[go: up one dir, main page]

CN108611565B - 双辊薄带铸轧和时效工艺制备高强低合金钢的方法 - Google Patents

双辊薄带铸轧和时效工艺制备高强低合金钢的方法 Download PDF

Info

Publication number
CN108611565B
CN108611565B CN201810545642.8A CN201810545642A CN108611565B CN 108611565 B CN108611565 B CN 108611565B CN 201810545642 A CN201810545642 A CN 201810545642A CN 108611565 B CN108611565 B CN 108611565B
Authority
CN
China
Prior art keywords
steel
strip
molten steel
thin strip
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810545642.8A
Other languages
English (en)
Other versions
CN108611565A (zh
Inventor
罗海文
温鹏宇
刘浏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Damascus (Beijing) Technology Co.,Ltd.
Original Assignee
Jiangsu Collection Metallurgical Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Collection Metallurgical Technology Research Institute Co Ltd filed Critical Jiangsu Collection Metallurgical Technology Research Institute Co Ltd
Priority to CN201810545642.8A priority Critical patent/CN108611565B/zh
Publication of CN108611565A publication Critical patent/CN108611565A/zh
Application granted granted Critical
Publication of CN108611565B publication Critical patent/CN108611565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明属于双辊薄带铸轧和时效工艺制备高强低合金钢的方法,属于冶金工程领域。步骤如下:(1)冶炼成分合格的钢水吊运至钢包回转台;(2)钢水注入特别设计的中间包;(3)钢水流入双辊间隙开始凝固进行铸轧;(4)铸造后的带坯在线热轧、冷却然后切除头尾;(5)带钢卷取;(6)开卷后时效处理。本发明大幅度缩短工艺流程,降低能耗并提高生产率。与现有高强低合金时效钢带相比,本发明将Mo、Nb微合金成分优化设计和薄带铸轧的快速凝固工艺相结合,通过后续时效处理使低合金高强钢的综合力学性能进一步改善:抗拉强度为850‑1000MPa,屈服强度为800‑950MPa,延伸率10‑20%,并且生产成本大幅降低。

Description

双辊薄带铸轧和时效工艺制备高强低合金钢的方法
技术领域
本发明属于冶金工程技术领域,特别是指双辊薄带铸轧和时效工艺制备高强低合金钢的方法。更具体地,本发明涉及具有850MPa至1000MPa抗拉强度,800MPa至950MPa屈服强度,延伸率10-20%的经济型高强低合金钢薄带的制造方法。
背景技术
高强低合金钢生产历史悠久,是在碳素结构钢的基础上加入少量合金元素制成的。其具有良好的焊接性能、塑性、韧性以及较好的耐蚀性。可以满足建筑、汽车制造等行业对钢铁材料成型性能的需求,且使用高强度板可以减少钢板的使用厚度,进而实现车身减重的目标。而当前钢铁行业面临着技术创新需求以实现节能减排降低成本的目标,因此将薄带铸轧工艺引入高强低合金钢的制备过程中具有广阔的前景。
美国纽克钢铁公司于2002年建立了世界首条薄带铸轧碳钢商业化产线Castrip,该技术可以在很短时间内完成钢液到固态薄带的过程,实现了钢液在结晶凝固过程中从液体金属到固态薄板的制备。考虑到钢铁行业的创新需求,双辊铸轧工艺不仅具有工艺优势同时可以通过凝固、热履历、变形量的参数控制可以为材料的组织和性能带来创新,进而在高强低合金时效钢的制备和性能优化方面带来新的契机。
目前,依托薄带铸轧工艺开发了以Nb元素微合金化为主要特征的高强低合金钢,其主要工艺是将含Nb铸轧薄带在某一温度时效,可析出纳米尺度的NbC等碳化物粒子来提高强度,且不牺牲塑性,目前能该工艺生产的高强低合金钢的屈服和抗拉强度通常不超过750MPa和850MPa。而在本发明中,为进一步提高强低合金钢的力学性能,采用了Nb、V、Mo的复合微合金化设计,其依据的原理是VC粒子相比NbC的析出温度更低、更为细小,而Mo的加入会阻碍形成的碳化物粒子在时效过程中的粗化。因此,最后通过Nb、V、Mo的复合微合金化设计,在快速凝固和冷却后,并通过优化的时效处理,进行可以析出更多尺寸细小的、弥散分布的(NbVMo)C粒子析出,析出强化更大,而且时效工艺窗口相对更宽,产品性能稳定。
发明内容
本发明属需要解决的技术问题是双辊薄带铸轧和时效工艺制备高强低合金钢的方法,以期可以缩短工艺时间,极大地提升生产效率、降低能耗,并通过成分优化,进一步改善高强低合金时效钢的力学性能。
该方法包括如下步骤:
1.双辊薄带铸轧和时效工艺制备高强低合金钢的方法,属于冶金工程技术领域,其特征在于包括如下步骤:
(1)冶炼获得下述成分钢水,并吊运至大包回转台并镇静15-25min:0.01-0.05wt%C,0.5-2%Mn,0.2-0.5wt%Si,0.2-0.6wt%Mo,0.05-0.5wt%Cr,0.005-0.3wt%V,0.01-0.2Nb,P≤0.02wt%,S≤0.02wt%,余量为Fe及不可避免杂质。
(2)钢水注入大中间包:中间包吹氩10-20min赶出包中空气后通过长水口将钢水从钢包注入到中间包内,控制过热度20-40℃,在钢水表面加入覆盖剂用于保温及吸附夹杂。
(3)双辊铸轧:将步骤(2)中间包的钢水注入下方小中间包,给双辊薄带连铸机供应钢水,采用浸入式水口把小中间包内的钢水浇入双辊之间,拉速控制在80-120m/min,双辊间距在1.5-5mm之间可调,所生产低合金高强钢薄带厚度为2-4mm。为了防止薄带表面形成氧化铁皮,对所生产的薄带进行氩气或者氮气气氛保护。
(4)带坯热轧:对步骤(3)中制得的薄带进行热轧,铸轧带在线热轧装设备压下量在30-50%之间,控制终轧温度高于900℃。带坯热轧后带钢厚度为1-3mm,对热轧后的薄带经雾水冷却装置冷却至室温,随后经由拉辊传送至剪切机进行头尾切除。
(5)带钢卷曲:将步骤(4)获得的薄带进行在线卷曲,有两台卷取机进行卷取获得成品薄带钢卷。
(6)时效处理:将步骤(5)获得的高强低合金钢薄带卷开卷后,在加热炉内控制500-700℃之间的某一温度进行时效1-60min处理,获得最终的高强低合金钢薄带产品。
其中所述步骤(2)和(3)采用双中间包,区别在于下方小中间包内无保护渣;所述步骤(3)氩气或氮气的压力为0.2-0.3MPa;经步骤(4)所获得的主要组织为针状铁素体而步骤(6)获得的组织为回复铁素体和纳米碳化物相;最终实现的力学性能为屈服强度800-950MPa,抗拉强度在850-1000MPa,总延伸率10-20%之间。
另外,在上述成分中还可以另加以下一种或多种元素,可以获得类似性能或性能进一步提高:Ni:0.1-3.0wt%、[N]:0.002-0.25wt%、B:0.001-0.004wt%、RE(稀土):0.002-0.005wt%、Ti:0.005-0.03wt%。其中添加Ni可进一步提高钢的淬透性或低温冲击韧性;添加Ti等通过析出强化提高钢的强度;添加[N]调节奥氏体的稳定性。
本发明的上述技术方案的有益效果如下:
双辊薄带铸轧工艺有别于传统的连铸和热轧技术,该工艺生产流程更短、效率更高,规避了传统带钢生产中一系列的中间工艺步骤,成本低同时操作适应性强,产品规格薄,可显著降低温室气体排放因而更加绿色环保。此外本发明通过对高强低合金时效钢进行成分的重新设计和优化,加入了Mo、V、Nb可以在时效过程中析出更多和更为细小的(Mo,V,Nb)C相,从而可以进一步提高低合金高强钢的强度。
附图说明
图1为本发明的整体工艺流程示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供双辊薄带铸轧和时效工艺制备高强低合金钢的方法,包括如下步骤:
(1)将成分合格的钢水吊运至大包回转台:将LF钢包精炼后的高强低合金时效钢钢水吊运至大包回转台,镇静15-25min;
(2)钢水注入大中间包:中间包吹氩10-20min赶出包中空气后通过长水口将钢水从钢包注入到中间包内,控制过热度20-40℃,在钢水表面加入覆盖剂用于保温及吸附夹杂。
(3)双辊铸轧:将步骤(2)中间包的钢水注入下方小中间包,给双辊薄带连铸机供应钢水,采用浸入式水口把小中间包内的钢水浇入双辊之间,拉速控制在80-120m/min,双辊间距在1.5-5mm之间可调,所生产低合金高强钢薄带厚度为2-4mm。为了防止薄带表面形成氧化铁皮,对所生产的薄带进行氩气或者氮气气氛保护。
(4)带坯热轧:对步骤(3)中制得的薄带进行热轧,铸轧带在线热轧装设备压下量在30-50%之间,控制终轧温度高于900℃。带坯热轧后带钢厚度为1-3mm,对热轧后的薄带经雾水冷却装置冷却至室温,随后经由拉辊传送至剪切机进行头尾切除。
(5)带钢卷曲:将步骤(4)获得的薄带进行在线卷曲,有两台卷取机进行卷取获得成品薄带钢卷。
(6)时效处理:将步骤(5)获得的高强低合金钢薄带卷开卷后,在加热炉内控制500-700℃之间的某一温度进行时效1-60min处理,获得最终的低合金高强时效钢薄带产品。
实施例
表1采用低合金高强钢板的化学成分(wt%)
实施例 C Si Mn Mo Cr V Nb Fe
1 0.025 0.22 0.72 0.22 0.12 0.11 0.05 Rest
2 0.04 0.49 1.35 0.54 0.39 0.23 0.11 Rest
实施例1
本实施例试验采用表1中实施例1所示的化学成分,实施步骤如下:
(1)将表1中成分1的钢水吊运至大包回转台,镇静20min。
(2)钢水注入大中间包:中间包吹氩20min赶出包中空气后通过长水口将钢水从钢包注入到中间包内,控制过热度30℃,在钢水表面加入覆盖剂用于保温及吸附夹杂。
(3)双辊铸轧:将步骤(2)中间包的钢水注入下方小中间包,给双辊薄带连铸机供应钢水,采用浸入式水口把小中间包内的钢水浇入双辊之间,拉速控制在100m/min,所生产高强低合金钢薄带厚度为2.2mm。为了防止薄带表面形成氧化铁皮,对所生产的薄带进行氩气气氛保护。
(4)带坯热轧:对步骤(3)中制得的薄带进行热轧,铸轧带在线热轧装设备压下量50%,控制终轧温度约950℃。带坯热轧后带钢厚度为1.1mm,对热轧后的薄带经雾水冷却装置冷却至室温,随后经由拉辊传送至剪切机进行头尾切除。
(5)带钢卷曲:将步骤(4)获得的薄带进行在线卷曲,有两台卷取机进行卷取获得成品薄带钢卷。
(6)时效处理:将步骤(5)获得的高强低合金钢薄带卷开卷后,在加热炉内控制500-600-700℃三个温度进行时效在1-60min不同时间处理,获得最终的高强低合金时效钢薄带产品的力学性能见表2。
实施例2
本实施例试验采用表1中实施例2所示的化学成分,实施步骤如下:
(1)将成分合格的钢水吊运至大包回转台:将LF钢包精炼后的低合金高强钢钢水吊运至大包回转台,镇静25min。
(2)钢水注入大中间包:中间包吹氩20min赶出包中空气后通过长水口将钢水从钢包注入到中间包内,控制过热度40℃,在钢水表面加入覆盖剂用于保温及吸附夹杂。
(3)双辊铸轧:将步骤(2)中间包的钢水注入下方小中间包,给双辊薄带连铸机供应钢水,采用浸入式水口把小中间包内的钢水浇入双辊之间,拉速控制在100m/min,所生产高强低合金钢薄带厚度为2mm。为了防止薄带表面形成氧化铁皮,对所生产的薄带进行氩气气氛保护。
(4)带坯热轧:对步骤(3)中制得的薄带进行热轧,铸轧带在线热轧装设备压下量30%,控制终轧温度约900℃。带坯热轧后带钢厚度为1.4mm,对热轧后的薄带经雾水冷却装置冷却至室温,随后经由拉辊传送至剪切机进行头尾切除。
(5)带钢卷曲:将步骤(4)获得的薄带进行在线卷曲,有两台卷取机进行卷取获得成品薄带钢卷。
(6)时效处理:将步骤(5)获得的高强低合金钢薄带卷开卷后,在加热炉内控制500-600-700℃三个温度下进行时效1-60min范围内不同时间处理,获得最终的高强低合金时效钢薄带产品的力学性能见表2。
由表2可知当前工艺和成分设计实现了优异的力学性能。
表2实施例1和2中薄带高强低合金时效钢钢的力学性能
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,且相关的改进和润饰均应视为本发明的保护范围。

Claims (5)

1.双辊薄带铸轧和时效工艺制备高强低合金钢的方法,其特征在于包括如下步骤:
(1)冶炼获得下述成分钢水,并吊运至大包回转台并镇静15-25min:0.01-0.05wt%C,0.5-2wt%Mn,0.2-0.5wt%Si,0.2-0.6wt%Mo,0.05-0.5wt%Cr,0.005-0.3wt%V,0.01-0.2wt%Nb,P≤0.02wt%,S≤0.02wt%,余量为Fe及不可避免杂质;
(2)钢水注入大中间包:中间包吹氩10-20min赶出包中空气后通过长水口将钢水从钢包注入到中间包内,控制过热度20-40℃,在钢水表面加入覆盖剂用于保温及吸附夹杂;
(3)双辊铸轧:将步骤(2)中间包的钢水注入下方小中间包,给双辊薄带连铸机供应钢水,采用浸入式水口把小中间包内的钢水浇入双辊之间,拉速控制在80-120m/min,双辊间距在1.5-5mm之间可调,所生产低合金高强钢薄带厚度为1.5-3mm,为了防止薄带表面形成氧化铁皮,在铸轧工序需进行氩气或者氮气气氛保护;
(4)带坯热轧:对步骤(3)中制得的薄带进行热轧,铸轧带在线热轧装设备压下量在30-50%之间,控制终轧温度高于900℃,带坯热轧后带钢厚度为1-3mm,对热轧后的薄带经雾水冷却装置以>15℃/s冷却至室温,随后经由拉辊传送至剪切机进行头尾切除;
(5)带钢卷取:将步骤(4)获得的薄带进行在线卷取,有两台卷取机进行卷取获得成品薄带钢卷;
(6)时效处理:将步骤(5)获得的高强低合金钢薄带卷开卷后,在加热炉内控制500-700℃之间的某一温度进行时效1-60min处理,获得最终的高强低合金钢薄带产品;所制备的高强低合金时效钢薄带,其屈服强度800-950MPa,抗拉强度在850-1000MPa,总延伸率10-20%之间。
2.根据权利要求1所述的双辊薄带铸轧和时效工艺制备高强低合金钢的方法,其特征在于:所述步骤(2)和(3)采用双中间包,区别在于下方小中间包内无保护渣。
3.根据权利要求1所述的双辊薄带铸轧和时效工艺制备高强低合金钢的方法,其特征在于:所述步骤(3)氩气或氮气的压力为0.2-0.3MPa。
4.根据权利要求1所述的双辊薄带铸轧和时效工艺制备高强低合金钢的方法,其特征在于:所述步骤(4)获得的组织主要为针状铁素体,而步骤(6)获得的组织为铁素体回复组织和纳米碳化物析出相。
5.根据权利要求1所述的双辊薄带铸轧和时效工艺制备高强低合金钢的方法,其特征在于:在所述步骤(1)的钢水中加以下一种或多种元素:Ni:0.1-3.0wt%、[N]:0.002-0.25wt%、B:0.001-0.004wt%、RE(稀土):0.002-0.005wt%、0.1-0.5wt%Cu、Ti:0.005-0.03wt%。
CN201810545642.8A 2018-05-25 2018-05-25 双辊薄带铸轧和时效工艺制备高强低合金钢的方法 Active CN108611565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810545642.8A CN108611565B (zh) 2018-05-25 2018-05-25 双辊薄带铸轧和时效工艺制备高强低合金钢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810545642.8A CN108611565B (zh) 2018-05-25 2018-05-25 双辊薄带铸轧和时效工艺制备高强低合金钢的方法

Publications (2)

Publication Number Publication Date
CN108611565A CN108611565A (zh) 2018-10-02
CN108611565B true CN108611565B (zh) 2019-12-06

Family

ID=63664565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810545642.8A Active CN108611565B (zh) 2018-05-25 2018-05-25 双辊薄带铸轧和时效工艺制备高强低合金钢的方法

Country Status (1)

Country Link
CN (1) CN108611565B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513892B (zh) * 2018-11-28 2020-12-29 涿州市诚达设备制造有限公司 带材线整机
CN109731913B (zh) * 2019-02-21 2020-07-24 江苏沙钢集团有限公司 一种降低双辊连铸产线轧机轧制力的方法
CN112522592B (zh) * 2019-09-19 2022-06-21 宝山钢铁股份有限公司 一种高强薄规格耐火耐候钢板/带及其生产方法
CN111014603B (zh) * 2019-12-30 2022-02-25 江苏沙钢集团有限公司 加硼钢的双辊铸轧生产方法
CN114101608B (zh) * 2020-08-26 2023-05-09 宝山钢铁股份有限公司 一种薄带连铸6xxx铝合金板带及其制备方法
CN113751680B (zh) * 2021-09-09 2022-05-06 中南大学 一种超细晶马氏体时效钢薄带的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111815A (en) * 1976-03-17 1977-09-19 Sumitomo Metal Ind Ltd Steel material superior extremely in resistance for crack induced by h ydrogen
JP5332355B2 (ja) * 2007-07-11 2013-11-06 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5822439B2 (ja) * 2010-06-22 2015-11-24 日新製鋼株式会社 耐熱性および時効硬化特性に優れた低Crステンレス鋼およびその鋼からなる自動車排ガス経路部材
CN107030264B (zh) * 2017-04-27 2019-04-26 酒泉钢铁(集团)有限责任公司 一种超级奥氏体不锈钢双辊薄带铸轧生产工艺

Also Published As

Publication number Publication date
CN108611565A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
CN108611565B (zh) 双辊薄带铸轧和时效工艺制备高强低合金钢的方法
CN108359909B (zh) 通过薄带铸轧和时效工艺制备高强韧马氏体钢方法
CN102002628B (zh) 一种低碳钢薄板的制造方法
KR20140117654A (ko) 700 MPa-급 고강도 내후성 강으로부터 얇은 철강 스트립을 연속 주조에 의해 제조하는 방법
CN101845599A (zh) 一种耐候钢及其制造方法
CN101328560B (zh) 一种Ni系无缝钢管及其制造方法
CN109536830A (zh) 屈服强度550MPa级含钛薄规格耐候钢及其生产方法
CN104831167B (zh) 一种q550e高强用钢热轧板卷及其生产方法
CN110832101B (zh) 材质偏差小以及表面品质优异的超高强度热轧钢板及其制造方法
CN111558701B (zh) 一种细晶高强微合金马氏体钢薄带的制造方法
CN111041365B (zh) 基于薄带铸轧的500~700MPa级经济型高强钢及其生产方法
CN107142364A (zh) 一种超纯铁素体不锈钢双辊薄带铸轧生产工艺
WO2021052429A1 (zh) 一种薄规格花纹钢板/带及其制造方法
WO2021115263A1 (zh) 一种基于异型坯轧制成型的热轧h型钢及其制备方法
WO2021052314A1 (zh) 耐火耐候钢板/带及其制造方法
WO2021052319A1 (zh) 高强薄规格高耐蚀钢及其制造方法
CN110983193A (zh) 基于薄带铸轧的800MPa级高强钢及其生产方法
CN114875339A (zh) 一种短流程低能耗高抗拉强度的低密度冷轧薄钢带及其制造方法
WO2021052428A1 (zh) 一种高强薄规格花纹钢板/带及其制造方法
CN112522641B (zh) 一种高强薄规格高耐蚀钢及其制造方法
CN112522572A (zh) 一种双辊薄带连铸生产高耐蚀钢的方法
CN107030264B (zh) 一种超级奥氏体不锈钢双辊薄带铸轧生产工艺
WO2021052312A1 (zh) 马氏体钢带及其制造方法
CN112522593B (zh) 一种薄规格30CrMo热轧钢板/带及其生产方法
CN112522592B (zh) 一种高强薄规格耐火耐候钢板/带及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221123

Address after: 839, Floor 7, Building 2, Yard 66, Jiaoda East Road, Haidian District, Beijing 100089

Patentee after: Damascus (Beijing) Technology Co.,Ltd.

Address before: No. 9, Chuangye Road, Jinfeng Town, Zhangjiagang City, Suzhou City, Jiangsu Province, 215625

Patentee before: JIANGSU JICUI METALLURGY TECHNOLOGY INSTITUTE Co.,Ltd.

TR01 Transfer of patent right