[go: up one dir, main page]

CN108640272B - 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 - Google Patents

定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 Download PDF

Info

Publication number
CN108640272B
CN108640272B CN201810558508.1A CN201810558508A CN108640272B CN 108640272 B CN108640272 B CN 108640272B CN 201810558508 A CN201810558508 A CN 201810558508A CN 108640272 B CN108640272 B CN 108640272B
Authority
CN
China
Prior art keywords
recovery
reactor
impact resistance
index
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810558508.1A
Other languages
English (en)
Other versions
CN108640272A (zh
Inventor
金仁村
张正哲
程雅菲
徐佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201810558508.1A priority Critical patent/CN108640272B/zh
Publication of CN108640272A publication Critical patent/CN108640272A/zh
Application granted granted Critical
Publication of CN108640272B publication Critical patent/CN108640272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,所述方法为:以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力;本发明建立的定量评估方法具有简洁,准确,适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。

Description

定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法
(一)技术领域
本发明涉及一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法。
(二)背景技术
氮是不可或缺的生命元素,它对人类生存发展的重要性不言而喻。但近年来含氮化合物的过量排放,造成了水体富营养化等一系列危害。水中氮素常以氨氮的形式存在,实现高氨氮、低碳氮比废水的高效低耗处理一直是环境工程领域的难题。
厌氧氨氧化工艺因其无需外加有机碳源、脱氮负荷高、运行费用低、占地空间小等优点,已被公认为是目前最经济的生物脱氮工艺之一。近年来,国内外对厌氧氨氧化工艺的研究取得了大量的实验室和工程化成果。但是,一方面由于厌氧氨氧化菌生长缓慢(倍增时间长达11天)、细胞产率低[m(VSS)/m(NH4 +-N)=0.11g/g)、对环境条件敏感,另一方面由于实际废水成分复杂,常含有厌氧氨氧化菌的抑制物质,限制了厌氧氨氧化工艺的进一步应用。因此,有必要建立对健全厌氧氨氧化工艺的评价体系,合理准确地评估该工艺在处理各种废水过程中的适用性,使之在污水脱氮处理领域发挥更重要的作用。
(三)发明内容
针对现有技术中存在的问题,本发明提出了一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法。本发明建立的定量评估方法具有简洁、准确、适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。
本发明的技术方案如下:
一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,所述方法为:
以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力。
所述的参考态为反应器正常运行时(无毒物抑制)氮容积去除负荷NRR十日变异系数CV10小于5%时的稳定状态,CV10的计算方法为
Figure BDA0001682326010000011
其中
Figure BDA0001682326010000012
Figure BDA0001682326010000013
NRRi取正常运行阶段第i天时反应器的氮容积去除负荷(kgN m-3d-1)。
所述的抗冲击能力指数RT(%d-1)的计算方法为
Figure BDA0001682326010000014
其中脱氮性能衰退速率DER(kgN m-3d-2)计算方法为
Figure BDA0001682326010000015
其中
Figure BDA0001682326010000016
Figure BDA0001682326010000021
ti为冲击持续时间(d),NRRi取冲击阶段第ti天时反应器的氮容积去除负荷(kgNm-3d-1)。
所述冲击阶段是指:自反应器进水出现毒物时开始,到毒物从反应器进水中消失时结束,持续的总时间计为n(d);因此ti的取值范围为[1,n]。
所述的恢复能力指数RL(%d-1)的计算方法为
Figure BDA0001682326010000022
其中脱氮性能恢复速率RER(kgN m-3d-2)计算方法为
Figure BDA0001682326010000023
其中
Figure BDA0001682326010000024
Figure BDA0001682326010000025
Ti为恢复持续时间(d),NRRi取恢复阶段第Ti天时反应器的氮容积去除负荷(kgN m-3d-1)。
所述恢复阶段是指:自毒物从反应器进水中消失时开始,到反应器三日氮容积去除负荷NRRi(kgN m-3d-1)均高于参考态脱氮性能95%置信区间的下边缘时结束,持续的总时间计为N(d);下边缘计算方法为
Figure BDA0001682326010000026
因此Ti的取值范围为[1,N]。
本发明的优点主要体现在:本发明建立的定量评估方法具有简洁,准确,适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。
(四)附图说明
图1为实施例1中厌氧氨氧化反应器运行性能;
图2为实施例1中反应器第一次遭受纳米ZnO冲击时的性能变化;
图3为实施例1中反应器抗冲击能力和恢复能力指数随冲击次数的变化;
图4为反应器抗冲击能力和恢复能力比较示意图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
本发明所述的一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,以升流式厌氧污泥床反应器(有效体积1.0L)系统为例,接种污泥取自实验室长期培养的成熟厌氧氨氧化颗粒污泥,颗粒粒径为2.2±1.4mm,胞外聚合物含量为276.5±17.9mg g-1VSS,比厌氧氨氧化活性522.3±41.5mgTN g-1VSS d-1,主导菌种为Candidatus Kueneniastuttgartiensis。
反应器置于35±1℃恒温室中,避光运行,初始污泥浓度20.1gVSS L-1,水力停留时间为1.2h,初始进水组成为10mg L-1NaH2PO4,73.5mg L-1CaCl2·2H2O,58.6mg L-1MgSO4·7H2O,840mg L-1NaHCO3,微量元素I和II分别为1.25ml L-1,NH4 +-N和NO2 --N各为280mg L-1
微量元素I组成为:EDTA 5.00g·L-1,FeSO4 9.14g·L-1
微量元素II组成为:EDTA 15.0g·L-1,ZnSO4·7H2O 0.430g·L-1,CoCl2·6H2O0.240g·L-1,MnCl2·4H2O 0.990g·L-1,CuSO4·5H2O 0.250g·L-1,NaMoO4·2H2O 0.220g·L-1,NiCl2·6H2O 0.210g·L-1,H3BO4 0.014g·L-1
经过逐步调整水力停留时间至0.96h,反应器可在14.0kgN m-3d-1容积氮负荷下保持高效稳定运行,容积氮去除率稳定在85%以上,且十日变异系数小于5%。以毒性纳米ZnO(30±10nm)为模拟毒物,评估厌氧氨氧化工艺对纳米ZnO的抗冲击能力和恢复能力。
反应器的运行情况如图1所示,其中图2详细描述了反应器第一次遭受纳米ZnO冲击的响应。反应器五次冲击-恢复过程中的抗冲击能力指数和恢复能力指数如表1所示。结果表明,多次间歇冲击可强化厌氧氨氧化反应器的抗冲击能力和恢复能力(图3)。实施例证明,本方法可简洁明了且准确地评估和比较厌氧氨氧化工艺抗冲击能力和恢复能力(图4)。
表1 厌氧氨氧化反应器的抗冲击能力和恢复能力指数
Figure BDA0001682326010000031

Claims (4)

1.一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述方法为:
以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力。
2.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的参考态为反应器正常运行时氮容积去除负荷NRR十日变异系数CV10小于5%时的稳定状态,CV10的计算方法为
Figure FDA0001682325000000011
其中
Figure FDA0001682325000000012
NRRi取正常运行阶段第i天时反应器的氮容积去除负荷(kgN m-3d-1)。
3.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的抗冲击能力指数RT(%d-1)的计算方法为
Figure FDA0001682325000000013
其中脱氮性能衰退速率DER(kgN m-3d-2)计算方法为
Figure FDA0001682325000000014
其中
Figure FDA0001682325000000015
Figure FDA0001682325000000016
ti为冲击持续时间(d),NRRi取冲击阶段第ti天时反应器的氮容积去除负荷(kgNm-3d-1);
所述冲击阶段是指:自反应器进水出现毒物时开始,到毒物从反应器进水中消失时结束,持续的总时间计为n(d);因此ti的取值范围为[1,n]。
4.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的恢复能力指数RL(%d-1)的计算方法为
Figure FDA0001682325000000017
其中脱氮性能恢复速率RER(kgN m-3d-2)计算方法为
Figure FDA0001682325000000018
其中
Figure FDA0001682325000000019
Figure FDA00016823250000000110
Ti为恢复持续时间(d),NRRi取恢复阶段第Ti天时反应器的氮容积去除负荷(kgNm-3d-1);
所述恢复阶段是指:自毒物从反应器进水中消失时开始,到反应器三日氮容积去除负荷NRRi(kgN m-3d-1)均高于参考态脱氮性能95%置信区间的下边缘时结束,持续的总时间计为N(d);下边缘计算方法为
Figure FDA00016823250000000111
因此Ti的取值范围为[1,N]。
CN201810558508.1A 2018-06-01 2018-06-01 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 Active CN108640272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810558508.1A CN108640272B (zh) 2018-06-01 2018-06-01 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810558508.1A CN108640272B (zh) 2018-06-01 2018-06-01 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法

Publications (2)

Publication Number Publication Date
CN108640272A CN108640272A (zh) 2018-10-12
CN108640272B true CN108640272B (zh) 2021-01-19

Family

ID=63759186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810558508.1A Active CN108640272B (zh) 2018-06-01 2018-06-01 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法

Country Status (1)

Country Link
CN (1) CN108640272B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134706A (ja) * 1989-10-20 1991-06-07 Hitachi Ltd 下水処理場運転支援のための知識獲得方法
CN1547032A (zh) * 2003-12-04 2004-11-17 天津化工研究设计院 锅炉水处理药剂性能评价装置
CN104591381A (zh) * 2014-12-30 2015-05-06 杭州师范大学 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法
CN105699601A (zh) * 2016-03-16 2016-06-22 西安建筑科技大学 一种判定活性污泥处理能力的方法
CN106745739A (zh) * 2016-12-22 2017-05-31 北京工业大学 一种基于神经网络模型预测pH变化实现SBR短程硝化的方法
CN106841199A (zh) * 2017-01-22 2017-06-13 西安建筑科技大学 一种判定厌氧氨氧化工艺污泥系统是否受到冲击的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284208A1 (en) * 2010-01-22 2014-09-25 Rockwater Resource, LLC Non-sacrificial electrodes and/or coils for immersed wastewater treatment apparatus and processes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134706A (ja) * 1989-10-20 1991-06-07 Hitachi Ltd 下水処理場運転支援のための知識獲得方法
CN1547032A (zh) * 2003-12-04 2004-11-17 天津化工研究设计院 锅炉水处理药剂性能评价装置
CN104591381A (zh) * 2014-12-30 2015-05-06 杭州师范大学 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法
CN105699601A (zh) * 2016-03-16 2016-06-22 西安建筑科技大学 一种判定活性污泥处理能力的方法
CN106745739A (zh) * 2016-12-22 2017-05-31 北京工业大学 一种基于神经网络模型预测pH变化实现SBR短程硝化的方法
CN106841199A (zh) * 2017-01-22 2017-06-13 西安建筑科技大学 一种判定厌氧氨氧化工艺污泥系统是否受到冲击的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
硝化_厌氧氨氧化组合反应器的运行和评价;吴永华;《工业用于与废水》;20040430;第35卷(第2期);第10-13页 *

Also Published As

Publication number Publication date
CN108640272A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
Gong et al. Performance of the anammox process treating low-strength municipal wastewater under low temperatures: effect of undulating seasonal temperature variation
Zhang et al. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment
Ma et al. Substrate inhibition and concentration control in an UASB-Anammox process
Niu et al. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation
Kinnunen et al. High‐rate ferric sulfate generation by a Leptospirillum ferriphilum‐dominated biofilm and the role of jarosite in biomass retainment in a fluidized‐bed reactor
Yang et al. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions
Jin et al. The importance of the substrate ratio in the operation of the Anammox process in upflow biofilter
Zhao et al. Identification of the salinity effect on N2O production pathway during nitrification: using stepwise inhibition and 15N isotope labeling methods
Jin et al. Quantitative comparison of stability of ANAMMOX process in different reactor configurations
Wang et al. Long-term effects of Ni (II) on the performance and activity of activated sludge processes
Hoang et al. An Investigation of Moving Bed Biofilm Reactor Nitrification during Long‐Term Exposure to Cold Temperatures
Kim et al. Comparative study of free cyanide inhibition on nitrification and denitrification in batch and continuous flow systems
Halaburka et al. Quantifying the temperature dependence of nitrate reduction in woodchip bioreactors: experimental and modeled results with applied case-study
Zhang et al. Effects of soluble microbial products (SMP) on the performance of an anammox attached film expanded bed (AAFEB) reactor: Synergistic interaction and toxic shock
Dzakpasu et al. Assessment of long-term phosphorus retention in an integrated constructed wetland treating domestic wastewater
Xu et al. Short-term effects of nanoscale Zero-Valent Iron (nZVI) and hydraulic shock during high-rate anammox wastewater treatment
Jiang et al. Impacts of Cu (II) on the kinetics of nitrogen removal during the wastewater treatment process
CN105624094A (zh) 硝化细菌培养促进剂及其制备方法和应用
Zhao et al. Environmental factors influencing the distribution of ammonifying and denitrifying bacteria and water qualities in 10 lakes and reservoirs of the N ortheast, C hina
Wang et al. Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system
Kim et al. Monitoring influential environmental conditions affecting communities of denitrifying and nitrifying bacteria in a combined anoxic–oxic activated sludge system
CN104591381A (zh) 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法
CN108640272B (zh) 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法
Manoj Kumar et al. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source
CN113620423A (zh) 一种耐受砷(iii)的厌氧氨氧化颗粒污泥及其驯化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant