranychus urticae. Up to now, milbemycin has been approved in 43 countries and regions including the United States, China, and Italy for the control of pests in 24 crops, cash crops and flowers. Milbemycin (A3:A4=30:70) has a slightly higher acaricidal activity than Avermectin, the most highly effective acaricide, and is 40 times less toxic to rats than Avermectin. It is therefore considered a less hazardous pesticide by the US EPA. The Netherlands has approved it as a natural product in the crop production process, and it is an eco-friendly pesticide. Milbemycin has also become a very popular acaricide in many countries such as the United States and Canada, and has a good application prospect. Some derivatives of milbemycin also exhibit very good biological activity and have been applied commercially. For example, milbemycin is a semi-synthetic product of milbemycin, which is a 5-oxime derivative of milbemycin A3 and A4 (A3:A4=20:80), and has anti-microfilaria activity. Safe antiparasitic drug. It is commonly used to prevent dirofilariasis and to treat diseases in cats and dogs caused by hookworms and nematodes, as well as to control whipworms in dogs. The sales volume of milbexime ranks second in the antiparasitic drugs in the European and American markets, and the application prospect is very good. In addition, Lepimectin, a semi-synthetic drug of milbemycin, has been registered for the control of pests such as Lepidoptera and Hemiptera in vegetables and fruits. For the treatment of human skin diseases; semi-synthetic Latidectin (Latidectin) has also been commercialized for the control of animal parasites.

尽管米尔贝霉素系列产品有巨大的商业价值,世界各国也争相研发产米尔贝霉素菌株,但都没有成功,近半个世纪来全球现仅日本Sankyo公司垄断生产米尔贝霉素原药。1999年课题组筛选出了产米尔贝霉素新菌株(授权发明专利4项:CN101100651B、CN10046743C、CN100467472C、CN100490648C),被命名为冰城链霉菌。这一菌株为我国工业化生产米尔贝霉素提供了基础。除已知的米尔贝霉素类化合物外,冰城链霉菌还产生12个未报道的米尔贝霉素类化合物、环五肽、一个大环内酯类化合物及聚醚类的杀虫剂南昌霉素。Although the milbemycin series products have huge commercial value, countries all over the world are also scrambling to develop and produce milbemycin strains, but they have not succeeded. In the past half a century, only Japan Sankyo Company has monopolized the production of milbemycin technical products. . In 1999, the research group screened out a new milbemycin-producing strain (4 authorized invention patents: CN101100651B, CN10046743C, CN100467472C, CN100490648C), which was named Streptomyces bingchengensis. This strain provides the basis for the industrial production of milbemycin in my country. In addition to the known milbemycins, Streptomyces glaciensis also produces 12 unreported milbemycins, cyclic pentapeptides, a macrolide compound and polyether insecticides Nanchang Mycin.

冰城链霉菌在2010年完成了全基因组测序,GeneBank登录号为CP002047,其基因组大小为11,936,683bp。基因组中至少有47个与聚酮类、非核糖体肽类或萜类等化合物生物合成相关的基因簇,其中包括米尔贝霉素生物合成基因簇,从而对米尔贝霉素的生物合成基因簇的结构、分布以及生物合成过程有了更好的了解(Wang X et al.Genomesequence of the milbemycin-producing bacterium Streptomyces bingchenggensis.JBacteriol.2010;192:4526-4527)。冰城链霉菌中米尔贝霉素生物合成基因簇有4个主要的开放阅读框(milA1,milA2,milA3,milA4),这四个开放阅读框共编码12个模块负责米尔贝霉素的聚酮合成。在米尔贝霉素生物合成基因簇中仅有一个正调控基因milR,已研究证实milR通过直接调控milA4和milF的转录来控制米尔贝霉素的生物合成,但直接调控milA1,milA2和milA3的调控基因仍未找到(Zhang Y et al.Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycinproduction by its overexpression in Streptomyces bingchenggensis.Microbialcell factories.2016;15,152)。Streptomyces iceberg completed the whole genome sequencing in 2010, the GeneBank accession number is CP002047, and its genome size is 11,936,683bp. There are at least 47 gene clusters related to the biosynthesis of compounds such as polyketides, non-ribosomal peptides or terpenoids in the genome, including the milbemycin biosynthesis gene cluster, so that the biosynthesis gene cluster of milbemycin The structure, distribution and biosynthesis process of milbemycin-producing bacteria have a better understanding (Wang X et al. Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. JBacteriol. 2010; 192: 4526-4527). There are four main open reading frames (milA1, milA2, milA3, milA4) in the milbemycin biosynthetic gene cluster in Streptomyces icebergi, which encode 12 modules responsible for the polyketide activity of milbemycin synthesis. There is only one positive regulatory gene milR in the milbemycin biosynthesis gene cluster. It has been confirmed that milR controls the biosynthesis of milbemycin by directly regulating the transcription of milA4 and milF, but directly regulates the regulation of milA1, milA2 and milA3. The gene is still not found (Zhang Y et al. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microbialcell factories. 2016; 15, 152).

发明内容Contents of the invention

针对如何确定米尔贝霉素生物合成基因簇中直接调控milA1,milA2和milA3的调控基因的问题,本发明提供了一种米尔贝霉素合成正调控基因kelR,所述kelR基因的核苷酸序列如SEQ ID No.1所示。Aiming at the problem of how to determine the regulatory genes that directly regulate milA1, milA2 and milA3 in the milbemycin biosynthesis gene cluster, the present invention provides a milbemycin synthesis positive regulatory gene kelR, the nucleotide sequence of the kelR gene As shown in SEQ ID No.1.

本发明提供了一种米尔贝霉素合成的正调控蛋白KelR,是由权利要求1所述的米尔贝霉素合成正调控基因kelR所编码的,所述KelR蛋白由274个氨基酸组成,其氨基酸序列如SEQ ID No.2所示。The invention provides a positive regulatory protein KelR for milbemycin synthesis, which is encoded by the positive regulatory gene kelR for milbemycin synthesis according to claim 1. The KelR protein consists of 274 amino acids, and its amino acid The sequence is shown as SEQ ID No.2.

本发明还提供了一种高产米尔贝霉素基因工程菌,所述基因工程菌过表达权利要求1所述的米尔贝霉素合成正调控基因kelR,其核苷酸序列如SEQ ID No.1所示,出发菌株为冰城链霉菌Streptomyces bingchenggensis、米尔贝霉素链霉菌、吸水链霉菌金泪亚种、灰色产色链霉菌中的一种。The present invention also provides a high-yield milbemycin genetically engineered bacterium, said genetically engineered bacterium overexpresses the positive regulatory gene kelR for milbemycin synthesis according to claim 1, and its nucleotide sequence is as shown in SEQ ID No.1 As shown, the starting strain is one of Streptomyces bingchenggensis, Streptomyces milbemycin, Streptomyces hygroscopicus subsp.

优选地,所述冰城链霉菌为Streptomyces bingchenggensis BCWT或Streptomyces bingchenggensis BC-120-4。Preferably, the Streptomyces bingchenggensis is Streptomyces bingchenggensis BCWT or Streptomyces bingchenggensis BC-120-4.

上述高产米尔贝霉素基因工程菌的制备方法,包含以下步骤:The preparation method of the above-mentioned high-yielding milbemycin genetically engineered bacteria comprises the following steps:

1)构建米尔贝霉素合成正调控基因kelR过表达载体,所述过表达载体含有米尔贝霉素合成正调控基因kelR,其序列如SEQ ID No.1所示;以及米尔贝霉素合成正调控基因kelR上游启动子,其序列如SEQ ID No.3所示;1) Construct the overexpression vector of milbemycin synthesis positive regulation gene kelR, the overexpression vector contains milbemycin synthesis positive regulation gene kelR, its sequence is shown in SEQ ID No.1; and milbemycin synthesis positive Regulatory gene kelR upstream promoter, its sequence is shown in SEQ ID No.3;

2)将步骤1)中构建的米尔贝霉素合成正调控基因kelR过表达载体转化大肠杆菌宿主细胞,得到含有米尔贝霉素合成正调控基因kelR过表达载体的转化子;2) Transforming the Escherichia coli host cell with the milbemycin synthesis positive regulation gene kelR overexpression vector constructed in step 1), to obtain a transformant containing the milbemycin synthesis positive regulation gene kelR overexpression vector;

3)将步骤2)所得的转化子与链霉菌进行属间接合和转移,即得到高产米尔贝霉素基因工程菌。3) Intergenus conjugation and transfer of the transformant obtained in step 2) with Streptomyces to obtain a high-yield milbemycin genetically engineered bacterium.

优选地,步骤1)所述米尔贝霉素合成正调控基因kelR的过表达载体的构建过程为:Preferably, the construction process of the overexpression vector of the milbemycin synthesis positive regulatory gene kelR described in step 1) is:

以冰城链霉菌基因组为模板,PCR扩增得到含有米尔贝霉素合成正调控基因kelR完整编码区和上游启动子的基因片段,所述PCR扩增用的上游引物序列如SEQ ID No.4所示,下游引物序列如SEQ ID No.5所示;用限制性内切酶XbaI和EcoRI进行酶切,获得的酶切产物连接入经XbaI和EcoRI酶切处理的pSET152载体,得到的重组质粒pSET152::kelR即为米尔贝霉素合成正调控基因kelR过表达质粒;所述冰城链霉菌为Streptomycesbingchenggensis BCWT或Streptomyces bingchenggensis BC-120-4。Using the Streptomyces glaciferi genome as a template, PCR amplifies the gene fragment containing the complete coding region of the milbemycin synthesis positive regulatory gene kelR and the upstream promoter, and the upstream primer sequence used for the PCR amplification is as SEQ ID No.4 As shown, the sequence of the downstream primer is shown in SEQ ID No.5; the restriction endonuclease XbaI and EcoRI are used to digest, and the obtained digestion product is connected to the pSET152 vector that has been digested with XbaI and EcoRI to obtain the recombinant plasmid pSET152::kelR is the overexpression plasmid of the milbemycin synthesis positive regulatory gene kelR; the Streptomyces bingchenggensis is Streptomyces bingchenggensis BCWT or Streptomyces bingchenggensis BC-120-4.

优选地,步骤3)所述链霉菌为Streptomyces bingchenggensis BCWT、Streptomyces bingchenggensis BC-120-4、米尔贝霉素链霉菌、吸水链霉菌金泪亚种、灰色产色链霉菌中的一种。Preferably, the Streptomyces in step 3) is one of Streptomyces bingchenggensis BCWT, Streptomyces bingchenggensis BC-120-4, Streptomyces milbemycin, Streptomyces hygroscopicus subsp. aureus, and Streptomyces griseochromogenes.

所述冰城链霉菌Streptomyces bingchenggensis BCWT,记载在高爱丽,王相晶,et al.(2007)."吸水链霉菌新种的筛选和鉴定."东北农业大学学报38(3):361-364.The Streptomyces bingchenggensis BCWT is described in Gao Aili, Wang Xiangjing, et al. (2007). "Screening and Identification of New Species of Streptomyces hygroscopicus." Journal of Northeast Agricultural University 38(3):361-364.

所述冰城链霉菌Streptomyces bingchenggensis BC-120-4,记载在Wang,H.Y.,J.Zhang,et al.(2014)."Combined application of plasma mutagenesis and geneengineering leads to5-oxomilbemycins A3/A4as main components fromStreptomyces bingchenggensis."Applied Microbiology and Biotechnology 98(23):9703-9712.The Streptomyces bingchenggensis BC-120-4 described in "Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis" was described in Wang, H.Y., J. Zhang, et al. ."Applied Microbiology and Biotechnology 98(23):9703-9712.

其他菌株均记载在林秀萍,刘永宏,李季伦.米尔贝霉素的产生菌、理化性质、生物学活性及应用研究进展[J].中国抗生素杂志,2013,38(04):314-322。Other strains are recorded in Lin Xiuping, Liu Yonghong, Li Jilun. Research progress on producing bacteria, physical and chemical properties, biological activity and application of milbemycin[J]. Chinese Journal of Antibiotics, 2013,38(04):314-322.

优选地,步骤2)所述的大肠杆菌宿主细胞为E.coli ET12567\pUZ8002。Preferably, the Escherichia coli host cell described in step 2) is E. coli ET12567\pUZ8002.

本发明所述的米尔贝霉素合成正调控基因kelR在微生物发酵生产米尔贝霉素中能够提高米尔贝霉素产量。The milbemycin synthesis positive regulatory gene kelR of the present invention can increase the yield of milbemycin in microbial fermentation production of milbemycin.

所述的高产米尔贝霉素基因工程菌可应用在发酵生产米尔贝霉素中,培养高产米尔贝霉素的基因工程菌株,从培养物中分离米尔贝霉素。The high-yielding milbemycin genetically engineered bacteria can be used in fermentative production of milbemycin, cultivating high-yielding milbemycin genetically engineered strains, and isolating milbemycin from the culture.

本领域技术人员应理解,对SEQ ID No.1所示的kelR基因进行一个或多个核苷酸的突变,例如替换、增加、缺失等得到的基因,如果仍能够编码具有正调控米尔贝霉素合成的活性,甚至是相比于SEQ ID No.2所示蛋白增强的活性时,仍适用于本发明。Those skilled in the art will understand that if the kelR gene shown in SEQ ID No.1 is mutated by one or more nucleotides, such as substitution, addition, deletion, etc., if it can still encode The activity of protein synthesis, even when compared to the enhanced activity of the protein shown in SEQ ID No. 2, is still applicable to the present invention.

本领域技术人员应理解,对SEQ ID No.2所示的KelR蛋白进行一个或多个氨基酸的突变和/或修饰,例如替换、增加、缺失等得到的多肽,如果仍具有正调控米尔贝霉素合成的活性,甚至是相比于SEQ ID No.2所示蛋白增强的活性时,仍适用于本发明。编码该多肽的基因则同样可用于本发明来构建提高米尔贝霉素产量的工程菌。Those skilled in the art will understand that if the KelR protein shown in SEQ ID No.2 is mutated and/or modified by one or more amino acids, such as substitutions, additions, deletions, etc. The activity of protein synthesis, even when compared to the enhanced activity of the protein shown in SEQ ID No. 2, is still applicable to the present invention. The gene encoding the polypeptide can also be used in the present invention to construct an engineering bacterium that improves the production of milbemycin.

有益效果Beneficial effect

本发明首次发现直接调控米尔贝霉素合成的正调控基因kelR以及其编码蛋白的功能。该蛋白可正调控米尔贝霉素的合成。所述米尔贝霉素合成的正调控基因kelR在冰城链霉菌中对应于基因SBI_06842(GeneBank登录号),本发明的研究显示,kelR的缺失直接导致米尔贝霉素的合成终止,重新引入一个拷贝的kelR则恢复米尔贝霉素的合成,过表达kelR能促进米尔贝霉素产量提升。表明kelR基因编码的调控蛋白为米尔贝霉素合成基因簇的正调控蛋白。The present invention discovers for the first time the function of the positive regulatory gene kelR which directly regulates the synthesis of milbemycin and its encoded protein. This protein positively regulates the synthesis of milbemycin. The positive regulatory gene kelR for the synthesis of milbemycin corresponds to the gene SBI_06842 (GeneBank accession number) in Streptomyces iceberg. The research of the present invention shows that the deletion of kelR directly leads to the termination of the synthesis of milbemycin, and reintroduces a The copied kelR restores the synthesis of milbemycin, and overexpression of kelR can promote the production of milbemycin. It indicated that the regulatory protein encoded by the kelR gene was a positive regulatory protein of the milbemycin synthesis gene cluster.

通过同源重组双交换考察了kelR的功能,确定其能够正调控米尔贝霉素的生物合成,在米尔贝霉素合成过程中起着决定性作用。The function of kelR was investigated by homologous recombination double crossover, and it was confirmed that it can positively regulate the biosynthesis of milbemycin and plays a decisive role in the synthesis of milbemycin.

在此基础上,本发明构建了高产米尔贝霉素基因工程菌,通过提高冰城链霉菌中kelR基因拷贝数,过表达kelR能促进米尔贝霉素产量提升,因此,降低了生产成本,提高了经济效益。On this basis, the present invention has constructed a high-yielding milbemycin genetically engineered bacterium. By increasing the copy number of the kelR gene in Streptomyces iceberg, overexpressing kelR can promote the production of milbemycin. Therefore, the production cost is reduced and the production cost is improved. economic benefit.

附图说明Description of drawings

图1中a为卡那霉素抗性基因质粒pUC119::neo;b为基因阻断用质粒pKC1139;c为过表达用质粒pSET152的物理谱图。In Figure 1, a is the kanamycin resistance gene plasmid pUC119::neo; b is the plasmid pKC1139 for gene blocking; c is the physical spectrum of the plasmid pSET152 for overexpression.

图2为kelR阻断突变株及回补突变株构建示意图,WT为野生型。Figure 2 is a schematic diagram of the construction of kelR blocking mutants and anaplerotic mutants, WT is wild type.

图3为对kelR阻断突变株及其回补突变株发酵液进行高效液相色谱分析的谱图;横坐标为保留时间,单位为分钟,纵坐标为吸光度,单位为mAu。Fig. 3 is a spectrogram of HPLC analysis of the fermentation broth of the kelR blocking mutant strain and its anaplerizing mutant strain; the abscissa is the retention time in minutes, and the ordinate is the absorbance in mAu.

图4为kelR基因过表达菌株构建示意图。Fig. 4 is a schematic diagram of construction of kelR gene overexpression strain.

具体实施方式Detailed ways

下面通过实施例对本发明做进一步说明,但本发明并不受其限制。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。The present invention will be further described below by way of examples, but the present invention is not limited thereto. For the experimental methods without specific conditions indicated in the following examples, the conventional conditions or the conditions suggested by the manufacturer are usually followed.

本发明所述的载体pUC119::neo,购买自普如汀生物技术(北京)有限公司。The vector pUC119::neo of the present invention was purchased from Protin Biotechnology (Beijing) Co., Ltd.

质粒小量制备试剂盒购买自AxyPrep,货号:AP-MN-P-250G。The plasmid miniprep kit was purchased from AxyPrep, catalog number: AP-MN-P-250G.

凝胶回收试剂盒购买自AxyPrep DNA,货号:AP-GX-250。The gel recovery kit was purchased from AxyPrep DNA, catalog number: AP-GX-250.

载体pKC1139,购买自BioVector质粒载体菌种细胞基因保藏中心。The vector pKC1139 was purchased from BioVector Plasmid Vector Strain Cell Gene Collection Center.

LB培养基配方为:胰蛋白胨10g,酵母浸粉5g,氯化钠10g,蒸馏水1L,pH 7.2-7.5。121℃,1.01×105Pa灭菌20分钟。The formula of LB medium is: tryptone 10g, yeast extract powder 5g, sodium chloride 10g, distilled water 1L, pH 7.2-7.5. Sterilize at 121℃, 1.01×105Pa for 20 minutes.

2×YT培养基配方为:胰蛋白胨16g,酵母浸粉10g,氯化钠5g,蒸馏水1L,pH 7.2-7.5。121℃,1.01×105Pa灭菌20分钟。The formula of 2×YT medium is: tryptone 16g, yeast extract powder 10g, sodium chloride 5g, distilled water 1L, pH 7.2-7.5. Sterilize at 121°C and 1.01×105Pa for 20 minutes.

实施例1.米尔贝霉素合成正调控基因kelR功能的研究。Example 1. Research on the function of milbemycin synthesis positively regulating gene kelR.

一、构建米尔贝霉素合成正调控基因kelR阻断突变株1. Construction of milbemycin synthesis positive regulatory gene kelR blocking mutant strain

利用引物6842up-f/6842up-r从冰城链霉菌Streptomyces bingchenggensisBCWT(所述Streptomyces bingchenggensis BCWT记载在高爱丽,王相晶,et al.(2007)."吸水链霉菌新种的筛选和鉴定."东北农业大学学报38(3):361-364.)基因组上PCR扩增得到kelR基因同源重组左臂片段,即kelR的上游片段。Using primers 6842up-f/6842up-r from Streptomyces bingchenggensis BCWT (the Streptomyces bingchenggensis BCWT is recorded in Gao Aili, Wang Xiangjing, et al. (2007). "Screening and identification of new species of Streptomyces hygroscopicus." Northeast Agriculture University Journal 38(3):361-364.) PCR amplification on the genome obtained the homologous recombination left arm fragment of the kelR gene, ie the upstream fragment of kelR.

