CN108636455A - It is a kind of using nucleocapsid MOF as the preparation and application of the carried noble metal base catalyst of reaction vessel - Google Patents
It is a kind of using nucleocapsid MOF as the preparation and application of the carried noble metal base catalyst of reaction vessel Download PDFInfo
- Publication number
- CN108636455A CN108636455A CN201810361182.3A CN201810361182A CN108636455A CN 108636455 A CN108636455 A CN 108636455A CN 201810361182 A CN201810361182 A CN 201810361182A CN 108636455 A CN108636455 A CN 108636455A
- Authority
- CN
- China
- Prior art keywords
- noble metal
- mof
- nucleocapsid
- carbon
- nano particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 58
- 239000003054 catalyst Substances 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000002105 nanoparticle Substances 0.000 claims abstract description 17
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 16
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000010970 precious metal Substances 0.000 claims abstract description 4
- 230000001681 protective effect Effects 0.000 claims abstract description 3
- 229910007566 Zn-MOF Inorganic materials 0.000 claims description 36
- 239000013094 zinc-based metal-organic framework Substances 0.000 claims description 36
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 27
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 27
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 18
- 239000012621 metal-organic framework Substances 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 13
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 10
- 239000013099 nickel-based metal-organic framework Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 150000002815 nickel Chemical class 0.000 claims description 4
- 150000003751 zinc Chemical class 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 235000017060 Arachis glabrata Nutrition 0.000 claims 3
- 241001553178 Arachis glabrata Species 0.000 claims 3
- 235000010777 Arachis hypogaea Nutrition 0.000 claims 3
- 235000018262 Arachis monticola Nutrition 0.000 claims 3
- 235000020232 peanut Nutrition 0.000 claims 3
- 239000010931 gold Substances 0.000 claims 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 claims 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 claims 1
- 230000004913 activation Effects 0.000 claims 1
- 229930016911 cinnamic acid Natural products 0.000 claims 1
- 235000013985 cinnamic acid Nutrition 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 229910001510 metal chloride Inorganic materials 0.000 claims 1
- 229910001960 metal nitrate Inorganic materials 0.000 claims 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 1
- 239000010944 silver (metal) Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 238000009792 diffusion process Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000011258 core-shell material Substances 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000012546 transfer Methods 0.000 description 7
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 6
- 229940117916 cinnamic aldehyde Drugs 0.000 description 6
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 150000003841 chloride salts Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000012922 MOF pore Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000013265 porous functional material Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2239—Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/62—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/645—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/20—Complexes comprising metals of Group II (IIA or IIB) as the central metal
- B01J2531/26—Zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于催化剂技术领域,涉及一种以核壳结构的双金属有机骨架材料(NiZn-MOFs)为纳米反应器作为载体,构筑负载型贵金属基多级结构催化剂,应用于碳碳双键及碳氧双键的选择性加氢反应。The invention belongs to the technical field of catalysts, and relates to a nano-reactor with a core-shell structure (NiZn-MOFs) as a carrier to construct a loaded noble metal-based multi-level structure catalyst, which is applied to carbon-carbon double bonds and carbon Selective hydrogenation of oxygen double bonds.
背景技术Background technique
α-β不饱和醛选择性催化加氢反应是合成制备精细化工产品的重要反应之一,在近代精细有机合成中有着广泛的应用,尤其在制备药物及其中间体、食品添加剂、香料等方面。采用催化加氢的方法可以大幅度减低产品成本,提高产品质量,增加收率,缩短反应时间和减少三废排放,因此受到人们的普遍重视。据文献报道,催化剂Pd的C=C加氢选择性较高,α-β不饱和醛可以吸附于金属Pd的纳米颗粒上,大大增加C=C双键加氢的几率,降低C=O双键的加氢选择性。但是,进一步提高Pd催化剂的催化效率和利用率仍是非常重要并具有挑战性的研究。The selective catalytic hydrogenation of α-β unsaturated aldehydes is one of the important reactions in the synthesis of fine chemical products, and has been widely used in modern fine organic synthesis, especially in the preparation of drugs and their intermediates, food additives, spices, etc. . The method of catalytic hydrogenation can greatly reduce product cost, improve product quality, increase yield, shorten reaction time and reduce three waste emissions, so it is widely valued by people. According to literature reports, the C=C hydrogenation selectivity of the catalyst Pd is relatively high. Bond hydrogenation selectivity. However, it is still very important and challenging to further improve the catalytic efficiency and utilization of Pd catalysts.
金属-有机骨架化合物(Metal-organic frameworks,MOFs)是一种新型多孔功能材料,它是由金属离子或离子簇与有机配体通过自组装形成的多孔网状骨架结构材料。MOFs其自身的高比表面积和孔隙率、可调的孔径及孔表面功能,其在吸附分离、催化、能源存储等领域都具有潜在的应用价值。相比于传统的多相催化剂,多孔MOFs材料具有以上优势,在催化领域的应用越来越受到研究者的青睐。尤其是MOFs具有高比表面积和有序孔结构,可以作为纳米颗粒催化剂的载体,可以使纳米颗粒均匀分散在MOFs的孔道中或表面上,由于协同效应,就会大大提高催化活性。目前,关于MOFs作为载体来负载纳米颗粒并应用于催化方面的报道较多,但是相比之下,基于MOF的核-壳结构的研究报道还是较少。Metal-organic frameworks (Metal-organic frameworks, MOFs) are a new type of porous functional materials, which are porous network framework materials formed by self-assembly of metal ions or ion clusters and organic ligands. Due to their high specific surface area and porosity, adjustable pore size and pore surface function, MOFs have potential applications in the fields of adsorption separation, catalysis, and energy storage. Compared with traditional heterogeneous catalysts, porous MOFs materials have the above advantages, and their applications in the field of catalysis are increasingly favored by researchers. In particular, MOFs have a high specific surface area and an ordered pore structure, which can be used as a carrier for nanoparticle catalysts, allowing nanoparticles to be evenly dispersed in the pores or on the surface of MOFs, and the catalytic activity will be greatly improved due to the synergistic effect. At present, there are many reports on MOFs as carriers to support nanoparticles and their application in catalysis, but in contrast, there are still few reports on MOF-based core-shell structures.
发明内容Contents of the invention
本发明的目的在于提供了一种以核壳结构的双金属Ni/Zn-MOF为载体构筑负载型贵金属基催化剂的制备方法及其应用于碳碳双键与碳氧双键的选择性加氢反应。The purpose of the present invention is to provide a method for preparing a supported noble metal-based catalyst with a core-shell bimetallic Ni/Zn-MOF as a carrier and its application to the selective hydrogenation of carbon-carbon double bonds and carbon-oxygen double bonds reaction.
本发明上述复合材料的合成方法,主要包括以下步骤:The synthetic method of above-mentioned composite material of the present invention mainly comprises the following steps:
(1)制备贵金属纳米颗粒的分散液;(1) preparing a dispersion of noble metal nanoparticles;
(2)贵金属@Ni/Zn-MOF的制备:(2) Preparation of noble metal @Ni/Zn-MOF:
将对苯二甲酸、镍盐和锌盐溶于N,N-二甲基甲酰胺和乙二醇的混合溶液中,搅拌0.5~1小时后,转移到聚四氟乙稀反应釜中,反应温度140~160℃,反应0~6小时,之后加入上步骤(1)合成的贵金属纳米颗粒的分散液,反应时间2~12小时,然后冷却离心洗涤、活化、干燥即得贵金属@Ni/Zn-MOF的制备。Dissolve terephthalic acid, nickel salt and zinc salt in the mixed solution of N,N-dimethylformamide and ethylene glycol, stir for 0.5 to 1 hour, transfer to a polytetrafluoroethylene reactor, and react Temperature 140-160°C, react for 0-6 hours, then add the dispersion of noble metal nanoparticles synthesized in the previous step (1), react for 2-12 hours, then cool, centrifuge, wash, activate, and dry to obtain noble metal @Ni/Zn - Preparation of MOFs.
步骤(1)中,制备贵金属纳米颗粒的分散液可以按照常规的方法制备即可,所述的贵金属纳米颗粒,其中选自Pd、Pt、Au、Ag中的一种或几种;In step (1), the dispersion liquid for preparing noble metal nanoparticles can be prepared according to a conventional method, and the noble metal nanoparticles are selected from one or more of Pd, Pt, Au, Ag;
如Pd、Pt纳米颗粒的制备:将一定量的贵金属氯化物盐和聚乙烯吡咯烷酮溶于甲醇和水的混合溶液中,冷凝回流2~6h,制备得到所述贵金属纳米颗粒;贵金属氯盐的水溶液浓度为0.5~2mg/mL,其中贵金属氯盐选自氯化钯、氯铂酸中的一种,甲醇与水的体积比为5:1~20:1。For example, the preparation of Pd and Pt nanoparticles: dissolve a certain amount of noble metal chloride salt and polyvinylpyrrolidone in a mixed solution of methanol and water, condense and reflux for 2 to 6 hours, and prepare the noble metal nanoparticles; the aqueous solution of noble metal chloride salt The concentration is 0.5-2mg/mL, wherein the noble metal chloride salt is selected from one of palladium chloride and chloroplatinic acid, and the volume ratio of methanol to water is 5:1-20:1.
步骤(2)中,镍盐和锌盐的摩尔比4:1~1:1,优选1:1。对苯二甲酸与硝酸镍和硝酸锌的总摩尔比优选为(1-5):10,进一步优选3:10。N,N-二甲基甲酰胺和乙二醇的体积比为(6-10):5,优选8:5。In step (2), the molar ratio of the nickel salt to the zinc salt is 4:1˜1:1, preferably 1:1. The total molar ratio of terephthalic acid to nickel nitrate and zinc nitrate is preferably (1-5):10, more preferably 3:10. The volume ratio of N,N-dimethylformamide and ethylene glycol is (6-10):5, preferably 8:5.
步骤(2)中,贵金属纳米颗粒的负载量可根据需要进行调节,一般贵金属纳米颗粒分散液的加入的体积与N,N-二甲基甲酰胺和乙二醇的混合溶液总体积比例为1:15~8:13。In step (2), the loading capacity of the noble metal nanoparticles can be adjusted as required. Generally, the volume ratio of the added volume of the noble metal nanoparticle dispersion to the total volume of the mixed solution of N,N-dimethylformamide and ethylene glycol is 1 :15~8:13.
步骤(2)所得贵金属@Ni/Zn-MOF中Ni/Zn-MOF为花生式的核壳结构,贵金属负载在核中、壳中或/和核壳之间的空腔中。可通过调节加入贵金属纳米颗粒的分散液的加入时间即在贵金属纳米颗粒的分散液加入之前已反应的时间,使得贵金属纳米颗粒分散在Ni/Zn-MOF花生式的核壳结构的不同部位,尤其在反应1~1.5小时,之后加入上步骤(1)合成的贵金属纳米颗粒的分散液,可以得到将贵金属纳米颗粒负载在核壳之间的空腔中,内核可以作为载体,均匀分散贵金属钯纳米颗粒,外壳可以起到保护作用,抑制贵金属纳米颗粒流失。The Ni/Zn-MOF in the noble metal @Ni/Zn-MOF obtained in step (2) has a peanut-like core-shell structure, and the noble metal is loaded in the core, in the shell or/and in the cavity between the core and the shell. By adjusting the addition time of the dispersion of noble metal nanoparticles, that is, the time of reaction before the dispersion of noble metal nanoparticles is added, the noble metal nanoparticles are dispersed in different parts of the Ni/Zn-MOF peanut-like core-shell structure, especially After reacting for 1 to 1.5 hours, add the dispersion of noble metal nanoparticles synthesized in the previous step (1), and the noble metal nanoparticles can be loaded in the cavity between the core and the shell, and the inner core can be used as a carrier to uniformly disperse the noble metal palladium nanoparticles Particles, the shell can play a protective role, inhibiting the loss of precious metal nanoparticles.
本发明所得核壳结构MOF为反应容器的负载型贵金属基催化剂即贵金属@Ni/Zn-MOF用于碳碳双键的加氢反应,尤其用于碳碳双键和碳氧双键中碳碳双键的选择性加氢反应。The core-shell structure MOF obtained in the present invention is a supported noble metal-based catalyst in the reaction vessel, that is, noble metal @Ni/Zn-MOF is used for the hydrogenation reaction of carbon-carbon double bonds, especially for carbon-carbon in carbon-carbon double bonds and carbon-oxygen double bonds Selective hydrogenation of double bonds.
上述应用的方法,具体如下:同时包含碳碳双键和碳氧双键的化合物中碳碳双键的加氢反应如肉桂醛中碳碳双键的加氢反应:0.5~1mmol化合物,少量催化剂贵金属@Ni/Zn-MOF,异丙醇5~10mL,在氢气气氛条件下,搅拌,反应2~24小时,反应温度25~60℃;催化剂加入量的10~50mg,优选为20mg;氢气加压压力0.1~3MPa。The method of the above-mentioned application is as follows: the hydrogenation reaction of carbon-carbon double bond in the compound containing carbon-carbon double bond and carbon-oxygen double bond, such as the hydrogenation reaction of carbon-carbon double bond in cinnamaldehyde: 0.5~1mmol compound, a small amount of catalyst Noble metal @Ni/Zn-MOF, 5-10mL of isopropanol, under the condition of hydrogen atmosphere, stir, react for 2-24 hours, the reaction temperature is 25-60℃; the amount of catalyst added is 10-50mg, preferably 20mg; Compression pressure 0.1 ~ 3MPa.
本发明制备了大小均一,有规则形貌的双金属Ni/Zn-MOF,呈核壳结构,核壳之间存在空腔,可以将贵金属纳米颗粒封装于其空腔中,有利于贵金属纳米颗粒均匀分散,不易流失,提高了碳碳双键加氢催化活性,在精细化工合成领域具有广泛的应用;本发明制备方法简单,易于实施,产率高,易于批量生产,极大提高贵金属利用率。The invention prepares a bimetallic Ni/Zn-MOF with uniform size and regular morphology, which has a core-shell structure, and there is a cavity between the core and the shell, and noble metal nanoparticles can be encapsulated in the cavity, which is beneficial to the noble metal nanoparticles. Evenly dispersed, not easy to lose, improves the catalytic activity of carbon-carbon double bond hydrogenation, and has wide application in the field of fine chemical synthesis; the preparation method of the present invention is simple, easy to implement, high yield, easy to batch production, and greatly improves the utilization rate of precious metals .
附图说明Description of drawings
图1为本发明实例1中Pd@Ni/Zn-MOF的X射线粉末衍射图。Fig. 1 is an X-ray powder diffraction pattern of Pd@Ni/Zn-MOF in Example 1 of the present invention.
图2为本发明实例1中Pd@Ni/Zn-MOF的扫描电镜示意图。Fig. 2 is a schematic diagram of a scanning electron microscope of Pd@Ni/Zn-MOF in Example 1 of the present invention.
图3为本发明实例1中Pd@Ni/Zn-MOF催化肉桂醛加氢反应的性能图。Fig. 3 is a performance diagram of Pd@Ni/Zn-MOF catalyzed hydrogenation reaction of cinnamaldehyde in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。The present invention will be further described below in conjunction with the examples, but the present invention is not limited to the following examples.
实施例1Example 1
第一步:称取15mg氯化钯和77mg聚乙烯吡咯烷酮溶解于85mL甲醇和15mL去离子水的混合液中,70℃冷凝回流4h,得Pd纳米颗粒溶液。Step 1: Dissolve 15 mg of palladium chloride and 77 mg of polyvinylpyrrolidone in a mixture of 85 mL of methanol and 15 mL of deionized water, and reflux at 70°C for 4 hours to obtain a Pd nanoparticle solution.
第二步:称取30mg对苯二甲酸、60mg硝酸镍和40mg硝酸锌溶于N,N-二甲基甲酰胺(8mL)和乙二醇(5mL)的混合溶液中,搅拌1小时后,转移到聚四氟乙稀反应釜中,反应温度150℃,反应1.5小时后,加入上述合成的Pd纳米颗粒溶液(3.5mL),反应时间4小时,然后冷却离心洗涤、活化、干燥,制备获得Pd@Ni/Zn-MOF,贵金属Pd纳米颗粒成功负载在核壳结构Ni/Zn-MOF的核壳之间的空腔中(主要在空腔中)。The second step: Weigh 30mg of terephthalic acid, 60mg of nickel nitrate and 40mg of zinc nitrate and dissolve them in a mixed solution of N,N-dimethylformamide (8mL) and ethylene glycol (5mL), after stirring for 1 hour, Transfer to a polytetrafluoroethylene reactor at a reaction temperature of 150°C. After reacting for 1.5 hours, add the Pd nanoparticle solution (3.5 mL) synthesized above, and react for 4 hours. Then cool, centrifuge, wash, activate, and dry to prepare Pd@Ni/Zn-MOF, noble metal Pd nanoparticles were successfully loaded in the cavity (mainly in the cavity) between the core-shell structure of the core-shell Ni/Zn-MOF.
第三步:称取20mg催化剂Pd@Ni/Zn-MOF,5mL异丙醇,0.5mmol肉桂醛,转移到高压反应釜中,通入氢气0.3MPa,磁力搅拌,反应3小时,反应温度25℃。Step 3: Weigh 20mg of catalyst Pd@Ni/Zn-MOF, 5mL of isopropanol, 0.5mmol of cinnamaldehyde, transfer to a high-pressure reactor, feed hydrogen gas at 0.3MPa, stir with magnetic force, and react for 3 hours at a reaction temperature of 25°C .
实施例2Example 2
第一步:称取16.6mg聚乙烯吡咯烷酮溶解于45mL乙醇中,逐滴加入5.0mL的H2PtCl6(6.0mM)水溶液,冷凝回流3h,得Pt纳米颗粒溶液。Step 1: Weigh 16.6 mg of polyvinylpyrrolidone and dissolve it in 45 mL of ethanol, add 5.0 mL of H 2 PtCl 6 (6.0 mM) aqueous solution dropwise, and reflux for 3 hours to obtain a Pt nanoparticle solution.
第二步:称取30mg对苯二甲酸、50mg硝酸镍和50mg硝酸锌溶于N,N-二甲基甲酰胺(10mL)和乙二醇(5mL)的混合溶液中,搅拌1小时后,转移到聚四氟乙稀反应釜中,加入上述合成的Pt纳米颗粒溶液(5mL),反应温度140℃,反应时间6小时,然后冷却离心洗涤、活化、干燥,制备获得Pt@Ni/Zn-MOF,贵金属Pd纳米颗粒成功负载在核壳结构Ni/Zn-MOF的核中(主要在核中)。Second step: Weigh 30mg of terephthalic acid, 50mg of nickel nitrate and 50mg of zinc nitrate and dissolve them in a mixed solution of N,N-dimethylformamide (10mL) and ethylene glycol (5mL), stir for 1 hour, Transfer to a polytetrafluoroethylene reactor, add the above synthesized Pt nanoparticle solution (5mL), the reaction temperature is 140°C, the reaction time is 6 hours, then cooled, centrifuged, washed, activated, and dried to prepare Pt@Ni/Zn- MOF, noble metal Pd nanoparticles were successfully supported in the core (mainly in the core) of the core-shell structure Ni/Zn-MOF.
第三步:称取50mg催化剂Pt@Ni/Zn-MOF,5mL异丙醇,0.4mmol肉桂醛,转移到高压反应釜中,通入氢气1.0MPa,磁力搅拌,反应24小时,反应温度30℃。Step 3: Weigh 50mg of catalyst Pt@Ni/Zn-MOF, 5mL of isopropanol, 0.4mmol of cinnamaldehyde, transfer to a high-pressure reactor, feed hydrogen at 1.0MPa, stir with magnetic force, and react for 24 hours at a reaction temperature of 30°C .
实施例3Example 3
第一步:称取100mL的HAuCl4(0.01%)水溶液,冷凝回流,加入4.5mL的柠檬酸钠(1%)的水溶液,冷凝回流20分钟后,降到室温,加入20mL聚乙烯吡咯烷酮(0.5g)水溶液,室温下搅拌24小时,得Au纳米颗粒溶液。The first step: Weigh 100mL of HAuCl 4 (0.01%) aqueous solution, condense and reflux, add 4.5mL of sodium citrate (1%) aqueous solution, condense and reflux for 20 minutes, drop to room temperature, add 20mL polyvinylpyrrolidone (0.5 g) an aqueous solution, stirred at room temperature for 24 hours to obtain an Au nanoparticle solution.
第二步:称取30mg对苯二甲酸、60mg硝酸镍和40mg硝酸锌溶于N,N-二甲基甲酰胺(8mL)和乙二醇(5mL)的混合溶液中,搅拌1小时后,转移到聚四氟乙稀反应釜中,反应温度150℃,反应6小时后,加入上述合成的Au纳米颗粒溶液(3.5mL),室温下搅拌,然后离心洗涤、活化、干燥,制备获得Au@Ni/Zn-MOF,贵金属Pd纳米颗粒成功负载在核壳结构Ni/Zn-MOF的壳外(主要在壳外)。The second step: Weigh 30mg of terephthalic acid, 60mg of nickel nitrate and 40mg of zinc nitrate and dissolve them in a mixed solution of N,N-dimethylformamide (8mL) and ethylene glycol (5mL), after stirring for 1 hour, Transfer to a polytetrafluoroethylene reactor at a reaction temperature of 150°C. After 6 hours of reaction, add the Au nanoparticle solution (3.5 mL) synthesized above, stir at room temperature, and then centrifugally wash, activate, and dry to prepare Au@ Ni/Zn-MOF, noble metal Pd nanoparticles were successfully loaded outside the shell (mainly outside the shell) of the core-shell structure Ni/Zn-MOF.
第三步:称取50mg催化剂Au@Ni/Zn-MOF,5mL异丙醇,0.5mmol肉桂醛,转移到高压反应釜中,通入氢气1MPa,磁力搅拌,反应12小时,反应温度60℃。Step 3: Weigh 50mg of catalyst Au@Ni/Zn-MOF, 5mL of isopropanol, and 0.5mmol of cinnamaldehyde, transfer it to a high-pressure reactor, inject hydrogen gas at 1MPa, stir with magnetic force, and react for 12 hours at a reaction temperature of 60°C.
上述实施例1所得的材料的测试结果相同,具体见下述:The test result of the material of above-mentioned embodiment 1 gained is identical, specifically sees following:
(1)材料形貌表征:(1) Material morphology characterization:
图1为Pd@Ni/Zn-MOF的X射线粉末衍射图;图2为Pd@Ni Zn-MOF的扫描电子显微镜图。Figure 1 is the X-ray powder diffraction pattern of Pd@Ni/Zn-MOF; Figure 2 is the scanning electron microscope image of Pd@Ni Zn-MOF.
(2)材料催化性能表征:(2) Characterization of material catalytic performance:
图3为Pd@Ni/Zn-MOF、Pt@Ni/Zn-MOF和Au@Ni/Zn-MOF催化剂在催化肉桂醛加氢反应的性能图,由图可知贵金属@Ni/Zn-MOF催化剂具有优异的催化活性和选择性。Figure 3 is the performance diagram of Pd@Ni/Zn-MOF, Pt@Ni/Zn-MOF and Au@Ni/Zn-MOF catalysts in catalyzing the hydrogenation reaction of cinnamaldehyde. It can be seen from the figure that the noble metal @Ni/Zn-MOF catalyst has Excellent catalytic activity and selectivity.
上述内容为本发明的较佳实例而已,但本发明不应局限于该实例所公开内容。所以凡不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。The above content is only a preferred example of the present invention, but the present invention should not be limited to the content disclosed in this example. Therefore, all equivalents or modifications that do not deviate from the spirit disclosed in the present invention fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810361182.3A CN108636455B (en) | 2018-04-20 | 2018-04-20 | Preparation and application of supported noble metal-based catalyst taking core-shell MOF as reaction vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810361182.3A CN108636455B (en) | 2018-04-20 | 2018-04-20 | Preparation and application of supported noble metal-based catalyst taking core-shell MOF as reaction vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108636455A true CN108636455A (en) | 2018-10-12 |
CN108636455B CN108636455B (en) | 2021-04-30 |
Family
ID=63746780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810361182.3A Expired - Fee Related CN108636455B (en) | 2018-04-20 | 2018-04-20 | Preparation and application of supported noble metal-based catalyst taking core-shell MOF as reaction vessel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108636455B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110586182A (en) * | 2019-08-26 | 2019-12-20 | 华东师范大学 | Hollow porous polymer nanosphere composite material packaged by noble metal nanoparticles and synthesis and application thereof |
CN111215147A (en) * | 2020-02-19 | 2020-06-02 | 中国科学技术大学 | Supported yolk-eggshell structure nano catalyst and preparation method thereof |
CN111269430A (en) * | 2020-02-21 | 2020-06-12 | 安徽农业大学 | Preparation method and application of hollow core-shell structure metal-organic framework material |
CN112657557A (en) * | 2021-01-06 | 2021-04-16 | 中国船舶重工集团公司第七一九研究所 | Preparation method of Pd/MOF catalyst for catalytic hydrogenation upgrading of phenol |
CN112871167A (en) * | 2021-01-14 | 2021-06-01 | 浙江理工大学 | MOFs (metal-organic frameworks) -packaged ultrafine alloy nanoparticles as well as preparation method and application thereof |
CN113933283A (en) * | 2021-09-28 | 2022-01-14 | 中山大学 | Composite SERS substrate and preparation method and application thereof |
CN115068428A (en) * | 2022-05-20 | 2022-09-20 | 珠海市妇幼保健院 | Nano-particles and preparation method and application thereof |
CN115837286A (en) * | 2022-11-14 | 2023-03-24 | 北京师范大学 | A confined nanoreactor for peroxide activation and its preparation method |
CN115845838A (en) * | 2022-10-25 | 2023-03-28 | 广东工业大学 | Preparation method and application of carbon smoke resistant core-shell structure catalyst |
CN119386930A (en) * | 2024-12-31 | 2025-02-07 | 浙江师范大学 | Precious metal-Ni coexisting supported catalyst prepared based on partial reduction of Ni-MOF metal nodes, preparation method and application |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1379750A (en) * | 1999-10-14 | 2002-11-13 | 巴斯福股份公司 | Continuous method for production of cinnamaldehyde and dihydrocinnamaldehyde derivatives |
CN101445427A (en) * | 2008-12-30 | 2009-06-03 | 浙江大学 | Method for selective hydrogenation reaction in heterogeneous catalysis of cinnamic aldehyde |
WO2010025366A2 (en) * | 2008-08-29 | 2010-03-04 | The Board Of Trustees Of The University Of Illinois | Method for forming allylic alcohols |
CN102078810A (en) * | 2009-11-30 | 2011-06-01 | 葛昌华 | Oxide supported palladium hydrogenation catalyst and preparation method thereof |
US20130211033A1 (en) * | 2010-10-27 | 2013-08-15 | Meurice R&D Asbl | Process for functionalization of unsaturated compounds |
CN103769094A (en) * | 2014-01-20 | 2014-05-07 | 中国科学院宁波材料技术与工程研究所 | Eggshell type catalyst for selective hydrogenation reaction as well as preparation method and application thereof |
CN103949286A (en) * | 2014-04-16 | 2014-07-30 | 国家纳米科学中心 | MOFs (Metal-Organic Frameworks)@noble metal@MOFs catalyst applicable to selective hydrogenation reaction, as well as preparation method and application thereof |
CN105772092A (en) * | 2016-03-21 | 2016-07-20 | 中国科学技术大学 | Modified catalyst and preparation method thereof |
CN106345458A (en) * | 2016-08-23 | 2017-01-25 | 上海师范大学 | Mesoporous carbon-silicon dioxide complex loaded nano-palladium catalyst and synthesis method thereof |
CN106591878A (en) * | 2016-11-28 | 2017-04-26 | 北京工业大学 | Construction and application of multilevel structure ZnO@Au@ZIF-8 compound photoelectrode |
CN106881155A (en) * | 2016-12-29 | 2017-06-23 | 广州凯耀资产管理有限公司 | A kind of Au/TiO2/ metal organic framework composite photo-catalyst and preparation method and application |
CN107185594A (en) * | 2017-06-22 | 2017-09-22 | 北京华福工程有限公司 | A kind of preparation method of Ni Zn K Ru/MOF catalyst |
-
2018
- 2018-04-20 CN CN201810361182.3A patent/CN108636455B/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1379750A (en) * | 1999-10-14 | 2002-11-13 | 巴斯福股份公司 | Continuous method for production of cinnamaldehyde and dihydrocinnamaldehyde derivatives |
WO2010025366A2 (en) * | 2008-08-29 | 2010-03-04 | The Board Of Trustees Of The University Of Illinois | Method for forming allylic alcohols |
CN101445427A (en) * | 2008-12-30 | 2009-06-03 | 浙江大学 | Method for selective hydrogenation reaction in heterogeneous catalysis of cinnamic aldehyde |
CN102078810A (en) * | 2009-11-30 | 2011-06-01 | 葛昌华 | Oxide supported palladium hydrogenation catalyst and preparation method thereof |
US20130211033A1 (en) * | 2010-10-27 | 2013-08-15 | Meurice R&D Asbl | Process for functionalization of unsaturated compounds |
CN103769094A (en) * | 2014-01-20 | 2014-05-07 | 中国科学院宁波材料技术与工程研究所 | Eggshell type catalyst for selective hydrogenation reaction as well as preparation method and application thereof |
CN103949286A (en) * | 2014-04-16 | 2014-07-30 | 国家纳米科学中心 | MOFs (Metal-Organic Frameworks)@noble metal@MOFs catalyst applicable to selective hydrogenation reaction, as well as preparation method and application thereof |
CN105772092A (en) * | 2016-03-21 | 2016-07-20 | 中国科学技术大学 | Modified catalyst and preparation method thereof |
CN106345458A (en) * | 2016-08-23 | 2017-01-25 | 上海师范大学 | Mesoporous carbon-silicon dioxide complex loaded nano-palladium catalyst and synthesis method thereof |
CN106591878A (en) * | 2016-11-28 | 2017-04-26 | 北京工业大学 | Construction and application of multilevel structure ZnO@Au@ZIF-8 compound photoelectrode |
CN106881155A (en) * | 2016-12-29 | 2017-06-23 | 广州凯耀资产管理有限公司 | A kind of Au/TiO2/ metal organic framework composite photo-catalyst and preparation method and application |
CN107185594A (en) * | 2017-06-22 | 2017-09-22 | 北京华福工程有限公司 | A kind of preparation method of Ni Zn K Ru/MOF catalyst |
Non-Patent Citations (2)
Title |
---|
YUAN ZHAO ET AL.: "Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde", 《CATALYSIS COMMUNICATIONS》 * |
郭德波等: "肉桂醛催化选择加氢制氢化肉桂醛", 《福建林业科技》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110586182A (en) * | 2019-08-26 | 2019-12-20 | 华东师范大学 | Hollow porous polymer nanosphere composite material packaged by noble metal nanoparticles and synthesis and application thereof |
CN111215147A (en) * | 2020-02-19 | 2020-06-02 | 中国科学技术大学 | Supported yolk-eggshell structure nano catalyst and preparation method thereof |
CN111215147B (en) * | 2020-02-19 | 2024-05-03 | 中国科学技术大学 | Supported yolk-eggshell structure nano catalyst and preparation method thereof |
CN111269430A (en) * | 2020-02-21 | 2020-06-12 | 安徽农业大学 | Preparation method and application of hollow core-shell structure metal-organic framework material |
CN111269430B (en) * | 2020-02-21 | 2021-08-24 | 安徽农业大学 | Preparation method and application of hollow core-shell structure metal-organic framework material |
CN112657557B (en) * | 2021-01-06 | 2023-04-07 | 中国船舶重工集团公司第七一九研究所 | Preparation method of Pd/MOF catalyst for catalytic hydrogenation upgrading of phenol |
CN112657557A (en) * | 2021-01-06 | 2021-04-16 | 中国船舶重工集团公司第七一九研究所 | Preparation method of Pd/MOF catalyst for catalytic hydrogenation upgrading of phenol |
CN112871167A (en) * | 2021-01-14 | 2021-06-01 | 浙江理工大学 | MOFs (metal-organic frameworks) -packaged ultrafine alloy nanoparticles as well as preparation method and application thereof |
CN113933283A (en) * | 2021-09-28 | 2022-01-14 | 中山大学 | Composite SERS substrate and preparation method and application thereof |
CN115068428B (en) * | 2022-05-20 | 2023-05-16 | 珠海市妇幼保健院 | Nanoparticle and preparation method and application thereof |
CN115068428A (en) * | 2022-05-20 | 2022-09-20 | 珠海市妇幼保健院 | Nano-particles and preparation method and application thereof |
CN115845838A (en) * | 2022-10-25 | 2023-03-28 | 广东工业大学 | Preparation method and application of carbon smoke resistant core-shell structure catalyst |
CN115837286A (en) * | 2022-11-14 | 2023-03-24 | 北京师范大学 | A confined nanoreactor for peroxide activation and its preparation method |
CN119386930A (en) * | 2024-12-31 | 2025-02-07 | 浙江师范大学 | Precious metal-Ni coexisting supported catalyst prepared based on partial reduction of Ni-MOF metal nodes, preparation method and application |
CN119386930B (en) * | 2024-12-31 | 2025-05-30 | 浙江师范大学 | Precious metal-Ni coexisting supported catalyst prepared based on partial reduction of Ni-MOF metal nodes, preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN108636455B (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108636455B (en) | Preparation and application of supported noble metal-based catalyst taking core-shell MOF as reaction vessel | |
CN109939718B (en) | Monatomic catalyst with high catalytic activity and preparation method and application thereof | |
CN110270348B (en) | A noble metal single-atom catalyst and its preparation and application | |
CN102974365B (en) | The preparation method of support type high dispersive many components noble metal nano particles catalyst | |
CN106622327A (en) | A nitrogen-doped porous carbon-supported metal catalyst and its preparation method and use | |
CN108993485B (en) | Preparation method and application of an in-situ supported metal mesoporous carbon microsphere catalyst | |
CN107497488A (en) | A kind of preparation method and application of the monatomic alloy catalysts of high hydrogenation selectivity Au Pd | |
CN114160196B (en) | Preparation method and application of a palladium cluster catalyst | |
CN112691690B (en) | A kind of supported double metal nitride catalyst and its preparation method and application | |
CN112275323B (en) | Preparation method and application of nickel-based Ni-MOF-Ni/MCM-41 composites | |
CN107497448B (en) | A kind of rhodium/copper alloy nano-catalyst and preparation method and application thereof | |
CN101596454A (en) | Clay load palladium catalyst and preparation method thereof | |
CN102029199A (en) | Method for preparing load-type noble metal nanometer catalyst by solvent-free microwave-assisted pyrolysis method | |
CN110639547A (en) | Iridium-based multi-phase composite oxide catalyst for preparing alcohol products by methane oxidation and preparation method thereof | |
CN114733520B (en) | Preparation methods and applications of supported nanogold catalysts | |
WO2017181514A1 (en) | Synthesis method for 2,2'-dipyridine using supported bimetal nano catalyst | |
CN110064435A (en) | A kind of method of one-step synthesis method MOF package metals catalysis material | |
CN112108175A (en) | Preparation method of aromatic olefin | |
CN114713236A (en) | Ni-ReOx/TiO2Bimetallic catalyst, preparation method thereof and application thereof in biomass aldehyde selective hydrogenation | |
CN110665546A (en) | Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof | |
CN109174091A (en) | A kind of Ru-Rh/C bimetallic catalyst and its preparation method and application | |
CN115501886B (en) | A method for preparing a catalyst for low-temperature hydrogenation of nitrobenzene to synthesize aniline | |
CN113649049B (en) | A maleic anhydride selective hydrogenation catalyst and its preparation method and application method | |
CN102974342B (en) | Catalyst for preparing cyclohexene from benzene by selective hydrogenation and preparation method thereof | |
CN111760572A (en) | A kind of NiZnCu nanocomposite dehydrogenation catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210430 |