CN108682255A - Pulsatile cardiac model and its ripple control method - Google Patents
Pulsatile cardiac model and its ripple control method Download PDFInfo
- Publication number
- CN108682255A CN108682255A CN201810618919.5A CN201810618919A CN108682255A CN 108682255 A CN108682255 A CN 108682255A CN 201810618919 A CN201810618919 A CN 201810618919A CN 108682255 A CN108682255 A CN 108682255A
- Authority
- CN
- China
- Prior art keywords
- water pump
- liquid
- electric water
- heart
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000000747 cardiac effect Effects 0.000 title claims description 19
- 230000000541 pulsatile effect Effects 0.000 title claims 10
- 239000007788 liquid Substances 0.000 claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 70
- 238000004088 simulation Methods 0.000 claims abstract description 17
- 230000003993 interaction Effects 0.000 claims abstract 5
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000010992 reflux Methods 0.000 claims 2
- 230000010349 pulsation Effects 0.000 abstract description 25
- 230000036772 blood pressure Effects 0.000 abstract description 4
- 230000001121 heart beat frequency Effects 0.000 abstract description 4
- 238000012549 training Methods 0.000 abstract description 4
- 230000001575 pathological effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007170 pathology Effects 0.000 description 4
- 238000010009 beating Methods 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
- G09B23/303—Anatomical models specially adapted to simulate circulation of bodily fluids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Algebra (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Instructional Devices (AREA)
Abstract
本发明公开了一脉动心脏模型及其脉动控制方法,包括模拟心脏模型、压力传感器、显示装置、控制单元、电动水泵、人机交互界面和储液箱,储液箱的出液口与模拟心脏模型的进液口相连通,模拟心脏模型的出液口和储液箱的回流口相连通,电动水泵安装于进液管道上,电动水泵与控制单元相连接,压力传感器用于检测液体压力,且压力传感器与显示装置相连接,所述人机交互界面与控制单元以及显示装置相连接。本发明仿真度高,可以通过脉动心脏模型模拟出不同病理情况下的心脏脉动状态,且通过显示装置可以记录和显示心脏血压、心电、心音、心跳频率、形变量等各种生理信号,且通过数值或是图表的形式显示出来,更加方便的实现对操作者的培训。
The invention discloses a pulsating heart model and a pulsation control method thereof, comprising a simulated heart model, a pressure sensor, a display device, a control unit, an electric water pump, a human-computer interaction interface and a liquid storage tank, the liquid outlet of the liquid storage tank and the simulated heart The liquid inlet of the model is connected, the liquid outlet of the simulated heart model is connected with the return port of the liquid storage tank, the electric water pump is installed on the liquid inlet pipeline, the electric water pump is connected with the control unit, and the pressure sensor is used to detect the liquid pressure. And the pressure sensor is connected with the display device, and the human-computer interaction interface is connected with the control unit and the display device. The invention has a high degree of simulation, and can simulate the pulsation state of the heart under different pathological conditions through the pulsating heart model, and can record and display various physiological signals such as heart blood pressure, electrocardiogram, heart sound, heartbeat frequency, and deformation through the display device, and Displayed in the form of numerical values or graphs, it is more convenient to realize the training of operators.
Description
技术领域technical field
本发明涉及一种脉动心脏模型及其脉动控制方法,属于医疗教学器材领域。The invention relates to a pulsating heart model and a pulsation control method thereof, belonging to the field of medical teaching equipment.
背景技术Background technique
为了方便医科学生或实习医生学习相关的医疗知识,通常导师需要用到人体器官模型进行讲解和演示,对于模拟心脏科实习生,导师往往要用到模拟心脏模型,现有技术中,对人体模拟心脏的仿真模拟一直是医疗器械领域的研究热点,实时掌握和呈现模拟心脏的实时状态也非常重要。然而,目前所使用的模拟心脏模型大多为静态的硬质模型,其仅仅能表现出模拟心脏的构造,无法进行动态演示,并不方便学生进行观察学习和进行其他器械的操作,而且现有的模拟心脏模型只能观察其静态结构特性,并不能观察研究动态生理特性以及其对应的生理参数。模仿血液脉冲的驱动机构用于驱动模拟心脏模型按照操作人员所期望的效果做有规律运动,是模拟人体模拟心脏跳动和血液循环的一个关键技术,对于模拟心脏教学以及医学研究的发展具有重要意义。In order to facilitate medical students or interns to learn relevant medical knowledge, usually instructors need to use human organ models to explain and demonstrate. For simulated cardiology interns, instructors often use simulated heart models. The simulation of the heart has always been a research hotspot in the field of medical devices, and it is also very important to grasp and present the real-time state of the simulated heart in real time. However, most of the simulated heart models currently used are static hard models, which can only show the structure of the simulated heart, and cannot be dynamically demonstrated. It is not convenient for students to observe and learn and operate other instruments, and the existing The simulated heart model can only observe its static structural properties, but cannot observe and study the dynamic physiological properties and its corresponding physiological parameters. The driving mechanism that imitates the blood pulse is used to drive the simulated heart model to perform regular movements according to the desired effect of the operator. It is a key technology for simulating the heartbeat and blood circulation of the human body. It is of great significance for the development of simulated heart teaching and medical research. .
脉冲的液体其高压低压变换的特性使其可以模拟心脏泵送血液的效果,现有提供脉冲的装置一般是由压力脉冲系统(如活塞系统)、动力系统(如稳流泵)、管路配件、电气控制系统、数据采集测试系统等组成,这种提供液体脉冲效果的方式机构的传动件较多,体积较大,并且活塞和缸体长期摩擦会有液体泄漏的隐患,使用寿命不佳,而且此方式单次脉冲量固定,如果需要更改,需要更改活塞系统的行程,可变行程活塞机构更加复杂,而且可变的行程量不大。The characteristics of high-pressure and low-pressure transformation of pulsed liquid make it possible to simulate the effect of the heart pumping blood. The existing pulse-providing device is generally composed of a pressure pulse system (such as a piston system), a power system (such as a steady flow pump), and pipeline accessories. , electrical control system, data acquisition and testing system, etc. This method of providing liquid pulse effects has many transmission parts and a large volume, and the long-term friction between the piston and the cylinder will cause hidden dangers of liquid leakage, and the service life is not good. Moreover, the amount of single pulse in this method is fixed. If it needs to be changed, the stroke of the piston system needs to be changed. The variable stroke piston mechanism is more complicated, and the variable stroke amount is not large.
因此,针对现有技术的不足,设计一种脉动心脏模型及其脉动控制方法,显得很有意义。Therefore, it is meaningful to design a pulsating heart model and its pulsation control method in view of the deficiencies in the prior art.
发明内容Contents of the invention
针对现有技术的不足,本发明提出一种脉动心脏模型及其脉动控制方法,旨在解决现有模拟心脏模型不能实现仿真的脉动模拟血液流动效果,教学效果不直观的问题。Aiming at the deficiencies of the prior art, the present invention proposes a pulsating heart model and its pulsation control method, aiming to solve the problem that the existing simulated heart model cannot realize the simulated pulsation simulated blood flow effect, and the teaching effect is not intuitive.
本发明实现上述目的的技术解决方案是一种脉动心脏模型,包括模拟心脏模型、压力传感器、显示装置、控制单元、一级电动水泵、二级电动水泵、人机交互界面和储液箱,所述储液箱设有出水口和回流口,所述模拟心脏模型设有进液口和出液口,储液箱的出水口与模拟心脏模型的进液口通过进液管道相连通,所述模拟心脏模型的出液口和储液箱的回流口通过出液管道相连通,所述一级电动水泵和二级电动水泵均安装于进液管道上,且所述一级电动水泵位于模拟心脏模型出液口与二级电动水泵之间,所述一级电动水泵连接有和二级电动水泵均连接有水泵驱动装置,且所述水泵驱动装置与控制单元相连接。所述压力传感器安装于所述进液管道或出液管道或模拟心脏模型上,且压力传感器与显示装置相连接,所述人机交互界面与控制单元以及显示装置相连接。The technical solution of the present invention to achieve the above object is a pulsating heart model, including a simulated heart model, a pressure sensor, a display device, a control unit, a primary electric water pump, a secondary electric water pump, a man-machine interface and a liquid storage tank. The liquid storage tank is provided with a water outlet and a return port, the simulated heart model is provided with a liquid inlet and a liquid outlet, and the water outlet of the liquid storage tank is connected with the liquid inlet of the simulated heart model through a liquid inlet pipeline. The liquid outlet of the simulated heart model and the return port of the liquid storage tank are connected through the liquid outlet pipeline, the first-level electric water pump and the second-level electric water pump are installed on the liquid inlet pipeline, and the first-level electric water pump is located in the simulated heart Between the liquid outlet of the model and the secondary electric water pump, the primary electric water pump is connected to and the secondary electric water pump is connected to a water pump driving device, and the water pump driving device is connected to a control unit. The pressure sensor is installed on the liquid inlet pipe or the liquid outlet pipe or the simulated heart model, and the pressure sensor is connected with the display device, and the man-machine interface is connected with the control unit and the display device.
进一步地,上述脉动心脏模型,其中:还包括温度检测元件以及加热器,所述温度检测元件和加热器均与控制单元相连,所述温度检测元件用于对储液箱中的液体进行测温,并将所测得的数据反馈给控制单元,所述加热器用于对储液箱中的液体进行加热。Further, the above-mentioned pulsating heart model further includes a temperature detection element and a heater, both of which are connected to the control unit, and the temperature detection element is used to measure the temperature of the liquid in the liquid storage tank , and feed back the measured data to the control unit, the heater is used to heat the liquid in the liquid storage tank.
进一步地,上述脉动心脏模型,其中:所述进液管道上设有流量计,所述流量计和显示装置相连接,通过显示装置显示液体流量。Further, in the above-mentioned pulsating heart model, wherein: the liquid inlet pipeline is provided with a flow meter, and the flow meter is connected to a display device, and the liquid flow rate is displayed through the display device.
更进一步地,上述脉动心脏模型,其中:还包括心率传感器和/或应力应变传感器和/或心电传感器和/或心音传感器,所述心率传感器、应力应变传感器、心电传感器、心音传感器均安装于模拟心脏模型上,且心率传感器、应力应变传感器、心电传感器、心音传感器均与显示装置相连接。Furthermore, the above-mentioned pulsating heart model, wherein: it also includes a heart rate sensor and/or a stress-strain sensor and/or an ECG sensor and/or a heart sound sensor, and the heart rate sensor, the stress-strain sensor, the ECG sensor, and the heart sound sensor are all installed On the simulated heart model, and the heart rate sensor, the stress and strain sensor, the electrocardiogram sensor and the heart sound sensor are all connected with the display device.
更进一步地,上述脉动心脏模型,其中:所述流量计、心率传感器、应力应变传感器、心电传感器、心音传感器均与数据处理模块相连接,所述数据处理模块与显示装置相连接。Furthermore, in the above-mentioned pulsating heart model, wherein: the flow meter, heart rate sensor, stress-strain sensor, ECG sensor, and heart sound sensor are all connected to a data processing module, and the data processing module is connected to a display device.
本发明还公开了一种心脏模型的脉动控制方法,包括以下步骤:1)通过人机交互界面输入变量数据,(2)控制单元通过水泵驱动装置控制一级电动水泵,从而控制液体的流量,(3)控制单元通过控制水泵驱动装置使得二级电动水泵给液体提供脉冲压力,从而使得模拟心脏模型呈脉动状态。The invention also discloses a heart model pulsation control method, including the following steps: 1) Input variable data through the man-machine interface, (2) The control unit controls the first-stage electric water pump through the water pump driving device, thereby controlling the flow of the liquid, (3) The control unit makes the secondary electric water pump provide pulse pressure to the liquid by controlling the water pump driving device, so that the simulated heart model is in a pulsating state.
再进一步地,上述心脏模型的脉动控制方法,其中:所述步骤(2)中液体流量控制在为1-15L/min。Still further, the pulsation control method of the above-mentioned heart model, wherein: in the step (2), the liquid flow rate is controlled at 1-15 L/min.
再进一步地,上述心脏模型的脉动控制方法,其中:所述步骤(3)中二级电动水泵的输出流量Q由以下公式得到,Q=vt,v=akt+b,式中,a为加速度,加速度为输入步骤(1)中输入的变量数据,t为加速时间,加速时间为输入步骤(1)中输入的变量数据,t和b为常数。Still further, the pulsation control method of the above-mentioned heart model, wherein: the output flow Q of the secondary electric water pump in the step (3) is obtained by the following formula, Q=vt, v=akt+b, where a is the acceleration , the acceleration is the variable data input in the input step (1), t is the acceleration time, the acceleration time is the variable data input in the input step (1), and t and b are constants.
本发明的突出的实质性特点和显著的进步性体现在:(1)本发明仿真度高,可以通过脉动心脏模型模拟出不同病理情况下的心脏脉动状态,且通过显示装置可以记录和显示心脏血压、心电、心音、心跳频率、形变量及其由于形变产生的应力、等各种生理信号,并通过数据处理模块处理记录信号并通过数值或是图表的形式显示出来,更加方便的实现对操作者的培训;(2)本发明通过采用两级电动水泵控制方式,分别对液体流量和液体脉动进行控制,仿真更为精确,相比于现有技术中通过活塞系统完成脉冲动作,实现和现有机构相同效果的基础上极大的缩减了驱动机构的体积,增大了使用寿命并降低了制造成本;(3)本发明还设有温度检测元件和加热器,从而模拟出人体血液温度,使得心脏脉动的仿真更为真实。The outstanding substantive features and remarkable progress of the present invention are reflected in: (1) The present invention has a high degree of simulation, can simulate the heart pulsation state under different pathological conditions through the pulsating heart model, and can record and display the heart through the display device Various physiological signals such as blood pressure, ECG, heart sound, heartbeat frequency, deformation and the stress caused by deformation, etc. are processed and recorded by the data processing module and displayed in the form of numerical values or graphs, which is more convenient to realize Operator training; (2) The present invention controls the liquid flow and liquid pulsation separately by adopting a two-stage electric water pump control method, and the simulation is more accurate. On the basis of the same effect as the existing mechanism, the volume of the driving mechanism is greatly reduced, the service life is increased and the manufacturing cost is reduced; (3) The invention is also equipped with a temperature detection element and a heater, thereby simulating the temperature of human blood , making the simulation of heart pulsation more realistic.
附图说明Description of drawings
图1是脉动心脏模型连接结构示意图;Fig. 1 is a schematic diagram of the connection structure of a pulsating heart model;
图2是发送给电机驱动装置的加速度波形图;Fig. 2 is the acceleration waveform diagram sent to the motor drive device;
图3是二级电动水泵根据伺服器控制输出的转速波形图;Figure 3 is a waveform diagram of the rotational speed output by the secondary electric water pump according to the control of the server;
图4是二级电动水泵输出的压力波形图。Figure 4 is a waveform diagram of the output pressure of the secondary electric water pump.
图中,各附图标记的含义为:1-模拟心脏模型,2-压力传感器,3-显示装置,4-一级电动水泵,41-一级水泵驱动装置,5-二级电动水泵,51-二级水泵驱动装置,6-人机交互界面,7-控制单元,8-温度检测元件,9-加热器,10-储液箱,11-流量计,12-数据处理模块。In the figure, the meanings of the reference signs are: 1 - simulated heart model, 2 - pressure sensor, 3 - display device, 4 - primary electric water pump, 41 - primary water pump driving device, 5 - secondary electric water pump, 51 - Secondary water pump driving device, 6 - man-machine interface, 7 - control unit, 8 - temperature detection element, 9 - heater, 10 - liquid storage tank, 11 - flow meter, 12 - data processing module.
具体实施方式Detailed ways
以下便结合实施例附图,对本发明的具体实施方式作进一步的详述,以使本发明技术方案更易于理解、掌握,从而对本发明的保护范围做出更为清晰的界定。The specific implementation of the present invention will be described in further detail below in conjunction with the accompanying drawings of the embodiments, so as to make the technical solution of the present invention easier to understand and grasp, so as to define the protection scope of the present invention more clearly.
如图1所示,本发明脉动心脏模型包括模拟心脏模型1、压力传感器2、显示装置3、控制单元7、一级电动水泵4、二级电动水泵5、人机交互界面6和储液箱10,储液箱10设有出水口和回流口,模拟心脏模型1设有进液口和出液口,储液箱10的出水口与模拟心脏模型1的进液口通过进液管道相连通,模拟心脏模型1的出液口和储液箱10的回流口通过出液管道相连通,从而构成一个完整的液体流动回路,所述一级电动水泵4和二级电动水泵5均安装于进液管道上,且一级电动水泵4位于模拟心脏模型1的出液口与二级电动水泵5之间,一级电动水泵4用于控制液体流量,二级电动水泵5用于给液体施加脉动压力,一级电动水泵4连接有一级水泵驱动装置41,二级电动水泵连接有二级水泵驱动装置51,且一级电动水泵驱动装置41和二级电动水泵驱动装置51均与控制单元7相连接。所述传感器2安装于所述进液管道或出液管道或模拟心脏模型1上,且压力传感器2与显示装置3相连接。所述人机交互界面6与控制单元7以及显示装置3相连接。操作者通过人机界面6下达操作指令,控制单元7根据操作指令控制各元件执行相应的动作,显示装置3用于显示个元件相应的数据,便于操作者直观了解数据。As shown in Figure 1, the pulsating heart model of the present invention includes a simulated heart model 1, a pressure sensor 2, a display device 3, a control unit 7, a primary electric water pump 4, a secondary electric water pump 5, a man-machine interface 6 and a liquid storage tank 10. The liquid storage tank 10 is provided with a water outlet and a return port, and the simulated heart model 1 is provided with a liquid inlet and a liquid outlet. The water outlet of the liquid storage tank 10 is connected with the liquid inlet of the simulated heart model 1 through a liquid inlet pipe , the liquid outlet of the simulated heart model 1 and the return port of the liquid storage tank 10 are connected through the liquid outlet pipeline, thereby forming a complete liquid flow circuit, the first-stage electric water pump 4 and the second-stage electric water pump 5 are installed in the inlet on the liquid pipeline, and the primary electric water pump 4 is located between the liquid outlet of the simulated heart model 1 and the secondary electric water pump 5, the primary electric water pump 4 is used to control the liquid flow, and the secondary electric water pump 5 is used to apply pulsation to the liquid Pressure, the primary electric water pump 4 is connected with the primary water pump driving device 41, the secondary electric water pump is connected with the secondary water pump driving device 51, and the primary electric water pump driving device 41 and the secondary electric water pump driving device 51 are both in phase with the control unit 7 connect. The sensor 2 is installed on the liquid inlet or outlet pipe or the simulated heart model 1 , and the pressure sensor 2 is connected with a display device 3 . The man-machine interface 6 is connected with the control unit 7 and the display device 3 . The operator issues operation instructions through the man-machine interface 6, the control unit 7 controls each component to perform corresponding actions according to the operation instruction, and the display device 3 is used to display the corresponding data of each component, which is convenient for the operator to intuitively understand the data.
优选地,所述进液管道上还设有流量计11,流量计11和显示装置3相连接,通过显示装置3显示液体流量。Preferably, a flow meter 11 is also provided on the liquid inlet pipe, and the flow meter 11 is connected to the display device 3 to display the liquid flow through the display device 3 .
此外,为了方便实习生学习心脏病理知识,模拟心脏模型1除了压力传感器2之外还包括心率传感器、应力应变传感器、心电传感器、心音传感器的一种或几种,其中压力传感器用来检测心脏模型内的压力值,心率传感器用来记录模拟心脏模型1的跳动次数及频率,应力应变传感器用来测量心脏收缩、膨胀时模拟心脏模型1的形变量以及形变产生的应力,心电传感器用来采集记录模拟心脏模型1的心电信号,心音传感器用来采集记录模拟心脏模型1的心音信号,上述各传感器均与显示装置3相连接。优选地,上述各个传感器均安装于模拟心脏模型1的肌肉内,不影响心脏整体外观,测得的生理参数更加真实可靠,而且可以测量记录心脏血压、心电、心音、心跳频率、形变量及其由于形变产生的应力等各种生理信号,并通过数据处理模块处理记录信号并通过数值或是图表的形式显示出来,而且由脉动泵实现心脏的跳动效果,因此通过调节脉动泵可以模拟不同状态下的心脏工况,更加方便的实现对操作者的培训。In addition, in order to facilitate the interns to learn the knowledge of cardiology, the simulated heart model 1 includes one or more of the heart rate sensor, stress-strain sensor, ECG sensor, and heart sound sensor in addition to the pressure sensor 2. The pressure sensor is used to detect the heart rate. The pressure value in the model, the heart rate sensor is used to record the beating times and frequency of the simulated heart model 1, the stress and strain sensor is used to measure the deformation of the simulated heart model 1 during contraction and expansion and the stress generated by the deformation, and the ECG sensor is used to The heart sound sensor is used to collect and record the heart sound signal of the simulated heart model 1 , and each of the sensors is connected to the display device 3 . Preferably, each of the above-mentioned sensors is installed in the muscle of the simulated heart model 1, without affecting the overall appearance of the heart, the measured physiological parameters are more real and reliable, and can measure and record cardiac blood pressure, electrocardiogram, heart sound, heartbeat frequency, deformation and Various physiological signals such as stress caused by deformation are processed and recorded by the data processing module and displayed in the form of numerical values or graphs, and the beating effect of the heart is realized by the pulsating pump, so different states can be simulated by adjusting the pulsating pump Under the heart condition, it is more convenient to realize the training of the operator.
由于需要显示的数据众多,上述压力传感器2、心率传感器、应力应变传感器、心电传感器、心音传感器和流量计11均与数据处理模块12相连接,所述数据处理模块12与显示装置相连接。Due to the large amount of data to be displayed, the above-mentioned pressure sensor 2, heart rate sensor, stress and strain sensor, electrocardiogram sensor, heart sound sensor and flow meter 11 are all connected to the data processing module 12, and the data processing module 12 is connected to the display device.
此外,为了更真实地模拟出心脏脉动的效果,还设有温度检测元件8和加热器9,所述温度检测元件8和加热器9均与控制单元7相连,所述温度检测元件8用于对储液箱10中的液体进行测温,并反馈给控制单元,所述加热器9用于对储液箱10中的液体进行加热。控制单元7通过程序控制加热器9和温度检测元件8,控制加热器9对储液箱10内的液体进行加热,通过温度检测元件8对储液箱10内的液体将储液箱10内的液体温度反馈给控制单元7,具体地可采用PID算法,从而保证储液箱10内的液体温度稳定在36.5~37.5恒温,从而模拟出人体血液温度,使得通过脉动心脏模型仿真更为真实。In addition, in order to more realistically simulate the effect of heart pulsation, a temperature detection element 8 and a heater 9 are also provided, and both the temperature detection element 8 and the heater 9 are connected to the control unit 7, and the temperature detection element 8 is used for The temperature of the liquid in the liquid storage tank 10 is measured and fed back to the control unit. The heater 9 is used to heat the liquid in the liquid storage tank 10 . The control unit 7 controls the heater 9 and the temperature detection element 8 through the program, and the heater 9 is controlled to heat the liquid in the liquid storage tank 10, and the liquid in the liquid storage tank 10 is heated by the temperature detection element 8. The liquid temperature is fed back to the control unit 7. Specifically, the PID algorithm can be used to ensure that the liquid temperature in the liquid storage tank 10 is stable at a constant temperature of 36.5-37.5, thereby simulating the human blood temperature and making the simulation through the pulsating heart model more realistic.
所述控制单元7可以是带模拟量输出功能或PWM(Pulse Width Modulation脉冲宽度调制)输出功能的MCU(Micro Controller Unit微控制单元),也可以是PLC(可编程逻辑控制器)。所述一级电动水泵4和二级电动水泵5可以是隔膜泵、转子泵、齿轮泵、蠕动泵、叶片泵或离心泵的一种,通过选择不同的水泵可以得到不同精度的压力波形曲线。The control unit 7 may be an MCU (Micro Controller Unit) with an analog output function or a PWM (Pulse Width Modulation) output function, or a PLC (Programmable Logic Controller). The first-stage electric water pump 4 and the second-stage electric water pump 5 can be diaphragm pumps, rotor pumps, gear pumps, peristaltic pumps, vane pumps or centrifugal pumps, and pressure waveforms with different precision can be obtained by selecting different water pumps.
本发明的脉动控制方法如下:操作者通过人机交互界面6调整参数以设定模拟心脏模型1的脉动压力和频率,控制单元7根据交互界面的数据输出相应的控制信号,控制信号包括频率设定与压力设定,频率设定通过改变控制单元输出信号的周期,控制单元7控制一级电动水泵4的稳定运行转速,从而决定流量的输出大小以及管道系统内的压力最低值。控制单元7通过将控制信号转化为相应的控制电压,更改二级电动水泵5的输出功率以及转速的变化,从而产生周期性的脉动效果,从而模拟体液脉动效果,并通过显示装置3显示波形图。The pulsation control method of the present invention is as follows: the operator adjusts the parameters through the man-machine interface 6 to set the pulsation pressure and frequency of the simulated heart model 1, and the control unit 7 outputs corresponding control signals according to the data of the interface, and the control signals include frequency settings. Constant and pressure setting, frequency setting By changing the cycle of the output signal of the control unit, the control unit 7 controls the stable operating speed of the first-stage electric water pump 4, thereby determining the output of the flow rate and the minimum pressure in the pipeline system. The control unit 7 changes the output power and rotational speed of the secondary electric water pump 5 by converting the control signal into a corresponding control voltage, so as to generate a periodic pulsation effect, thereby simulating the pulsation effect of body fluid, and displays the waveform diagram through the display device 3 .
具体地,所述控制单元7通过一级电动水泵4控制液体流量为1~15L/min,从而获得一个平稳且具有一定压力的流量,起到增压的作用。控制单元7通过控制二级电动水泵驱动装置51输出基本方波、T形波、三角波、正弦波或是自定义波形的一种或几种,从而模拟出不同的脉动状态。Specifically, the control unit 7 controls the flow rate of the liquid to 1-15 L/min through the primary electric water pump 4, so as to obtain a stable flow rate with a certain pressure and play a role of boosting. The control unit 7 controls the secondary electric water pump driving device 51 to output one or more of basic square wave, T-shaped wave, triangular wave, sine wave or self-defined waveform, thereby simulating different pulsation states.
这里用齿轮泵来做实施案例描述,齿轮泵泵输出流量是固定不变的,模拟心脏模型1可视为管道模型,就管道模型来说,输出流量与输出压力近似成正比关系。通过程序计算这些值然后给伺服器发送转速控制命令来实现波形,改变运行参数 :如运行速度、加减速、高低速持续时间等,实现的途径有:输入波形变量以及选择波形函数公式。Here, a gear pump is used to describe the implementation case. The output flow of the gear pump is fixed. The simulated heart model 1 can be regarded as a pipeline model. As far as the pipeline model is concerned, the output flow is approximately proportional to the output pressure. Calculate these values through the program and then send the speed control command to the servo to realize the waveform and change the operating parameters: such as operating speed, acceleration and deceleration, high and low speed duration, etc. The realization methods include: inputting the waveform variable and selecting the waveform function formula.
例如,如图2所示,齿轮泵根据电机驱动装置51控制输出转速,控制单元7输入给电机驱动装置51的加速度波形函数为v=akt+b(其中a为齿轮泵的加速度,k、b为常数,t为加速时间),操作人员通过改变变量a设定波形的加减速度。如图3所示,而齿轮泵每转输出流量固定,所以泵出量Q=vt,泵出量与速度成正比,而泵出量也与管道内压力成正比,所以输出压力P波形曲线如图4所示,可以通过调节加速度的大小和齿轮泵的初速度,决定齿轮泵输出压力波形曲线的变化。通过输入不同变量,即可得到不同的模拟心脏模型1的脉动状态,而不同的心脏病理对应为不同的心脏脉动状态,因此,通过设定不同的变量,即可模拟出各种不同心脏病理。For example, as shown in Figure 2, the gear pump controls the output speed according to the motor drive device 51, and the acceleration waveform function that the control unit 7 inputs to the motor drive device 51 is v=akt+b (wherein a is the acceleration of the gear pump, k, b is a constant, t is the acceleration time), the operator sets the acceleration and deceleration of the waveform by changing the variable a. As shown in Figure 3, the output flow per revolution of the gear pump is fixed, so the pump output Q=vt, the pump output is proportional to the speed, and the pump output is also proportional to the pressure in the pipeline, so the output pressure P waveform curve is as follows As shown in Figure 4, the change of the output pressure waveform of the gear pump can be determined by adjusting the acceleration and the initial speed of the gear pump. By inputting different variables, different pulsation states of the simulated heart model 1 can be obtained, and different heart pathologies correspond to different heart pulsation states. Therefore, various heart pathologies can be simulated by setting different variables.
本发明使用方法如下:(1)操作员通过人机交互界面3选择不同心脏病理,(2)根据输入选择,控制单元控制一级水泵和二级水泵做出相应的动作,使得模拟心脏模型1处于脉动状态,(3)通过显示装置显示该脉动状态下的各传感器的数据,从而让实习者知道在该种病理下,具体各传感器的检测到的数据。The method of using the present invention is as follows: (1) The operator selects different heart pathologies through the man-machine interface 3, (2) According to the input selection, the control unit controls the primary water pump and the secondary water pump to make corresponding actions, so that the simulated heart model 1 In the pulsating state, (3) display the data of each sensor in the pulsating state through the display device, so as to let the practitioner know the specific data detected by each sensor under this pathology.
通过以上描述可以看出,本发明所述模拟心脏模型,仿真度高,可以通过脉动心脏模型1模拟出心脏脉动的状态,操作者可根据实际需要设定不同的参数从而模拟出各种心脏病理下的心脏脉动状态,而且通过显示装置3可以记录和显示心脏血压、心电、心音、心跳频率、形变量及其由于形变产生的应力、等各种生理信号,并通过数据处理模块处理记录信号并通过数值或是图表的形式显示出来,更加方便的实现对操作者的培训;并且,本发明通过采用两级电动水泵控制方式,分别对液体流量和液体脉动进行控制,仿真更为精确,相比于现有技术中通过活塞系统完成脉冲动作,实现和现有机构相同效果的基础上极大的缩减了驱动机构的体积,增大了使用寿命并降低了制造成本;此外,本发明还设有温度检测元件8和加热器9,从而模拟出人体血液温度,使得心脏脉动的仿真更为真实。It can be seen from the above description that the simulated heart model of the present invention has a high degree of simulation, and the state of heart pulsation can be simulated through the pulsating heart model 1, and the operator can set different parameters according to actual needs to simulate various heart diseases heart pulsation state, and the display device 3 can record and display various physiological signals such as cardiac blood pressure, electrocardiogram, heart sound, heartbeat frequency, deformation and the stress caused by deformation, and process the recorded signals through the data processing module And it is displayed in the form of numerical value or chart, which is more convenient to realize the training of the operator; and, the present invention controls the liquid flow and liquid pulsation respectively by adopting the two-stage electric water pump control mode, and the simulation is more accurate, which is relatively Compared with the prior art through the piston system to complete the pulse action, on the basis of achieving the same effect as the existing mechanism, the volume of the driving mechanism is greatly reduced, the service life is increased and the manufacturing cost is reduced; in addition, the present invention also designs There are temperature detection element 8 and heater 9, thereby simulating the temperature of human blood, making the simulation of heart pulsation more realistic.
当然,以上只是本发明的典型实例,除此之外,本发明还可以有其它多种具体实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求保护的范围之内。Of course, the above are only typical examples of the present invention. In addition, the present invention can also have other multiple specific implementation modes. All technical solutions formed by equivalent replacement or equivalent transformation all fall within the scope of protection claimed by the present invention. Inside.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810618919.5A CN108682255B (en) | 2018-06-15 | 2018-06-15 | Pulsating heart model and pulsation control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810618919.5A CN108682255B (en) | 2018-06-15 | 2018-06-15 | Pulsating heart model and pulsation control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108682255A true CN108682255A (en) | 2018-10-19 |
CN108682255B CN108682255B (en) | 2024-04-26 |
Family
ID=63811221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810618919.5A Active CN108682255B (en) | 2018-06-15 | 2018-06-15 | Pulsating heart model and pulsation control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108682255B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109473024A (en) * | 2018-11-16 | 2019-03-15 | 安徽徽煌教育科技有限公司 | A kind of nursing teaching arteriovenous apparatus for demonstrating |
CN109523861A (en) * | 2018-12-28 | 2019-03-26 | 吉林体育学院 | A kind of sports biochemistry experimental simulation device |
CN109841137A (en) * | 2019-02-14 | 2019-06-04 | 上海长海医院 | Root of ascending aorta intracavitary therapy training pattern |
CN110147134A (en) * | 2019-05-17 | 2019-08-20 | 苏州迈迪威检测技术有限公司 | A kind of control method of fluid device, device and storage medium |
CN111462604A (en) * | 2020-04-22 | 2020-07-28 | 宁波创导三维医疗科技有限公司 | A high-precision cardiac pulsation generation system |
ES2784447A1 (en) * | 2019-03-25 | 2020-09-25 | Univ Cantabria | Cardiothoracic Surgery Simulator (Machine-translation by Google Translate, not legally binding) |
CN112185228A (en) * | 2020-09-17 | 2021-01-05 | 宁波创导三维医疗科技有限公司 | External training system for transcatheter aortic valve replacement |
CN112924137A (en) * | 2021-01-25 | 2021-06-08 | 常州固立高端装备创新中心有限公司 | In-vitro simulation experiment device and method for portal vein internal pressure detection |
CN113393749A (en) * | 2021-07-14 | 2021-09-14 | 兰州理工大学 | Blood pulsating flow simulation device |
CN113487949A (en) * | 2021-07-02 | 2021-10-08 | 深圳大学 | In-vitro diagnosis simulation system and method |
CN113724551A (en) * | 2021-08-10 | 2021-11-30 | 陕西马克医疗科技有限公司 | Pulse adjustable TAVR operation simulator |
CN115620602A (en) * | 2022-11-11 | 2023-01-17 | 宁波创导三维医疗科技有限公司 | An arterial blood pressure simulation device and simulation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033477A1 (en) * | 2002-04-03 | 2004-02-19 | Ramphal Paul S. | Computer-controlled tissue-based simulator for training in cardiac surgical techniques |
CN101380490A (en) * | 2008-09-19 | 2009-03-11 | 北京工业大学 | Artificial Heart Experiment Bench |
CN101976528A (en) * | 2010-09-09 | 2011-02-16 | 华南理工大学 | Biomechanical experiment simulation device for implantation of intravascular stent |
US20140011170A1 (en) * | 2012-07-03 | 2014-01-09 | Troy D. Nickel | Controlling Flow and Pressure Waveforms |
US20140370490A1 (en) * | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Heart-lung preparation and method of use |
CN106237409A (en) * | 2016-08-29 | 2016-12-21 | 安徽通灵仿生科技有限公司 | External Wicresoft bionical circulatory assit system and control method thereof |
CN106463067A (en) * | 2014-11-10 | 2017-02-22 | 国立大学法人大阪大学 | Catheter simulator and imaging method for catheter simulator |
JP2017040812A (en) * | 2015-08-20 | 2017-02-23 | テルモ株式会社 | Heart simulation device, control method of heart simulation device and control program of heart simulation device |
WO2018087733A1 (en) * | 2016-11-14 | 2018-05-17 | Politecnico Di Milano | Test bench assembly for the simulation of cardiac surgery and/or interventional cardiology operations and/or procedures |
CN209471635U (en) * | 2018-06-15 | 2019-10-08 | 同济大学 | Pulsating Heart Model |
-
2018
- 2018-06-15 CN CN201810618919.5A patent/CN108682255B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033477A1 (en) * | 2002-04-03 | 2004-02-19 | Ramphal Paul S. | Computer-controlled tissue-based simulator for training in cardiac surgical techniques |
CN101380490A (en) * | 2008-09-19 | 2009-03-11 | 北京工业大学 | Artificial Heart Experiment Bench |
CN101976528A (en) * | 2010-09-09 | 2011-02-16 | 华南理工大学 | Biomechanical experiment simulation device for implantation of intravascular stent |
US20140011170A1 (en) * | 2012-07-03 | 2014-01-09 | Troy D. Nickel | Controlling Flow and Pressure Waveforms |
US20140370490A1 (en) * | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Heart-lung preparation and method of use |
CN105451549A (en) * | 2013-06-12 | 2016-03-30 | 美敦力公司 | Heart-lung specimen and method of use |
CN106463067A (en) * | 2014-11-10 | 2017-02-22 | 国立大学法人大阪大学 | Catheter simulator and imaging method for catheter simulator |
JP2017040812A (en) * | 2015-08-20 | 2017-02-23 | テルモ株式会社 | Heart simulation device, control method of heart simulation device and control program of heart simulation device |
CN106237409A (en) * | 2016-08-29 | 2016-12-21 | 安徽通灵仿生科技有限公司 | External Wicresoft bionical circulatory assit system and control method thereof |
WO2018087733A1 (en) * | 2016-11-14 | 2018-05-17 | Politecnico Di Milano | Test bench assembly for the simulation of cardiac surgery and/or interventional cardiology operations and/or procedures |
CN209471635U (en) * | 2018-06-15 | 2019-10-08 | 同济大学 | Pulsating Heart Model |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109473024A (en) * | 2018-11-16 | 2019-03-15 | 安徽徽煌教育科技有限公司 | A kind of nursing teaching arteriovenous apparatus for demonstrating |
CN109523861B (en) * | 2018-12-28 | 2021-08-31 | 吉林体育学院 | An experimental simulation device for sports biochemistry |
CN109523861A (en) * | 2018-12-28 | 2019-03-26 | 吉林体育学院 | A kind of sports biochemistry experimental simulation device |
CN109841137A (en) * | 2019-02-14 | 2019-06-04 | 上海长海医院 | Root of ascending aorta intracavitary therapy training pattern |
CN109841137B (en) * | 2019-02-14 | 2023-10-27 | 上海长海医院 | Ascending aorta root intracavity treatment training model |
ES2784447A1 (en) * | 2019-03-25 | 2020-09-25 | Univ Cantabria | Cardiothoracic Surgery Simulator (Machine-translation by Google Translate, not legally binding) |
CN110147134A (en) * | 2019-05-17 | 2019-08-20 | 苏州迈迪威检测技术有限公司 | A kind of control method of fluid device, device and storage medium |
CN111462604A (en) * | 2020-04-22 | 2020-07-28 | 宁波创导三维医疗科技有限公司 | A high-precision cardiac pulsation generation system |
CN112185228A (en) * | 2020-09-17 | 2021-01-05 | 宁波创导三维医疗科技有限公司 | External training system for transcatheter aortic valve replacement |
CN112924137A (en) * | 2021-01-25 | 2021-06-08 | 常州固立高端装备创新中心有限公司 | In-vitro simulation experiment device and method for portal vein internal pressure detection |
CN113487949A (en) * | 2021-07-02 | 2021-10-08 | 深圳大学 | In-vitro diagnosis simulation system and method |
CN113393749A (en) * | 2021-07-14 | 2021-09-14 | 兰州理工大学 | Blood pulsating flow simulation device |
CN113724551A (en) * | 2021-08-10 | 2021-11-30 | 陕西马克医疗科技有限公司 | Pulse adjustable TAVR operation simulator |
CN115620602A (en) * | 2022-11-11 | 2023-01-17 | 宁波创导三维医疗科技有限公司 | An arterial blood pressure simulation device and simulation method |
Also Published As
Publication number | Publication date |
---|---|
CN108682255B (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108682255A (en) | Pulsatile cardiac model and its ripple control method | |
CN107527543B (en) | Operation simulation equipment and operation simulation system | |
Zannoli et al. | Mechanical simulator of the cardiovascular system | |
CN103222861A (en) | Non-invasive blood pressure simulation system and implementation method thereof | |
CN101618239A (en) | Human body simulation circulating system | |
CN209471635U (en) | Pulsating Heart Model | |
CN205981729U (en) | A simulation cavity room for external simulation blood circulation | |
CN106033032A (en) | Simulation chamber for simulating blood circulation in vitro and its realization method | |
CN101504804B (en) | A three-dimensional blood flow simulation test device for intracranial circle of Willis | |
CN103943018A (en) | Radial artery pulse beat simulating device and control method | |
CN101176802A (en) | Simulates a pulsatile heart pump in a blood circulation | |
JP3229487B2 (en) | Blood circulation simulator | |
Franzetti et al. | Design of an in vitro mock circulatory loop to reproduce patient-specific vascular conditions: Toward precision medicine | |
Hanson et al. | Hardware-in-the-loop-simulation of the cardiovascular system, with assist device testing application | |
CN111882962B (en) | Arteriovenous fistula in-vitro hemodynamics physical simulation model device | |
CN203539352U (en) | Oscillation type respiratory function monitor | |
SE529153C2 (en) | Heart cluster state machine that simulates the heart and circulatory system of an individual | |
CN206864054U (en) | With early warning and the radial artery puncturing of sustainable running exercise model | |
CN1965754B (en) | Analyzer of blood circulation dynamics and method thereof | |
CN212770766U (en) | Blood vessel simulation reinforcing unit and blood flow simulation device | |
CN207306753U (en) | Ventricle simulator and ventricle test device | |
CN106847039A (en) | With early warning and the radial artery puncturing of sustainable running exercise model | |
Liu et al. | A design of pulse condition simulation device based on squeeze mode | |
CN110147134A (en) | A kind of control method of fluid device, device and storage medium | |
CN113109064B (en) | In Vitro Evaluation Test System and Test Method for Cardiovascular Implant Interventions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |