CN108726506A - Quickly prepare the method and system of ultra-long horizontal carbon nanotube - Google Patents
Quickly prepare the method and system of ultra-long horizontal carbon nanotube Download PDFInfo
- Publication number
- CN108726506A CN108726506A CN201710254260.5A CN201710254260A CN108726506A CN 108726506 A CN108726506 A CN 108726506A CN 201710254260 A CN201710254260 A CN 201710254260A CN 108726506 A CN108726506 A CN 108726506A
- Authority
- CN
- China
- Prior art keywords
- carbon
- catalyst layer
- material film
- catalyst
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 173
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 118
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000003054 catalyst Substances 0.000 claims abstract description 116
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 65
- 239000007789 gas Substances 0.000 claims abstract description 64
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- 239000012159 carrier gas Substances 0.000 claims abstract description 19
- 239000012495 reaction gas Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 66
- 229910052799 carbon Inorganic materials 0.000 claims description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 239000011261 inert gas Substances 0.000 claims description 16
- 239000002105 nanoparticle Substances 0.000 claims description 15
- 239000010453 quartz Substances 0.000 claims description 15
- 239000012018 catalyst precursor Substances 0.000 claims description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- 239000002082 metal nanoparticle Substances 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims 9
- 235000012239 silicon dioxide Nutrition 0.000 claims 7
- 229910052681 coesite Inorganic materials 0.000 claims 6
- 229910052906 cristobalite Inorganic materials 0.000 claims 6
- 239000000377 silicon dioxide Substances 0.000 claims 6
- 229910052682 stishovite Inorganic materials 0.000 claims 6
- 229910052905 tridymite Inorganic materials 0.000 claims 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 4
- 235000019441 ethanol Nutrition 0.000 claims 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 45
- 229910004298 SiO 2 Inorganic materials 0.000 description 16
- 238000005485 electric heating Methods 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000002109 single walled nanotube Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/30—Purity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/34—Length
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种快速制备超长水平碳纳米管的方法,特别涉及一种快速制备超长水平碳纳米管的方法及系统,属于纳米材料技术领域。The invention relates to a method for rapidly preparing ultra-long horizontal carbon nanotubes, in particular to a method and system for rapidly preparing ultra-long horizontal carbon nanotubes, and belongs to the technical field of nanomaterials.
背景技术Background technique
碳纳米管具有优异的电学、光学及力学等性能,一直是纳米科学领域中研究的热点,在纳电子器件、能源转换、生物传感及复合材料等诸多领域具有广阔的应用前景。超长水平碳纳米管是指在平整基底表面生长的一种平行于基底表面、长度达毫米、甚至厘米以上的特殊形貌的碳纳米管。这种类型的碳纳米管遵循自由生长的机理,管与管之间距离较大,可以摆脱相互之间的干扰,容易达到毫米以上长度,并且具有很低的缺陷密度,更容易体现碳纳米管的理论优异性能。此外,超长水平碳纳米管可以直接生长在硅片表面,与现有半导体技术相兼容,无需转移,直接用于电子器件制备,在纳电子器件领域具有广阔的应用前景,被认为是后摩尔时代纳电子器件中的主体材料。Carbon nanotubes have excellent electrical, optical and mechanical properties, and have always been a research hotspot in the field of nanoscience. They have broad application prospects in many fields such as nanoelectronic devices, energy conversion, biosensing and composite materials. Ultra-long horizontal carbon nanotubes refer to carbon nanotubes with a special shape that grow on a flat substrate surface parallel to the substrate surface and have a length of millimeters or even centimeters or more. This type of carbon nanotubes follows the mechanism of free growth, the distance between the tubes is large, it can get rid of mutual interference, it is easy to reach a length of more than millimeters, and it has a very low defect density, and it is easier to embody carbon nanotubes. theoretically excellent performance. In addition, ultra-long horizontal carbon nanotubes can be directly grown on the surface of silicon wafers, which are compatible with existing semiconductor technologies and can be directly used in the preparation of electronic devices without transfer. They have broad application prospects in the field of nanoelectronic devices and are considered post-Moore Host material in Times Nano electronic devices.
要想实现超长水平碳纳米管的应用,就需要首先实现超长水平碳纳米管的批量制备,尤其是要实现长度达到米级甚至公里级以上的超长碳纳米管的批量制备。目前制备超长水平碳纳米管的方法主要是化学气相沉积技术(CVD)。一般认为,超长水平碳纳米管生长过程中遵循气流定向,催化剂脱离基底,漂浮在气相中,由于避免了催化剂和基底的相互作用,碳纳米管可以长得很长,但生长速率很慢,通常方法只有10μm/s,这严重影响了超长水平碳纳米管的制备效率。Wen等(Wen Q,Zhang R F,et al.Chem.Mater.,2010,22(4):12194-1296.)通过在反应气流中加入少量水,极大的促进了超长水平碳纳米管的生长速度,达到80~90μm/s,这是目前已报道最快的生长速度。Zhang等人(Zhang R F,Zhang Y Y,Zhang Q,et al.ACS Nano,2013,7:6156–6161.)通过移动恒温区法延长了催化剂的寿命,成功制备了长达半米的碳纳米管,这是目前世界上最长的碳纳米管,但生长速率最快也只达到83μm/s。另外,现有技术中的生长温度通常超过900℃,主要用管式炉加热,升温速率小于5℃/s,耗时长,导致催化剂在升温过程中聚集厉害,容易失活,从而导致催化效率降低。再者,现有的主要生长装置是热壁CVD系统,设备庞大,对炉体保温要求高,工艺不稳定,重复性差,进而影响批量制备。In order to realize the application of ultra-long horizontal carbon nanotubes, it is necessary to realize the batch preparation of ultra-long horizontal carbon nanotubes first, especially to realize the batch preparation of ultra-long carbon nanotubes with a length of meters or even kilometers. At present, the main method for preparing ultra-long horizontal carbon nanotubes is chemical vapor deposition (CVD). It is generally believed that during the growth process of ultra-long horizontal carbon nanotubes, the gas flow orientation is followed, and the catalyst is separated from the substrate and floats in the gas phase. Since the interaction between the catalyst and the substrate is avoided, the carbon nanotubes can grow very long, but the growth rate is very slow. The usual method is only 10 μm/s, which seriously affects the preparation efficiency of ultra-long horizontal carbon nanotubes. Wen et al. (Wen Q, Zhang R F, et al. Chem. Mater., 2010, 22(4): 12194-1296.) greatly promoted the formation of ultra-long horizontal carbon nanotubes by adding a small amount of water to the reaction gas stream. The growth rate reaches 80-90 μm/s, which is the fastest growth rate reported so far. Zhang et al. (Zhang R F, Zhang Y Y, Zhang Q, et al. ACS Nano, 2013, 7:6156–6161.) extended the life of the catalyst by moving the constant temperature zone method, and successfully prepared carbon nanotubes up to half a meter , which is currently the longest carbon nanotube in the world, but the fastest growth rate only reaches 83μm/s. In addition, the growth temperature in the prior art usually exceeds 900°C, and the tube furnace is mainly used for heating, and the heating rate is less than 5°C/s, which takes a long time, resulting in severe aggregation of the catalyst during the heating process and easy deactivation, resulting in a decrease in catalytic efficiency . Furthermore, the existing main growth device is a hot-wall CVD system, which has huge equipment, high requirements for furnace insulation, unstable process, and poor repeatability, which in turn affects batch production.
因此,如何提高超长水平碳纳米管的生长速率是进一步提高碳纳米管长度的关键,也是其今后宏量制备的基础。Therefore, how to increase the growth rate of ultra-long horizontal carbon nanotubes is the key to further increasing the length of carbon nanotubes, and it is also the basis for their future mass production.
发明内容Contents of the invention
本发明的主要目的在于提供一种快速制备超长水平碳纳米管的方法及系统,以克服现有技术中的不足。The main purpose of the present invention is to provide a method and system for rapidly preparing ultra-long horizontal carbon nanotubes, so as to overcome the deficiencies in the prior art.
为实现前述发明目的,本发明采用的技术方案包括:In order to realize the aforementioned object of the invention, the technical solutions adopted in the present invention include:
本发明实施例提供了一种快速制备超长水平碳纳米管的方法,其包括:The embodiment of the present invention provides a method for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
将至少一催化剂层固定于反应室内,并使所述催化剂层与加热元件导热连接;fixing at least one catalyst layer in the reaction chamber, and connecting the catalyst layer to the heating element in thermal connection;
向所述反应室内通入碳源气体及载气;Introduce carbon source gas and carrier gas into the reaction chamber;
以加热元件加热所述催化剂层而生长形成超长水平碳纳米管。The catalyst layer is heated by a heating element to grow and form ultra-long horizontal carbon nanotubes.
在一些典型实施案例之中,所述加热元件采用碳材料膜。In some typical implementation cases, the heating element uses a carbon material film.
在一些典型实施案例之中,所述方法包括:In some exemplary implementations, the method includes:
将催化剂层置于反应室内,并使催化剂层与碳材料膜导热连接;placing the catalyst layer in the reaction chamber, and connecting the catalyst layer to the carbon material film through heat conduction;
向所述反应室内通入碳源气体及载气;Introduce carbon source gas and carrier gas into the reaction chamber;
通过向所述碳材料膜内通入电流的方式使所述碳材料膜加热催化剂层而生长形成超长水平碳纳米管。The carbon material film heats the catalyst layer by passing an electric current into the carbon material film to grow and form ultra-long horizontal carbon nanotubes.
本发明实施例提供了一种快速制备超长水平碳纳米管的方法,其包括:The embodiment of the present invention provides a method for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
在基底表面均匀涂覆包含催化剂前驱体的溶液;Uniformly coating the solution containing the catalyst precursor on the surface of the substrate;
将表面负载有所述催化剂前驱体的基底固定于反应室内,并使所述基底与作为加热元件的碳材料膜导热连接;Fixing the substrate with the catalyst precursor loaded on the surface in the reaction chamber, and connecting the substrate with a carbon material film as a heating element for thermal conduction;
向所述反应室内通入保护气体,从而将反应室内的空气排出;Passing protective gas into the reaction chamber, so as to discharge the air in the reaction chamber;
向所述反应室内通入还原气体、碳源气体和载气,并向所述碳材料膜内通入电流而使所述碳材料膜加热所述基底,使所述催化剂前驱体被分解和还原,从而在所述基底表面形成均匀分散的复数个催化剂颗粒,并同时生长形成超长水平碳纳米管。Feed reducing gas, carbon source gas and carrier gas into the reaction chamber, and pass current into the carbon material film to make the carbon material film heat the substrate, so that the catalyst precursor is decomposed and reduced , so as to form a plurality of uniformly dispersed catalyst particles on the surface of the substrate, and simultaneously grow and form ultra-long horizontal carbon nanotubes.
在一些典型实施案例之中,所述方法包括:仅以所述碳材料膜对所述催化剂颗粒进行加热。In some exemplary embodiments, the method includes: heating the catalyst particles only with the carbon material film.
本发明实施例还提供了一种快速制备超长水平碳纳米管的系统,其包括:The embodiment of the present invention also provides a system for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
反应室,所述反应室具有至少一进气口和至少一出气口,并且所述反应室内还固定设置有至少一催化剂层,所述催化剂层能与从进气口流向出气口的反应气体接触;A reaction chamber, the reaction chamber has at least one gas inlet and at least one gas outlet, and at least one catalyst layer is fixedly arranged in the reaction chamber, and the catalyst layer can be in contact with the reaction gas flowing from the gas inlet to the gas outlet ;
加热元件,固定设置于所述反应室内且与所述催化剂层导热连接。The heating element is fixedly arranged in the reaction chamber and is thermally connected with the catalyst layer.
优选的,所述加热元件采用碳材料膜。Preferably, the heating element adopts a carbon material film.
与现有技术相比,本发明的优点包括:Compared with the prior art, the advantages of the present invention include:
1)本发明提供的快速制备超长水平碳纳米管的方法采用碳膜通电快速热响应,可迅速升温,明显抑制催化剂在长时间升温中导致的聚集和失活,催化剂活性显著提高。由于还原气体和碳源气体一开始就通入反应室,在碳材料膜电加热过程中,催化剂的形成和碳纳米管的生长几乎是同时完成,无需像其它方法需要经历耗时数分钟到数十分钟的催化剂成核时间,因此该方法可以实现超长水平碳纳米管的快速生长,可达960μm/s,超过现有文献报道最高值至少一个数量级,因而实现超长水平碳纳米管的快速制备;1) The method for rapidly preparing ultra-long horizontal carbon nanotubes provided by the present invention adopts the rapid thermal response of carbon film energization, which can rapidly raise the temperature, significantly inhibit the aggregation and deactivation of the catalyst caused by the long-term heating, and significantly improve the catalyst activity. Since the reducing gas and the carbon source gas are introduced into the reaction chamber at the beginning, the formation of the catalyst and the growth of the carbon nanotubes are almost simultaneously completed during the electric heating process of the carbon material film, and there is no need to spend several minutes to several hours like other methods. Ten minutes of catalyst nucleation time, so this method can achieve the rapid growth of ultra-long horizontal carbon nanotubes, up to 960μm/s, at least one order of magnitude higher than the highest value reported in the existing literature, thus realizing the rapid growth of ultra-long horizontal carbon nanotubes preparation;
2)本发明提供的快速制备超长水平碳纳米管的系统采用电加热装置,相比于传统的管式炉,设备简单,升温速度快,能耗成本低,而且是冷壁CVD,工艺稳定性好。碳材料膜的加热温度与反应室内其余区域的温度差超过800℃,更有利于碳纳米管催化剂在大温差的影响下,脱离基底表面,长时间保持活性,实现快速超长水平碳纳米管的宏量制备;2) The system for rapidly preparing ultra-long horizontal carbon nanotubes provided by the present invention uses an electric heating device. Compared with the traditional tube furnace, the equipment is simple, the heating speed is fast, the energy consumption cost is low, and it is cold-wall CVD, and the process is stable Good sex. The temperature difference between the heating temperature of the carbon material film and the rest of the reaction chamber exceeds 800°C, which is more conducive to the carbon nanotube catalyst detaching from the substrate surface under the influence of a large temperature difference, maintaining activity for a long time, and realizing rapid ultra-long horizontal carbon nanotube formation. macro preparation;
3)本发明的方法不局限于超长水平碳纳米管的快速制备,其它形貌的碳纳米管,如碳纳米管竖直阵列、聚团碳纳米管等也可以实现快速制备。3) The method of the present invention is not limited to the rapid preparation of ultra-long horizontal carbon nanotubes, and carbon nanotubes of other shapes, such as vertical arrays of carbon nanotubes, agglomerated carbon nanotubes, etc., can also be rapidly prepared.
4)采用本发明的方法制备的超长水平碳纳米管长度可达4mm,在纳电子器件、能源转换、生物传感器、复合材料等领域具有广泛的应用前景。4) The ultra-long horizontal carbon nanotubes prepared by the method of the present invention can reach a length of 4 mm, and have broad application prospects in the fields of nanoelectronic devices, energy conversion, biosensors, and composite materials.
附图说明Description of drawings
图1是本发明一优选实施例中的快速制备超长水平碳纳米管的系统及方法流程示意图;Fig. 1 is a schematic flow diagram of the system and method for rapidly preparing ultra-long horizontal carbon nanotubes in a preferred embodiment of the present invention;
图2a-图2b是本发明实施例1所获超长水平碳纳米管的扫描电镜图;Fig. 2a-Fig. 2b are scanning electron micrographs of ultra-long horizontal carbon nanotubes obtained in Example 1 of the present invention;
图3是本发明实施例1所获超长水平碳纳米管的透射电子显微镜图;Fig. 3 is the transmission electron microscope picture of the ultra-long horizontal carbon nanotube obtained in Example 1 of the present invention;
图4是本发明实施例2所获超长碳纳米管水平阵列的扫描电镜图;4 is a scanning electron microscope image of the horizontal array of ultralong carbon nanotubes obtained in Example 2 of the present invention;
图5是本发明实施例3所获超长水平碳纳米管竖直阵列的扫描电镜图;5 is a scanning electron microscope image of a vertical array of ultra-long horizontal carbon nanotubes obtained in Example 3 of the present invention;
图6是本发明对比例1中采用普通管式炉所获水平碳纳米管的扫描电镜图。Fig. 6 is a scanning electron micrograph of horizontal carbon nanotubes obtained by using a common tube furnace in Comparative Example 1 of the present invention.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the deficiencies in the prior art, the inventor of this case was able to propose the technical solution of the present invention after long-term research and extensive practice. The technical solution, its implementation process and principle will be further explained as follows.
本发明实施例的一个方面提供了一种快速制备超长水平碳纳米管的方法,其包括:An aspect of the embodiments of the present invention provides a method for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
将至少一催化剂层固定于反应室内,并使所述催化剂层与加热元件导热连接;fixing at least one catalyst layer in the reaction chamber, and connecting the catalyst layer to the heating element in thermal connection;
向所述反应室内通入碳源气体及载气;Introduce carbon source gas and carrier gas into the reaction chamber;
以加热元件加热所述催化剂层而生长形成超长水平碳纳米管。The catalyst layer is heated by a heating element to grow and form ultra-long horizontal carbon nanotubes.
在一些典型实施案例之中,所述加热元件采用碳材料膜。In some typical implementation cases, the heating element uses a carbon material film.
优选的,所述碳材料膜的材质包括碳纳米管、碳纤维和石墨烯中的任意一种或两种以上的组合,但不限于此。Preferably, the material of the carbon material film includes any one or a combination of two or more of carbon nanotubes, carbon fibers and graphene, but is not limited thereto.
进一步的,所述碳材料膜的厚度为1~100μm,尤其优选为5~10μm,电导率大于104S/m,强度大于100MPa。Further, the thickness of the carbon material film is 1-100 μm, especially preferably 5-10 μm, the electrical conductivity is greater than 10 4 S/m, and the strength is greater than 100 MPa.
在一些典型实施案例之中,所述方法包括:In some exemplary implementations, the method includes:
将催化剂层置于反应室内,并使催化剂层与碳材料膜导热连接;placing the catalyst layer in the reaction chamber, and connecting the catalyst layer to the carbon material film through heat conduction;
向所述反应室内通入碳源气体及载气;Introduce carbon source gas and carrier gas into the reaction chamber;
通过向所述碳材料膜内通入电流的方式使所述碳材料膜加热催化剂层而生长形成超长水平碳纳米管。The carbon material film heats the catalyst layer by passing an electric current into the carbon material film to grow and form ultra-long horizontal carbon nanotubes.
优选的,通入所述碳材料膜的直流电流的强度为0.1~5A,尤其优选为0.1~0.5A;通电的时间为1~1000s,尤其优选为1~5s。Preferably, the intensity of the direct current passing through the carbon material film is 0.1-5A, especially preferably 0.1-0.5A; the time of passing electricity is 1-1000s, especially preferably 1-5s.
在一些典型实施案例之中,所述方法具体包括:In some typical implementation cases, the method specifically includes:
将至少一催化剂层固定于反应室内,并使所述催化剂层与所述碳材料膜导热连接;fixing at least one catalyst layer in the reaction chamber, and thermally connecting the catalyst layer to the carbon material film;
向所述反应室内通入保护气体,从而将反应室内的空气排出;Passing protective gas into the reaction chamber, so as to discharge the air in the reaction chamber;
向所述反应室内通入碳源气体及载气;Introduce carbon source gas and carrier gas into the reaction chamber;
以所述碳材料膜加热所述催化剂层而生长形成超长水平碳纳米管。The catalyst layer is heated by the carbon material film to grow and form ultra-long horizontal carbon nanotubes.
优选的,所述催化剂层被置于所述碳材料膜上,所述碳材料膜亦固定设置于所述反应室内。Preferably, the catalyst layer is placed on the carbon material film, and the carbon material film is also fixedly arranged in the reaction chamber.
优选的,所述方法包括:仅以所述加热元件对所述催化剂层进行加热。Preferably, the method comprises: heating the catalyst layer only with the heating element.
优选的,在超长水平碳纳米管的生长过程中,所述催化剂层的温度比反应室内其余区域的温度高800℃以上。Preferably, during the growth process of ultra-long horizontal carbon nanotubes, the temperature of the catalyst layer is higher than the temperature of other regions in the reaction chamber by more than 800°C.
优选的,所述催化剂层被负载于基底表面,并且所述催化剂层经基底与加热元件导热连接。Preferably, the catalyst layer is supported on the surface of the substrate, and the catalyst layer is thermally connected to the heating element through the substrate.
进一步的,表面负载有所述催化剂层的基底被直接置于所述碳材料膜上。Further, the substrate with the catalyst layer supported on its surface is placed directly on the carbon material film.
更进一步的,所述催化剂层包括均匀分布在基底表面的复数个催化剂颗粒。Furthermore, the catalyst layer includes a plurality of catalyst particles uniformly distributed on the surface of the substrate.
优选的,所述催化剂颗粒的尺寸为0.5~5nm,面密度为10~1000个/μm2。其中,催化剂颗粒的尺寸超过5nm则得不到单壁碳纳米管,且催化剂颗粒的面密度也会影响碳纳米管的密度。Preferably, the size of the catalyst particles is 0.5-5 nm, and the surface density is 10-1000 particles/μm 2 . Wherein, if the size of the catalyst particles exceeds 5 nm, no single-walled carbon nanotubes can be obtained, and the areal density of the catalyst particles will also affect the density of the carbon nanotubes.
优选的,所述催化剂颗粒的材质包括金属纳米颗粒和/或无机纳米颗粒。Preferably, the material of the catalyst particles includes metal nanoparticles and/or inorganic nanoparticles.
进一步的,所述金属纳米颗粒包括Fe、Co、Ni、Cu、Au、Mo、W、Ru、Rh和Pd中的任意一种或两种以上的组合,优选为Fe纳米颗粒,但不限于此。Further, the metal nanoparticles include any one or a combination of two or more of Fe, Co, Ni, Cu, Au, Mo, W, Ru, Rh and Pd, preferably Fe nanoparticles, but not limited thereto .
进一步的,所述无机纳米颗粒包括SiO2、TiO2和ZnO中的任意一种或两种以上的组合,但不限于此。Further, the inorganic nanoparticles include any one or a combination of two or more of SiO 2 , TiO 2 and ZnO, but not limited thereto.
优选的,所述基底表面为水平面。Preferably, the base surface is a horizontal plane.
优选的,所述保护气体包括惰性气体。进一步的,所述惰性气体包括Ar等。Preferably, the protective gas includes inert gas. Further, the inert gas includes Ar and the like.
优选的,所述载气包括惰性气体,进一步的,所述惰性气体包括Ar或Ar及H2。Preferably, the carrier gas includes inert gas, further, the inert gas includes Ar or Ar and H 2 .
优选的,用以形成所述碳源气体的碳源包括液态碳源和/或气态碳源。Preferably, the carbon source used to form the carbon source gas includes liquid carbon source and/or gaseous carbon source.
进一步的,所述液态碳源可以是乙醇、丙酮、苯和甲苯等含碳化合物中的任意一种或两种以上的组合,优选为乙醇,但不限于此。Further, the liquid carbon source may be any one or a combination of two or more of carbon-containing compounds such as ethanol, acetone, benzene, and toluene, preferably ethanol, but not limited thereto.
进一步的,所述气态碳源可以是甲烷、乙烯和乙炔等碳氢化合物中的任意一种或两种以上的组合,优选为乙炔,但不限于此。Further, the gaseous carbon source may be any one or a combination of two or more of hydrocarbons such as methane, ethylene and acetylene, preferably acetylene, but not limited thereto.
优选的,所述基底的材质包括SiO2/Si、ST切石英、R切石英、a面α氧化铝、r面α氧化铝和氧化镁中的任意一种或两种以上的组合,优选为SiO2/Si基底,但不限于此。Preferably, the material of the substrate includes any one or a combination of two or more of SiO 2 /Si, ST-cut quartz, R-cut quartz, a-plane α-alumina, r-plane α-alumina, and magnesium oxide, preferably SiO 2 /Si substrate, but not limited thereto.
本发明实施例的另一个方面提供了一种快速制备超长水平碳纳米管的方法,其包括:Another aspect of the embodiments of the present invention provides a method for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
在基底表面均匀涂覆包含催化剂前驱体的溶液;Uniformly coating the solution containing the catalyst precursor on the surface of the substrate;
将表面负载有所述催化剂前驱体的基底固定于反应室内,并使所述基底与作为加热元件的碳材料膜导热连接;Fixing the substrate with the catalyst precursor loaded on the surface in the reaction chamber, and connecting the substrate with a carbon material film as a heating element for thermal conduction;
向所述反应室内通入保护气体,从而将反应室内的空气排出;Passing protective gas into the reaction chamber, so as to discharge the air in the reaction chamber;
向所述反应室内通入还原气体、碳源气体和载气,并向所述碳材料膜内通入电流而使所述碳材料膜加热所述基底,使所述催化剂前驱体被分解和还原,从而在所述基底表面形成均匀分散的复数个催化剂颗粒,并同时生长形成超长水平碳纳米管。Feed reducing gas, carbon source gas and carrier gas into the reaction chamber, and pass current into the carbon material film to make the carbon material film heat the substrate, so that the catalyst precursor is decomposed and reduced , so as to form a plurality of uniformly dispersed catalyst particles on the surface of the substrate, and simultaneously grow and form ultra-long horizontal carbon nanotubes.
由于还原气体和碳源气体一开始就通入反应室,在碳材料膜电加热过程中,催化剂的形成和碳纳米管的生长几乎是同时完成,所以该方法可以实现快速生长。Since the reducing gas and the carbon source gas are introduced into the reaction chamber at the beginning, the formation of the catalyst and the growth of the carbon nanotubes are almost simultaneously completed during the electric heating process of the carbon material film, so the method can realize rapid growth.
在一些典型实施案例之中,所述方法包括:仅以所述碳材料膜对所述催化剂层进行加热。In some exemplary embodiments, the method includes: heating the catalyst layer only with the carbon material film.
优选的,在超长水平碳纳米管的生长过程中,所述催化剂层的温度比反应室内其余区域的温度高800℃以上。Preferably, during the growth process of ultra-long horizontal carbon nanotubes, the temperature of the catalyst layer is higher than the temperature of other regions in the reaction chamber by more than 800°C.
进一步的,所述基底被直接置于所述碳材料膜上。Further, the substrate is directly placed on the carbon material film.
优选的,所述基底表面为水平面。Preferably, the base surface is a horizontal plane.
优选的,所述碳材料膜的材质包括碳纳米管、碳纤维和石墨烯中的任意一种或两种以上的组合,但不限于此。Preferably, the material of the carbon material film includes any one or a combination of two or more of carbon nanotubes, carbon fibers and graphene, but is not limited thereto.
优选的,所述碳材料膜的厚度为1~100μm,尤其优选为5~10μm,电导率大于104S/m,强度大于100MPa。Preferably, the thickness of the carbon material film is 1-100 μm, especially preferably 5-10 μm, the electrical conductivity is greater than 10 4 S/m, and the strength is greater than 100 MPa.
优选的,所述催化剂颗粒的尺寸为0.5~5nm,面密度为10~1000个/μm2。其中,催化剂颗粒的尺寸超过5nm则得不到单壁碳纳米管,且催化剂颗粒的面密度也会影响碳纳米管的密度。Preferably, the size of the catalyst particles is 0.5-5 nm, and the surface density is 10-1000 particles/μm 2 . Wherein, if the size of the catalyst particles exceeds 5 nm, no single-walled carbon nanotubes can be obtained, and the areal density of the catalyst particles will also affect the density of the carbon nanotubes.
优选的,所述催化剂颗粒的材质包括金属纳米颗粒和/或无机纳米颗粒。Preferably, the material of the catalyst particles includes metal nanoparticles and/or inorganic nanoparticles.
优选的,所述金属纳米颗粒包括Fe、Co、Ni、Cu、Au、Mo、W、Ru、Rh和Pd中的任意一种或两种以上的组合,优选为Fe纳米颗粒,但不限于此。Preferably, the metal nanoparticles include any one or a combination of two or more of Fe, Co, Ni, Cu, Au, Mo, W, Ru, Rh and Pd, preferably Fe nanoparticles, but not limited thereto .
优选的,所述无机纳米颗粒包括SiO2、TiO2和ZnO中的任意一种或两种以上的组合,但不限于此。Preferably, the inorganic nanoparticles include any one or a combination of two or more of SiO 2 , TiO 2 and ZnO, but not limited thereto.
在一些典型实施案例之中,所述包含催化剂前驱体的流体包括Fe(OH)3/EtOH溶液。In some typical embodiments, the fluid containing the catalyst precursor includes Fe(OH) 3 /EtOH solution.
进一步的,所述Fe(OH)3/EtOH溶液的浓度为0.01~5mmol/L,尤其优选为0.05~0.5mmol/L。Further, the concentration of the Fe(OH) 3 /EtOH solution is 0.01-5 mmol/L, especially preferably 0.05-0.5 mmol/L.
在一些典型实施案例之中,所述方法包括:以旋涂法将所述包含催化剂前驱体的溶液涂覆于所述基底上。利用旋涂法,可有效的将包含催化剂前驱体的流体中的催化剂粒子均匀的分散在基底表面,采用不同浓度的催化剂及匀胶机转速,可以控制基底表面的催化剂颗粒密度。In some typical embodiments, the method includes: coating the solution containing the catalyst precursor on the substrate by a spin coating method. Using the spin coating method, the catalyst particles in the fluid containing the catalyst precursor can be effectively and evenly dispersed on the surface of the substrate, and the density of the catalyst particles on the surface of the substrate can be controlled by using different concentrations of the catalyst and the speed of the homogenizer.
优选的,所述旋涂法包括:将洁净的基底置于匀胶机上,之后将所述包含催化剂前驱体的流体以滴加的形式施加于基底表面。Preferably, the spin coating method includes: placing the clean substrate on a coater, and then applying the fluid containing the catalyst precursor to the surface of the substrate in a dropwise manner.
优选的,所述保护气体包括惰性气体。进一步的,所述惰性气体包括Ar等。Preferably, the protective gas includes inert gas. Further, the inert gas includes Ar and the like.
优选的,所述载气包括惰性气体,进一步的,所述惰性气体包括Ar或Ar及H2。Preferably, the carrier gas includes inert gas, further, the inert gas includes Ar or Ar and H 2 .
优选的,用以形成所述碳源气体的碳源包括液态碳源和/或气态碳源。Preferably, the carbon source used to form the carbon source gas includes liquid carbon source and/or gaseous carbon source.
进一步的,所述液态碳源可以是乙醇、丙酮、苯和甲苯等含碳化合物中的任意一种或两种以上的组合,优选为乙醇,但不限于此。Further, the liquid carbon source may be any one or a combination of two or more of carbon-containing compounds such as ethanol, acetone, benzene, and toluene, preferably ethanol, but not limited thereto.
进一步的,所述气态碳源可以是甲烷、乙烯和乙炔等碳氢化合物中的任意一种或两种以上的组合,优选为乙炔,但不限于此。Further, the gaseous carbon source may be any one or a combination of two or more of hydrocarbons such as methane, ethylene and acetylene, preferably acetylene, but not limited thereto.
优选的,所述基底的材质包括SiO2/Si、ST切石英、R切石英、a面α氧化铝、r面α氧化铝和氧化镁中的任意一种或两种以上的组合,优选为SiO2/Si基底,但不限于此。Preferably, the material of the substrate includes any one or a combination of two or more of SiO 2 /Si, ST-cut quartz, R-cut quartz, a-plane α-alumina, r-plane α-alumina, and magnesium oxide, preferably SiO 2 /Si substrate, but not limited thereto.
在一些典型实施案例之中,所述方法包括:先向所述反应室内通入50~500sccm所述还原气体1~20min,之后通入50~500sccm所述碳源气体及载气。In some typical implementation cases, the method includes: first injecting 50-500 sccm of the reducing gas into the reaction chamber for 1-20 min, and then injecting 50-500 sccm of the carbon source gas and carrier gas.
优选的,所述方法包括:以载气鼓泡的方式将所述碳源气体通入所述反应室内。Preferably, the method includes: passing the carbon source gas into the reaction chamber by bubbling a carrier gas.
在一些典型实施案例之中,所述方法包括:向所述反应室内通入50~500sccm保护气体1~10min,从而将反应室内的空气排出。In some typical implementation cases, the method includes: introducing 50-500 sccm of shielding gas into the reaction chamber for 1-10 minutes, so as to exhaust the air in the reaction chamber.
在一些典型实施案例之中,所述方法还包括:在所述反应结束后,停止通电和通入碳源气体,保持还原气体和载气继续通入,将所述反应室的温度降至室温,获得超长水平碳纳米管。In some typical implementation cases, the method also includes: after the reaction is finished, stop the power supply and the carbon source gas, keep the reducing gas and the carrier gas to continue to pass, and reduce the temperature of the reaction chamber to room temperature , to obtain ultra-long horizontal carbon nanotubes.
其中,在一较为具体的实施方案之中,本发明的快速制备超长水平碳纳米管的方法可以包括:Wherein, in a more specific embodiment, the method for rapidly preparing ultra-long horizontal carbon nanotubes of the present invention may include:
1)将干净的SiO2/Si基底置于匀胶机上,用机械泵将其吸住固定,取1~20μL优选1μL的Fe(OH)3/EtOH溶液,滴到基底表面,设置匀胶机转速,在前10秒内预加速至约500rpm,再提速至2000rpm,旋涂1min。1) Put the clean SiO 2 /Si substrate on the homogenizer, suck and fix it with a mechanical pump, take 1-20 μL, preferably 1 μL of Fe(OH) 3 /EtOH solution, drop it on the surface of the substrate, and set up the homogenizer The rotation speed is pre-accelerated to about 500rpm within the first 10 seconds, then increased to 2000rpm, and spin-coated for 1min.
2)电加热装置连接:参见图1所示,把碳材料膜(简称碳膜)用铜电极固定在石英管内,接好引线,引出管外,接在直流电源上。将上述加载好的催化剂基底正面朝上放置在碳材料膜上,管子两端连接上气路。2) Electric heating device connection: see Figure 1, fix the carbon material film (referred to as carbon film) in the quartz tube with copper electrodes, connect the lead wires, lead them out of the tube, and connect them to the DC power supply. The above-mentioned loaded catalyst substrate is placed face up on the carbon material membrane, and the two ends of the tube are connected to the gas circuit.
3)超长水平碳纳米管生长:上述电加热装置连接好气路后,先通入50~500sccm(优选300sccm)的Ar排空气1~10min(优选5min),然后通入50~500sccm(优选100sccm)的H21~20min(优选5min)用作还原气。继而通入50~500sccm(优选50sccm)的Ar/EtOH(Ar/EtOH是指以Ar鼓泡的形式通入乙醇液体)准备开始生长碳纳米管,碳膜两端加载0.1A~5A(优选0.3A)电流,通电时间为1~1000s,之后关闭电源和停止通入碳源,保持氢气和氩气继续通入,自然降至室温。3) Growth of ultra-long horizontal carbon nanotubes: After the above-mentioned electric heating device is connected to the gas path, first pass into 50~500sccm (preferably 300sccm) Ar exhaust air for 1~10min (preferably 5min), and then pass into 50~500sccm (preferably 100sccm) ) of H 2 for 1-20 min (preferably 5 min) is used as reducing gas. Then pass into 50~500sccm (preferably 50sccm) of Ar/EtOH (Ar/EtOH refers to passing through ethanol liquid in the form of Ar bubbling) to prepare to start growing carbon nanotubes, and the two ends of the carbon film are loaded with 0.1A~5A (preferably 0.3 A) Current, the power-on time is 1-1000s, then turn off the power supply and stop feeding the carbon source, keep hydrogen and argon gas flowing in, and naturally cool down to room temperature.
本发明实施例还提供了一种快速制备超长水平碳纳米管的系统,其包括:The embodiment of the present invention also provides a system for rapidly preparing ultra-long horizontal carbon nanotubes, which includes:
反应室,所述反应室具有至少一进气口和至少一出气口,并且所述反应室内还固定设置有至少一催化剂层,所述催化剂层能与从进气口流向出气口的反应气体接触;A reaction chamber, the reaction chamber has at least one gas inlet and at least one gas outlet, and at least one catalyst layer is fixedly arranged in the reaction chamber, and the catalyst layer can be in contact with the reaction gas flowing from the gas inlet to the gas outlet ;
加热元件,固定设置于所述反应室内且与所述催化剂层导热连接。The heating element is fixedly arranged in the reaction chamber and is thermally connected with the catalyst layer.
优选的,所述加热元件采用碳材料膜。Preferably, the heating element adopts a carbon material film.
进一步的,所述碳材料膜的材质包括碳纳米管、碳纤维和石墨烯中的任意一种或两种以上的组合,但不限于此。Further, the material of the carbon material film includes any one or a combination of two or more of carbon nanotubes, carbon fibers and graphene, but is not limited thereto.
优选的,所述碳材料膜的厚度为1~100μm,尤其优选为5~10μm,电导率大于104S/m,强度大于100MPa。Preferably, the thickness of the carbon material film is 1-100 μm, especially preferably 5-10 μm, the electrical conductivity is greater than 10 4 S/m, and the strength is greater than 100 MPa.
优选的,所述催化剂层被置于所述碳材料膜上。Preferably, the catalyst layer is placed on the carbon material film.
进一步的,所述催化剂层被负载于基底表面,并且所述催化剂层经基底与加热元件导热连接。Further, the catalyst layer is supported on the surface of the substrate, and the catalyst layer is thermally connected to the heating element through the substrate.
更进一步的,表面负载有所述催化剂层的基底被直接置于所述碳材料膜上。Furthermore, the substrate with the catalyst layer supported on its surface is placed directly on the carbon material film.
优选的,所述基底表面为水平面。Preferably, the base surface is a horizontal plane.
优选的,所述催化剂层包括均匀分布在基底表面的复数个催化剂颗粒。Preferably, the catalyst layer includes a plurality of catalyst particles uniformly distributed on the surface of the substrate.
优选的,所述催化剂颗粒的尺寸为0.5~5nm,面密度为10~1000个/μm2。其中,催化剂颗粒的尺寸超过5nm则得不到单壁碳纳米管,且催化剂颗粒的面密度也会影响碳纳米管的密度。Preferably, the size of the catalyst particles is 0.5-5 nm, and the surface density is 10-1000 particles/μm 2 . Wherein, if the size of the catalyst particles exceeds 5 nm, no single-walled carbon nanotubes can be obtained, and the areal density of the catalyst particles will also affect the density of the carbon nanotubes.
优选的,所述催化剂颗粒的材质包括金属纳米颗粒和/或无机纳米颗粒。Preferably, the material of the catalyst particles includes metal nanoparticles and/or inorganic nanoparticles.
优选的,所述金属纳米颗粒包括Fe、Co、Ni、Cu、Au、Mo、W、Ru、Rh和Pd中的任意一种或两种以上的组合,优选为Fe纳米颗粒,但不限于此。Preferably, the metal nanoparticles include any one or a combination of two or more of Fe, Co, Ni, Cu, Au, Mo, W, Ru, Rh and Pd, preferably Fe nanoparticles, but not limited thereto .
优选的,所述无机纳米颗粒包括SiO2、TiO2和ZnO中的任意一种或两种以上的组合,但不限于此。Preferably, the inorganic nanoparticles include any one or a combination of two or more of SiO 2 , TiO 2 and ZnO, but not limited thereto.
优选的,所述碳材料膜还与两个以上间隔设置的电极电连接,所述电极与电源电连接。Preferably, the carbon material film is also electrically connected to two or more electrodes arranged at intervals, and the electrodes are electrically connected to a power source.
进一步的,所述电极的材质包括铜等。Further, the material of the electrodes includes copper and the like.
优选的,所述基底的材质包括SiO2/Si、ST切石英、R切石英、a面α氧化铝、r面α氧化铝和氧化镁中的任意一种或两种以上的组合,优选为SiO2/Si基底,但不限于此。Preferably, the material of the substrate includes any one or a combination of two or more of SiO 2 /Si, ST-cut quartz, R-cut quartz, a-plane α-alumina, r-plane α-alumina, and magnesium oxide, preferably SiO 2 /Si substrate, but not limited thereto.
本发明实施例的另一个方面提供了由前述方法制备的超长水平碳纳米管,所述超长水平碳纳米管的长度可达4mm以上,所述超长水平碳纳米管具有中空管状结构。Another aspect of the embodiments of the present invention provides ultra-long horizontal carbon nanotubes prepared by the aforementioned method, the length of the ultra-long horizontal carbon nanotubes can reach more than 4 mm, and the ultra-long horizontal carbon nanotubes have a hollow tubular structure.
优选的,所述超长水平碳纳米管包括单壁碳纳米管,其中,在总产物中所述单壁碳纳米管的含量超过80wt%。Preferably, the ultra-long horizontal carbon nanotubes include single-walled carbon nanotubes, wherein the content of the single-walled carbon nanotubes in the total product exceeds 80wt%.
本发明实施例的另一个方面还提供了前述超长水平碳纳米管于纳电子器件、能源转换、生物传感器或者复合材料领域的用途。Another aspect of the embodiments of the present invention also provides the use of the aforementioned ultra-long horizontal carbon nanotubes in the fields of nanoelectronic devices, energy conversion, biosensors or composite materials.
相应的,本发明实施例还提供了一种装置,其包含前述的超长水平碳纳米管。Correspondingly, an embodiment of the present invention also provides a device comprising the aforementioned ultra-long horizontal carbon nanotubes.
其中,所述装置包括可以是纳电子器件、光电器件、传感器等。Wherein, the device may be a nanoelectronic device, an optoelectronic device, a sensor, or the like.
利用本发明的快速制备超长水平碳纳米管的方法可迅速升温,催化剂活性高,超长水平碳纳米管的生长速度快,可达960μm/s,超过现有文献报道最高值至少一个数量级,可实现超长水平碳纳米管的快速宏量制备。Utilizing the method for rapidly preparing ultra-long horizontal carbon nanotubes of the present invention can rapidly raise the temperature, the catalyst activity is high, and the growth rate of ultra-long horizontal carbon nanotubes is fast, which can reach 960 μm/s, exceeding the highest value reported in existing literature by at least one order of magnitude. It can realize the rapid macro-preparation of ultra-long horizontal carbon nanotubes.
另外,藉由本发明的技术方案,所获得的超长水平碳纳米管长度可达4mm,在纳电子器件、能源转换、生物传感器、复合材料等领域具有广泛的应用前景。In addition, by means of the technical solution of the present invention, the obtained ultra-long horizontal carbon nanotubes can reach a length of 4 mm, which has broad application prospects in the fields of nanoelectronic devices, energy conversion, biosensors, and composite materials.
以下通过若干实施例并结合附图进一步详细说明本发明的技术方案。然而,所选的实施例仅用于说明本发明,而不限制本发明的范围。The technical solutions of the present invention will be further described in detail below through several embodiments and in conjunction with the accompanying drawings. However, the selected examples are only for illustrating the present invention and do not limit the scope of the present invention.
实施例1Example 1
本实施例在SiO2/Si基底上快速制备超长水平碳纳米管的方法包括如下步骤:In this embodiment, the method for rapidly preparing ultra-long horizontal carbon nanotubes on a SiO 2 /Si substrate includes the following steps:
1)将干净的SiO2/Si基底置于匀胶机上,用机械泵将其吸住固定,取1μL的Fe(OH)3/EtOH溶液,滴到基底表面,设置匀胶机转速,在前10秒内预加速至约500rpm,再提速至2000rpm,旋涂1min。1) Put the clean SiO 2 /Si substrate on the homogenizer, suck and fix it with a mechanical pump, take 1 μL of Fe(OH) 3 /EtOH solution, drop it on the surface of the substrate, set the speed of the homogenizer, and Pre-accelerate to about 500rpm within 10 seconds, then increase the speed to 2000rpm, and spin coat for 1min.
2)电加热装置连接:参见图1所示,把厚度为10μm,电导率为2×104S/m,强度为200Mpa的碳膜用铜电极固定在石英管内,接好引线,引出管外,接在直流电源上。将上述加载好的催化剂基底正面朝上放置在碳膜上,管子两端连接上气路。2) Electric heating device connection: see Figure 1, fix a carbon film with a thickness of 10μm, a conductivity of 2×10 4 S/m, and a strength of 200Mpa in the quartz tube with a copper electrode, connect the lead wire, and lead it out of the tube , connected to the DC power supply. Place the above-mentioned loaded catalyst substrate face up on the carbon membrane, and connect the two ends of the tube to the gas circuit.
3)超长水平碳纳米管生长:上述电加热装置连接好气路后,先通入300sccm的Ar排空气5min,然后通入100sccm的H2 5min用作还原气。继而通入50sccm的Ar/EtOH准备开始生长碳纳米管,碳膜两端加载0.3A电流,通电时间为5s,之后关闭电源和停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到超长水平碳纳米管。3) Growth of ultra-long horizontal carbon nanotubes: After the above-mentioned electric heating device is connected to the gas circuit, 300 sccm of Ar exhaust air is introduced for 5 minutes, and then 100 sccm of H 2 is introduced for 5 minutes as reducing gas. Then feed 50 sccm of Ar/EtOH to prepare to start growing carbon nanotubes, apply 0.3A current to both ends of the carbon film, and the power-on time is 5s. to room temperature to obtain ultra-long horizontal carbon nanotubes.
进一步的,本案发明人还对以实施例1所述工艺制备的多批超长水平碳纳米管产物进行了表征,具体如下:Further, the inventors of this case also characterized multiple batches of ultra-long horizontal carbon nanotube products prepared by the process described in Example 1, as follows:
参阅图2a和图2b,为本实施例在通电时间为5s时所获超长水平碳纳米管的扫描电镜(SEM)图片,可以看出最长的碳纳米管有4.8mm,推断生长速度达到960μm/s,比是现有报道的最快的生长速度提高一个数量级。如图3所示,为本实施例在通电时间为5s时所获超长水平碳纳米管的透射电子显微镜(TEM)图片,可以明显看到所述超长水平碳纳米管具有中空管状结构,且产物中单壁碳纳米管的含量超过80wt%。Referring to Fig. 2a and Fig. 2b, it is the scanning electron microscope (SEM) picture of the ultra-long horizontal carbon nanotube obtained when the energization time is 5s in this embodiment, it can be seen that the longest carbon nanotube has 4.8mm, and the inferred growth rate reaches 960 μm/s, which is an order of magnitude higher than the fastest growth rate reported so far. As shown in Figure 3, it is a transmission electron microscope (TEM) picture of the ultra-long horizontal carbon nanotubes obtained when the power-on time is 5s in this embodiment, it can be clearly seen that the ultra-long horizontal carbon nanotubes have a hollow tubular structure, And the content of the single-wall carbon nanotube in the product exceeds 80wt%.
实施例2Example 2
本实施例在ST切石英基底上快速制备超长碳纳米管水平阵列的方法包括如下步骤:In this embodiment, the method for rapidly preparing a horizontal array of ultralong carbon nanotubes on an ST-cut quartz substrate includes the following steps:
1)催化剂加载和电加热装置连接同实施例1。1) The connection of the catalyst loading and the electric heating device is the same as in Example 1.
2)超长碳纳米管水平阵列的生长:上述电加热装置连接好气路后,先通入300sccm的Ar排空气5min,然后通入300sccm的H2 5min用作还原气。继而通入100sccm的Ar/EtOH准备开始生长碳纳米管,碳膜两端加载0.2A电流,通电时间为30s,之后关闭电源和停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到如图4所示超长碳纳米管水平阵列,所述碳纳米管平行排列,密度超过1根/μm。2) Growth of the horizontal array of ultra-long carbon nanotubes: After the above-mentioned electric heating device is connected to the gas circuit, 300 sccm of Ar exhaust air is introduced for 5 minutes, and then 300 sccm of H 2 is introduced for 5 minutes as reducing gas. Then feed 100 sccm of Ar/EtOH to prepare to start growing carbon nanotubes, apply 0.2A current to both ends of the carbon film, and the power-on time is 30s. to room temperature, a horizontal array of ultra-long carbon nanotubes is obtained as shown in Figure 4, the carbon nanotubes are arranged in parallel, and the density exceeds 1/μm.
实施例3Example 3
本实施例在SiO2/Si基底上快速制备碳纳米管竖直阵列的方法包括如下步骤:In this embodiment, the method for rapidly preparing a vertical array of carbon nanotubes on a SiO 2 /Si substrate includes the following steps:
1)催化剂制备采用电子束蒸发技术将所需的Fe和Al2O3靶材按照0.02nm/s的速率沉积到SiO2/Si基底上,Fe厚度分别是0.8nm,Al2O3厚度分别是20nm,催化剂整体结构为Fe/Al2O3/SiO2/Si。1) Catalyst preparation Electron beam evaporation technology is used to deposit the required Fe and Al 2 O 3 targets on the SiO 2 /Si substrate at a rate of 0.02nm/s, the thickness of Fe is 0.8nm, and the thickness of Al 2 O 3 is respectively is 20nm, and the overall structure of the catalyst is Fe/Al 2 O 3 /SiO 2 /Si.
2)电加热装置连接同实施例1。2) The connection of the electric heating device is the same as in Embodiment 1.
3)碳纳米管竖直阵列快速生长:上述电加热装置连接好气路后,先通入100sccm的Ar排空气5min,然后通入100sccm的H2 5min用作还原气。继而通入100sccm的C2H4准备开始生长碳纳米管,碳膜两端加载0.15A电流,通电时间为60s,之后关闭电源和停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到如图5所示快速生长的碳纳米管竖直阵列,高度超过100μm。3) Rapid growth of vertical arrays of carbon nanotubes: After the above-mentioned electric heating device is connected to the gas circuit, 100 sccm of Ar exhaust air is introduced for 5 minutes, and then 100 sccm of H 2 is introduced for 5 minutes as reducing gas. Then feed 100 sccm of C 2 H 4 to prepare to start growing carbon nanotubes, apply 0.15A current to both ends of the carbon film, and the power-on time is 60s. After cooling down to room temperature, a rapidly growing vertical array of carbon nanotubes is obtained as shown in Figure 5, with a height exceeding 100 μm.
对比例1Comparative example 1
普通管式炉生长碳纳米管水平阵列对比:Comparison of horizontal arrays of carbon nanotubes grown in ordinary tube furnaces:
1)催化剂加载同实施例1。1) Catalyst loading is the same as in Example 1.
2)将上述加载了催化剂的SiO2/Si基底放入1inch管式炉(TF 55035C-1Lindberg/Blue M)中,在35min内升温到950℃,先通入300sccm的Ar排空气5min,然后通入100sccm的H2 5min用作还原气。继而通入50sccm的Ar/EtOH生长碳纳米管5min之后,关闭管式炉,停止通入碳源,保持氢气和氩气继续通入,自然降至室温,得到水平碳纳米管。结果如图6,碳管长度不超过1mm,相比于碳膜电加热生长,生长时间长,而且生长效率低。2) Put the catalyst-loaded SiO 2 /Si substrate into a 1-inch tube furnace (TF 55035C-1Lindberg/Blue M), heat up to 950°C within 35 minutes, first pass 300 sccm of Ar to exhaust air for 5 minutes, and then pass Inject 100 sccm of H 2 for 5 min as reducing gas. After feeding 50 sccm of Ar/EtOH to grow carbon nanotubes for 5 minutes, close the tube furnace, stop feeding the carbon source, keep hydrogen and argon to continue feeding, and naturally cool down to room temperature to obtain horizontal carbon nanotubes. The results are shown in Figure 6. The length of the carbon tubes does not exceed 1mm. Compared with the electric heating growth of the carbon film, the growth time is longer and the growth efficiency is lower.
通过实施例1-3,可以发现,藉由本发明的上述技术方案可以实现超长水平碳纳米管的快速制备,超长水平碳纳米管的生长速度快,可达960μm/s,且升温速度快,能耗成本低,工艺稳定性好,有利于超长水平碳纳米管的宏量制备。Through Examples 1-3, it can be found that the rapid preparation of ultra-long horizontal carbon nanotubes can be realized by the above-mentioned technical solution of the present invention, the growth rate of ultra-long horizontal carbon nanotubes is fast, up to 960 μm/s, and the heating rate is fast , low energy consumption cost, good process stability, and is conducive to the macro preparation of ultra-long horizontal carbon nanotubes.
此外,本案发明人还参照实施例1-实施例3的方式,以本说明书中列出的其它原料和条件等进行了试验,并同样制得了具有优异性能的超长水平碳纳米管。并且通过测试,可以发现,藉由本发明的上述技术方案获得的超长水平碳纳米管,电学性质和光学性质优异,在纳电子器件、能源转换、生物传感器、复合材料等领域具有广泛的应用前景。In addition, the inventors of the present case also conducted tests with other raw materials and conditions listed in this specification with reference to Example 1-Example 3, and also produced ultra-long horizontal carbon nanotubes with excellent properties. And through testing, it can be found that the ultra-long horizontal carbon nanotubes obtained by the above technical solution of the present invention have excellent electrical and optical properties, and have broad application prospects in the fields of nanoelectronic devices, energy conversion, biosensors, composite materials, etc. .
应当理解,以上所述的仅是本发明的一些实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明的创造构思的前提下,还可以做出其它变形和改进,这些都属于本发明的保护范围。It should be understood that the above descriptions are only some implementations of the present invention, and it should be pointed out that other modifications and improvements can be made by those skilled in the art without departing from the inventive concept of the present invention. These all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710254260.5A CN108726506A (en) | 2017-04-18 | 2017-04-18 | Quickly prepare the method and system of ultra-long horizontal carbon nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710254260.5A CN108726506A (en) | 2017-04-18 | 2017-04-18 | Quickly prepare the method and system of ultra-long horizontal carbon nanotube |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108726506A true CN108726506A (en) | 2018-11-02 |
Family
ID=63925146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710254260.5A Pending CN108726506A (en) | 2017-04-18 | 2017-04-18 | Quickly prepare the method and system of ultra-long horizontal carbon nanotube |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108726506A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112158827A (en) * | 2020-09-29 | 2021-01-01 | 北京科技大学 | Preparation method of carbon nano tube with controllable shape |
CN113277496A (en) * | 2021-06-11 | 2021-08-20 | 陕西延长石油(集团)有限责任公司 | Preparation method of highly purified multi-walled carbon nanotube |
CN114671416A (en) * | 2022-04-13 | 2022-06-28 | 北京理工大学 | Method for preparing carbon nitride ultra-rapidly |
CN118293352A (en) * | 2024-06-05 | 2024-07-05 | 北京凌禾科技有限公司 | A device for preparing carbon nanotubes and storing hydrogen integrated with the device and its use method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000026138A1 (en) * | 1998-11-03 | 2000-05-11 | William Marsh Rice University | Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co |
CN1696340A (en) * | 2005-05-16 | 2005-11-16 | 东南大学 | A chemical vapor deposition device and deposition method thereof |
US20080187685A1 (en) * | 2007-02-07 | 2008-08-07 | Atomic Energy Council - Institute Of Nuclear Energy Research | Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same |
CN101733168A (en) * | 2008-11-13 | 2010-06-16 | 苏州纳米技术与纳米仿生研究所 | Preparation method of efficient composite catalyst film |
CN102560425A (en) * | 2012-01-18 | 2012-07-11 | 湖南南方搏云新材料有限责任公司 | Chemical vapor deposition furnace |
CN103058167A (en) * | 2012-12-05 | 2013-04-24 | 天津大学 | Composite material of carbon nanotube and carbon, and preparation method thereof |
CN103597119A (en) * | 2009-07-08 | 2014-02-19 | 普拉斯玛斯公司 | Apparatus and method for plasma processing |
CN104073787A (en) * | 2014-07-01 | 2014-10-01 | 江南石墨烯研究院 | Method and device for quickly cooling in material growth |
CN104973584A (en) * | 2014-04-14 | 2015-10-14 | 清华大学 | Transfer method of carbon nano tube array and preparation method of carbon nano tube structure |
CN105803420A (en) * | 2016-03-21 | 2016-07-27 | 中南大学 | Diamond composite wrapped by graphene and/or carbon nanotubes and preparation method and application of diamond composite wrapped by graphene and/or carbon nanotubes |
-
2017
- 2017-04-18 CN CN201710254260.5A patent/CN108726506A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000026138A1 (en) * | 1998-11-03 | 2000-05-11 | William Marsh Rice University | Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co |
CN1696340A (en) * | 2005-05-16 | 2005-11-16 | 东南大学 | A chemical vapor deposition device and deposition method thereof |
US20080187685A1 (en) * | 2007-02-07 | 2008-08-07 | Atomic Energy Council - Institute Of Nuclear Energy Research | Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same |
CN101733168A (en) * | 2008-11-13 | 2010-06-16 | 苏州纳米技术与纳米仿生研究所 | Preparation method of efficient composite catalyst film |
CN103597119A (en) * | 2009-07-08 | 2014-02-19 | 普拉斯玛斯公司 | Apparatus and method for plasma processing |
CN102560425A (en) * | 2012-01-18 | 2012-07-11 | 湖南南方搏云新材料有限责任公司 | Chemical vapor deposition furnace |
CN103058167A (en) * | 2012-12-05 | 2013-04-24 | 天津大学 | Composite material of carbon nanotube and carbon, and preparation method thereof |
CN104973584A (en) * | 2014-04-14 | 2015-10-14 | 清华大学 | Transfer method of carbon nano tube array and preparation method of carbon nano tube structure |
CN104073787A (en) * | 2014-07-01 | 2014-10-01 | 江南石墨烯研究院 | Method and device for quickly cooling in material growth |
CN105803420A (en) * | 2016-03-21 | 2016-07-27 | 中南大学 | Diamond composite wrapped by graphene and/or carbon nanotubes and preparation method and application of diamond composite wrapped by graphene and/or carbon nanotubes |
Non-Patent Citations (5)
Title |
---|
吴宏富等: "《中国粉体工业通鉴 第三卷 (2007版)》", 31 August 2007 * |
李来平等: "《钼化学品》", 30 November 2016, 北京冶金工业出版社 * |
杨金田: "《材料科学与技术》", 31 May 2012 * |
杨铁军: "《产业专利分析报告 第29册 绿色建筑材料》", 30 June 2015, 知识产权出版社 * |
邓波: "冷壁化学气相沉积制备碳纳米管", 《中国优秀博硕士学位论文全文数据库》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112158827A (en) * | 2020-09-29 | 2021-01-01 | 北京科技大学 | Preparation method of carbon nano tube with controllable shape |
CN113277496A (en) * | 2021-06-11 | 2021-08-20 | 陕西延长石油(集团)有限责任公司 | Preparation method of highly purified multi-walled carbon nanotube |
CN114671416A (en) * | 2022-04-13 | 2022-06-28 | 北京理工大学 | Method for preparing carbon nitride ultra-rapidly |
CN114671416B (en) * | 2022-04-13 | 2024-03-15 | 北京理工大学 | An ultra-fast method for preparing carbon nitride |
CN118293352A (en) * | 2024-06-05 | 2024-07-05 | 北京凌禾科技有限公司 | A device for preparing carbon nanotubes and storing hydrogen integrated with the device and its use method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production | |
JP4775718B2 (en) | Platinum nanocatalyst-supported carbon nanotube electrode and method for producing the same | |
CN102358938B (en) | A low-temperature, large-area controllable method for synthesizing single-crystal WO2 and WO3 nanowire arrays with excellent field emission properties | |
CN103721708B (en) | A kind of Silver/titanium dioxide composite heterostructure and preparation method thereof | |
CN102471065B (en) | Device for manufacturing aligned carbon nanotube assembly | |
CN108726506A (en) | Quickly prepare the method and system of ultra-long horizontal carbon nanotube | |
CN113831131B (en) | Carbon foam in-situ growth carbon nanotube composite electromagnetic shielding material and preparation method thereof | |
CN102229426A (en) | Preparation method of equiangular hexagonal graphene arranged in single layer sequentially | |
CN104005004B (en) | The growth method of a kind of minor diameter, metallic single-wall carbon nano-tube and application | |
CN102320591A (en) | Method for directly growing mesh carbon nanotubes on copper substrate | |
CN101857460A (en) | Preparation method of carbon nanotube array for spinning | |
CN106957051A (en) | A kind of overlength SWCN horizontal array, preparation method and reaction unit | |
CN101456580A (en) | Method for preparing stannic oxide nano wire | |
CN110182788A (en) | A kind of device and method of high yield preparation carbon nanotube | |
CN105274491A (en) | Preparation method for graphene-boron nitride heterogeneous phase composite thin film material | |
CN103803522B (en) | Preparation method of semiconductor single-walled carbon nanotubes | |
CN102658153B (en) | Preparation method of copper substrate surface growth fullerene doped porous carbon nanofibers | |
CN104588058B (en) | Graphene nanobelt vertical array-molybdenum carbide nanometer crystal composite material and its preparation method and use | |
CN102320590A (en) | Method for directly growing single and double-spiral nano carbon fibers on copper matrix | |
CN102104078B (en) | Preparation method of ZnO/ZnS core-shell structure one-dimensional nano material and single crystal ZnS nanotube | |
CN102351164B (en) | Method for Direct Growth of Vertical Carbon Nanofiber Arrays on Copper Substrate | |
CN104357841B (en) | Iron-group carbide nano crystal-graphene nanoribbon composite material as well as preparation and application thereof | |
CN103466597B (en) | The method of a small amount of doped growing metallic single-wall carbon nano-tube of nitrogen on carbon grid | |
CN104593746B (en) | One kind prepares 3C SiC nanometer plates, preparation method | |
CN101857461A (en) | A kind of preparation method of semiconducting carbon nanotube array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181102 |
|
RJ01 | Rejection of invention patent application after publication |