利用引物6842down-f/6842down-r从冰城链霉菌Streptomyces bingchenggensisBCWT基因组上PCR扩增得到kelR基因同源重组右臂片段,即kelR的下游片段。Using primers 6842down-f/6842down-r, the right arm fragment of kelR gene homologous recombination, namely the downstream fragment of kelR, was obtained by PCR amplification from Streptomyces bingchenggensis BCWT genome.

所述冰城链霉菌Streptomyces bingchenggensis BCWT基因组DNA的提取按照链霉菌遗传操作手册(Kieser,T.,M.J.Bibb,et al.(2000).Practical streptomycesgenetics,John Innes Foundation Norwich)所述方法操作。.The Streptomyces bingchenggensis BCWT genomic DNA was extracted according to the method described in Streptomyces genetics manual (Kieser, T., M.J. Bibb, et al. (2000). Practical streptomyces genetics, John Innes Foundation Norwich). .

引物序列由北京六合华大基因科技股份有限公司合成(下同),下划线代表限制性内切酶酶切位点(下同):The primer sequence was synthesized by Beijing Liuhe Huada Gene Technology Co., Ltd. (the same below), and the underline represents the restriction endonuclease cutting site (the same below):

6842up-f:5’CCCAAGCTTGTGGCGTGGAAGCAGTTGAGGAAGGC 3’6842up-f: 5' CCC AAGCTT GTGGCGTGGAAGCAGTTGAGGAAGGC 3'

(AAGCTT:HindIII酶切位点)( AAGCTT: HindIII restriction site)

6842up-r:5’GCTCTAGACACCGGGAGCATCTGGTTGGCGTA 3'6842up-r: 5'GC TCTAGA CACCGGGAGCATCTGGTTGGCGTA 3'

(TCTAGA:XbaI酶切位点)( TCTAGA: XbaI restriction site)

6842down-f:5'CGGAATTCGACGATGTCGAGGCTTCGTTTCTGTTCC 3'6842down-f: 5'CG GAATTC GACGATGTCGAGGCTTCGTTTCTGTTCC 3'

(GAATTC:EcoRI酶切位点)( GAATTC: EcoRI restriction site)

6842down-r:5'GCTCTAGATACTCGGTGTCCAGGCTGGTGGTGG 3'6842down-r: 5'GC TCTAGA TACTCGGTGTCCAGGCTGGTGGTGG 3'

(TCTAGA:XbaI酶切位点)( TCTAGA: XbaI restriction site)

PCR反应体系:10×KOD-Plus缓冲液5μL,2mM dNTPs 5μL,25mM MgSO4 2μL,KOD-Plus(1U/μL)1μL(以上试剂购自TOYOBO,Japan);10μM引物6842up-f和6842up-r各1.5μL,(或10μM引物6842down-f和6842down-r各1.5μL),基因组模板1μL(1-50ng),32μL,DMSO 2.5μL,加ddH2O至50μL。PCR reaction system: 5 μL of 10×KOD-Plus buffer, 5 μL of 2mM dNTPs, 2 μL of 25mM MgSO 4 , 1 μL of KOD-Plus (1U/μL) (the above reagents were purchased from TOYOBO, Japan); 10 μM primers 6842up-f and 6842up-r 1.5 μL each, (or 1.5 μL each of 10 μM primers 6842down-f and 6842down-r), genome template 1 μL (1-50 ng), 32 μL, DMSO 2.5 μL, add ddH 2 O to 50 μL.

PCR循环条件:预变性:94℃,2min。变性:94℃,15sec;退火:60℃,30sec。延伸:68℃,1min,30个循环;68℃,2min,4℃,保存。PCR cycle conditions: pre-denaturation: 94°C, 2min. Denaturation: 94°C, 15sec; Annealing: 60°C, 30sec. Extension: 68°C, 1min, 30 cycles; 68°C, 2min, 4°C, storage.

扩增得到kelR的上游片段1875bp和下游片段2076bp,上游片段经HindIII和XbaI双酶切(限制性内切酶均购自TAKARA,下同),下游片段经XbaI和EcoRI双酶切,利用天根琼脂糖DNA回收试剂盒进行回收。上游片段连入用HindIII和XbaI酶切的质粒pUC119::neo骨架(该质粒的物理谱图如图1中a所示),得到的重组质粒为pUC6842upneo。用HindIII和EcoRI双酶切pUC6842upneo,回收2874bp的upneo片段,将upneo片段及kelR 2076bp下游片段的酶切产物连入经HindIII和XbaI酶切的pKC1139(该质粒的物理谱图如图1中b所示,pKC1139),得到kelR阻断质粒pKC6842。将kelR阻断质粒pKC6842转化E.coli ET12567\pUZ8002感受态细胞,进而通过属间接合转移转入冰城链霉菌BCWT中。筛选具有安普霉素(Apramycin,Apr)或卡那霉素(Kanamycin,Kan)抗性的接合子。将得到的接合子转接至含有卡那霉素和安普霉素的液体培养基SSPY中培养,所述卡那霉素在SSPY培养基中的终浓度为25ug/ml,所述安普霉素在SSPY培养基中的终浓度为30ug/ml,本申请中其他涉及卡那霉素和安普霉素的培养基,抗生素浓度均按此浓度添加。经质粒提取和酶切验证的接合子挑取6个转接至含有卡那霉素的SSPY平板上,28℃培养7天,制备孢子悬液,以每个平皿约104个孢子的浓度涂布在含有卡那霉素的SSPY平板上,于37℃培养。本申请中所述质粒提取均采用AxyPrep质粒小量制备试剂盒进行。The upstream fragment 1875bp and the downstream fragment 2076bp of kelR were amplified. The upstream fragment was double-digested with HindIII and XbaI (restriction enzymes were purchased from TAKARA, the same below), and the downstream fragment was double-digested with XbaI and EcoRI. Agarose DNA Recovery Kit for recovery. The upstream fragment was ligated into the backbone of plasmid pUC119::neo digested with HindIII and XbaI (the physical spectrum of the plasmid is shown in Figure 1 a), and the resulting recombinant plasmid was pUC6842upneo. Digest pUC6842upneo with HindIII and EcoRI, recover the 2874bp upneo fragment, and connect the digested product of the upneo fragment and the 2076bp downstream fragment of kelR into pKC1139 digested with HindIII and XbaI (the physical spectrum of the plasmid is shown in b in Figure 1 Shown, pKC1139), to obtain kelR blocking plasmid pKC6842. The kelR blocking plasmid pKC6842 was transformed into E.coli ET12567\pUZ8002 competent cells, and then transferred into Streptomyces icebergi BCWT by indirect conjugation transfer. Conjugates with resistance to Apramycin (Apr) or Kanamycin (Kanamycin, Kan) were screened. The zygote obtained is transferred to culture in the liquid medium SSPY containing kanamycin and apramycin, and the final concentration of the kanamycin in the SSPY medium is 25ug/ml, and the apramycin The final concentration of antibiotics in the SSPY medium is 30ug/ml. For other mediums involving kanamycin and apramycin in this application, the concentration of antibiotics is added according to this concentration. Pick 6 of the zygotes verified by plasmid extraction and enzyme digestion and transfer them to SSPY plates containing kanamycin, culture them at 28°C for 7 days, prepare spore suspensions, and spread them at a concentration of about 104 spores per plate . Spread on SSPY plates containing kanamycin and culture at 37°C. The plasmid extractions described in this application were all carried out using the AxyPrep plasmid miniprep kit.

pKC1139具有温度敏感型复制子,在高于34℃条件下培养不能自主复制,重组质粒只有与冰城链霉菌染色体DNA发生同源重组,才能在含有卡那霉素的MS培养基上生长。若发生双交换,则卡那霉素抗性基因正确地插入到靶基因内部,此时菌落表现为KanRAprS(卡那霉素抗性,安普霉素敏感)。将表现KanRAprS的菌落同时影印到SSPY/Kan和SSPY/Apr平板上,于28℃培养。随机挑选突变株,接种在没有任何选择压力的SSPY培养基上,28℃培养。转接3代后重新接种到分别含有卡那霉素和安普霉素的SSPY培养基上,结果仍然表现KanRAprS,说明通过双交换得到了遗传稳定的kelR阻断突变株,命名为ΔkelR,参见图2第二排所示ΔkelR。pKC1139 has a temperature-sensitive replicon, which cannot replicate autonomously when cultured at a temperature higher than 34°C. Only when the recombinant plasmid undergoes homologous recombination with the chromosomal DNA of Streptomyces icebergi can it grow on MS medium containing kanamycin. If a double crossover occurs, the kanamycin resistance gene is correctly inserted into the target gene, and the colony shows Kan R Apr S (Kanamycin resistance, Apramycin sensitivity). Copy the colonies expressing Kan R Apr S onto SSPY/Kan and SSPY/Apr plates at the same time, and culture them at 28°C. Mutant strains were randomly selected, inoculated on SSPY medium without any selection pressure, and cultured at 28°C. After three generations of transfer, re-inoculated on SSPY medium containing kanamycin and apramycin respectively, the results still showed Kan R Apr S , indicating that a genetically stable kelR blocking mutant strain was obtained through double crossover, named ΔkelR, see ΔkelR shown in the second row of Fig. 2 .

按照链霉菌遗传操作手册所述方法提取kelR阻断突变株基因组,并利用引物con6842-f/con6842-r进行PCR扩增鉴定。The genome of the kelR blocking mutant was extracted according to the method described in the Streptomyces Genetic Operation Manual, and PCR amplification was performed using primers con6842-f/con6842-r for identification.

con6842-f:5'TGCTCGTCGAACGGATCGCAGACC 3'con6842-f: 5'TGCTCGTCGAACGGATCGCAGACC 3'

con6842-r:5'TGGAACGACAGGACCCACGGAACG 3'con6842-r: 5'TGGAACGACAGGACCCACGGAACG 3'

PCR反应体系和循环条件同上。发生双交换之后,以kelR阻断突变株ΔkelR的基因组DNA为模板,用引物con6842-f/con6842-r扩增得到的片段理论大小为3902bp,用出发菌株BCWT基因组做模板扩增得到的片段大小则为3144bp。The PCR reaction system and cycle conditions are the same as above. After double crossover, using the genomic DNA of the kelR blocking mutant strain ΔkelR as a template, the theoretical size of the fragment amplified with primers con6842-f/con6842-r is 3902bp, and the fragment size amplified using the genome of the starting strain BCWT as a template It is 3144bp.

二、构建米尔贝霉素合成正调控基因kelR回补突变株2. Construction of milbemycin synthesis positive regulatory gene kelR anaplerotic mutant strain

以冰城链霉菌Streptomyces bingchenggensis BCWT基因组为模板,利用引物6842self-f/6842self-r扩增调控基因kelR及其启动子区域共计1653bp,对应的核苷酸序列如SEQ ID No.6所示。Using the Streptomyces bingchenggensis BCWT genome as a template, primers 6842self-f/6842self-r were used to amplify the regulatory gene kelR and its promoter region with a total of 1653bp, and the corresponding nucleotide sequence is shown in SEQ ID No.6.

6842self-f:5'GCTCTAGAGGTGCGGGGAGAAGCCCAATG 3'6842 self-f: 5'GC TCTAGA GGTGCGGGGAGAAGCCCAATG 3'

(TCTAGA:XbaI酶切位点)( TCTAGA: XbaI restriction site)

6842self-r:5'GGAATTCCCGACAGGACCCACGGAACG 3'6842self-r: 5'G GAATTC CCGACAGGACCCACGGAACG 3'

(GAATTC:EcoRI酶切位点)( GAATTC: EcoRI restriction site)

PCR反应体系:10×KOD Buffer 5μL,dNTPs(2mM)5μL,模板DNA(冰城链霉菌BCWT基因组)10pg-1000ng,10μM上游引物6842self-f、下游引物6842self-r(SEQ ID No.4所示,SEQ ID No.5所示;10μM)各2μL,25mM MgSO4 2μL,KOD plus DNA polymerase(1U/μL)1μL,DMSO 2.5μL,ddH2O补足到50μL。反应条件:94℃4min,94℃1min,65℃30sec,68℃3min,31个循环,68℃10min。对1653bp的PCR产物切胶回收,本申请中所述胶回收均采用AxyPrep DNA凝胶回收试剂盒进行。用XbaI和EcoRI内切酶分别对上述胶回收产物和载体pSET152进行双酶切处理,胶回收产物双酶切产物大小为1651bp,pSET152双酶切产物大小为5685bp:PCR reaction system: 10×KOD Buffer 5 μL, dNTPs (2mM) 5 μL, template DNA (Streptomyces iceberg BCWT genome) 10pg-1000ng, 10 μM upstream primer 6842self-f, downstream primer 6842self-r (shown in SEQ ID No.4 , shown in SEQ ID No.5; 10 μM) 2 μL each, 25 mM MgSO 4 2 μL, KOD plus DNA polymerase (1 U/μL) 1 μL, DMSO 2.5 μL, ddH 2 O to 50 μL. Reaction conditions: 94°C for 4min, 94°C for 1min, 65°C for 30sec, 68°C for 3min, 31 cycles, 68°C for 10min. For the recovery of 1653bp PCR products by gel cutting, the gel recovery described in this application was carried out using the AxyPrep DNA Gel Recovery Kit. Use XbaI and EcoRI endonucleases to double-enzyme-digest the above gel recovery product and vector pSET152 respectively. The size of the double-digestion product of the gel recovery product is 1651bp, and the size of the double-digestion product of pSET152 is 5685bp:

酶切体系:kelR片段或载体pSET152 1-2μg,10×M buffer 10μL,XbaI 2.5μL,EcoRI 2.5μL,ddH2O补足到100μL)(pSET152质粒物理谱图见图1中c所示)。(所述pSET152质粒记载在Bierman M et al.Plasmid cloning vectors for the conjugal transfer ofDNA from Escherichia coli to Streptomyces spp.Gene.1992;116:43-9)。Digestion system: kelR fragment or vector pSET152 1-2 μg, 10×M buffer 10 μL, XbaI 2.5 μL, EcoRI 2.5 μL, ddH 2 O to 100 μL) (see c in Figure 1 for the physical spectrum of pSET152 plasmid). (The pSET152 plasmid is described in Bierman M et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992; 116:43-9).

然后将酶切产物进行连接:Then the digested products were ligated:

所述连接体系:载体pSET152 10-20ng,kelR片段50-100ng,10×T4DNA ligasebuffer 1μL,T4DNA ligase 0.8μL,ddH2O补足到10μL。The ligation system: vector pSET152 10-20ng, kelR fragment 50-100ng, 10×T 4 DNA ligase buffer 1 μL, T 4 DNA ligase 0.8 μL, ddH 2 O to make up to 10 μL.

将以上的连接产物在22℃水浴3h后转化到大肠杆菌DH5α中,在LB培养基平板上37℃过夜培养后挑取单克隆,37℃,小试管中LB培养基进行过夜培养,提质粒后得到重组质粒pSET152::kelR,载体图谱如图4所示。将pSET152::kelR转化E.coli ET12567\pUZ8002感受态细胞,通过属间接合转移转入kelR阻断突变株中。Transform the above ligation product into Escherichia coli DH5α after 3 hours in a water bath at 22°C, pick a single clone after culturing overnight on an LB medium plate at 37°C, and culture overnight in LB medium in a small test tube at 37°C, and extract the plasmid The recombinant plasmid pSET152::kelR was obtained, and the vector map is shown in FIG. 4 . The pSET152::kelR was transformed into E.coli ET12567\pUZ8002 competent cells, and transferred into the kelR blocking mutant strain by intergenus conjugation.

用安普霉素的抗性标记筛选转化子,pSET152为整合型载体,不能在链霉菌中自主复制,只能通过pSET152载体上携带的噬菌体ФC31attP位点与链霉菌基因组attB位点发生特异性重组而整合到染色体上,与染色体组合从而得到kelR阻断突变株的回补突变株ΔkelR::kelR,如图2第三排所示ΔkelR::kelR。The transformants were screened with the apramycin resistance marker, pSET152 is an integrated vector, which cannot replicate autonomously in Streptomyces, and can only undergo specific recombination between the ФC31attP site of the phage carried on the pSET152 vector and the attB site of the Streptomyces genome The anaplerotic mutant ΔkelR::kelR is integrated into the chromosome and combined with the chromosome to obtain the kelR blocking mutant, as shown in the third row of FIG. 2 ΔkelR::kelR.

实施例2.米尔贝霉素合成正调控基因kelR阻断突变株及回补突变株的米尔贝霉素合成分析。Example 2. Analysis of milbemycin synthesis of milbemycin synthesis positive regulatory gene kelR blocking mutant strain and anaplerotic mutant strain.

一、发酵培养采用如下培养基1. Fermentation culture adopts the following medium

种子培养基(1L):蔗糖10g,脱脂奶粉1g,蛋白胨3.5g,酵母浸粉5g,K2HPO4·3H2O0.5g,蒸馏水1L,pH 7.0。121℃,1.01×105Pa灭菌20分钟。Seed medium (1L): 10g sucrose, 1g skimmed milk powder, 3.5g peptone, 5g yeast extract powder, 0.5g K 2 HPO 4 3H 2 O, 1L distilled water, pH 7.0. Sterilized at 121°C, 1.01×10 5 Pa 20 minutes.

发酵培养基(1L):蔗糖80g,黄豆饼粉20g,脱脂奶粉1g,K2HPO4·3H2O 1g,FeSO4·7H2O 0.1g,CaCO3 3g,蒸馏水1L,pH 7.0-7.2。121℃,1.01×105Pa灭菌30分钟。Fermentation medium (1L): 80g sucrose, 20g soybean cake powder, 1g skimmed milk powder, 1g K 2 HPO 4 3H 2 O, 0.1g FeSO 4 7H 2 O, 3g CaCO 3 , 1L distilled water, pH 7.0-7.2. Sterilize at 121°C, 1.01×10 5 Pa for 30 minutes.

二、发酵工艺2. Fermentation process

将预先准备好的冰城链霉菌Streptomyces bingchenggensis BCWT、上述构建好的敲除突变株ΔkelR和回补突变株ΔkelR::kelR的孢子在MS平板分别进行划线活化,铲取约2cm2菌丝块接种到内装25mL上述种子培养基的三角瓶中,28℃,250r/min振荡培养2天后。将所得的种子菌液按5%(体积分数)接种量转接到发酵培养基中,28℃、250r/min振荡培养10天。The pre-prepared spores of Streptomyces bingchenggensis BCWT, the knockout mutant strain ΔkelR constructed above and the complementation mutant strain ΔkelR::kelR were respectively streaked and activated on the MS plate, and about 2 cm 2 mycelium pieces were scooped out Inoculate into a Erlenmeyer flask containing 25 mL of the above-mentioned seed medium, and cultivate for 2 days at 28° C. with shaking at 250 r/min. The obtained seed bacteria solution was transferred to the fermentation medium according to the inoculum amount of 5% (volume fraction), and cultured with shaking at 28° C. and 250 r/min for 10 days.

三、发酵液中米尔贝霉素的高效液相色谱分析3. HPLC analysis of milbemycin in fermentation broth

取0.5mL发酵料液,加入1.5mL无水乙醇,振荡15min,之后4000rpm离心15min。将上清用0.22μm滤膜过滤后,滤液保存于-20℃冰箱。Take 0.5 mL of fermentation feed liquid, add 1.5 mL of absolute ethanol, shake for 15 min, and then centrifuge at 4000 rpm for 15 min. After the supernatant was filtered with a 0.22 μm membrane filter, the filtrate was stored in a -20°C refrigerator.

HPLC测定条件如下:HPLC assay conditions are as follows:

色谱柱:Agilent TC-C18,5μm,150×4.6mm。Chromatographic column: Agilent TC-C18, 5 μm, 150×4.6mm.

流动相:A:MeCN-H2O-MeOH(350:50:100,v/v/v),B:MeOH。Mobile phase: A: MeCN-H2O-MeOH (350:50:100, v/v/v), B: MeOH.

流速:1mL/min。Flow rate: 1 mL/min.

检测波长:242nm。Detection wavelength: 242nm.

