CN108640272A - 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 - Google Patents
定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 Download PDFInfo
- Publication number
- CN108640272A CN108640272A CN201810558508.1A CN201810558508A CN108640272A CN 108640272 A CN108640272 A CN 108640272A CN 201810558508 A CN201810558508 A CN 201810558508A CN 108640272 A CN108640272 A CN 108640272A
- Authority
- CN
- China
- Prior art keywords
- recovery
- reactor
- shock
- impact resistance
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000011084 recovery Methods 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims abstract description 25
- 230000003647 oxidation Effects 0.000 title claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title 2
- 229910021529 ammonia Inorganic materials 0.000 title 1
- 230000035939 shock Effects 0.000 claims abstract description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 13
- 230000007423 decrease Effects 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 10
- 231100000614 poison Toxicity 0.000 claims description 10
- 239000002574 poison Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 230000007096 poisonous effect Effects 0.000 claims description 4
- 230000000703 anti-shock Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 abstract description 4
- 238000011158 quantitative evaluation Methods 0.000 abstract description 3
- 239000010802 sludge Substances 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 3
- 239000011573 trace mineral Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000731379 Candidatus Kuenenia stuttgartiensis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2846—Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,所述方法为:以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力;本发明建立的定量评估方法具有简洁,准确,适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。
Description
(一)技术领域
本发明涉及一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法。
(二)背景技术
氮是不可或缺的生命元素,它对人类生存发展的重要性不言而喻。但近年来含氮化合物的过量排放,造成了水体富营养化等一系列危害。水中氮素常以氨氮的形式存在,实现高氨氮、低碳氮比废水的高效低耗处理一直是环境工程领域的难题。
厌氧氨氧化工艺因其无需外加有机碳源、脱氮负荷高、运行费用低、占地空间小等优点,已被公认为是目前最经济的生物脱氮工艺之一。近年来,国内外对厌氧氨氧化工艺的研究取得了大量的实验室和工程化成果。但是,一方面由于厌氧氨氧化菌生长缓慢(倍增时间长达11天)、细胞产率低[m(VSS)/m(NH4 +-N)=0.11g/g)、对环境条件敏感,另一方面由于实际废水成分复杂,常含有厌氧氨氧化菌的抑制物质,限制了厌氧氨氧化工艺的进一步应用。因此,有必要建立对健全厌氧氨氧化工艺的评价体系,合理准确地评估该工艺在处理各种废水过程中的适用性,使之在污水脱氮处理领域发挥更重要的作用。
(三)发明内容
针对现有技术中存在的问题,本发明提出了一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法。本发明建立的定量评估方法具有简洁、准确、适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。
本发明的技术方案如下:
一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,所述方法为:
以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力。
所述的参考态为反应器正常运行时(无毒物抑制)氮容积去除负荷NRR十日变异系数CV10小于5%时的稳定状态,CV10的计算方法为其中 NRRi取正常运行阶段第i天时反应器的氮容积去除负荷(kgN m-3d-1)。
所述的抗冲击能力指数RT(%d-1)的计算方法为其中脱氮性能衰退速率DER(kgN m-3d-2)计算方法为其中 ti为冲击持续时间(d),NRRi取冲击阶段第ti天时反应器的氮容积去除负荷(kgNm-3d-1)。
所述冲击阶段是指:自反应器进水出现毒物时开始,到毒物从反应器进水中消失时结束,持续的总时间计为n(d);因此ti的取值范围为[1,n]。
所述的恢复能力指数RL(%d-1)的计算方法为其中脱氮性能恢复速率RER(kgN m-3d-2)计算方法为其中 Ti为恢复持续时间(d),NRRi取恢复阶段第Ti天时反应器的氮容积去除负荷(kgNm-3d-1)。
所述恢复阶段是指:自毒物从反应器进水中消失时开始,到反应器三日氮容积去除负荷NRRi(kgN m-3d-1)均高于参考态脱氮性能95%置信区间的下边缘时结束,持续的总时间计为N(d);下边缘计算方法为因此Ti的取值范围为[1,N]。
本发明的优点主要体现在:本发明建立的定量评估方法具有简洁,准确,适用性广等优点,填补了目前厌氧氨氧化工艺抗冲击能力和恢复能力评价体系的空白。
(四)附图说明
图1为实施例1中厌氧氨氧化反应器运行性能;
图2为实施例1中反应器第一次遭受纳米ZnO冲击时的性能变化;
图3为实施例1中反应器抗冲击能力和恢复能力指数随冲击次数的变化;
图4为反应器抗冲击能力和恢复能力比较示意图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
本发明所述的一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,以升流式厌氧污泥床反应器(有效体积1.0L)系统为例,接种污泥取自实验室长期培养的成熟厌氧氨氧化颗粒污泥,颗粒粒径为2.2±1.4mm,胞外聚合物含量为276.5±17.9mg g-1VSS,比厌氧氨氧化活性522.3±41.5mgTN g-1VSS d-1,主导菌种为Candidatus Kueneniastuttgartiensis。
反应器置于35±1℃恒温室中,避光运行,初始污泥浓度20.1gVSS L-1,水力停留时间为1.2h,初始进水组成为10mg L-1NaH2PO4,73.5mg L-1CaCl2·2H2O,58.6mg L-1MgSO4·7H2O,840mg L-1NaHCO3,微量元素I和II分别为1.25ml L-1,NH4 +-N和NO2 --N各为280mg L-1。
微量元素I组成为:EDTA 5.00g·L-1,FeSO4 9.14g·L-1;
微量元素II组成为:EDTA 15.0g·L-1,ZnSO4·7H2O 0.430g·L-1,CoCl2·6H2O0.240g·L-1,MnCl2·4H2O 0.990g·L-1,CuSO4·5H2O 0.250g·L-1,NaMoO4·2H2O 0.220g·L-1,NiCl2·6H2O 0.210g·L-1,H3BO4 0.014g·L-1。
经过逐步调整水力停留时间至0.96h,反应器可在14.0kgN m-3d-1容积氮负荷下保持高效稳定运行,容积氮去除率稳定在85%以上,且十日变异系数小于5%。以毒性纳米ZnO(30±10nm)为模拟毒物,评估厌氧氨氧化工艺对纳米ZnO的抗冲击能力和恢复能力。
反应器的运行情况如图1所示,其中图2详细描述了反应器第一次遭受纳米ZnO冲击的响应。反应器五次冲击-恢复过程中的抗冲击能力指数和恢复能力指数如表1所示。结果表明,多次间歇冲击可强化厌氧氨氧化反应器的抗冲击能力和恢复能力(图3)。实施例证明,本方法可简洁明了且准确地评估和比较厌氧氨氧化工艺抗冲击能力和恢复能力(图4)。
表1 厌氧氨氧化反应器的抗冲击能力和恢复能力指数
Claims (4)
1.一种定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述方法为:
以工艺稳定运行时反应器的脱氮性能为参考态;以反应器在遭受毒物冲击时,冲击阶段单位时间内脱氮性能衰退的百分比为抗冲击能力指数;以冲击结束后,反应器恢复阶段单位时间内脱氮性能恢复的百分比为恢复能力指数;根据抗冲击能力指数和恢复能力指数定量评估厌氧氨氧化工艺抗冲击能力和恢复能力。
2.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的参考态为反应器正常运行时氮容积去除负荷NRR十日变异系数CV10小于5%时的稳定状态,CV10的计算方法为其中NRRi取正常运行阶段第i天时反应器的氮容积去除负荷(kgN m-3d-1)。
3.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的抗冲击能力指数RT(%d-1)的计算方法为其中脱氮性能衰退速率DER(kgN m-3d-2)计算方法为其中 ti为冲击持续时间(d),NRRi取冲击阶段第ti天时反应器的氮容积去除负荷(kgNm-3d-1);
所述冲击阶段是指:自反应器进水出现毒物时开始,到毒物从反应器进水中消失时结束,持续的总时间计为n(d);因此ti的取值范围为[1,n]。
4.如权利要求1所述定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法,其特征在于,所述的恢复能力指数RL(%d-1)的计算方法为其中脱氮性能恢复速率RER(kgN m-3d-2)计算方法为其中 Ti为恢复持续时间(d),NRRi取恢复阶段第Ti天时反应器的氮容积去除负荷(kgNm-3d-1);
所述恢复阶段是指:自毒物从反应器进水中消失时开始,到反应器三日氮容积去除负荷NRRi(kgN m-3d-1)均高于参考态脱氮性能95%置信区间的下边缘时结束,持续的总时间计为N(d);下边缘计算方法为因此Ti的取值范围为[1,N]。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810558508.1A CN108640272B (zh) | 2018-06-01 | 2018-06-01 | 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810558508.1A CN108640272B (zh) | 2018-06-01 | 2018-06-01 | 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108640272A true CN108640272A (zh) | 2018-10-12 |
CN108640272B CN108640272B (zh) | 2021-01-19 |
Family
ID=63759186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810558508.1A Active CN108640272B (zh) | 2018-06-01 | 2018-06-01 | 定量评估厌氧氨氧化工艺抗冲击能力和恢复能力的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108640272B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134706A (ja) * | 1989-10-20 | 1991-06-07 | Hitachi Ltd | 下水処理場運転支援のための知識獲得方法 |
CN1547032A (zh) * | 2003-12-04 | 2004-11-17 | 天津化工研究设计院 | 锅炉水处理药剂性能评价装置 |
US20140284208A1 (en) * | 2010-01-22 | 2014-09-25 | Rockwater Resource, LLC | Non-sacrificial electrodes and/or coils for immersed wastewater treatment apparatus and processes |
CN104591381A (zh) * | 2014-12-30 | 2015-05-06 | 杭州师范大学 | 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法 |
CN105699601A (zh) * | 2016-03-16 | 2016-06-22 | 西安建筑科技大学 | 一种判定活性污泥处理能力的方法 |
CN106745739A (zh) * | 2016-12-22 | 2017-05-31 | 北京工业大学 | 一种基于神经网络模型预测pH变化实现SBR短程硝化的方法 |
CN106841199A (zh) * | 2017-01-22 | 2017-06-13 | 西安建筑科技大学 | 一种判定厌氧氨氧化工艺污泥系统是否受到冲击的方法 |
-
2018
- 2018-06-01 CN CN201810558508.1A patent/CN108640272B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134706A (ja) * | 1989-10-20 | 1991-06-07 | Hitachi Ltd | 下水処理場運転支援のための知識獲得方法 |
CN1547032A (zh) * | 2003-12-04 | 2004-11-17 | 天津化工研究设计院 | 锅炉水处理药剂性能评价装置 |
US20140284208A1 (en) * | 2010-01-22 | 2014-09-25 | Rockwater Resource, LLC | Non-sacrificial electrodes and/or coils for immersed wastewater treatment apparatus and processes |
CN104591381A (zh) * | 2014-12-30 | 2015-05-06 | 杭州师范大学 | 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法 |
CN105699601A (zh) * | 2016-03-16 | 2016-06-22 | 西安建筑科技大学 | 一种判定活性污泥处理能力的方法 |
CN106745739A (zh) * | 2016-12-22 | 2017-05-31 | 北京工业大学 | 一种基于神经网络模型预测pH变化实现SBR短程硝化的方法 |
CN106841199A (zh) * | 2017-01-22 | 2017-06-13 | 西安建筑科技大学 | 一种判定厌氧氨氧化工艺污泥系统是否受到冲击的方法 |
Non-Patent Citations (1)
Title |
---|
吴永华: "硝化_厌氧氨氧化组合反应器的运行和评价", 《工业用于与废水》 * |
Also Published As
Publication number | Publication date |
---|---|
CN108640272B (zh) | 2021-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Larsen et al. | State of the art of urine treatment technologies: A critical review. | |
Murphy et al. | Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments | |
Wang et al. | Expression of the nirS, hzsA, and hdh genes in response to nitrite shock and recovery in Candidatus Kuenenia stuttgartiensis | |
Nielsen et al. | Microbial nitrate-dependent oxidation of ferrous iron in activated sludge | |
CN104891651B (zh) | 快速重启动重金属污染的厌氧氨氧化反应器的运行方法 | |
Zhang et al. | Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment | |
Niu et al. | Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation | |
Li et al. | Inhibition of anaerobic ammonium oxidation by heavy metals | |
Yu et al. | Comparative evaluation of short-term stress of Cd (II), Hg (II), Pb (II), As (III) and Cr (VI) on anammox granules by batch test | |
CN103979678B (zh) | 一种处理高盐废水的厌氧氨氧化反应器运行方法 | |
Du et al. | Influence of sulfadimethoxine (SDM) and sulfamethazine (SM) on anammox bioreactors: performance evaluation and bacterial community characterization | |
Cao et al. | Shifts of system performance and microbial community structure in a constructed wetland after exposing silver nanoparticles | |
Zhang et al. | Relative Abundance of Ammonia Oxidizers, Denitrifiers, and Anammox Bacteria in Sediments of Hyper‐N utrified Estuarine Tidal Flats and in Relation to Environmental Conditions | |
Xu et al. | Short-term effects of nanoscale Zero-Valent Iron (nZVI) and hydraulic shock during high-rate anammox wastewater treatment | |
CN105036324A (zh) | 提升厌氧氨氧化反应器处理含铜废水脱氮性能的运行方法 | |
He et al. | Impacts of salt shocking and the selection of a suitable reversal agent on anammox | |
CN105624094A (zh) | 硝化细菌培养促进剂及其制备方法和应用 | |
CN104445845B (zh) | 一种快速缓解重金属对厌氧氨氧化污泥活性抑制的方法 | |
JP2017000987A (ja) | 生物学的窒素除去方法及び窒素含有廃水の処理装置 | |
Sari et al. | Assessment of Anammox process against acute and long-term exposure of ZnO nanoparticles | |
Alizadeh et al. | Impacts of continuous inflow of low concentrations of silver nanoparticles on biological performance and microbial communities of aerobic heterotrophic wastewater biofilm | |
Bae et al. | Specific ANAMMOX activity (SAA) in a sequencing batch reactor: optimization test with statistical comparison | |
Kang et al. | Toward Integrating EBPR and the short-cut nitrogen removal process in a one-stage system for treating high-strength wastewater | |
CN104591381A (zh) | 一种提高厌氧氨氧化污泥抗土霉素冲击性能的方法 | |
Su et al. | Characterization of the Cd (II) and nitrate removal by bacterium Acinetobacter sp. SZ28 under different electron donor conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |