CN110064435A - A kind of method of one-step synthesis method MOF package metals catalysis material - Google Patents
A kind of method of one-step synthesis method MOF package metals catalysis material Download PDFInfo
- Publication number
- CN110064435A CN110064435A CN201910355806.5A CN201910355806A CN110064435A CN 110064435 A CN110064435 A CN 110064435A CN 201910355806 A CN201910355806 A CN 201910355806A CN 110064435 A CN110064435 A CN 110064435A
- Authority
- CN
- China
- Prior art keywords
- mof
- salt
- metal
- metal salt
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2213—At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/48—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种一步法合成MOF封装金属催化材料的方法,属于催化材料的制备及应用领域。The invention relates to a one-step method for synthesizing MOF-encapsulated metal catalytic materials, and belongs to the field of preparation and application of catalytic materials.
背景技术Background technique
金属有机骨架材料(MOFs)因其具有特殊的比表面积和孔隙率、结构功能可控而受到广泛关注。MOFs是由金属离子和有机配体通过配位键自组装的一系列多孔晶体材料,由于其配位金属和有机配体的不同,可以形成多种具有官能团的拓扑晶体材料。这些独特的结构使它们具有常规材料不具有的独特性能,主要应用于气体的存储分离、药物传输、化学传感以及催化等领域。Mihet[MihetM,Blanita G,Dan M,et al.Pt/UiO-66Nanocompositesas Catalysts for CO2Methanation Process,JournalOfNanoscienceAndNanotechnology,2019,19:3187-3196]等人分别采用简单湿法浸渍后氢气热还原、湿法浸渍NaBH4还原和双溶剂法NaBH4还原三种方法制备了Pt/Zr-MOF催化剂,并研究了三种催化剂应用于二氧化碳甲烷化反应活性测试。Metal-organic frameworks (MOFs) have attracted extensive attention due to their special surface area and porosity, and controllable structure and function. MOFs are a series of porous crystalline materials self-assembled by metal ions and organic ligands through coordination bonds. Due to their different coordination metals and organic ligands, a variety of topological crystalline materials with functional groups can be formed. These unique structures give them unique properties that conventional materials do not have, and are mainly used in the fields of gas storage and separation, drug delivery, chemical sensing, and catalysis. Mihet[MihetM,Blanita G,Dan M,et al.Pt/UiO-66Nanocompositesas Catalysts for CO2Methanation Process,JournalOfNanoscienceAndNanotechnology,2019,19:3187-3196] et al. used simple wet impregnation followed by hydrogen thermal reduction and wet impregnation of NaBH, respectively. Pt/Zr-MOF catalysts were prepared by three methods: 4 reduction and two-solvent NaBH 4 reduction, and the three catalysts were studied for the activity test of carbon dioxide methanation.
相对于采用浸渍法将金属负载在MOFs上,现在更多的研究工作是将活性的金属纳米粒子封装进MOFs骨架结构中,以此调控金属纳米粒子的尺寸分布,制备出具有催化活性的金属NPs@MOF。Li[JiangD,FangG,TongY,etal.,MultifunctionalPd@UiO-66CatalystsforContinuous CatalyticUpgrading ofEthanolton-Butanol,Acs Catalysis,2018,8(12):11973-11978]等人将一定量的乙酰丙酮钯加入事先合成的Zr-MOF中,在383K温度下缓慢搅拌蒸发,Zr-MOF的小孔道结构可以限制金属纳米粒子的生长,所制备出粒径为2.2nm的Pd纳米催化剂Pd@Zr-MOF是乙醇制备正丁醇的高效催化剂。Dong[DongW,Feng C,ZhangL,et al.,Pd@UiO-66:An Efficient Catalyst for Suzuki-Miyaura Coupling Reactionat Mild Condition,Catalysis Letters,2016,146(1):117-125]采用原位封装法将Pd纳米粒子包覆在Zr-MOF骨架结构中,在还原剂NaBH4存在的条件下用微波辅助还原Pd纳米粒子并激活Zr-MOF,该催化剂在Suzuki–Miyaura偶联反应中展现出了很好的催化活性。Wu[WuTB,ZhangP,MaJ,et al.,Catalytic activity ofimmobilizedRu nanoparticles inaporous metal-organic frameworkusing supercritical fluid,Chinese JournalofCatalysis,2013,34(1):167-175]等人合成了具有微孔结构的Zr-MOF材料,并在超临界CO2和甲醇溶液中制备了Ru@Zr-MOF催化剂,所制备的催化剂同浸渍法制备的Ru/Zr-MOF相比具有较小的Ru纳米粒径和均匀的分散程度,而且Ru@Zr-MOF催化剂同时具有微孔和介孔结构,拥有更好的扩散系数,在苯加氢制环己烷反应中具有很好的转化活性。因此,采用MOFs材料的多孔骨架结构作为金属催化剂的载体,可以对金属纳米粒径的生长具有限域作用,还原出来的金属具有小的粒径尺寸和高的分散程度,制备出高活性负载型金属催化材料。Compared with the impregnation method to support metals on MOFs, more research work is to encapsulate active metal nanoparticles into the framework structure of MOFs, so as to control the size distribution of metal nanoparticles and prepare catalytically active metal NPs. @MOF. Li[JiangD, FangG, TongY, et al., MultifunctionalPd@UiO-66CatalystsforContinuous CatalyticUpgrading of Ethanolton-Butanol,Acs Catalysis,2018,8(12):11973-11978] et al. added a certain amount of palladium acetylacetonate to the previously synthesized Zr- In MOF, the small pore structure of Zr-MOF can limit the growth of metal nanoparticles by slow stirring and evaporation at a temperature of 383K. The prepared Pd nanocatalyst Pd@Zr-MOF with a particle size of 2.2 nm is used to prepare n-butanol from ethanol. efficient catalyst. Dong[DongW,Feng C,ZhangL,et al.,Pd@UiO-66:An Efficient Catalyst for Suzuki-Miyaura Coupling Reactionat Mild Condition,Catalysis Letters,2016,146(1):117-125] adopts in-situ encapsulation method The Pd nanoparticles were encapsulated in the Zr-MOF framework structure, and the Pd nanoparticles were reduced and activated by microwave assisted in the presence of the reducing agent NaBH4, and the Zr - MOF was activated. good catalytic activity. Wu[WuTB, ZhangP, MaJ, et al., Catalytic activity of immobilized Ru nanoparticles inaporous metal-organic framework using supercritical fluid, Chinese Journal of Catalysis, 2013, 34(1): 167-175] et al. synthesized Zr-MOF with microporous structure materials, and prepared Ru@Zr-MOF catalysts in supercritical CO 2 and methanol solutions. The prepared catalysts had smaller Ru nanoparticle size and uniform dispersion compared with Ru/Zr-MOF prepared by impregnation method. , and the Ru@Zr-MOF catalyst has both microporous and mesoporous structures, better diffusion coefficient, and good conversion activity in the hydrogenation of benzene to cyclohexane. Therefore, the use of the porous skeleton structure of MOFs material as the carrier of metal catalysts can limit the growth of metal nanoparticles, and the reduced metal has a small particle size and a high degree of dispersion. Metal catalytic materials.
从现有报道来看,常见的制备封装金属催化材料的方法是先将制备MOF材料,然后通过浸渍或封装的方法将金属离子负载在MOF上,再采用还原剂做进一步还原。未见有一步法合成MOF封装金属催化材料的报道。From the existing reports, the common method for preparing encapsulated metal catalytic materials is to first prepare MOF materials, and then load metal ions on the MOF by impregnation or encapsulation, and then use a reducing agent for further reduction. There is no report on the one-step synthesis of MOF-encapsulated metal catalytic materials.
发明内容SUMMARY OF THE INVENTION
本发明提供了一步法合成MOF封装金属催化材料,能直接将加入的活性金属离子还原成单质态,解决了上述问题。The invention provides a one-step method for synthesizing MOF encapsulated metal catalyst materials, which can directly reduce the added active metal ions into elemental state, and solves the above problems.
本发明提供了一步法合成MOF封装金属催化材料的方法,所述方法采用溶剂热法将金属离子前驱体加入到合成MOF的反应釜中,直接制备出具有单质态的M@MOF催化材料。The invention provides a one-step method for synthesizing MOF-encapsulated metal catalytic materials. The method adopts a solvothermal method to add metal ion precursors into a reactor for synthesizing MOF, and directly prepares an M@MOF catalytic material with an elemental state.
本发明所述制备过程包括:The preparation process of the present invention includes:
步骤a):室温下,分别称取合成MOF的有机配体和配位金属盐,溶于有机溶剂中,再加入一定量的贵金属或过渡金属盐,最后加入0.5-1ml的浓盐酸(37wt%),超声10-30分钟,溶解后移至高压反应釜中,在一定温度下加热一定时间,然后随炉过夜冷却至室温;Step a): at room temperature, weigh the organic ligands and coordination metal salts for synthesizing MOF respectively, dissolve them in an organic solvent, add a certain amount of precious metal or transition metal salts, and finally add 0.5-1 ml of concentrated hydrochloric acid (37wt%) ), ultrasonic for 10-30 minutes, dissolving and then moving to the autoclave, heating at a certain temperature for a certain period of time, and then cooling to room temperature overnight with the furnace;
步骤b):将冷却后高压反应釜内溶液倒入烧杯中,用与步骤a相同的有机溶剂清洗3-5次,离心转速为6000-10000转/分钟,每次离心10-30分钟;有机溶剂清洗之后再用无水甲醇清洗三次,每次清洗后抽滤分离出固体;无水甲醇清洗后置于真空干燥箱内80-120℃干燥3-5小时,最终得到白色粉末。Step b): pour the solution in the autoclave after cooling into the beaker, wash 3-5 times with the same organic solvent as in step a, the centrifugal speed is 6000-10000 rev/min, and centrifuge each time for 10-30 minutes; After cleaning with solvent, it is washed three times with anhydrous methanol, and the solid is separated by suction filtration after each cleaning; after washing with anhydrous methanol, it is placed in a vacuum drying box and dried at 80-120°C for 3-5 hours to finally obtain a white powder.
所述有机配体优选为对苯二甲酸、2-氨基对苯二甲酸或4,4-联苯二甲酸。The organic ligand is preferably terephthalic acid, 2-aminoterephthalic acid or 4,4-biphenyl dicarboxylic acid.
所述配位金属盐优选四氯化锆或四氯化铬。The complex metal salt is preferably zirconium tetrachloride or chromium tetrachloride.
所述有机溶剂优选N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或者四氢呋喃。The organic solvent is preferably N,N-dimethylformamide, N,N-dimethylacetamide or tetrahydrofuran.
所述贵金属优选为钌盐、铑盐、金盐或钯盐。更优选H2PdCl4或RuCl3 The noble metal is preferably a ruthenium salt, a rhodium salt, a gold salt or a palladium salt. More preferably H 2 PdCl 4 or RuCl 3
所述过渡金属盐优选为钴盐或镍盐。The transition metal salt is preferably a cobalt salt or a nickel salt.
所述步骤a中贵金属或过渡金属盐的加入量与配位金属盐的物质的量的比在0.1-0.4之间。In the step a, the ratio of the added amount of the noble metal or transition metal salt to the amount of the coordinating metal salt is between 0.1-0.4.
所述步骤b中,加热温度为80-200℃,加热时间为12-36h。In the step b, the heating temperature is 80-200° C., and the heating time is 12-36 h.
本发明有益效果为:The beneficial effects of the present invention are:
①本发明所述制备过程中介入的金属离子能被直接还原成金属单质态,无需进一步还原;① The metal ions involved in the preparation process of the present invention can be directly reduced to a metal elemental state without further reduction;
②本发明所述加入金属离子后对MOF的骨架结构没有影响,而且能有效的增加其在低温环境下的热稳定性。② The addition of metal ions in the present invention has no effect on the skeleton structure of the MOF, and can effectively increase its thermal stability in a low temperature environment.
附图说明Description of drawings
本发明附图5幅。There are 5 accompanying drawings of the present invention.
图1为实施例1、实施例2和实施例3的XRD谱图Fig. 1 is the XRD pattern of embodiment 1, embodiment 2 and embodiment 3
图2为实施例1制备的Ru@MOF的XPS谱图;Fig. 2 is the XPS spectrogram of Ru@MOF prepared in Example 1;
图3为实施例1制备的Ru@MOF的SEM谱图;Fig. 3 is the SEM spectrogram of Ru@MOF prepared in Example 1;
图4为实施例1制备的Ru@MOF的FT-IR谱图;Fig. 4 is the FT-IR spectrum of Ru@MOF prepared in Example 1;
图5为实施例1制备的Ru@MOF的TG谱图。5 is the TG spectrum of Ru@MOF prepared in Example 1.
具体实施方式Detailed ways
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples may enable those of ordinary skill in the art to more fully understand the present invention, but do not limit the present invention in any way.
实施例1Example 1
Ru@UiO-66材料的制备方法:取0.816g氯化锆(ZrCl4)、0.831g对苯二甲酸(C8H6O4)和0.415g三氯化钌(RuCl3)溶于30mLDMF溶液和0.8ml浓HCl溶液中,超声20分钟充分搅拌散热后移至均相反应釜中,然后把反应釜放入恒温干燥箱中120℃恒温24h后自然冷却至室温。过滤、DMF清洗、无水甲醇洗、在干燥箱中100℃干燥3h得到Ru@UiO-66金属有机骨架材料。Preparation method of Ru@UiO-66 material: Dissolve 0.816g zirconium chloride (ZrCl 4 ), 0.831g terephthalic acid (C 8 H 6 O 4 ) and 0.415g ruthenium trichloride (RuCl 3 ) in 30 mL DMF solution and 0.8ml of concentrated HCl solution, ultrasonically stirred for 20 minutes to dissipate heat, and then moved to a homogeneous reaction kettle. Then, the reaction kettle was placed in a constant temperature drying oven at 120 °C for 24 hours and then cooled to room temperature naturally. Filtration, DMF washing, anhydrous methanol washing, drying in a drying oven at 100 °C for 3 h to obtain Ru@UiO-66 metal organic framework material.
实施例2Example 2
Pd@UiO-66材料的制备方法:取0.816g氯化锆(ZrCl4)、0.831g对苯二甲酸(C8H6O4)和0.532g H2PdCl4溶于30mLDMF溶液和0.8ml浓HCl溶液中,超声20分钟充分搅拌散热后移至均相反应釜中,然后把反应釜放入恒温干燥箱中120℃恒温24h后自然冷却至室温。过滤、DMF清洗、无水甲醇洗、在干燥箱中100℃干燥3h得到Pd@UiO-66金属有机骨架材料。Preparation method of Pd@UiO-66 material: Dissolve 0.816g zirconium chloride (ZrCl 4 ), 0.831g terephthalic acid (C 8 H 6 O 4 ) and 0.532g H 2 PdCl 4 in 30mL DMF solution and 0.8ml concentrated In the HCl solution, ultrasonically stirred for 20 minutes to dissipate heat, and then moved to a homogeneous reaction kettle. Then, the reaction kettle was placed in a constant temperature drying oven at 120 °C for 24 hours, and then cooled to room temperature naturally. Filtration, DMF washing, anhydrous methanol washing, drying in a drying oven at 100 °C for 3 h to obtain Pd@UiO-66 metal organic framework material.
实施例3Example 3
Ni@UiO-66材料的制备方法:取0.816g氯化锆(ZrCl4)、0.831g对苯二甲酸(C8H6O4)和0.52gNi(NO3)2·6H2O溶于30mLDMF溶液和0.8ml浓HCl溶液中,超声20分钟充分搅拌散热后移至均相反应釜中,然后把反应釜放入恒温干燥箱中120℃恒温24h后自然冷却至室温。过滤、DMF清洗、无水甲醇洗、在干燥箱中100℃干燥3h得到Ni@UiO-66金属有机骨架材料。Preparation method of Ni@UiO-66 material: Dissolve 0.816g zirconium chloride (ZrCl 4 ), 0.831g terephthalic acid (C 8 H 6 O 4 ) and 0.52g Ni(NO 3 ) 2 ·6H 2 O in 30 mL DMF The solution and 0.8ml of concentrated HCl solution, ultrasonically stirred for 20 minutes and dissipated, and then moved to a homogeneous reaction kettle. Then, the reaction kettle was placed in a constant temperature drying box at 120 °C for 24 hours, and then cooled to room temperature naturally. Filtration, washing with DMF, washing with anhydrous methanol, drying in a drying oven at 100 °C for 3 h, and obtaining the Ni@UiO-66 metal-organic framework material.
将实施例1-3制得的金属有机骨架材料进行测试,测试结果如图1-5所示。由图1-2可知,实施例1-3所得材料分别可以测到Ru、Pd、Ni金属单质态,证明金属催化材料的活性组分金属离子在MOF合成过程中直接被还原成单质态金属。由图3可以明显看出,本发明提供的方法得到的材料其粒径尺寸分布均匀,且具有较高的比表面积。由图5可知,本发明制备的材料表现出很好的热稳定性。The metal-organic framework materials prepared in Examples 1-3 were tested, and the test results were shown in Figures 1-5. It can be seen from Figure 1-2 that the materials obtained in Examples 1-3 can detect Ru, Pd, Ni metal elemental states respectively, which proves that the active component metal ions of the metal catalytic materials are directly reduced to elemental metals during the MOF synthesis process. It can be clearly seen from FIG. 3 that the particle size distribution of the material obtained by the method provided by the present invention is uniform and has a relatively high specific surface area. It can be seen from Fig. 5 that the material prepared by the present invention exhibits good thermal stability.
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。The above is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or modification of the created technical solution and its inventive concept shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910355806.5A CN110064435A (en) | 2019-04-29 | 2019-04-29 | A kind of method of one-step synthesis method MOF package metals catalysis material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910355806.5A CN110064435A (en) | 2019-04-29 | 2019-04-29 | A kind of method of one-step synthesis method MOF package metals catalysis material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110064435A true CN110064435A (en) | 2019-07-30 |
Family
ID=67369505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910355806.5A Pending CN110064435A (en) | 2019-04-29 | 2019-04-29 | A kind of method of one-step synthesis method MOF package metals catalysis material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110064435A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111188057A (en) * | 2020-01-09 | 2020-05-22 | 安徽师范大学 | Preparation method of self-supporting composite electrode material |
CN111318687A (en) * | 2020-02-29 | 2020-06-23 | 上海燊铭检测技术有限公司 | Amino-functionalized gold nanoparticle core-shell structure MOF-5 and preparation method thereof |
CN111359672A (en) * | 2020-03-31 | 2020-07-03 | 上海应用技术大学 | A kind of Rh-based catalyst supported by UiO-67 and preparation method and application |
CN113000853A (en) * | 2021-02-23 | 2021-06-22 | 中国农业科学院农业质量标准与检测技术研究所 | Method for accurately regulating and controlling nano core-shell structure |
CN115007210A (en) * | 2022-04-28 | 2022-09-06 | 华南理工大学 | Hollow UiO-66-NH2(MZr) encapsulated metal particles and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104437645A (en) * | 2014-11-19 | 2015-03-25 | 河南工业大学 | Metal-organic framework supported heteropoly acid catalyst for synthesizing glutaraldehyde and production method of metal-organic framework supported heteropoly acid catalyst |
CN104710559A (en) * | 2015-02-15 | 2015-06-17 | 北京理工大学 | Method for preparing metal-organic framework material film |
CN107790184A (en) * | 2017-09-05 | 2018-03-13 | 中山大学 | A kind of catalyst of Pd/UiO 66 of Pd metal nanocrystal kernels with controllable appearance and preparation method thereof |
CN108404987A (en) * | 2018-03-07 | 2018-08-17 | 南京工业大学 | Method for improving catalytic efficiency of nanoparticle @ MOFs material |
-
2019
- 2019-04-29 CN CN201910355806.5A patent/CN110064435A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104437645A (en) * | 2014-11-19 | 2015-03-25 | 河南工业大学 | Metal-organic framework supported heteropoly acid catalyst for synthesizing glutaraldehyde and production method of metal-organic framework supported heteropoly acid catalyst |
CN104710559A (en) * | 2015-02-15 | 2015-06-17 | 北京理工大学 | Method for preparing metal-organic framework material film |
CN107790184A (en) * | 2017-09-05 | 2018-03-13 | 中山大学 | A kind of catalyst of Pd/UiO 66 of Pd metal nanocrystal kernels with controllable appearance and preparation method thereof |
CN108404987A (en) * | 2018-03-07 | 2018-08-17 | 南京工业大学 | Method for improving catalytic efficiency of nanoparticle @ MOFs material |
Non-Patent Citations (4)
Title |
---|
H. YAMAMOTO,ET AL: ""N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol"", 《NANOSCALE》 * |
MICHAEL K. CARPENTER,ET AL: ""Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis"", 《J. AM. CHEM. SOC.》 * |
PINGHUA LING,ET AL: ""Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity"", 《CHEM. COMMUN.》 * |
贾明民,等: ""UiO-66 的制备、功能化及膜分离研究进展"", 《化工进展》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111188057A (en) * | 2020-01-09 | 2020-05-22 | 安徽师范大学 | Preparation method of self-supporting composite electrode material |
CN111318687A (en) * | 2020-02-29 | 2020-06-23 | 上海燊铭检测技术有限公司 | Amino-functionalized gold nanoparticle core-shell structure MOF-5 and preparation method thereof |
CN111359672A (en) * | 2020-03-31 | 2020-07-03 | 上海应用技术大学 | A kind of Rh-based catalyst supported by UiO-67 and preparation method and application |
CN111359672B (en) * | 2020-03-31 | 2023-02-07 | 上海应用技术大学 | UiO-67 loaded Rh-based catalyst, and preparation method and application thereof |
CN113000853A (en) * | 2021-02-23 | 2021-06-22 | 中国农业科学院农业质量标准与检测技术研究所 | Method for accurately regulating and controlling nano core-shell structure |
CN115007210A (en) * | 2022-04-28 | 2022-09-06 | 华南理工大学 | Hollow UiO-66-NH2(MZr) encapsulated metal particles and preparation method and application thereof |
CN115007210B (en) * | 2022-04-28 | 2023-11-24 | 华南理工大学 | Hollow UiO-66-NH2(MZr) encapsulated metal particles and their preparation methods and applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110064435A (en) | A kind of method of one-step synthesis method MOF package metals catalysis material | |
CN103949286B (en) | A kind of for the MOFs noble metal MOFs catalyst of selective hydrogenation, preparation method and its usage | |
CN108097316B (en) | Preparation method of MOFs nano material loaded with nano metal particles | |
CN102553579B (en) | A kind of preparation method of highly dispersed supported nanometer metal catalyst | |
CN103691431B (en) | A kind of palladium-carbon catalyst and preparation method and application | |
CN108295848B (en) | Preparation method of high-dispersion nano catalyst | |
CN110270348A (en) | A kind of monatomic catalyst of noble metal and its preparation and application | |
CN108636455B (en) | Preparation and application of supported noble metal-based catalyst taking core-shell MOF as reaction vessel | |
CN105642311A (en) | Carbon-based non-noble metal @ noble metal core-shell nano catalyst and preparation method thereof by taking MOFs (Metal-Organic Framework) as template | |
CN106540690A (en) | A kind of load type palladium ruthenium bimetallic catalyst and preparation method thereof | |
JP5715726B2 (en) | Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same | |
CN114247479B (en) | A kind of bimetallic Pt-Co/UiO-66 catalyst and its preparation method and application | |
CN112871167B (en) | MOFs encapsulated ultrafine alloy nanoparticles and their preparation method and application | |
CN106378149A (en) | Preparation method and application of titanium dioxide nano tube loaded dual-metal ruthenium and nickel nano catalyst | |
CN104857955A (en) | Preparation method of noble metal nano catalyst | |
CN107790184A (en) | A kind of catalyst of Pd/UiO 66 of Pd metal nanocrystal kernels with controllable appearance and preparation method thereof | |
CN101229511A (en) | A kind of precious metal supported catalyst and its preparation method and application | |
CN103724174B (en) | A kind of method preparing pimelinketone | |
CN106345524A (en) | Ternary nanometer catalyst used for hydrolyzing ammonia borane to release hydrogen and preparation method of ternary nanometer catalyst | |
CN112138696A (en) | A kind of preparation method of transition metal-supported nitrogen-modified ordered mesoporous carbon nanospheres | |
CN103691434B (en) | A kind of metallic catalyst and preparation method and application | |
CN107684921A (en) | It is a kind of to be converted into TMHQ catalyst and preparation method thereof for TMBQ | |
CN115283007B (en) | Preparation of platinum metal nanocluster HA molecular sieve and application thereof in synthesis of 1,2,3, 4-tetrahydroquinoline | |
CN111672518B (en) | Magnetic Catalysts, Preparation and Applications of Monoatomic Bimetals Assembled with Porous Titanium Oxide Shells | |
CN104610199B (en) | A method for preparing tetrahydrofurfuryl alcohol by liquid-phase hydrogenation and the catalyst used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190730 |
|
RJ01 | Rejection of invention patent application after publication |