进样体积:10μL。Injection volume: 10 μL.

分析:0-15min,B相从0%梯度洗脱到100%。Analysis: 0-15min, phase B gradient elution from 0% to 100%.

如图3所示,以冰城链霉菌野生型BCWT发酵液为对照,培养发现kelR阻断突变株ΔkelR米尔贝霉素合成终止,即检测不到任何米尔贝霉素的生成;而回补突变株ΔkelR::kelR又能够恢复合成米尔贝霉素,说明kelR为米尔贝霉素合成途径中的正调控基因,是决定米尔贝霉素合成的开关。As shown in Figure 3, using Streptomyces icebergi wild-type BCWT fermentation broth as a control, it was found that the kelR blocking mutant strain ΔkelR milbemycin synthesis was terminated, that is, no production of milbemycin could be detected; while the complementation mutation Strain ΔkelR::kelR can resume the synthesis of milbemycin, indicating that kelR is a positive regulatory gene in the synthesis pathway of milbemycin, and is a switch that determines the synthesis of milbemycin.

实施例3.高产米尔贝霉素基因工程菌的构建。Example 3. Construction of high-yielding milbemycin genetically engineered bacteria.

将实施例1中回补使用的重组载体pSET152::kelR转化E.coli ET12567\pUZ8002感受态细胞中,得到含有pSET152::kelR的E.coli ET12567\pUZ8002转化子,通过属间接合转移将pSET152::kelR转入冰城链霉菌Streptomyces bingchenggensis BC-120-4菌株(所述BC-120-4菌株记载在Wang H et al.Combined application of plasma mutagenesisand gene engineering leads to 5-oxomilbemycins A3/A4as main components fromStreptomyces bingchenggensis.Applied microbiology and biotechnology.2014;98:9703-9712)中,具体过程为:Transform the recombinant vector pSET152::kelR used in Example 1 into E.coli ET12567\pUZ8002 competent cells to obtain E.coli ET12567\pUZ8002 transformants containing pSET152::kelR, and transfer pSET152 :: kelR is transferred into Streptomyces bingchenggensis BC-120-4 bacterial strain (the BC-120-4 bacterial strain is recorded in Wang H et al. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4as main components fromStreptomyces bingchenggensis.Applied microbiology and biotechnology.2014;98:9703-9712), the specific process is:

制备大肠杆菌ET12567\pUZ8002的感受态,所述制备方法按照链霉菌遗传操作手册所述。构建好的质粒转化入ET12567\pUZ8002的感受态细胞中;涂布于含Apr抗生素的LB培养基平板上,37℃过夜培养,挑取LB平板上的转化子单菌落转接于4mL含筛选所用Apr抗生素的LB小试管中,37℃条件下过夜培养;按1:50的体积比例将小试管中的菌液接种于含Apr抗生素的三角瓶中,37℃,250rpm培养直到OD600为0.4左右;4000rpm离心10min,弃去上清后收集菌体,等体积LB液体培养基洗涤两次,6000rpm离心10min收集菌体,将沉淀菌体重悬于0.1倍体积的LB液体培养基中。同时,制备链霉菌BC-120-4孢子悬液,刮取成熟孢子至含玻璃珠三角瓶,5只5-15ml的斜面培养基培养的孢子用大约20mL水,250rpm,30min震荡打散孢子;4000rpm离心10min,弃上清回收孢子沉淀,加入等体积2×YT液体培养基洗涤一次后收集孢子沉淀,再重悬浮于5mL 2×YT液体培养基中;在45℃下热激10分钟后,28℃,250rpm孵育2小时;含有重组载体pSET152::kelR的E.coli和冰城链霉菌BC-120-4孢子悬液混匀,3000rpm离心10min,弃去上清,用残液重悬浮沉淀,涂布于含终浓度为10mM MgCl2的MS平板;在28℃进行培养20-24h,用含有1.5mg萘啶酮酸和终浓度为4~6μg/mL安普霉素的灭菌1mL ddH2O涂布;空干后,在28℃继续培养4-5天,挑取具有安普霉素抗性的接合子可得到高产米尔贝霉素基因工程菌。The competent state of Escherichia coli ET12567\pUZ8002 was prepared, and the preparation method was described in the Streptomyces Genetic Operation Manual. The constructed plasmid was transformed into competent cells of ET12567\pUZ8002; spread on the LB medium plate containing Apr antibiotics, cultivated overnight at 37°C, picked a single colony of the transformant on the LB plate and transferred it to 4mL containing In the LB small test tube of Apr antibiotics, cultivate overnight at 37°C; inoculate the bacterial solution in the small test tubes into the Erlenmeyer flask containing Apr antibiotics at a volume ratio of 1:50, and cultivate at 37°C and 250rpm until the OD 600 is about 0.4 Centrifuge at 4000rpm for 10min, discard the supernatant and collect the bacteria, wash twice with equal volume of LB liquid medium, collect the bacteria by centrifuging at 6000rpm for 10min, resuspend the precipitated bacteria in 0.1 times the volume of LB liquid medium. At the same time, prepare the spore suspension of Streptomyces BC-120-4, scrape the mature spores into a glass bead-triangle flask, and disperse the spores cultured in 5 5-15ml slant medium with about 20mL water, 250rpm, 30min shaking; Centrifuge at 4000rpm for 10min, discard the supernatant to recover the spore precipitate, add an equal volume of 2×YT liquid medium to wash once, collect the spore precipitate, and then resuspend in 5mL 2×YT liquid medium; after heat shock at 45°C for 10 minutes, Incubate at 28°C and 250rpm for 2 hours; mix the E.coli and Streptomyces iceberg BC-120-4 spore suspensions containing the recombinant vector pSET152::kelR, centrifuge at 3000rpm for 10min, discard the supernatant, and resuspend the pellet with the residue , smeared on the MS plate with a final concentration of 10mM MgCl 2 ; cultured at 28°C for 20-24h, sterilized with 1mL ddH containing 1.5mg nalidixic acid and a final concentration of 4-6μg/mL apramycin 2 O coating; after air-drying, continue to culture at 28°C for 4-5 days, and pick the zygotes with apramycin resistance to obtain high-yielding milbemycin genetically engineered bacteria.

从中挑选8株工程菌,按照实施例2的方法对其进行发酵及米尔贝霉素液相色谱检测,与出发菌株冰城链霉菌Streptomyces bingchenggensis BC-120-4进行比较,结果表明高产米尔贝霉素基因工程菌米尔贝霉素产量平均达到4676mg/L,出发菌株冰城链霉菌Streptomyces bingchenggensis BC-120-4的米尔贝霉素产量为3833mg/L,产量提高了约22%。说明kelR过表达基因工程菌能够获得比出发菌株更高的米尔贝霉素产量。Select 8 strains of engineering bacteria therefrom, carry out fermentation and Milbemycin liquid chromatographic detection to it according to the method for embodiment 2, compare with starting bacterial strain Streptomyces bingchenggensis BC-120-4, the result shows high-yield Milbemyces The average yield of milbemycin from the genetically engineered bacteria reached 4676mg/L, and the yield of milbemycin from the starting strain Streptomyces bingchenggensis BC-120-4 was 3833mg/L, an increase of about 22%. It shows that the kelR overexpression genetically engineered bacteria can obtain higher milbemycin production than the original strain.

实施例4.与实施例1的区别在于:本实施例中所用的基因组模板,是将冰城链霉菌Streptomyces bingchenggensis BCWT替换为冰城链霉菌Streptomyces bingchenggensisBC-120-4。其他步骤同实施例1。Example 4. The difference from Example 1 is that the genome template used in this example is to replace Streptomyces bingchenggensis BCWT with Streptomyces bingchenggensis BC-120-4. Other steps are with embodiment 1.

获得的米尔贝霉素合成正调控基因kelR阻断突变株及回补突变株经米尔贝霉素合成分析,表明来自于冰城链霉菌Streptomyces bingchenggensis BC-120-4的kelR为米尔贝霉素合成途径中的正调控基因,是决定米尔贝霉素合成的开关。The obtained milbemycin synthesis positive regulatory gene kelR blocking mutant and anaplerotic mutant were analyzed by milbemycin synthesis, indicating that kelR from Streptomyces bingchenggensis BC-120-4 was synthesized by milbemycin The positively regulated gene in the pathway is the switch that determines the synthesis of milbemycin.

实施例5.与实施例3的区别在于:将米尔贝霉素基因工程菌的出发菌株冰城链霉菌Streptomyces bingchenggensis BC-120-4替换为生产米尔贝霉素的任何适宜的菌株,如米尔贝霉素链霉菌、冰城链霉菌、吸水链霉菌如吸水链霉菌金泪亚种和灰色产色链霉菌等,其他步骤同实施例3,最终得到高产米尔贝霉素基因工程菌株。Embodiment 5. The difference with Example 3 is: the starting strain Streptomyces bingchenggensis BC-120-4 of Milbemycin genetically engineered bacteria is replaced with any suitable bacterial strain producing Milbemycin, such as Milbemycin Streptomyces streptomyces, Streptomyces iceberg, Streptomyces hygroscopicus such as Streptomyces hygroscopicus subsp. aureus and Streptomyces griseus chromogenes, etc., other steps are the same as in Example 3, and finally high-yielding milbemycin genetically engineered strains are obtained.

所述生产米尔贝霉素的任何适宜的菌株均记载在林秀萍,刘永宏,李季伦.米尔贝霉素的产生菌、理化性质、生物学活性及应用研究进展[J].中国抗生素杂志,2013,38(04):314-322。Any suitable strains for the production of milbemycin are recorded in Lin Xiuping, Liu Yonghong, Li Jilun. Milbemycin producing bacteria, physical and chemical properties, biological activity and application research progress [J]. Chinese Journal of Antibiotics, 2013, 38(04):314-322.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 中国农业科学院植物保护研究所<110> Institute of Plant Protection, Chinese Academy of Agricultural Sciences

<120> 一种米尔贝霉素合成正调控基因kelR、编码蛋白、基因工程菌及其制备方法和应用<120> A milbemycin synthesis positive regulatory gene kelR, encoded protein, genetically engineered bacterium and its preparation method and application

<130><130>

<160> 12<160> 12

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 825<211> 825

<212> DNA<212>DNA

<213> kelR基因<213> kelR gene

<400> 1<400> 1

atggaaatca aggtgttggg gccgctgagc gtcgaggcct gcggtcagtc gatcgtgccc 60atggaaatca aggtgttggg gccgctgagc gtcgaggcct gcggtcagtc gatcgtgccc 60

agcgcgggca agccgcggca gatcctcgca ttgctttccg tgtacgccaa ccagatgctc 120agcgcgggca agccgcggca gatcctcgca ttgctttccg tgtacgccaa ccagatgctc 120

ccggtgccca cccttatgga ggaaatctgg ggcgcgcaga tgccgcgcag tgcgttgacc 180ccggtgccca cccttatgga ggaaatctgg ggcgcgcaga tgccgcgcag tgcgttgacc 180

acgctccaga cgtacatcct tcagctccgg cggagactgg ccacggccta cggtccgcag 240acgctccaga cgtacatcct tcagctccgg cggagactgg ccacggccta cggtccgcag 240

gcgcccgagg catcgaagag cgtgctggct acgcgatacg gcggatatgt gctggaggcc 300gcgcccgagg catcgaagag cgtgctggct acgcgatacg gcggatatgt gctggaggcc 300

cagccgggcg cggtggacat ccacgagtac gaccggctgg tggccgccgg gcgggacgcg 360cagccgggcg cggtggacat ccacgagtac gaccggctgg tggccgccgg gcgggacgcg 360

ctcgacgtcg gcgacgatgt cgaggcttcg tttctgttcc gcgaggcgct ggcggtctgg 420ctcgacgtcg gcgacgatgt cgaggcttcg tttctgttcc gcgaggcgct ggcggtctgg 420

cgcggtcccg cgctcgtgga cgtacgcgtc ggaccgatcc tggagatcga gctggcccgg 480cgcggtcccg cgctcgtgga cgtacgcgtc ggaccgatcc tggagatcga gctggcccgg 480

ctggaggaga gccgtctcgg ggtcctggag cgtcggatcg aggccgatct gcgcctggga 540ctggaggaga gccgtctcgg ggtcctggag cgtcggatcg aggccgatct gcgcctggga 540

cgccacgccg aactcctcac cgagctcacc gaactgacgg cccggcatcc gctccacgag 600cgccacgccg aactcctcac cgagctcacc gaactgacgg cccggcatcc gctccacgag 600

gggctgcacg cccagtgcat ggctgccctg taccggtccg gccgcccatg gcaggcgctg 660gggctgcacg cccagtgcat ggctgccctg taccggtccg gccgcccatg gcaggcgctg 660

gaggtgtacc aggggctgcg cggccggctc gtcgaggacc tggggctcga accctccccg 720gaggtgtacc aggggctgcg cggccggctc gtcgaggacc tggggctcga accctccccg 720

cggctgcaga agctgcagca ggcggtgctc gcctcggacc ccgcgctcga cctggagtcg 780cggctgcaga agctgcagca ggcggtgctc gcctcggacc ccgcgctcga cctggagtcg 780

ggcgggcagt ggcgccgccc ggtgctcgac ctgttcgccg cgtag 825ggcgggcagt ggcgccgccc ggtgctcgac ctgttcgccg cgtag 825

<210> 2<210> 2

<211> 274<211> 274

<212> PRT<212> PRT

<213> KelR蛋白的氨基酸序列<213> Amino acid sequence of KelR protein

<400> 2<400> 2

Met Glu Ile Lys Val Leu Gly Pro Leu Ser Val Glu Ala Cys Gly GlnMet Glu Ile Lys Val Leu Gly Pro Leu Ser Val Glu Ala Cys Gly Gln

1 5 10 151 5 10 15

Ser Ile Val Pro Ser Ala Gly Lys Pro Arg Gln Ile Leu Ala Leu LeuSer Ile Val Pro Ser Ala Gly Lys Pro Arg Gln Ile Leu Ala Leu Leu

20 25 30 20 25 30

Ser Val Tyr Ala Asn Gln Met Leu Pro Val Pro Thr Leu Met Glu GluSer Val Tyr Ala Asn Gln Met Leu Pro Val Pro Thr Leu Met Glu Glu

35 40 45 35 40 45

Ile Trp Gly Ala Gln Met Pro Arg Ser Ala Leu Thr Thr Leu Gln ThrIle Trp Gly Ala Gln Met Pro Arg Ser Ala Leu Thr Thr Leu Gln Thr

50 55 60 50 55 60

Tyr Ile Leu Gln Leu Arg Arg Arg Leu Ala Thr Ala Tyr Gly Pro GlnTyr Ile Leu Gln Leu Arg Arg Arg Leu Ala Thr Ala Tyr Gly Pro Gln

65 70 75 8065 70 75 80

Ala Pro Glu Ala Ser Lys Ser Val Leu Ala Thr Arg Tyr Gly Gly TyrAla Pro Glu Ala Ser Lys Ser Val Leu Ala Thr Arg Tyr Gly Gly Tyr

85 90 95 85 90 95

Val Leu Glu Ala Gln Pro Gly Ala Val Asp Ile His Glu Tyr Asp ArgVal Leu Glu Ala Gln Pro Gly Ala Val Asp Ile His Glu Tyr Asp Arg

100 105 110 100 105 110

Leu Val Ala Ala Gly Arg Asp Ala Leu Asp Val Gly Asp Asp Val GluLeu Val Ala Ala Gly Arg Asp Ala Leu Asp Val Gly Asp Asp Val Glu

115 120 125 115 120 125

Ala Ser Phe Leu Phe Arg Glu Ala Leu Ala Val Trp Arg Gly Pro AlaAla Ser Phe Leu Phe Arg Glu Ala Leu Ala Val Trp Arg Gly Pro Ala

130 135 140 130 135 140

Leu Val Asp Val Arg Val Gly Pro Ile Leu Glu Ile Glu Leu Ala ArgLeu Val Asp Val Arg Val Gly Pro Ile Leu Glu Ile Glu Leu Ala Arg

145 150 155 160145 150 155 160

Leu Glu Glu Ser Arg Leu Gly Val Leu Glu Arg Arg Ile Glu Ala AspLeu Glu Glu Ser Arg Leu Gly Val Leu Glu Arg Arg Ile Glu Ala Asp

165 170 175 165 170 175

Leu Arg Leu Gly Arg His Ala Glu Leu Leu Thr Glu Leu Thr Glu LeuLeu Arg Leu Gly Arg His Ala Glu Leu Leu Thr Glu Leu Thr Glu Leu

180 185 190 180 185 190

Thr Ala Arg His Pro Leu His Glu Gly Leu His Ala Gln Cys Met AlaThr Ala Arg His Pro Leu His Glu Gly Leu His Ala Gln Cys Met Ala

195 200 205 195 200 205

Ala Leu Tyr Arg Ser Gly Arg Pro Trp Gln Ala Leu Glu Val Tyr GlnAla Leu Tyr Arg Ser Gly Arg Pro Trp Gln Ala Leu Glu Val Tyr Gln

210 215 220 210 215 220

Gly Leu Arg Gly Arg Leu Val Glu Asp Leu Gly Leu Glu Pro Ser ProGly Leu Arg Gly Arg Leu Val Glu Asp Leu Gly Leu Glu Pro Ser Pro

225 230 235 240225 230 235 240

Arg Leu Gln Lys Leu Gln Gln Ala Val Leu Ala Ser Asp Pro Ala LeuArg Leu Gln Lys Leu Gln Gln Ala Val Leu Ala Ser Asp Pro Ala Leu

245 250 255 245 250 255

Asp Leu Glu Ser Gly Gly Gln Trp Arg Arg Pro Val Leu Asp Leu PheAsp Leu Glu Ser Gly Gly Gln Trp Arg Arg Pro Val Leu Asp Leu Phe

260 265 270 260 265 270

Ala AlaAla Ala

<210> 3<210> 3

<211> 611<211>611

<212> DNA<212>DNA

<213> 基因kelR上游启动子<213> Gene kelR upstream promoter

<400> 3<400> 3

gaggtgcggg gagaagccca atgtgcccat cagccgacgc tgatggtgca gatgcagatg 60gaggtgcggg gagaagccca atgtgcccat cagccgacgc tgatggtgca gatgcagatg 60

cccggcgcgg gagcgggcga cggctcggcg gagaggtcct cgatgaccaa gtcgtcgacg 120cccggcgcgg gagcgggcga cggctcggcg gagaggtcct cgatgaccaa gtcgtcgacg 120

cccaagcggc ctcggggagg tggggtgcgt tcccgcgtcg tccggtgcgg tgcatcgcaa 180cccaagcggc ctcgggggagg tggggtgcgt tcccgcgtcg tccggtgcgg tgcatcgcaa 180

ggcggagcgg cgccctcgta ctgggcgtac tcgggtgctg cgacaacgcg gcgaggtgcc 240ggcggagcgg cgccctcgta ctgggcgtac tcgggtgctg cgacaacgcg gcgaggtgcc 240

gtgccgggcg gcgcgggggc gtgcctcact tccccgaggt cgcttgggtc ggcggggccg 300gtgccgggcg gcgcgggggc gtgcctcact tccccgaggt cgcttgggtc ggcggggccg 300

gggcccgcgg cgcagagggc cgaagggctc gcggggagcg gggatgtgtc ggtcattgtg 360gggcccgcgg cgcagagggc cgaagggctc gcggggagcg gggatgtgtc ggtcattgtg 360

ggctctcctc ggggtgagag gcggtcctgg caaggagtct gcgatgacgg atccacggct 420ggctctcctc ggggtgagag gcggtcctgg caaggagtct gcgatgacgg atccacggct 420

tgccagtgct ttcctcataa ccagggtgtg aacttgtcat gacctccgcc tcacaggact 480tgccagtgct ttcctcataa ccagggtgtg aacttgtcat gacctccgcc tcacaggact 480

catgcacggt tcgggagtcc ggcactggcc gtgtccacca cccgcacgcg aggctcatat 540catgcacggt tcgggagtcc ggcactggcc gtgtccacca cccgcacgcg aggctcatat 540

gtgcctcaat ggcagggccg cgcggccaaa gaggcacctg gtggaccgtc tgacggaggt 600gtgcctcaat ggcagggccg cgcggccaaa gaggcacctg gtggaccgtc tgacggaggt 600

gtgacaggac c 611gtgacaggac c 611

<210> 4<210> 4

<211> 29<211> 29

<212> DNA<212>DNA

<213> 上游引物6842self-f<213> Upstream primer 6842self-f

<400> 4<400> 4

gctctagagg tgcggggaga agcccaatg 29gctctagagg tgcggggaga agcccaatg 29

<210> 5<210> 5

<211> 27<211> 27

<212> DNA<212>DNA

<213> 下游引物6842self-r<213> downstream primer 6842self-r

<400> 5<400> 5

ggaattcccg acaggaccca cggaacg 27ggaattcccg acaggaccca cggaacg 27

<210> 6<210> 6

<211> 1653<211> 1653

<212> DNA<212>DNA

<213> 基因kelR及其启动子区域<213> Gene kelR and its promoter region

<400> 6<400> 6

gctctagagg tgcggggaga agcccaatgt gcccatcagc cgacgctgat ggtgcagatg 60gctctagagg tgcggggaga agcccaatgt gcccatcagc cgacgctgat ggtgcagatg 60

cagatgcccg gcgcgggagc gggcgacggc tcggcggaga ggtcctcgat gaccaagtcg 120cagatgcccg gcgcgggagc gggcgacggc tcggcggaga ggtcctcgat gaccaagtcg 120

tcgacgccca agcggcctcg gggaggtggg gtgcgttccc gcgtcgtccg gtgcggtgca 180tcgacgccca agcggcctcg gggaggtggg gtgcgttccc gcgtcgtccg gtgcggtgca 180

tcgcaaggcg gagcggcgcc ctcgtactgg gcgtactcgg gtgctgcgac aacgcggcga 240tcgcaaggcg gagcggcgcc ctcgtactgg gcgtactcgg gtgctgcgac aacgcggcga 240

ggtgccgtgc cgggcggcgc gggggcgtgc ctcacttccc cgaggtcgct tgggtcggcg 300ggtgccgtgc cgggcggcgc gggggcgtgc ctcacttccc cgaggtcgct tgggtcggcg 300

gggccggggc ccgcggcgca gagggccgaa gggctcgcgg ggagcgggga tgtgtcggtc 360gggccggggc ccgcggcgca gagggccgaa gggctcgcgg ggagcgggga tgtgtcggtc 360

attgtgggct ctcctcgggg tgagaggcgg tcctggcaag gagtctgcga tgacggatcc 420attgtggggct ctcctcgggg tgagaggcgg tcctggcaag gagtctgcga tgacggatcc 420

acggcttgcc agtgctttcc tcataaccag ggtgtgaact tgtcatgacc tccgcctcac 480acggcttgcc agtgctttcc tcataaccag ggtgtgaact tgtcatgacc tccgcctcac 480

aggactcatg cacggttcgg gagtccggca ctggccgtgt ccaccacccg cacgcgaggc 540aggactcatg cacggttcgg gagtccggca ctggccgtgt ccaccacccg cacgcgaggc 540

tcatatgtgc ctcaatggca gggccgcgcg gccaaagagg cacctggtgg accgtctgac 600tcatatgtgc ctcaatggca gggccgcgcg gccaaagagg cacctggtgg accgtctgac 600

ggaggtgtga caggaccatg gaaatcaagg tgttggggcc gctgagcgtc gaggcctgcg 660ggaggtgtga caggaccatg gaaatcaagg tgttggggcc gctgagcgtc gaggcctgcg 660

gtcagtcgat cgtgcccagc gcgggcaagc cgcggcagat cctcgcattg ctttccgtgt 720gtcagtcgat cgtgcccagc gcgggcaagc cgcggcagat cctcgcattg ctttccgtgt 720

acgccaacca gatgctcccg gtgcccaccc ttatggagga aatctggggc gcgcagatgc 780acgccaacca gatgctcccg gtgccccaccc ttatggagga aatctggggc gcgcagatgc 780

cgcgcagtgc gttgaccacg ctccagacgt acatccttca gctccggcgg agactggcca 840cgcgcagtgc gttgaccacg ctccagacgt acatccttca gctccggcgg agactggcca 840

cggcctacgg tccgcaggcg cccgaggcat cgaagagcgt gctggctacg cgatacggcg 900cggcctacgg tccgcaggcg cccgaggcat cgaagagcgt gctggctacg cgatacggcg 900

gatatgtgct ggaggcccag ccgggcgcgg tggacatcca cgagtacgac cggctggtgg 960gatatgtgct ggaggcccag ccgggcgcgg tggacatcca cgagtacgac cggctggtgg 960

ccgccgggcg ggacgcgctc gacgtcggcg acgatgtcga ggcttcgttt ctgttccgcg 1020ccgccgggcg ggacgcgctc gacgtcggcg acgatgtcga ggcttcgttt ctgttccgcg 1020

aggcgctggc ggtctggcgc ggtcccgcgc tcgtggacgt acgcgtcgga ccgatcctgg 1080aggcgctggc ggtctggcgc ggtcccgcgc tcgtggacgt acgcgtcgga ccgatcctgg 1080

agatcgagct ggcccggctg gaggagagcc gtctcggggt cctggagcgt cggatcgagg 1140agatcgagct ggcccggctg gaggagagcc gtctcggggt cctggagcgt cggatcgagg 1140

ccgatctgcg cctgggacgc cacgccgaac tcctcaccga gctcaccgaa ctgacggccc 1200ccgatctgcg cctgggacgc cacgccgaac tcctcaccga gctcaccgaa ctgacggccc 1200

ggcatccgct ccacgagggg ctgcacgccc agtgcatggc tgccctgtac cggtccggcc 1260ggcatccgct ccacgagggg ctgcacgccc agtgcatggc tgccctgtac cggtccggcc 1260

gcccatggca ggcgctggag gtgtaccagg ggctgcgcgg ccggctcgtc gaggacctgg 1320gcccatggca ggcgctggag gtgtaccagg ggctgcgcgg ccggctcgtc gaggacctgg 1320

ggctcgaacc ctccccgcgg ctgcagaagc tgcagcaggc ggtgctcgcc tcggaccccg 1380ggctcgaacc ctccccgcgg ctgcagaagc tgcagcaggc ggtgctcgcc tcggaccccg 1380

cgctcgacct ggagtcgggc gggcagtggc gccgcccggt gctcgacctg ttcgccgcgt 1440cgctcgacct ggagtcgggc gggcagtggc gccgcccggt gctcgacctg ttcgccgcgt 1440

aggtccctgc cggtcccgct cggggctcag gcccttctgc cccgcatcac caccgcgtac 1500aggtccctgc cggtcccgct cggggctcag gcccttctgc cccgcatcac caccgcgtac 1500

gacaaccgcc catcgcacct cccctgaacg cccggcgccg cccttcttgc cgggtcggct 1560gacaaccgcc catcgcacct cccctgaacg cccggcgccg cccttcttgc cgggtcggct 1560

acggctccgc tccccgacac cccccgcgcg ggcgagcgga gccgtagtgc tgtccgcatg 1620acggctccgc tccccgacac cccccgcgcg ggcgagcgga gccgtagtgc tgtccgcatg 1620

cgtttccgga cgttccgtgg gtcctgtcgt tcc 1653cgtttccgga cgttccgtgg gtcctgtcgt tcc 1653

<210> 7<210> 7

<211> 35<211> 35

<212> DNA<212>DNA

<213> 6842up-f<213> 6842up-f

<400> 7<400> 7

cccaagcttg tggcgtggaa gcagttgagg aaggc 35cccaagcttg tggcgtggaa gcagttgagg aaggc 35

<210> 8<210> 8

<211> 32<211> 32

<212> DNA<212>DNA

<213> 6842up-r<213> 6842up-r

<400> 8<400> 8

gctctagaca ccgggagcat ctggttggcg ta 32gctctagaca ccgggagcat ctggttggcg ta 32

<210> 9<210> 9

<211> 36<211> 36

<212> DNA<212>DNA

<213> 6842down-f<213> 6842down-f

<400> 9<400> 9

cggaattcga cgatgtcgag gcttcgtttc tgttcc 36cggaattcga cgatgtcgag gcttcgtttc tgttcc 36

<210> 10<210> 10

<211> 33<211> 33

<212> DNA<212>DNA

<213> 6842down-r<213> 6842down-r

<400> 10<400> 10

gctctagata ctcggtgtcc aggctggtgg tgg 33gctctagata ctcggtgtcc aggctggtgg tgg 33

<210> 11<210> 11

<211> 24<211> 24

<212> DNA<212>DNA

<213> con6842-f<213>con6842-f

<400> 11<400> 11

tgctcgtcga acggatcgca gacc 24tgctcgtcga acggatcgca gacc 24

<210> 12<210> 12

<211> 24<211> 24

<212> DNA<212>DNA

<213> con6842-r<213>con6842-r

<400> 12<400> 12

tggaacgaca ggacccacgg aacg 24tggaacgaca ggacccacgg aacg 24

Claims (10)

1.一种米尔贝霉素合成正调控基因kelR,其特征在于,所述kelR基因的核苷酸序列如SEQ ID No.1所示。1. A milbemycin synthesis positive regulatory gene kelR, characterized in that the nucleotide sequence of the kelR gene is as shown in SEQ ID No.1. 2.一种米尔贝霉素合成的正调控蛋白KelR,其特征在于,是由权利要求1所述的米尔贝霉素合成正调控基因kelR所编码的,所述KelR蛋白由274个氨基酸组成,其氨基酸序列如SEQ ID No.2所示。2. a kind of milbemycin synthetic positive regulatory protein KelR, is characterized in that, is encoded by the milbemycin synthetic positive regulatory gene kelR of claim 1, and described KelR albumen is made up of 274 amino acids, Its amino acid sequence is shown in SEQ ID No.2. 3.一种高产米尔贝霉素基因工程菌,其特征在于,所述基因工程菌过表达权利要求1所述的米尔贝霉素合成正调控基因kelR,其核苷酸序列如SEQ ID No.1所示,出发菌株为冰城链霉菌Streptomyces bingchenggensis、米尔贝霉素链霉菌、吸水链霉菌金泪亚种、灰色产色链霉菌中的一种。3. A high-yield milbemycin genetically engineered bacterium, characterized in that, said genetically engineered bacterium overexpresses the milbemycin synthetic positive regulatory gene kelR according to claim 1, and its nucleotide sequence is as SEQ ID No. As shown in 1, the starting strain is one of Streptomyces bingchenggensis, Streptomyces milbemycin, Streptomyces hygroscopicus subsp. 4.根据权利要求3所述的一种高产米尔贝霉素基因工程菌,其特征在于,所述冰城链霉菌为Streptomyces bingchenggensis BCWT或Streptomyces bingchenggensis BC-120-4。4. A kind of high-yield milbemycin genetically engineered bacteria according to claim 3, characterized in that, the Streptomyces bingchenggensis is Streptomyces bingchenggensis BCWT or Streptomyces bingchenggensis BC-120-4. 5.一种权利要求3或4所述的高产米尔贝霉素基因工程菌的制备方法,其特征在于,包含以下步骤:5. a preparation method of the high-yield milbemycin genetic engineering bacterium described in claim 3 or 4, is characterized in that, comprises the following steps: 1)构建米尔贝霉素合成正调控基因kelR过表达载体,所述过表达载体含有米尔贝霉素合成正调控基因kelR,其序列如SEQ ID No.1所示;以及米尔贝霉素合成正调控基因kelR上游启动子,其序列如SEQ ID No.3所示;1) Construct the overexpression vector of milbemycin synthesis positive regulation gene kelR, the overexpression vector contains milbemycin synthesis positive regulation gene kelR, its sequence is shown in SEQ ID No.1; and milbemycin synthesis positive Regulatory gene kelR upstream promoter, its sequence is shown in SEQ ID No.3; 2)将步骤1)中构建的米尔贝霉素合成正调控基因kelR过表达载体转化大肠杆菌宿主细胞,得到含有米尔贝霉素合成正调控基因kelR过表达载体的转化子;2) Transforming the Escherichia coli host cell with the milbemycin synthesis positive regulation gene kelR overexpression vector constructed in step 1), to obtain a transformant containing the milbemycin synthesis positive regulation gene kelR overexpression vector; 3)将步骤2)所得的转化子与链霉菌进行属间接合和转移,即得到高产米尔贝霉素基因工程菌。3) Intergenus conjugation and transfer of the transformant obtained in step 2) with Streptomyces to obtain a high-yield milbemycin genetically engineered bacterium. 6.根据权利要求5所述的高产米尔贝霉素基因工程菌的制备方法,其特征在于,步骤1)所述米尔贝霉素合成正调控基因kelR的过表达载体的构建过程为:6. the preparation method of the high-yield milbemycin genetically engineered bacterium according to claim 5, is characterized in that, step 1) described milbemycin synthesizes the construction process of the overexpression vector of positive regulatory gene kelR as: 以冰城链霉菌基因组为模板,PCR扩增得到含有米尔贝霉素合成正调控基因kelR完整编码区和上游启动子的基因片段,所述PCR扩增用的上游引物序列如SEQ ID No.4所示,下游引物序列如SEQ ID No.5所示;用限制性内切酶XbaI和EcoRI进行酶切,获得的酶切产物连接入经XbaI和EcoRI酶切处理的pSET152载体,得到的重组质粒pSET152::kelR即为米尔贝霉素合成正调控基因kelR过表达质粒;所述冰城链霉菌为Streptomycesbingchenggensis BCWT或Streptomyces bingchenggensis BC-120-4。Using the Streptomyces glaciferi genome as a template, PCR amplifies the gene fragment containing the complete coding region of the milbemycin synthesis positive regulatory gene kelR and the upstream promoter, and the upstream primer sequence used for the PCR amplification is as SEQ ID No.4 As shown, the sequence of the downstream primer is shown in SEQ ID No.5; the restriction endonuclease XbaI and EcoRI are used to digest, and the obtained digestion product is connected to the pSET152 vector that has been digested with XbaI and EcoRI to obtain the recombinant plasmid pSET152::kelR is the overexpression plasmid of the milbemycin synthesis positive regulatory gene kelR; the Streptomyces bingchenggensis is Streptomyces bingchenggensis BCWT or Streptomyces bingchenggensis BC-120-4. 7.根据权利要求6所述的高产米尔贝霉素基因工程菌的制备方法,其特征在于,步骤3)所述链霉菌为Streptomyces bingchenggensis BCWT、Streptomyces bingchenggensisBC-120-4、米尔贝霉素链霉菌、吸水链霉菌金泪亚种、灰色产色链霉菌中的一种。7. the preparation method of high-yield milbemycin genetically engineered bacteria according to claim 6, is characterized in that, step 3) described streptomyces is Streptomyces bingchenggensis BCWT, Streptomyces bingchenggensisBC-120-4, milbemycin streptomyces , Streptomyces hygroscopicus subsp. aureus, and Streptomyces griseochromogenes. 8.根据权利要求5所述的高产米尔贝霉素基因工程菌的制备方法,其特征在于,步骤2)所述的大肠杆菌宿主细胞为E.coli ET12567\pUZ8002。8. The preparation method of the high-yield milbemycin genetic engineering bacterium according to claim 5, characterized in that, the Escherichia coli host cell described in step 2) is E.coli ET12567\pUZ8002. 9.权利要求1所述的米尔贝霉素合成正调控基因kelR在微生物发酵生产米尔贝霉素中提高米尔贝霉素产量的应用。9. The application of the milbemycin synthesis positive regulatory gene kelR according to claim 1 in improving the output of milbemycin in the production of milbemycin by microbial fermentation. 10.权利要求3或4所述的高产米尔贝霉素基因工程菌在发酵生产米尔贝霉素中的应用,其特征在于,培养高产米尔贝霉素的基因工程菌株,从培养物中分离米尔贝霉素。10. the application of the high-yield milbemycin genetically engineered bacterium described in claim 3 or 4 in the fermentative production of milbemycin, is characterized in that, the genetically engineered bacterial strain of high-yield milbemycin is cultivated, isolates milbemycin from the culture Bemycin.
CN201810615720.7A 2018-06-14 2018-06-14 A kind of mirbemycin synthesis positive regulation gene kelR, encoded protein, genetic engineering bacteria and preparation method and application thereof Active CN108753799B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810615720.7A CN108753799B (en) 2018-06-14 2018-06-14 A kind of mirbemycin synthesis positive regulation gene kelR, encoded protein, genetic engineering bacteria and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810615720.7A CN108753799B (en) 2018-06-14 2018-06-14 A kind of mirbemycin synthesis positive regulation gene kelR, encoded protein, genetic engineering bacteria and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN108753799A true CN108753799A (en) 2018-11-06
CN108753799B CN108753799B (en) 2021-07-06

Family

ID=64022259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810615720.7A Active CN108753799B (en) 2018-06-14 2018-06-14 A kind of mirbemycin synthesis positive regulation gene kelR, encoded protein, genetic engineering bacteria and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN108753799B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191077A (en) * 2016-07-19 2016-12-07 中国农业科学院植物保护研究所 A kind of mibemycin positive regulating gene milR and process LAN genetic engineering bacterium, preparation method and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191077A (en) * 2016-07-19 2016-12-07 中国农业科学院植物保护研究所 A kind of mibemycin positive regulating gene milR and process LAN genetic engineering bacterium, preparation method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE ET AL.: "SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis.", 《FRONT MICROBIOL》 *
WANG ET AL.: "Genome Sequence of the Milbemycin-Producing Bacterium Streptomyces bingchenggensis.", 《JOURNAL OF BACTERIOLOGY》 *
无: "MULTISPECIES: AfsR/SARP family transcriptional regulator [Streptomyces]", 《NCBI REFERENCE SEQUENCE: WP_014179412.1》 *

Also Published As

Publication number Publication date
CN108753799B (en) 2021-07-06

Similar Documents

Publication Publication Date Title
US20160060636A1 (en) Nrps-pks gene cluster and its manipulation and utility
CN106191077B (en) A kind of milbemycin positive regulation gene milR and its overexpression genetic engineering bacteria, preparation method and application
CN108753674B (en) Gene cluster for regulating and controlling milbemycin synthesis, recombinant streptomycete, and preparation method and application thereof
CN110218244A (en) Compound ilamycin F and its application
CN107287197B (en) Histidine attenuator mutants and histidine operons addressing feedback repression and their uses
RU2553564C2 (en) Genetically modified bacterial strain wsj-ia i, producing isovaleryl spiramycin with high content and high output
CN101386829B (en) A kind of Streptomyces avermitilis genetically engineered bacteria and its application
CN106754608B (en) Recombinant streptomycete for producing milbemycins and preparation method and application thereof
CN103215281B (en) Biosynthetic gene cluster of grincamycin and P-1894B and application thereof
CN103834605B (en) A kind of Abamectin producing bacterium and its preparation method and application
CN111197020B (en) A kind of recombinant bacteria producing milbemycin and its construction method and application
CN106636141B (en) A kind of biological synthesis gene cluster of Luo Bolu ketone and its application
CN103626855B (en) A kind of albumen relevant to Wuyiencin biosynthesizing and encoding gene thereof and application
CN108660101B (en) Recombinant microorganism expressing ivermectin B, preparation method and application thereof
CN108753799A (en) A kind of mibemycin synthesis positive regulating gene kelR, coding albumen, genetic engineering bacterium and its preparation method and application
CN110343650B (en) A recombinant Streptomyces tuberculosis producing amphotericin B and its application
CN105087507B (en) An integrase and its application in transforming Saccharopolyspora spinosa
BR112019011603A2 (en) isolated from modified fungicidicus streptomyces and their use
CN1548526A (en) High-yield engineering bacteria of Nicomycin X component and its application
CN110423790A (en) A kind of metabolic engineering method of antimycotic tetramycin B orientation high yield
CN105367637B (en) The regulation and control Wuyiencin producing strains growth albumen of phenotype and encoding gene thereof and application
KR101748678B1 (en) Method for increasing the productivity of glycopeptides compounds
CN103540603B (en) The biological synthesis gene cluster of gold alloy hydride and application thereof
KR101525309B1 (en) A bacterium Streptomycess overexpressing rapX or rapW and a method to increase rapamycin production using the same
CN110396521B (en) Application of SAV6604 gene in increasing yield of abamectin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant