CN101857460A - Preparation method of carbon nanotube array for spinning - Google Patents
Preparation method of carbon nanotube array for spinning Download PDFInfo
- Publication number
- CN101857460A CN101857460A CN201010176982A CN201010176982A CN101857460A CN 101857460 A CN101857460 A CN 101857460A CN 201010176982 A CN201010176982 A CN 201010176982A CN 201010176982 A CN201010176982 A CN 201010176982A CN 101857460 A CN101857460 A CN 101857460A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- carbon nano
- growth
- preparation
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 97
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 97
- 238000002360 preparation method Methods 0.000 title claims abstract description 38
- 238000009987 spinning Methods 0.000 title claims abstract description 21
- 230000012010 growth Effects 0.000 claims abstract description 38
- 239000007789 gas Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 230000003197 catalytic effect Effects 0.000 claims abstract description 7
- 239000012159 carrier gas Substances 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000010884 ion-beam technique Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000010894 electron beam technology Methods 0.000 claims 1
- 230000007773 growth pattern Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 229960001866 silicon dioxide Drugs 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 abstract description 17
- 238000003491 array Methods 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 abstract description 15
- 230000001681 protective effect Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 238000007735 ion beam assisted deposition Methods 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 8
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000002238 carbon nanotube film Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 3
- 238000009417 prefabrication Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明揭示了一种纺丝用碳纳米管阵列的制备方法,包括如下步骤:首先在预制的硅基底上制备氧化物缓冲层,再在其上沉积金属催化剂薄膜,形成具复合活性的碳纳米管阵列生长催化结构;继而在保护气体环境下升温反应炉至碳纳米管生长温度;然后向反应炉中控制流量及比例通入乙烯及载气,常压下进行碳纳米管阵列生长;完成后迅速结束碳纳米管阵列的生长。本发明采用乙烯CVD制备方法的应用,通过离子束辅助沉积法制备催化剂缓冲层结构,并结合通过控制金属催化剂薄膜厚度以及生长工艺参数,所制得的碳纳米管阵列具有碳纳米管管径小、管壁数少以及基底上碳管表面分布密度高以及应用于大面积制备的优点,为碳纳米管应用于工业纺丝制造提供了可能。
The invention discloses a method for preparing a carbon nanotube array for spinning, which comprises the following steps: firstly preparing an oxide buffer layer on a prefabricated silicon substrate, and then depositing a metal catalyst film on it to form a composite active carbon nanotube Tube array growth catalytic structure; then heat up the reaction furnace to the growth temperature of carbon nanotubes in a protective gas environment; then feed ethylene and carrier gas into the reaction furnace to control the flow rate and ratio, and grow carbon nanotube arrays under normal pressure; after completion Rapidly terminates the growth of carbon nanotube arrays. The invention adopts the application of the ethylene CVD preparation method, prepares the catalyst buffer layer structure through the ion beam assisted deposition method, and combines the control of the thickness of the metal catalyst film and the growth process parameters, and the prepared carbon nanotube array has a small carbon nanotube diameter. The advantages of small number of tube walls, high surface distribution density of carbon tubes on the substrate, and large-area preparation provide the possibility for carbon nanotubes to be used in industrial spinning manufacturing.
Description
技术领域technical field
本发明涉及一种大面积可纺丝碳纳米管阵列的制备方法,属于纳米材料制备领域。The invention relates to a method for preparing a large-area spinnable carbon nanotube array, belonging to the field of nanomaterial preparation.
背景技术Background technique
碳纳米管(CNT)具有优异的力学性质:其抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,碳纳米管理论杨氏模量可达1TPa,因而被称为“超级纤维”。另外碳纳米管具有良好的导电性能,由于其特殊的石墨层状结构,呈现出不同的电学属性和导电能力,并且具有优异的电学可调制性能。因此,采用碳纳米管构建新型力学、电学、光学功能器件成为碳纳米材料发展的重要方向。Carbon nanotube (CNT) has excellent mechanical properties: its tensile strength reaches 50-200GPa, which is 100 times that of steel, but its density is only 1/6 of steel, and the theoretical Young's modulus of carbon nanotube can reach 1TPa, so it is Called "super fiber". In addition, carbon nanotubes have good electrical conductivity. Due to their special graphite layered structure, they exhibit different electrical properties and electrical conductivity, and have excellent electrical modulation properties. Therefore, the use of carbon nanotubes to construct new mechanical, electrical, and optical functional devices has become an important direction for the development of carbon nanomaterials.
近年来,人们在碳纳米管可控制备和组装技术方面取得了突飞猛进的进展。其中碳纳米管阵列材料由于具有一致的自组装取向特性而受到了人们的广泛关注,在碳纳米管阵列器件制备以及复合材料的应用方面取得了进步。2002年,我国范守善院士研究小组在Nature杂志上首次报导了以竖直可纺丝碳纳米管阵列为基础,可以对固态碳纳米管阵列进行连续纺丝,加工一种由纯碳纳米管构成的纤维材料,开创了碳纳米管材料组装技术研究的新领域【文献1】。In recent years, people have made rapid progress in the controllable preparation and assembly technology of carbon nanotubes. Among them, carbon nanotube array materials have attracted extensive attention due to their consistent self-assembly orientation characteristics, and progress has been made in the preparation of carbon nanotube array devices and the application of composite materials. In 2002, the research group of Academician Fan Shoushan of my country reported for the first time in the journal Nature that based on the vertical spinnable carbon nanotube array, the solid carbon nanotube array can be continuously spun to process a pure carbon nanotube. Fiber materials have created a new field of research on carbon nanotube material assembly technology [Document 1].
目前,在可纺丝碳纳米管阵列的制备方面普遍采用乙炔和乙烯为碳源气体【文献1,2】,在硅片基底上以金属颗粒为催化剂,通过热化学气相沉积(TCVD)的方法进行制备,分别称为乙炔CVD方法和乙烯CVD方法。目前乙炔气体制备可纺丝碳纳米管阵列技术已经取得了突破性进展,我国范守善研究组以及美国的Baughman研究小组实现了可纺丝碳纳米管阵列的制备,并进一步对阵列生长面积进行了放大,实现了大面积高质量可纺丝碳纳米管阵列的制备。在此基础上通过干法纺丝的办法加工了碳纳米管薄膜,并先后应用于扬声器【文献3】、透明导电薄膜【文献4】、人工肌肉【文献5】等碳纳米管功能器件的制备,展示了该材料非常广泛的应用前景。而在乙烯CVD制备可纺丝碳纳米管阵列方面,李清文等人通过对催化剂结构的改进,实现了超长(大于1mm)可纺丝碳纳米管阵列的制备,并且加工得到了高强度的碳纳米管纤维材料【文献6】。然而到目前为止,在乙烯气体制备可纺丝碳纳米管阵列方面,大面积制备技术仍然没有取得突破,更没有实现碳纳米管阵列的拉膜技术。At present, in the preparation of spinnable carbon nanotube arrays, acetylene and ethylene are generally used as carbon source gases [References 1, 2], and metal particles are used as catalysts on silicon wafer substrates by thermal chemical vapor deposition (TCVD). The preparations are called the acetylene CVD method and the ethylene CVD method, respectively. At present, the technology of preparing spinnable carbon nanotube arrays with acetylene gas has made a breakthrough. The research group of Fan Shoushan in my country and the research group of Baughman in the United States have realized the preparation of spinnable carbon nanotube arrays, and further enlarged the growth area of the arrays. , realizing the preparation of large-area high-quality spinnable carbon nanotube arrays. On this basis, carbon nanotube films were processed by dry spinning, and were successively applied to the preparation of carbon nanotube functional devices such as loudspeakers [Document 3], transparent conductive films [Document 4], and artificial muscles [Document 5]. , showing a very broad application prospect of this material. In the preparation of spinnable carbon nanotube arrays by ethylene CVD, Li Qingwen et al. achieved the preparation of ultra-long (greater than 1mm) spinnable carbon nanotube arrays by improving the catalyst structure, and processed high-strength carbon nanotube arrays. Carbon nanotube fiber material [Document 6]. However, so far, there is still no breakthrough in the large-area preparation technology for the preparation of spinnable carbon nanotube arrays by ethylene gas, let alone the realization of the film-drawing technology of carbon nanotube arrays.
此外,相对于乙炔CVD制备可纺丝碳纳米管阵列,乙烯CVD生长所采用的催化剂结构更为复杂、生长温度更高,因此在催化剂预处理过程中催化剂颗粒的形核过程以及催化剂的活性、寿命不同于乙炔CVD阵列制备工艺。同时,乙烯气体的裂解产物与乙炔气体裂解产物也存在很大差异,由此导致了两种碳源气体生长的碳纳米管的管壁数、管径、缺陷密度以及物理、化学性质等的不同。因此采用乙烯CVD生长大面积可纺丝碳纳米管阵列材料,在碳纳米管功能器件的制备方面存在着潜在的应用价值。In addition, compared with the preparation of spinnable carbon nanotube arrays by acetylene CVD, the catalyst structure used in ethylene CVD growth is more complex and the growth temperature is higher. The lifetime is different from the acetylene CVD array fabrication process. At the same time, the cracking products of ethylene gas and acetylene gas are also very different, which leads to the differences in the number of tube walls, tube diameter, defect density, physical and chemical properties of carbon nanotubes grown by the two carbon source gases. . Therefore, the use of ethylene CVD to grow large-area spinnable carbon nanotube array materials has potential application value in the preparation of carbon nanotube functional devices.
【文献1】:Jiang,K.L.;Li,Q.Q.;Fan,S.S.,Nanotechnology:Spinning continuous carbonnanotube yarns-Carbon nanotubes weave their way into a range of imaginative macroscopicapplications.Nature 2002,419,801.[Document 1]: Jiang, K.L.; Li, Q.Q.; Fan, S.S., Nanotechnology: Spinning continuous carbon nanotube yarns-Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 2002, 419, 801.
【文献2】:Li,Q.W.;Zhang,X.F.;DePaula,R.F.;Zheng,L.X.;Zhao,Y.H.;Stan,L.;Holesinger,T.G.;Arendt,P.N.;Peterson,D.E.;Zhu,Y.T.,Sustained growth of ultralong carbonnanotube arrays for fiber spinning.Advanced Materials 2006,18,3160.[Document 2]: Li, Q.W.; Zhang, X.F.; DePaula, R.F.; Zheng, L.X.; Zhao, Y.H.; Stan, L.; carbonnanotube arrays for fiber spinning. Advanced Materials 2006, 18, 3160.
【文献3】:Xiao,L.;Chen,Z.;Feng,C.;Liu,L.;Bai,Z.Q.;Wang,Y.;Qian,L.;Zhang,Y.Y.;Li,Q.Q.;Jiang,K.L.;Fan,S.S.,Flexible,Stretchable,Transparent Carbon Nanotube Thin FilmLoudspeakers.Nano Letters 2008,8,4539.[Document 3]: Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z.Q.; Wang, Y.; Qian, L.; Zhang, Y.Y.; Li, Q.Q.; Jiang, K.L. ; Fan, S.S., Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers. Nano Letters 2008, 8, 4539.
【文献4】:Feng,C.,Liu,K.,Wu,J.S.,Liu,L.,Cheng,J.S.,Zhang,Y.Y.,Sun,Y.H.,Li,Q.Q.,Fan,S.S.,Jiang K.L.,Flexible,Stretchable,Transparent Conducting FilmsMade from SuperalignedCarbon Nanotubes.Advance Functional Materials 2010,20,1.[Document 4]: Feng, C., Liu, K., Wu, J.S., Liu, L., Cheng, J.S., Zhang, Y.Y., Sun, Y.H., Li, Q.Q., Fan, S.S., Jiang K.L., Flexible, Stretchable , Transparent Conducting Films Made from Superaligned Carbon Nanotubes. Advance Functional Materials 2010, 20, 1.
【文献5】:Aliev,A.E.;Oh,J.Y.;Kozlov,M.E.;Kuznetsov,A.A.;Fang,S.L.;Fonseca,A.F.;Ovalle,R.;Lima,M.D.;Haque,M.H.;Gartstein,Y.N.;Zhang,M.;Zakhidov,A.A.;Baughman,R.H.,Giant-Stroke,Superelastic Carbon Nanotube Aerogel Muscles.Science 2009,323,1575.[Document 5]: Aliev, A.E.; Oh, J.Y.; Kozlov, M.E.; Kuznetsov, A.A.; Fang, S.L.; Fonseca, A.F.; Ovalle, R.; ; Zakhidov, A.A.; Baughman, R.H., Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science 2009, 323, 1575.
【文献6】:Zhang,X.F.;Li,Q.W.;Tu,Y.;Li,Y.A.;Coulter,J.Y.;Zheng,L.X.;Zhao,Y.H.;Jia,Q.X.;Peterson,D.E.;Zhu,Y.T.,Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.Small 2007,3,244.[Document 6]: Zhang, X.F.; Li, Q.W.; Tu, Y.; Li, Y.A.; Coulter, J.Y.; fibers spun from long carbon-nanotube arrays. Small 2007, 3, 244.
发明内容Contents of the invention
为进一步深入乙烯CVD生长大面积可纺丝碳纳米管阵列材料的应用,本发明的目的旨在提供一种纺丝用碳纳米管阵列的制备方法,从而使制得的碳纳米管阵列高度及结构具有均匀一致性,并能加工得到碳纳米管纤维及碳纳米管薄膜。In order to further deepen the application of ethylene CVD growth large-area spinnable carbon nanotube array material, the purpose of the present invention is to provide a method for preparing a carbon nanotube array for spinning, so that the obtained carbon nanotube array height and The structure is uniform, and carbon nanotube fibers and carbon nanotube films can be processed.
本发明的上述目的,实现的技术方案是:Above-mentioned purpose of the present invention, the technical scheme that realizes is:
纺丝用碳纳米管阵列的制备方法,其特征在于包括以下步骤:首先在预制的硅基底上制备氧化物缓冲层,再在其上沉积金属催化剂薄膜,形成具高活性的碳纳米管阵列生长复合催化结构;继而在保护气体环境下升温反应炉至700℃~800℃的碳纳米管生长温度;然后向反应炉中控制流量及比例通入乙烯及载气,常压下进行碳纳米管阵列生长;待生长完成后在1分钟内迅速结束碳纳米管阵列的生长。The method for preparing a carbon nanotube array for spinning is characterized in that it includes the following steps: firstly, an oxide buffer layer is prepared on a prefabricated silicon substrate, and then a metal catalyst film is deposited thereon to form a highly active carbon nanotube array growth Composite catalytic structure; then heat up the reaction furnace to the carbon nanotube growth temperature of 700 ℃ ~ 800 ℃ under the protective gas environment; then feed ethylene and carrier gas into the reaction furnace with controlled flow rate and ratio, and conduct carbon nanotube array under normal pressure Growth: After the growth is completed, quickly end the growth of the carbon nanotube array within 1 minute.
进一步地,上述纺丝用碳纳米管阵列的制备方法中:Further, in the preparation method of the above-mentioned carbon nanotube array for spinning:
步骤I中所述硅基底的预制是指在面积大于1cm2的硅晶片上生成厚度0.1μm~1μm的二氧化硅氧化层。采用离子束辅助蒸发法制备厚度为5nm~100nm具有无序结构的氧化物缓冲层;并通过电子束蒸发法在氧化物缓冲层表面制备厚度为0.4nm~5nm铁、钴或镍的金属催化剂薄膜。The prefabrication of the silicon substrate in step I refers to forming a silicon dioxide oxide layer with a thickness of 0.1 μm to 1 μm on a silicon wafer with an area larger than 1 cm 2 . Prepare an oxide buffer layer with a thickness of 5nm to 100nm and a disordered structure by ion beam assisted evaporation; and prepare a metal catalyst film of iron, cobalt or nickel with a thickness of 0.4nm to 5nm on the surface of the oxide buffer layer by electron beam evaporation .
步骤II中所用的保护气体环境为由惰性气体与H2的混合营造而成。The protective gas environment used in step II is created by mixing inert gas and H 2 .
步骤III中所用碳源气体为乙烯,所述碳源气体的分压范围为5%~40%;所述碳纳米管阵列的生长模式为常压底部生长。The carbon source gas used in step III is ethylene, and the partial pressure of the carbon source gas ranges from 5% to 40%; the growth mode of the carbon nanotube array is bottom growth under normal pressure.
步骤IV中所述结束碳纳米管阵列生长的方法指的是降低反应炉内碳纳米管阵列样品温度,或降低碳纳米管阵列样品周围的碳源含量。The method for ending the growth of the carbon nanotube array in step IV refers to reducing the temperature of the carbon nanotube array sample in the reaction furnace, or reducing the carbon source content around the carbon nanotube array sample.
实施本发明的技术方案,较之于乙炔CVD制备方法的优点为:Implement technical scheme of the present invention, compared with the advantage of acetylene CVD preparation method is:
本发明采用乙烯CVD方法,通过离子束辅助沉积法制备催化剂缓冲层结构,并结合通过控制金属催化剂薄膜厚度以及生长工艺参数,所制得的碳纳米管阵列具有碳纳米管管径小、管壁数少以及基底上碳管表面分布密度高以及应用于大面积制备的优点,为碳纳米管应用于工业纺丝制造提供了可能。The invention adopts the ethylene CVD method, prepares the catalyst buffer layer structure by the ion beam assisted deposition method, and combines the thickness of the metal catalyst film and the growth process parameters by controlling the carbon nanotube array. The advantages of small number, high surface distribution density of carbon tubes on the substrate, and large-area preparation provide the possibility for carbon nanotubes to be used in industrial spinning manufacturing.
为使本发明所述纺丝用碳纳米管阵列的制备方法更易于理解其实质性特点及其所具的实用性,下面便结合附图对本发明若干具体实施例作进一步的详细说明。但以下关于实施例的描述及说明对本发明保护范围不构成任何限制。In order to make the preparation method of the carbon nanotube array for spinning in the present invention easier to understand its substantive features and practicability, several specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. But the following descriptions and illustrations about the embodiments do not constitute any limitation to the protection scope of the present invention.
附图说明Description of drawings
图1是本发明大面积可纺丝碳纳米管阵列制备方法的流程示意图;Fig. 1 is a schematic flow diagram of the method for preparing a large-area spinnable carbon nanotube array of the present invention;
图2是本发明制备方法中催化剂制备的方法示意图;Fig. 2 is the method schematic diagram of catalyst preparation in the preparation method of the present invention;
图3是本发明在4英寸硅片基底上制备得到的纺丝用碳纳米管阵列示意图及扫描电镜照片;Fig. 3 is the schematic diagram and scanning electron microscope photo of the carbon nanotube array for spinning prepared by the present invention on a 4-inch silicon wafer substrate;
图4是图3所示碳纳米管阵列的透射电子显微镜照片;Fig. 4 is the transmission electron micrograph of carbon nanotube array shown in Fig. 3;
图5是本发明制得的碳纳米管阵列进行拉膜得到碳纳米管薄膜的示意图;Fig. 5 is the schematic diagram that the carbon nanotube array that the present invention makes is pulled film and obtains carbon nanotube film;
图6是本发明制得的碳纳米管阵列进行拉丝得到碳纳米管纤维的示意图。Fig. 6 is a schematic diagram of carbon nanotube fibers obtained by drawing carbon nanotube arrays prepared in the present invention.
具体实施方式Detailed ways
鉴于利用乙烯CVD生长碳纳米管的管壁数、管径、缺陷密度以及物理、化学性质等均不同于乙炔CVD的产物,其应用前景广阔。为突破乙烯CVD方法制备大面积可纺丝的碳纳米管阵列的瓶颈,本发明的发明团队经苦心研究,终于开发得到了该纺丝用纳米管阵列的制备方法,该制备方法重复性好,并易于放大实施;所致被得到的大面积可纺丝碳纳米管阵列可用于制备透明导电薄膜及高性能碳纳米管纤维等新型材料。In view of the wall number, tube diameter, defect density and physical and chemical properties of carbon nanotubes grown by ethylene CVD are different from those of acetylene CVD, its application prospect is broad. In order to break through the bottleneck of preparing large-area spinnable carbon nanotube arrays by the ethylene CVD method, the inventive team of the present invention has finally developed the preparation method of the nanotube array for spinning after painstaking research. The preparation method has good repeatability. And it is easy to scale up and implement; the resulting large-area spinnable carbon nanotube array can be used to prepare new materials such as transparent conductive films and high-performance carbon nanotube fibers.
具体来看:本发明的制备方法的实现步骤如图1的流程示意图所示,主要包括四个步骤,分别为:首先在预制的硅基底上制备氧化物缓冲层,再在其上沉积金属催化剂薄膜,形成具复合活性的碳纳米管阵列生长催化结构;继而在保护气体环境下升温反应炉至700℃~800℃的碳纳米管生长温度;然后向反应炉中控制流量及比例通入乙烯及载气,常压下进行碳纳米管阵列生长;待生长完成后在1分钟内迅速结束碳纳米管阵列的生长。Specifically: the implementation steps of the preparation method of the present invention are shown in the flow diagram of Figure 1, mainly including four steps, which are respectively: first prepare an oxide buffer layer on a prefabricated silicon substrate, and then deposit a metal catalyst on it film to form a catalytic structure for the growth of carbon nanotube arrays with recombination activity; then the reaction furnace is heated up to the carbon nanotube growth temperature of 700°C to 800°C in a protective gas environment; then ethylene and The carrier gas is used to grow the carbon nanotube array under normal pressure; after the growth is completed, the growth of the carbon nanotube array is quickly terminated within 1 minute.
而从图1来看,本发明步骤I还可进一步细化为硅基底的预制及催化薄膜的制备两个步骤。其中,硅基底的预制是指在面积大于1cm2的硅晶片(本实施例选用4英寸大小的硅晶片)上生成厚度0.1μm~1μm的二氧化硅氧化层;而催化薄膜的制备便是指在前述制得的硅基底上通过电子束蒸发法形成的一层厚度0.4nm~5nm的铁、钴、镍或三者混合物的薄膜。但是为了提高该金属催化剂薄膜的活性与寿命,本发明的做法是在金属催化剂薄膜与硅基底之间引入氧化铝、氧化镁等氧化物缓冲层,以此保证所生长的碳纳米管的阵列具有适宜的生长密度、取向度及长度均一性性质。其中该氧化物缓冲层为通过离子束辅助蒸发(IBAD)的方法制备得到的具有无序结构的致密氧化物,厚度介于5nm~100nm。From Fig. 1, step I of the present invention can be further refined into two steps of prefabrication of silicon substrate and preparation of catalytic thin film. Among them, the prefabrication of the silicon substrate refers to generating a silicon dioxide oxide layer with a thickness of 0.1 μm to 1 μm on a silicon wafer with an area greater than 1 cm (the silicon wafer with a size of 4 inches is used in this embodiment); and the preparation of the catalytic film refers to A thin film of iron, cobalt, nickel or a mixture of the three with a thickness of 0.4nm to 5nm is formed on the silicon substrate prepared above by electron beam evaporation. However, in order to improve the activity and lifespan of the metal catalyst film, the method of the present invention is to introduce oxide buffer layers such as aluminum oxide and magnesium oxide between the metal catalyst film and the silicon substrate, so as to ensure that the array of grown carbon nanotubes has Suitable growth density, degree of orientation and length uniformity properties. Wherein the oxide buffer layer is a dense oxide with a disordered structure prepared by ion beam assisted evaporation (IBAD), and the thickness is between 5nm and 100nm.
在完成了硅基底上金属催化剂薄膜的制备后,将该制备好的基底材料放入直径5英寸的石英反应管内,在4∶1的Ar/H2保护气体环境下对基底材料进行加热至生长温度(该生长温度范围介于700℃~800℃,本实施例中优选750℃)。金属催化剂薄膜在保护气体环境下,在氧化铝缓冲层表面均匀形核。待样品温度稳定以后通入碳源气体分压介于5%~40%的乙烯气体(本实施例选用15%,载气为5%的氢气和80%的氩气),生长时间为10min,气体总流量为2L/min。待生长结束以后,通过真空泵对反应石英管进行抽真空,10秒钟内真空度迅速达到1Pa左右。通过真空泵的排气,可以迅速减少金属催化剂薄膜周围的碳源气体,达到快速结束碳纳米管阵列生长的办法。最后,制备样品在氩气保护环境下冷却至室温,取出样品。After completing the preparation of the metal catalyst thin film on the silicon substrate, the prepared substrate material was placed in a 5-inch diameter quartz reaction tube, and the substrate material was heated to growth in a 4: 1 Ar/H protective gas environment. temperature (the growth temperature ranges from 700° C. to 800° C., preferably 750° C. in this embodiment). The metal catalyst thin film nucleates uniformly on the surface of the alumina buffer layer under the protective gas environment. After the temperature of the sample is stabilized, ethylene gas with a carbon source gas partial pressure of 5% to 40% is introduced (15% is used in this embodiment, and the carrier gas is 5% hydrogen and 80% argon), and the growth time is 10min. The total gas flow is 2L/min. After the growth is over, the reaction quartz tube is evacuated by a vacuum pump, and the vacuum degree quickly reaches about 1Pa within 10 seconds. Through the exhaust of the vacuum pump, the carbon source gas around the metal catalyst film can be rapidly reduced, so as to achieve the method of rapidly ending the growth of the carbon nanotube array. Finally, the prepared sample was cooled to room temperature under the protection of argon, and the sample was taken out.
如图3所示,本发明通过常压底部生长制备得到的碳纳米管阵列样品,碳纳米管阵列具有均一的结构,扫描电子显微镜分析表明该碳纳米管阵列具有超顺的排列结构,阵列高度为400μm左右。取少部分碳纳米管阵列在乙醇溶液中超声分散以后,在透射电子显微镜中对碳纳米管阵列中碳纳米管的结构进行了分析,分析结果如图4所示,阵列中碳纳米管管径主要分布在4nm至7nm,管壁数为3至6壁。As shown in Figure 3, the carbon nanotube array sample prepared by the present invention through atmospheric pressure bottom growth, the carbon nanotube array has a uniform structure, scanning electron microscopy analysis shows that the carbon nanotube array has a super smooth arrangement structure, the array height It is about 400 μm. After taking a small part of the carbon nanotube array and ultrasonically dispersing it in the ethanol solution, the structure of the carbon nanotube in the carbon nanotube array was analyzed in a transmission electron microscope. The analysis results are shown in Figure 4. The diameter of the carbon nanotube in the array is Mainly distributed in 4nm to 7nm, the number of tube walls is 3 to 6 walls.
第四步中迅速结束碳纳米管阵列生长的方法,除上述提及的抽真空——迅速减少金属催化剂薄膜周围的碳源气体的方法外,还可降低反应炉内碳纳米管阵列样品温度,在远低于生长温度的环境下,该生长反应也会即刻停止,从而维持碳纳米管阵列的生长密度、取向度及长度均一性。In the fourth step, the method of quickly ending the growth of the carbon nanotube array, in addition to the above-mentioned vacuuming—the method of rapidly reducing the carbon source gas around the metal catalyst film, can also reduce the temperature of the carbon nanotube array sample in the reaction furnace, In an environment much lower than the growth temperature, the growth reaction will stop immediately, thereby maintaining the growth density, orientation degree and length uniformity of the carbon nanotube array.
通过对碳纳米管阵列进行纺丝,实验结果表明该方法制备的碳纳米管阵列具有非常好的连续纺丝性质。通过直接拉膜纺丝的方法,可以得到直径均匀的碳纳米管纤维材料以及碳纳米管薄膜材料(如图5、图6所示)。通过本方法制备的可纺丝碳纳米管阵列可以应用于超强碳纳米管纤维以及碳纳米管透明导电薄膜的制备。By spinning the carbon nanotube array, the experimental results show that the carbon nanotube array prepared by this method has very good continuous spinning properties. Through the method of direct film spinning, carbon nanotube fiber material and carbon nanotube film material with uniform diameter can be obtained (as shown in Fig. 5 and Fig. 6). The spinnable carbon nanotube array prepared by the method can be applied to the preparation of super strong carbon nanotube fibers and carbon nanotube transparent conductive films.
以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或是等效替换而形成的技术方案,均落在本发明权利保护范围之内。The above are only specific application examples of the present invention, and do not constitute any limitation to the protection scope of the present invention. All technical solutions formed by equivalent transformation or equivalent replacement fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010176982A CN101857460A (en) | 2010-05-20 | 2010-05-20 | Preparation method of carbon nanotube array for spinning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010176982A CN101857460A (en) | 2010-05-20 | 2010-05-20 | Preparation method of carbon nanotube array for spinning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101857460A true CN101857460A (en) | 2010-10-13 |
Family
ID=42943654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010176982A Pending CN101857460A (en) | 2010-05-20 | 2010-05-20 | Preparation method of carbon nanotube array for spinning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101857460A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522214A (en) * | 2011-12-09 | 2012-06-27 | 复旦大学 | Carbon nanotube fiber-based linear dye-sensitized solar cell and preparation method thereof |
CN103058164A (en) * | 2011-10-20 | 2013-04-24 | 苏州捷迪纳米科技有限公司 | Preparation method of single-walled carbon nanotube |
CN103909715A (en) * | 2014-03-28 | 2014-07-09 | 复旦大学 | Preparation method of solvent-induced reversibly oriented transformation conjugated polymer and carbon nano tube composite film |
CN104085875A (en) * | 2014-06-06 | 2014-10-08 | 华为技术有限公司 | Preparing method of high-density carbon nano tube array |
CN108532287A (en) * | 2018-03-30 | 2018-09-14 | 深圳烯湾科技有限公司 | The surface modification method of carbon nano-tube fibre |
CN109563649A (en) * | 2017-02-03 | 2019-04-02 | 株式会社Lg化学 | Method for preparing carbon nanotube fiber and carbon nanotube fiber prepared thereby |
CN109553087A (en) * | 2018-12-12 | 2019-04-02 | 深圳烯湾科技有限公司 | Modified carbon nano-tube array, carbon nano-tube fibre and its preparation method and application |
CN111455339A (en) * | 2020-05-22 | 2020-07-28 | 厦门市计量检定测试院 | Preparation method of vertical carbon nanotube array for high-absorption-ratio material |
CN113307252A (en) * | 2021-06-18 | 2021-08-27 | 常州大学 | Method for preparing spinnable super-ordered carbon nanotube array |
CN113690457A (en) * | 2021-08-23 | 2021-11-23 | 中汽创智科技有限公司 | Spinning solution for fuel cell and preparation method of carbon paper of spinning solution |
CN117263169A (en) * | 2023-09-12 | 2023-12-22 | 深圳烯湾科技有限公司 | Preparation method of narrow-diameter carbon nanotube, narrow-diameter carbon nanotube and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6689674B2 (en) * | 2002-05-07 | 2004-02-10 | Motorola, Inc. | Method for selective chemical vapor deposition of nanotubes |
CN1483668A (en) * | 2002-09-17 | 2004-03-24 | 清华大学 | A method for growing carbon nanotube arrays |
CN1603231A (en) * | 2003-09-30 | 2005-04-06 | 鸿富锦精密工业(深圳)有限公司 | Method for Controlling Growth Density of Carbon Nanotubes |
US20060286297A1 (en) * | 2002-02-01 | 2006-12-21 | Bronikowski Michael J | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
CN101372327A (en) * | 2008-09-26 | 2009-02-25 | 厦门大学 | A method for growing carbon nanotube arrays |
-
2010
- 2010-05-20 CN CN201010176982A patent/CN101857460A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060286297A1 (en) * | 2002-02-01 | 2006-12-21 | Bronikowski Michael J | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
US6689674B2 (en) * | 2002-05-07 | 2004-02-10 | Motorola, Inc. | Method for selective chemical vapor deposition of nanotubes |
CN1483668A (en) * | 2002-09-17 | 2004-03-24 | 清华大学 | A method for growing carbon nanotube arrays |
CN1603231A (en) * | 2003-09-30 | 2005-04-06 | 鸿富锦精密工业(深圳)有限公司 | Method for Controlling Growth Density of Carbon Nanotubes |
CN101372327A (en) * | 2008-09-26 | 2009-02-25 | 厦门大学 | A method for growing carbon nanotube arrays |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058164A (en) * | 2011-10-20 | 2013-04-24 | 苏州捷迪纳米科技有限公司 | Preparation method of single-walled carbon nanotube |
CN102522214A (en) * | 2011-12-09 | 2012-06-27 | 复旦大学 | Carbon nanotube fiber-based linear dye-sensitized solar cell and preparation method thereof |
CN103909715A (en) * | 2014-03-28 | 2014-07-09 | 复旦大学 | Preparation method of solvent-induced reversibly oriented transformation conjugated polymer and carbon nano tube composite film |
CN103909715B (en) * | 2014-03-28 | 2016-03-16 | 宁国市龙晟柔性储能材料科技有限公司 | Solvent-induced reversible directional deformation conjugated polymer and carbon nano-tube coextruded film preparation method |
CN104085875A (en) * | 2014-06-06 | 2014-10-08 | 华为技术有限公司 | Preparing method of high-density carbon nano tube array |
CN104085875B (en) * | 2014-06-06 | 2016-08-24 | 华为技术有限公司 | A kind of preparation method of high-density carbon nano-tube array |
US11136711B2 (en) | 2017-02-03 | 2021-10-05 | Lg Chem, Ltd. | Method for preparing carbon nanotube fiber and carbon nanotube fiber prepared thereby |
CN109563649A (en) * | 2017-02-03 | 2019-04-02 | 株式会社Lg化学 | Method for preparing carbon nanotube fiber and carbon nanotube fiber prepared thereby |
CN108532287A (en) * | 2018-03-30 | 2018-09-14 | 深圳烯湾科技有限公司 | The surface modification method of carbon nano-tube fibre |
CN109553087A (en) * | 2018-12-12 | 2019-04-02 | 深圳烯湾科技有限公司 | Modified carbon nano-tube array, carbon nano-tube fibre and its preparation method and application |
CN111455339A (en) * | 2020-05-22 | 2020-07-28 | 厦门市计量检定测试院 | Preparation method of vertical carbon nanotube array for high-absorption-ratio material |
CN113307252A (en) * | 2021-06-18 | 2021-08-27 | 常州大学 | Method for preparing spinnable super-ordered carbon nanotube array |
CN113307252B (en) * | 2021-06-18 | 2023-06-20 | 常州大学 | A method for preparing spinnable super-aligned carbon nanotube arrays |
CN113690457A (en) * | 2021-08-23 | 2021-11-23 | 中汽创智科技有限公司 | Spinning solution for fuel cell and preparation method of carbon paper of spinning solution |
CN117263169A (en) * | 2023-09-12 | 2023-12-22 | 深圳烯湾科技有限公司 | Preparation method of narrow-diameter carbon nanotube, narrow-diameter carbon nanotube and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101857460A (en) | Preparation method of carbon nanotube array for spinning | |
Kumar et al. | Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production | |
Inoue et al. | One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition | |
Wong et al. | Growth of metal carbide nanotubes and nanorods | |
JP3850380B2 (en) | Carbon nanotube matrix growth method | |
US7157068B2 (en) | Varied morphology carbon nanotubes and method for their manufacture | |
CN101811690B (en) | A method of forming a carbon composite structure with carbon nanotubes and graphene | |
US7687109B2 (en) | Apparatus and method for making carbon nanotube array | |
JP5243478B2 (en) | Nanomaterial thin film | |
JP5518438B2 (en) | Method for producing nanowire structure | |
US9181098B2 (en) | Preparation of array of long carbon nanotubes and fibers therefrom | |
CN1883807A (en) | Method of preparing catalyst for manufacturing carbon nanotubes | |
WO2006060476A2 (en) | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip | |
Liu et al. | Growth mechanism and kinetics of vertically aligned carbon nanotube arrays | |
JP2010222244A (en) | Carbon nanotube-nanoparticle composite material and method for producing the same | |
CN110182788A (en) | A kind of device and method of high yield preparation carbon nanotube | |
CN102020262B (en) | Method for growing single-walled carbon nanotubes in high efficiency without metal catalyst | |
JP2017019718A (en) | Manufacturing method of carbon nano-tube | |
CN110255626B (en) | Method for preparing surface-active onion-like carbon nanospheres based on vapor deposition | |
Das et al. | Carbon nanotubes synthesis | |
CN102092670A (en) | Carbon nano-tube composite structure and preparation method thereof | |
CN102658153A (en) | Preparation method of copper substrate surface growth fullerene doped porous carbon nanofibers | |
Jou et al. | Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane | |
CN101260595A (en) | A kind of single-layer carbon nanotube non-woven fabric and preparation method thereof | |
CN111943172A (en) | A method for preparing carbon nanotube arrays by metal wire-assisted chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: SUZHOU JIEDI NANO TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: JIANGSU NANO-TECH BUSINESS DEVELOPMENT CO., LTD. Effective date: 20121030 Owner name: JIANGSU NANO-TECH BUSINESS DEVELOPMENT CO., LTD. Free format text: FORMER OWNER: SUZHOU INSTITUTE OF NANO-TECH. AND NANO-BIONICS, CHINESE ACADEMY OF SCIENCES Effective date: 20121030 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 215125 SUZHOU, JIANGSU PROVINCE TO: 215123 SUZHOU, JIANGSU PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20121030 Address after: 215123, Jiangsu province Suzhou Industrial Park alone villa lake high Parish, if waterway 398, A103 Applicant after: SUZHOU CREATIVE-CARBON NANOTECHNOLOGY Co.,Ltd. Address before: 215123, Jiangsu province Suzhou Industrial Park alone villa high Parish, if waterway 398, C518 Applicant before: Suzhou Nafang Technology Development Co.,Ltd. Effective date of registration: 20121030 Address after: 215123, Jiangsu province Suzhou Industrial Park alone villa high Parish, if waterway 398, C518 Applicant after: SUZHOU NAFANG TECHNOLOGY DEVELOPMENT Co.,Ltd. Address before: 215125, Suzhou Industrial Park, Jiangsu, if waterway 398 Applicant before: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIENCES |
|
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20101013 |