[go: up one dir, main page]

CN108588088A - A kind of drought resisting transcription factor PbrERF109 and preparation method thereof, application and coding protein and application - Google Patents

A kind of drought resisting transcription factor PbrERF109 and preparation method thereof, application and coding protein and application Download PDF

Info

Publication number
CN108588088A
CN108588088A CN201810498908.8A CN201810498908A CN108588088A CN 108588088 A CN108588088 A CN 108588088A CN 201810498908 A CN201810498908 A CN 201810498908A CN 108588088 A CN108588088 A CN 108588088A
Authority
CN
China
Prior art keywords
transcription factor
pbrerf109
drought
resistant
tobacco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810498908.8A
Other languages
Chinese (zh)
Other versions
CN108588088B (en
Inventor
张绍铃
胡轼
黄小三
赵梁怡
邢才华
董慧珍
高俊芝
刘月
李凌
陶书田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201810498908.8A priority Critical patent/CN108588088B/en
Publication of CN108588088A publication Critical patent/CN108588088A/en
Application granted granted Critical
Publication of CN108588088B publication Critical patent/CN108588088B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Botany (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a kind of drought resisting transcription factor PbrERF109 and preparation method, the protein of application and coding and applications, belong to field of plant genetic, have nucleotide sequence shown in ESQ ID No.1.Drought resisting transcription factor PbrERF109 is transferred in tobacco and Ussurian pear by the present invention, obtained transgenosis overexpression strain drought-resistant ability compared with compareing wild type has very big promotion, the content of hydrogen peroxide and malonaldehyde is intended to lower than wild type in the transgenosis overexpression strain of tobacco, plant activity in vivo oxygen residual is lower, cellular damage smaller, and then improve the drought-resistant ability of tobacco and Ussurian pear plant.

Description

一种抗旱转录因子PbrERF109及其制备方法、应用和编码的蛋 白质及应用A drought-resistant transcription factor PbrERF109 and its preparation method, application and encoded protein White matter and application

技术领域technical field

本发明属于植物基因工程领域,具体涉及一种抗旱转录因子PbrERF109及其制备方法、应用和编码的蛋白质及应用。The invention belongs to the field of plant genetic engineering, and specifically relates to a drought-resistant transcription factor PbrERF109, its preparation method, application, encoded protein and application.

背景技术Background technique

植物在其生长周期过程中经常会遇到一些逆境胁迫,包括生物逆境胁迫和非生物逆境胁迫,非生物逆境胁迫主要包括干旱、高温、低温、重金属胁迫等,其中干旱是影响植物的生长发育、产量品质以及限制植物地理分布的重要因素之一。现在清楚的是,植物在干旱胁迫下能够存活,主要依赖于体内的新陈代谢和植株形态上的适应性变化,包括产生一系列生理生化反应从而建立一个系统的防御状态,在多个层次应对干旱胁迫,这一适应过程中许多响应干旱胁迫的基因的表达受到调控(Pastori and Foyer,2002)。人们在鉴定参与逆境响应应答的信号转导元件中已经取得了长足的进步。Plants often encounter some adversity stresses during their growth cycle, including biotic stresses and abiotic stresses. Abiotic stresses mainly include drought, high temperature, low temperature, heavy metal stress, etc. Among them, drought affects the growth and development of plants, Yield quality and one of the important factors limiting the geographical distribution of plants. It is now clear that the survival of plants under drought stress mainly depends on the metabolism in the body and the adaptive changes in plant morphology, including a series of physiological and biochemical reactions to establish a systemic defense state and respond to drought stress at multiple levels , the expression of many drought stress-responsive genes is regulated during this adaptation process (Pastori and Foyer, 2002). Great strides have been made in identifying signal transduction elements involved in stress-responsive responses.

目前为止,参与增强植物胁迫抗性或耐受性的许多关键基因得到验证,而这些一般分为两种类型。一类是由直接发挥作用,避免细胞受到胁迫伤害的功能蛋白组成,另一类是由调节信号转导和基因表达过程的调控蛋白组成(Chaves et al.,2003;Shinozaki etal.,2003;Yamaguchi-Shinozaki and Shinozaki,2005;Bartels and Sunkar,2005)。在人们研究逆境胁迫的过程中,通过转基因创造出抗性增强的转基因植株是优良的研究材料(Ward and Schroeder,1994;Klein et al.,2004;Shinozaki and Yamaguchi-Shinozaki,2007)。有研究表明,通过过量表达调节因子和功能基因可以显著提高植物的抗逆性。而功能基因和转录因子在组成性表达的结果会有差异(Agarwal et al.,2006),转录因子在提高植物抗逆性方面的作用要更优于功能基因。一个转录因子会对一系列下游基因的表达水平产生调控作用,从而在多种非生物胁迫(包括干旱)中共同发挥抗逆性(Century et al.,2008;Yang et al.,2011)。因此,转录因子遗传转化是植物抗性遗传改良的一种重要途径和手段。So far, many key genes involved in enhancing plant stress resistance or tolerance have been verified, and these are generally classified into two types. One is composed of functional proteins that directly function to prevent cells from being damaged by stress, and the other is composed of regulatory proteins that regulate signal transduction and gene expression processes (Chaves et al., 2003; Shinozaki et al., 2003; Yamaguchi -Shinozaki and Shinozaki, 2005; Bartels and Sunkar, 2005). In the process of people studying adversity stress, transgenic plants with enhanced resistance through transgenesis are excellent research materials (Ward and Schroeder, 1994; Klein et al., 2004; Shinozaki and Yamaguchi-Shinozaki, 2007). Studies have shown that the stress resistance of plants can be significantly improved by overexpressing regulatory factors and functional genes. However, the results of constitutive expression of functional genes and transcription factors will be different (Agarwal et al., 2006), and the role of transcription factors in improving plant stress resistance is better than that of functional genes. A transcription factor can regulate the expression levels of a series of downstream genes, thereby jointly exerting stress resistance in various abiotic stresses (including drought) (Century et al., 2008; Yang et al., 2011). Therefore, genetic transformation of transcription factors is an important way and means for genetic improvement of plant resistance.

植物基因组中存在众多的转录因子,ERF(Ethylene responsive factors,乙烯响应因子)类转录因子是调控网络中不可或缺的重要成员,此类转录因子家族蛋白具有AP2/ERF结构域,该结构域是由一个α-螺旋和3条反向平行的β-折叠结构组合而成。α-螺旋通过疏水侧面与DNA大沟相互作用使得与DNA结合,而β-折叠的作用是识别目的基因的启动子元件,其中第二个β-折叠的第14位和第19位氨基酸残基决定了ERF类转录因子的结合体异性(Okamuro et al.,1997)。ERF转录因子在植物中广泛存在,比如在拟南芥和水稻中分别有147个和157个基因(Jofuku et al.,1994;Nakano et al.,2006)。由于ERF类转录因子只存在于植物体中,所以对它的研究相对广泛。已有的报道表示,ERF转录因子对植物的种子、根、叶和花等器官的生长和发育都有一定的作用(Xie et al.,2017)。一些ERF蛋白,例如,小麦中病原诱导的ERF1基因(TaPIE1)会响应乙烯信号并激活下游防卫和胁迫相关基因,对植物死体营养型丝核菌(Rhizoctonia cerealis)侵染和冷寒胁迫的抵抗性有起到了正向调节的作用(Zhu et al.,2014)。乙烯和ABA信号可以诱导棉花中的GhERF4基因,并在棉花应对非生物胁迫中起到关键作用(Jin and Liu,2008)。但是现有技术中并未报道ERF转录因子能够抗干旱。There are many transcription factors in the plant genome, and ERF (Ethylene responsive factors, ethylene response factors) transcription factors are indispensable and important members of the regulatory network. This type of transcription factor family protein has an AP2/ERF domain, which is It consists of an α-helix and three antiparallel β-sheet structures. The α-helix interacts with the DNA major groove through the hydrophobic side to bind to DNA, while the β-sheet functions to recognize the promoter element of the target gene, in which the 14th and 19th amino acid residues of the second β-sheet Determines the binding body specificity of ERF transcription factors (Okamuro et al., 1997). ERF transcription factors are ubiquitous in plants, for example, there are 147 and 157 genes in Arabidopsis and rice, respectively (Jofuku et al., 1994; Nakano et al., 2006). Since ERF transcription factors only exist in plants, their research is relatively extensive. It has been reported that ERF transcription factors have certain effects on the growth and development of plant organs such as seeds, roots, leaves and flowers (Xie et al., 2017). Some ERF proteins, for example, the pathogen-induced ERF1 gene (TaPIE1) in wheat responds to ethylene signaling and activates downstream defense and stress-related genes, resistance to plant necrotrophic Rhizoctonia cerealis infection and cold stress It has played a positive regulatory role (Zhu et al., 2014). Ethylene and ABA signals can induce the GhERF4 gene in cotton and play a key role in the response of cotton to abiotic stress (Jin and Liu, 2008). However, there is no report in the prior art that ERF transcription factors can resist drought.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种抗旱转录因子PbrERF109,所述抗旱转录因子PbrERF109能够提高植物的抗旱能力。In view of this, the object of the present invention is to provide a drought-resistant transcription factor PbrERF109, which can improve the drought-resistant ability of plants.

为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:

本发明提供了一种抗旱转录因子PbrERF109,具有ESQ ID No.1所示的核苷酸序列。The invention provides a drought-resistant transcription factor PbrERF109, which has the nucleotide sequence shown in ESQ ID No.1.

本发明还提供了上述技术方案所述的抗旱转录因子PbrERF109编码的蛋白质具有SEQ IDNo.2所示的氨基酸序列。The present invention also provides that the protein encoded by the drought-resistant transcription factor PbrERF109 described in the technical solution has the amino acid sequence shown in SEQ ID No.2.

本发明还提供了上述技术方案所述的抗旱转录因子PbrERF109的制备方法,包括以下步骤:The present invention also provides a method for preparing the drought-resistant transcription factor PbrERF109 described in the above technical scheme, comprising the following steps:

以梨cDNA为模版,用转录因子引物对进行PCR扩增,得到抗旱转录因子PbrERF109;Using pear cDNA as a template, the drought-resistant transcription factor PbrERF109 was obtained by PCR amplification with transcription factor primers;

所述转录因子引物对包括转录因子上游引物和转录因子下游引物,所述转录因子上游引物具有SEQ ID No.3所示的核苷酸序列,所述转录因子下游引物具有SEQ ID No.4所示的核苷酸序列。The transcription factor primer pair includes a transcription factor upstream primer and a transcription factor downstream primer, the transcription factor upstream primer has the nucleotide sequence shown in SEQ ID No.3, and the transcription factor downstream primer has the nucleotide sequence shown in SEQ ID No.4 The nucleotide sequence shown.

优选的,所述PCR扩增使用的体系每50μl包括:100ng梨cDNA、10μl Q5ReactionBuffer、1μl 10mM dNTP,0.5μl Taq聚合酶、2.5μl 10μM转录因子上游引物、2.5μl 10μM转录因子下游引物,余量为ddH2O;Preferably, each 50 μl of the PCR amplification system includes: 100 ng pear cDNA, 10 μl Q5ReactionBuffer, 1 μl 10 mM dNTP, 0.5 μl Taq polymerase, 2.5 μl 10 μM transcription factor upstream primer, 2.5 μl 10 μM transcription factor downstream primer, and the balance is ddH 2 O;

所述PCR扩增的条件包括:98℃预变性30秒;98℃变性10秒,65℃退火30秒,72℃延伸30秒,35个循环;循环完成后72℃延伸2分钟。The PCR amplification conditions include: pre-denaturation at 98°C for 30 seconds; denaturation at 98°C for 10 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds, 35 cycles; and extension at 72°C for 2 minutes after the cycle is completed.

本发明还提供了上述技术方案所述的抗旱转录因子PbrERF109或所述蛋白质在提高植物抗旱能力中的应用。The present invention also provides the application of the drought-resistant transcription factor PbrERF109 described in the above technical scheme or the protein in improving the drought-resistant ability of plants.

优选的,所述植物包括烟草或梨。Preferably, said plant comprises tobacco or pear.

优选的,当所述植物为烟草时,所述提高烟草的抗旱能力的方法包括以下步骤:Preferably, when the plant is tobacco, the method for improving the drought resistance of tobacco comprises the following steps:

将所述抗旱转录因子PbrERF109与pEASY-T1克隆载体进行连接,得到重组载体;connecting the drought-resistant transcription factor PbrERF109 with the pEASY-T1 cloning vector to obtain a recombinant vector;

将所述重组载体转入根癌农杆菌中,得到重组根癌农杆菌;Transforming the recombinant vector into Agrobacterium tumefaciens to obtain recombinant Agrobacterium tumefaciens;

将所述重组农杆菌侵染烟草。The recombinant Agrobacterium was used to infect tobacco.

优选的,所述pEASY-T1克隆载体连接的总体系每5μl包括:4μl抗旱转录因子PbrERF109和1μlpEASY-T1克隆载体,所述抗旱转录因子PbrERF109与pEASY-T1克隆载体的摩尔比为3:1;Preferably, each 5 μl of the total system connected with the pEASY-T1 cloning vector includes: 4 μl of drought-resistant transcription factor PbrERF109 and 1 μl of the EASY-T1 cloning vector, and the molar ratio of the drought-resistant transcription factor PbrERF109 to the pEASY-T1 cloning vector is 3:1;

所述连接的条件包括:在25℃下反应30min。The connection conditions include: reacting at 25° C. for 30 minutes.

优选的,当所述植物为梨时,所述提高梨的抗旱能力的方法包括:采用瞬时转化方法将所述抗旱转录因子PbrERF109转入到梨中。Preferably, when the plant is pear, the method for improving the drought resistance of pear comprises: transferring the drought-resistant transcription factor PbrERF109 into pear by using a transient transformation method.

本发明提供的抗旱转录因子PbrERF109表达后能够有效的增强转基因植株的活性氧清除能力,进而能够提高植株的抗旱能力。The expression of the drought-resistant transcription factor PbrERF109 provided by the present invention can effectively enhance the active oxygen scavenging ability of transgenic plants, thereby improving the drought-resistant ability of the plants.

根据本发明实施例的结果显示:本发明将抗旱转录因子PbrERF109转入到烟草和秋子梨中,得到的转基因超表达株系与对照野生型相比抗旱能力有了很大提升,烟草的转基因超表达株系中过氧化氢和丙二醛的含量均要比野生型要低,植株体内活性氧残留更低,细胞损伤更小,进而提高了烟草和秋子梨植株的抗旱能力。According to the results of the examples of the present invention, the present invention transfers the drought-resistant transcription factor PbrERF109 into tobacco and Qiuzi pear. The content of hydrogen peroxide and malondialdehyde in the expression line is lower than that of the wild type, the residual reactive oxygen species in the plant is lower, and the cell damage is smaller, thereby improving the drought resistance of tobacco and Qiuzi pear plants.

附图说明Description of drawings

图1是本发明的技术流程图;Fig. 1 is a technical flow chart of the present invention;

图2是本发明的PbrERF109基因在脱水、脱落酸和4℃低温胁迫下的表达;Fig. 2 is the expression of the PbrERF109 gene of the present invention under dehydration, abscisic acid and 4°C low temperature stress;

图3是本发明的PbrERF109基因亚细胞定位,其中:图3-A,GFP基因(对照)在明场(图中)、紫外线光(图左)下的成像,图(右)为二者叠加后的成像;图3-B,PbrERF109基因在明场(中)、UV光(左)下的成像,图(右)为二者叠加后的成像;Figure 3 is the subcellular localization of the PbrERF109 gene of the present invention, wherein: Figure 3-A, the imaging of the GFP gene (control) in bright field (in the figure) and ultraviolet light (left in the figure), and the figure (right) is the superimposition of the two After imaging; Fig. 3-B, the imaging of PbrERF109 gene under bright field (middle) and UV light (left), and the image (right) is the superimposed image of the two;

图4是本发明的PbrERF109基因转录激活鉴定,图4pGBKT7TM是空载体转化的酵母在不同培养基上的生长情况;pGBKT7TM-PbrERF109是融合载体转化的酵母在不同培养基上的生长情况;Figure 4 is the PbrERF109 gene transcription activation identification of the present invention, Figure 4 pGBKT7 TM is the growth of yeast transformed with empty vectors on different media; pGBKT7 TM -PbrERF109 is the growth of yeast transformed with fusion vectors on different media;

图5是pCAMBIA1301质粒图谱;Fig. 5 is pCAMBIA1301 plasmid map;

图6是PbrERF109基因的植物超表达载体构建流程图;Fig. 6 is the flow chart of constructing the plant overexpression vector of PbrERF109 gene;

图7是PbrERF109转化烟草及植株再生过程示意图;Fig. 7 is a schematic diagram of PbrERF109 transformed tobacco and plant regeneration process;

图8是一种PbrERF109基因转基因植株的PCR鉴定示意图,图8-A利用PbrERF109基因特异引物进行PCR鉴定烟草后T1代转基因植株,M:M aker,P:质粒pCAMBIA1301-PbrERF109,WT:野生型植株,1、2、3、……、7、8:转基因株系;图8-B是烟草转基因植株中外源基因PbrERF109的表达量分析,WT为野生型,其它作为转基因系;Figure 8 is a schematic diagram of PCR identification of PbrERF109 gene transgenic plants, Figure 8-A uses PbrERF109 gene-specific primers for PCR identification of T1 generation transgenic plants after tobacco, M: Maker, P: plasmid pCAMBIA1301-PbrERF109, WT: wild type Plants, 1, 2, 3, ..., 7, 8: transgenic lines; Figure 8-B is the expression level analysis of exogenous gene PbrERF109 in tobacco transgenic plants, WT is wild type, and others are transgenic lines;

图9是本发明中实施例转PbrERF109基因株系(OE5和OE8)及野生型(WT)非转基因植株(WT)干旱处理前后表型和生理指标测定,其中,图9-A是30天大的烟草植株在正常浇水3天和干旱处理20天的表型;图9B-E是30天大的烟草植株在正常浇水3天和干旱处理20天的成活率、失水率、电导率以及叶绿素含量统计;Fig. 9 is the determination of phenotype and physiological index before and after drought treatment of PbrERF109 gene lines (OE5 and OE8) and wild type (WT) non-transgenic plants (WT) in the embodiment of the present invention, wherein Fig. 9-A is 30 days old The phenotypes of tobacco plants in normal watering for 3 days and drought treatment for 20 days; Figure 9B-E is the survival rate, water loss rate and electrical conductivity of 30-day-old tobacco plants in normal watering for 3 days and drought treatment for 20 days And chlorophyll content statistics;

图10是本发明中实施例转PbrERF109基因株系(OE5和OE8)及野生型(WT)非转基因植株(WT)干旱处理后组织化学染色分析H2O2和O2-积累以及丙二醛含量的测定结果图;图10,A-B是30天大的烟草植株在正常浇水3天和干旱处理20天后未转化植株和两个转基因株系活性氧组织化学染色图,采用二氨基联苯胺和硝基四氮唑分别对H2O2(图10-A)和O2-(图10-B)进行染色;图10-C:为转基因烟草干旱胁迫处理后细胞死亡染色图。图10D是转基因烟草干旱胁迫处理后丙二醛含量测定图。Figure 10 is the histochemical staining analysis of H 2 O 2 and O 2 -accumulation and malondialdehyde of PbrERF109 gene-transferred lines (OE5 and OE8) and wild-type (WT) non-transgenic plants (WT) in the examples of the present invention after drought treatment Figure 10, AB is a 30-day-old tobacco plant after 3 days of normal watering and 20 days of drought treatment, non-transformed plants and two transgenic lines Histochemical staining of reactive oxygen species, using diaminobenzidine and Nitrotetrazolium stained H 2 O 2 ( FIG. 10-A ) and O 2- ( FIG. 10-B ), respectively; FIG. 10-C : staining diagram of cell death after drought stress treatment of transgenic tobacco. Fig. 10D is a graph showing the determination of malondialdehyde content in transgenic tobacco after drought stress treatment.

具体实施方式Detailed ways

本发明提供了一种抗旱转录因子PbrERF109,具有ESQ ID No.1所示的核苷酸序列。在本发明中,所述抗旱转录因子PbrERF109能够提高植物的抗旱能力。在本发明中,所述抗旱转录因子PbrERF109的全长为795bp,包含795bp的开放阅读框,编码264个氨基酸,等电点为5.99,分子量为28.9KDa。The invention provides a drought-resistant transcription factor PbrERF109, which has the nucleotide sequence shown in ESQ ID No.1. In the present invention, the drought-resistant transcription factor PbrERF109 can improve the drought-resistant ability of plants. In the present invention, the full length of the drought-resistant transcription factor PbrERF109 is 795 bp, including an open reading frame of 795 bp, encoding 264 amino acids, an isoelectric point of 5.99, and a molecular weight of 28.9 KDa.

在本发明中,所述抗旱转录因子PbrERF109,具有ESQ ID No.1所示的核苷酸序列,具体序列如下:In the present invention, the drought-resistant transcription factor PbrERF109 has the nucleotide sequence shown in ESQ ID No.1, and the specific sequence is as follows:

atgcccttccatgcgaatcggatacaacaggagcaggagcactgcatcatggtctccgccctcaagcacgtaatctccggtggaagcatcagtgggcccacacctcagccaatgccggcggtctacaatgccacgtcatccgtctcgacgagcggcacccagttggcagcgggccaaccagcacaacaggacaactacttctcgccatcgttgccgaatcaaaacaggaaccagcaactgagtttgggaaccgggtttgtcgggatgaatgcgccaactacgaggaagagcaagaacaagtacaggggcgtcaggcagaggccgtgggggaaatgggcggcggagattcgagacccacgacgggcggcgagggtgtggctagggacgttcgagacggcggaggacgcggccagggcttacgacaaggccgccgtcgagttccgcggaaataaggcaaagctcaatttcccatcggacccgggcggtcacattgtcacgactaacgacagttctagtagtggaactagtgctaatgccagtattaatccaggattaattaataagcaaaagcaaaagaatattagcgaaattggggtcatggagaaggaggaggagaaggttgatcaggtcaaactcaaccaggcgacgcagccggagaatatgcaactgggggtggtggcgaccgcggagagcagcgttggtcatgaggaggatgaccagttcttgttgtgggacaatggctggctccgagatggtgaagatgacgacttaatggcatggttatccacgaactag。atgcccttccatgcgaatcggatacaacaggagcaggagcactgcatcatggtctccgccctcaagcacgtaatctccggtggaagcatcagtgggcccacacctcagccaatgccggcggtctacaatgccacgtcatccgtctcgacgagcggcacccagttggcagcgggccaaccagcacaacaggacaactacttctcgccatcgttgccgaatcaaaacaggaaccagcaactgagtttgggaaccgggtttgtcgggatgaatgcgccaactacgaggaagagcaagaacaagtacaggggcgtcaggcagaggccgtgggggaaatgggcggcggagattcgagacccacgacgggcggcgagggtgtggctagggacgttcgagacggcggaggacgcggccagggcttacgacaaggccgccgtcgagttccgcggaaataaggcaaagctcaatttcccatcggacccgggcggtcacattgtcacgactaacgacagttctagtagtggaactagtgctaatgccagtattaatccaggattaattaataagcaaaagcaaaagaatattagcgaaattggggtcatggagaaggaggaggagaaggttgatcaggtcaaactcaaccaggcgacgcagccggagaatatgcaactgggggtggtggcgaccgcggagagcagcgttggtcatgaggaggatgaccagttcttgttgtgggacaatggctggctccgagatggtgaagatgacgacttaatggcatggttatccacgaactag。

在本发明中,所述抗旱转录因子PbrERF109的制备方法,包括以下步骤:In the present invention, the preparation method of the drought-resistant transcription factor PbrERF109 comprises the following steps:

以梨cDNA为模版,用转录因子引物对进行PCR扩增,得到抗旱转录因子PbrERF109;Using pear cDNA as a template, the drought-resistant transcription factor PbrERF109 was obtained by PCR amplification with transcription factor primers;

所述转录因子引物对包括转录因子上游引物和转录因子下游引物,所述转录因子上游引物具有SEQ ID No.3所示的核苷酸序列,所述转录因子下游引物具有SEQ ID No.4所示的核苷酸序列。The transcription factor primer pair includes a transcription factor upstream primer and a transcription factor downstream primer, the transcription factor upstream primer has the nucleotide sequence shown in SEQ ID No.3, and the transcription factor downstream primer has the nucleotide sequence shown in SEQ ID No.4 The nucleotide sequence shown.

在本发明中,所述梨cDNA的制备方法优选包括:从杜梨叶片中提取RNA,将得到的RNA反转录得到cDNA。本发明对所述提取RNA的方法没有特殊限定,采用本领域技术人员常规提取植物RNA的方法即可。In the present invention, the method for preparing pear cDNA preferably comprises: extracting RNA from leaves of Pear pear, and reverse-transcribing the obtained RNA to obtain cDNA. The method for extracting RNA is not particularly limited in the present invention, and the method for extracting plant RNA conventionally used by those skilled in the art can be used.

在本发明中,所述转录因子PbrERF109优选的来源于杜梨(Pyrusbretschneideri),引物对是根据基因PbrERF109的开放阅读框进行设计得到的。在本发明中,所述所述转录因子上游引物具有SEQ ID No.3所示的核苷酸序列,具体如下:In the present invention, the transcription factor PbrERF109 is preferably derived from Pyrusbretschneideri, and the primer pair is designed according to the open reading frame of the gene PbrERF109. In the present invention, the upstream primer of the transcription factor has the nucleotide sequence shown in SEQ ID No.3, specifically as follows:

5’-GAAGATCTTATGCCCTTCCATGCGAATCGGATA-3’;5'-GA AGATCT TATGCCCTTCCATGCGAATCGGATA-3';

所述转录因子下游引物具有SEQ ID No.4所示的核苷酸序列,具体如下所示:The transcription factor downstream primer has the nucleotide sequence shown in SEQ ID No.4, specifically as follows:

5’-GGGTNACCCCTAGTTCGTGGATAACCA-3’。5'-GGGTNACCCTAGTTCGTGGATAACCA-3'.

在本发明中,所述PCR扩增使用的体系每50μl优选包括:100ng梨cDNA、10μlQ5Reaction Buffer、1μl 10mM dNTP,0.5μl Taq聚合酶、2.5μl 10μM转录因子上游引物、2.5μl 10μM转录因子下游引物,余量为ddH2O。在本发明中,所述Q5Reaction Buffe和Taq聚合酶优选购买于产地在美国的NEB公司。In the present invention, each 50 μl of the PCR amplification system preferably includes: 100 ng pear cDNA, 10 μl Q5 Reaction Buffer, 1 μl 10 mM dNTP, 0.5 μl Taq polymerase, 2.5 μl 10 μM transcription factor upstream primer, 2.5 μl 10 μM transcription factor downstream primer , the balance being ddH 2 O. In the present invention, the Q5 Reaction Buffer and Taq polymerase are preferably purchased from NEB Company, which is produced in the United States.

在本发明中,所述Taq聚合酶的酶活优选为1U。In the present invention, the enzyme activity of the Taq polymerase is preferably 1U.

在本发明中,所述PCR扩增的条件优选包括:98℃预变性30秒;98℃变性10秒,65℃退火30秒,72℃延伸30秒,35个循环;循环完成后72℃延伸2分钟。In the present invention, the PCR amplification conditions preferably include: pre-denaturation at 98°C for 30 seconds; denaturation at 98°C for 10 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds, 35 cycles; extension at 72°C after the cycle is completed 2 minutes.

本发明还提供了上述技术方案得到的抗旱转录因子PbrERF109或所述的蛋白质在提高植物抗旱能力中的应用。在本发明中,所述具体提高植物抗旱能力的方式为构建转基因植物,将所述抗旱转录因子PbrERF109转入到植物中。The present invention also provides the application of the drought-resistant transcription factor PbrERF109 obtained in the above-mentioned technical solution or the protein in improving the drought-resistant ability of plants. In the present invention, the specific way to improve the drought resistance ability of plants is to construct transgenic plants, and transfer the drought resistance transcription factor PbrERF109 into plants.

在本发明中,所述植物优选包括烟草或梨,所述梨优选为秋子梨。In the present invention, the plant preferably includes tobacco or pear, and the pear is preferably Qiuzi pear.

在本发明中,当所述植物为烟草时,所述提高烟草的抗旱能力的方法为构建转基因烟草,具体包括以下步骤:In the present invention, when the plant is tobacco, the method for improving the drought resistance of tobacco is to construct transgenic tobacco, which specifically includes the following steps:

将所述抗旱转录因子PbrERF109与pEASY-T1克隆载体进行连接,得到重组载体;connecting the drought-resistant transcription factor PbrERF109 with the pEASY-T1 cloning vector to obtain a recombinant vector;

将所述重组载体转入根癌农杆菌中,得到重组根癌农杆菌;Transforming the recombinant vector into Agrobacterium tumefaciens to obtain recombinant Agrobacterium tumefaciens;

将所述重组农杆菌侵染烟草。The recombinant Agrobacterium was used to infect tobacco.

在本发明中,所述pEASY-T1克隆载体连接的总体系每5μl优选包括:4μl抗旱转录因子PbrERF109和1μlpEASY-T1克隆载体,所述抗旱转录因子PbrERF109与pEASY-T1克隆载体的摩尔比优选为3:1。In the present invention, the total system connected with the pEASY-T1 cloning vector preferably includes every 5 μl: 4 μl of drought-resistant transcription factor PbrERF109 and 1 μl of the EASY-T1 cloning vector, and the molar ratio of the drought-resistant transcription factor PbrERF109 to the pEASY-T1 cloning vector is preferably 3:1.

在本发明中,所述连接的条件优选包括:在25℃下反应30min。In the present invention, the connection conditions preferably include: reacting at 25° C. for 30 minutes.

本发明对所述载体的种类没有特殊限定,采用本领域技术人员常规选用的即可,在本发明实施例中,所述载体为pEASY-T1。The present invention has no special limitation on the type of the vector, and those conventionally selected by those skilled in the art can be used. In the embodiment of the present invention, the vector is pEASY-T1.

本发明对所述重组载体转入根癌农杆菌中获得重组根癌农杆菌的方法没有特殊限定,采用本领域技术人员常规将载体转入根癌农杆菌的方法即可。In the present invention, there is no special limitation on the method for transferring the recombinant vector into Agrobacterium tumefaciens to obtain the recombinant Agrobacterium tumefaciens, and the conventional method of transferring the vector into Agrobacterium tumefaciens can be adopted by those skilled in the art.

本发明对所述重组农杆菌侵染烟草的方法没有特殊限定,采用本领域技术人员常规重组农杆菌侵染烟草的方法即可。In the present invention, the method for infecting tobacco with the recombinant Agrobacterium is not particularly limited, and the conventional method for infecting tobacco with the recombinant Agrobacterium can be adopted by those skilled in the art.

在本发明中,当所述植物为梨时,所述提高梨的抗旱能力的方法包括:采用瞬时转化方法将所述抗旱转录因子PbrERF109转入到梨中。In the present invention, when the plant is pear, the method for improving the drought resistance of pear comprises: transferring the drought-resistant transcription factor PbrERF109 into pear by using a transient transformation method.

本发明对所述采用的瞬时转化方法没有特殊限定,采用本领域技术人员常规选用的瞬时转化方法即可。The present invention has no special limitation on the transient transformation method adopted, and the conventional transient transformation method selected by those skilled in the art can be used.

本发明还提供了上述技术方案所述的抗旱转录因子PbrERF109编码的蛋白质具有SEQ ID No.2所示的氨基酸序列,具体序列如下所示:The present invention also provides that the protein encoded by the drought-resistant transcription factor PbrERF109 described in the above technical scheme has the amino acid sequence shown in SEQ ID No.2, and the specific sequence is as follows:

Met Pro Phe His Ala Asn Arg Ile Gln Gln Glu Gln Glu His Cys Ile MetVal Ser Ala Leu Lys His Val Ile Ser Gly Gly Ser Ile Ser Gly Pro Thr Pro GlnPro Met Pro Ala Val Tyr Asn Ala Thr Ser Ser Val Ser Thr Ser Gly Thr Gln LeuAla Ala Gly Gln Pro Ala Gln GlnAsp Asn Tyr Phe Ser Pro Ser Leu Pro Asn GlnAsn Arg Asn Gln Gln Leu Ser Leu Gly Thr Gly Phe Val Gly Met Asn Ala Pro ThrThr Arg Lys Ser Lys Asn Lys Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys TrpAla Ala Glu Ile Arg Asp Pro Arg Arg Ala Ala Arg Val Trp Leu Gly Thr Phe GluThr Ala Glu Asp Ala Ala Arg Ala Tyr Asp Lys AlaAla Val Glu Phe Arg Gly AsnLys Ala Lys Leu Asn Phe Pro Ser Asp Pro Gly Gly His Ile Val Thr Thr Asn AspSer Ser Ser Ser Gly Thr Ser Ala Asn Ala Ser Ile Asn Pro Gly Leu Ile Asn LysGln Lys Gln Lys Asn Ile Ser Glu Ile Gly Val Met Glu Lys Glu Glu Glu Lys ValAsp Gln Val Lys Leu Asn Gln Ala Thr Gln Pro Glu Asn Met Gln Leu Gly ValValAla Thr Ala Glu Ser Ser Val Gly His Glu Glu Asp Asp Gln Phe Leu Leu TrpAsp Asn Gly Trp Leu Arg Asp Gly Glu Asp Asp Asp Leu Met Ala Trp Leu Ser ThrAsn。Met Pro Phe His Ala Asn Arg Ile Gln Gln Glu Gln Glu His Cys Ile MetVal Ser Ala Leu Lys His Val Ile Ser Gly Gly Ser Ile Ser Gly Pro Thr Pro GlnPro Met Pro Ala Val Tyr Asn Ala Thr Ser Ser Val Ser Thr Ser Gly Thr Gln LeuAla Ala Gly Gly Gln Pro Ala Gln GlnAsp Asn Tyr Phe Ser Pro Ser Leu Pro Asn GlnAsn Arg Asn Gln Gln Leu Ser Leu Gly Thr Gly Phe Val Gly Met Asn Ala Pro ThrThr Arg Lys Ser Lys Asn Lys Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys TrpAla Ala Glu Ile Arg Asp Pro Arg Arg Ala Ala Arg Val Trp Leu Gly Thr Phe GluThr Ala Glu Asp Ala Ala Arg Ala Tyr Asp Lys AlaAla Val Glu Phe Arg Gly AsnLys Ala Lys Leu Asn Phe Pro Ser Asp Pro Gly Gly His Ile Val Thr Thr Asn AspSer Ser Ser Ser Gly Thr Ser Ala Asn Ala Ser Ile Asn Pro Gly Leu Ile Asn LysGln Lys Gln Lys Asn Ile Ser Glu Ile Gly Val Met Glu Lys Glu Glu Glu Lys ValAsp Gln Val Lys Leu Asn Gln Ala Thr Gln Pro Glu Asn Met Gln Leu Gly ValValAla Thr Ala Glu Ser Ser Ser Val Gly His Glu Glu Asp Gln Phe Leu Leu TrpAsp Asn Gly Trp Leu Arg Asp Gly Glu Asp Asp Asp Leu Met Ala Trp Leu Ser Thr Asn.

下面结合实施例对本发明提供的一种抗旱转录因子PbrERF109及其制备方法、应用和编码的蛋白质及应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。A drought-resistant transcription factor PbrERF109 provided by the present invention and its preparation method, application, encoded protein and application will be described in detail below in conjunction with the examples, but they should not be construed as limiting the protection scope of the present invention.

实施例1Example 1

PbrERF109基因克隆及表达分析Cloning and expression analysis of PbrERF109 gene

干旱脱水处理下从杜梨叶片抽提RNA,反转录获得cDNA。本发明在获得所述cNDA后,以获得的cDNA为模板,并且利用特异性转录因子引物对获得抗旱转录因子PbrERF109,具体序列如SEQ ID No.1所示。RNA was extracted from the leaves of Duli pear under drought and dehydration treatment, and cDNA was obtained by reverse transcription. In the present invention, after obtaining the cNDA, the obtained cDNA is used as a template, and a specific transcription factor primer pair is used to obtain the drought-resistant transcription factor PbrERF109, the specific sequence of which is shown in SEQ ID No.1.

RNA提取使用Plant Total RNA Isolation Kit Plus(Foregene,RE-05022),按照该试剂盒提供的操作说明书操作。第一链cDNA的合成用First S cript Strand cDNASynthesis SuperMix(Transgene,AE301-02)反转录试剂盒(按照该试剂盒提供的说明书操作)。For RNA extraction, Plant Total RNA Isolation Kit Plus (Foregene, RE-05022) was used, and the operation instructions provided by the kit were followed. First-strand cDNA was synthesized using First Script Strand cDNASynthesis SuperMix (Transgene, AE301-02) reverse transcription kit (operated according to the instructions provided by the kit).

扩增抗旱转录因子PbrERF109的引物对为:正向引物:PbrERF109Fo rward,5’-GAAGATCTTATGCCCTTCCATGCGAATCGGATA-3’(SEQ ID No.3);反向引物:PbrERF109Reverse,5’-GGGTNACCCCTAGTTCG TGGATAACCA-3’(SEQ ID No.4)。The primer pair for amplifying the drought-resistant transcription factor PbrERF109 is: forward primer: PbrERF109Forward, 5'-GA AGATCT TATGCCCTTCCATGCGAATCGGATA-3' (SEQ ID No.3); reverse primer: PbrERF109Reverse, 5'-G GGTNACC CCTAGTTCG TGGATAACCA-3 ' (SEQ ID No. 4).

50μl的反应体系中包括100ng cDNA,10μl 5×缓冲液(Q5Reaction B uffer),1μl10mM dNTP,0.5μl 1U Taq聚合酶(Q5High-Fidelity DNA Polymerase)(前述缓冲液和Taq聚合酶购自NEB公司,美国),各2.5μl 10μM上述正反向引物,Taq聚合酶的酶活为1U。PCR反应在Veriti Thermal Cycler(Applide Biosystem)扩增仪上按以下程序完成:98℃预变性30秒;98℃变性10秒,65℃退火30秒,72℃延伸30秒,35个循环;循环完成后72℃延伸2分钟。产生一条单一PCR条带产物,经1%的琼脂糖凝胶电泳后,用DNA凝胶回收试剂盒(购自Axygen公司,美国)回收特异条带,提取步骤参照使用说明。The 50 μl reaction system included 100 ng cDNA, 10 μl 5× buffer (Q5Reaction Buffer), 1 μl 10 mM dNTP, 0.5 μl 1U Taq polymerase (Q5 High-Fidelity DNA Polymerase) (the aforementioned buffer and Taq polymerase were purchased from NEB Company, USA ), each 2.5 μl of 10 μM forward and reverse primers, the enzymatic activity of Taq polymerase is 1U. The PCR reaction was completed on the Veriti Thermal Cycler (Applide Biosystem) amplification instrument according to the following procedures: pre-denaturation at 98°C for 30 seconds; denaturation at 98°C for 10 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds, 35 cycles; cycle completion Then extend at 72°C for 2 minutes. Produce a single PCR band product, after 1% agarose gel electrophoresis, use DNA gel extraction kit (purchased from Axygen, USA) was used to recover specific bands, and the extraction steps refer to the instructions for use.

回收纯化的DNA溶液与pEASY-T1载体(购自全式金公司)进行连接反应,按说明书操作,连接反应体系中插入PbrERF109基因与pEASY-T1载体的摩尔比为3:1连接反应总体积是5μl,其中包括4μl纯化的PCR产物,1μl T载体,25℃连接30分钟。The recovered and purified DNA solution was ligated with the pEASY-T1 carrier (purchased from Quanshijin Company) and operated according to the instructions. The molar ratio of the inserted PbrERF109 gene and the pEASY-T1 carrier in the ligated reaction system was 3:1. The total volume of the ligated reaction was 5 μl, including 4 μl of purified PCR product, 1 μl of T vector, ligated at 25°C for 30 minutes.

取5μl连接产物,采用热击法(参照《分子克隆实验手册》第三版,科学出版社,2002)转化大肠杆菌DH5α,在含有50mg/L卡那霉素的LB固体平板中筛选阳性克隆,挑取8个克隆测序(由南京一道生物科技有限公司完成),测序结果表明,本发明克隆PbrERF109基因全长为795bp,通过测序、比对确定是本发明需要的目的基因,序列如SEQ ID No.1所示,将这个基因命名为PbrERF109,它包含795bp的编码阅读框,编码264个氨基酸,等电点为5.99,预测分子量为28.9KDa。BLASTX分析该序列与已知的ERF1 09(所有已发表的文献和数据库)序列同源。推导的PbrERF109基因的氨基酸序列与预测的苹果(MdERF109,XP_008338309)的序列虽然同源性达85%,但是苹果MdERF109这个基因的功能未知。多序列比对结果显示PbrERF109有一段保守结构域,AP2/ERF结构域。SMART预测氨基酸PbrERF109有1转录激活区域。Take 5 μl of the ligation product, transform Escherichia coli DH5α by heat shock method (referring to the third edition of "Molecular Cloning Experimental Manual", Science Press, 2002), and screen positive clones on LB solid plates containing 50 mg/L kanamycin, Pick 8 clones for sequencing (completed by Nanjing Yidao Biotechnology Co., Ltd.), and the sequencing results show that the cloned PbrERF109 gene of the present invention has a full length of 795bp, and it is determined by sequencing and comparison that it is the target gene required by the present invention. The sequence is as SEQ ID No .1, the gene was named PbrERF109, which contains a coding reading frame of 795 bp, encodes 264 amino acids, has an isoelectric point of 5.99, and a predicted molecular weight of 28.9 KDa. BLASTX analysis of this sequence is homologous to the known sequence of ERF1 09 (all published literature and databases). Although the amino acid sequence of the deduced PbrERF109 gene has 85% homology with the predicted sequence of apple (MdERF109, XP_008338309), the function of apple MdERF109 gene is unknown. Multiple sequence alignment results showed that PbrERF109 has a conserved domain, AP2/ERF domain. SMART predicts amino acid PbrERF109 to have 1 transcriptional activation region.

为分析PbrERF109基因是否对干旱、脱落酸(ABA)、低温处理有所响应,采用实时荧光定量PCR(正向引物PbrERF109-F1:5’-AGCCGGAGAATATGCAACTG-3’(SEQ ID No.5);反向引物PbrERF109-R1:5’-TGTCCCACAACAAGAACTGG-3’(SEQ ID No.6))观察该基因在不同胁迫处理下的表达量情况,从而明确何种胁迫对基因PbrERF109诱导最为强烈。采用CTAB法提取RNA,cDNA第一链的合成参照TOYOBO反转录试剂盒的操作手册进行。在20μl的反应体系中有:10μl 2×Mix,0.1μl cDNA,5μl引物(以Tublin为内参引物,长度为208),4.9μl水。定量PCR的程序如下:To analyze whether the PbrERF109 gene responds to drought, abscisic acid (ABA), and low temperature treatments, real-time fluorescent quantitative PCR (forward primer PbrERF109-F1: 5'-AGCCGGAGAATATGCAACTG-3' (SEQ ID No.5); reverse Primer PbrERF109-R1: 5'-TGTCCCACAACAAGAACTGG-3' (SEQ ID No. 6)) was used to observe the expression of the gene under different stress treatments, so as to determine which stress induced the gene PbrERF109 most strongly. The RNA was extracted by the CTAB method, and the synthesis of the first strand of cDNA was carried out according to the operation manual of the TOYOBO reverse transcription kit. In the 20 μl reaction system, there are: 10 μl 2×Mix, 0.1 μl cDNA, 5 μl primer (with Tublin as the internal reference primer, the length is 208), 4.9 μl water. The procedure of quantitative PCR is as follows:

表1定量PCR程序Table 1 Quantitative PCR program

当对植株进行脱水处理时,如图2A所示,PbrERF109基因的转录水平在植物受到脱水处理后转录水平逐渐上升,在0.5h的时候达到最高,是未处理时的将近4倍,表明了PbrERF109基因对脱水有强烈的响应。当对植株进行脱落酸处理时,如图2B所示,PbrERF109基因的转录水平在植物受到脱落酸处理后转录水平逐渐上升,在1h的时候达到最高,是未处理时的3倍多,表明了PbrERF109基因对脱落酸有强烈的响应。当对植株进行4℃低温处理时,如图2C所示,PbrERF109基因的转录水平6h有缓慢升高,然后逐渐地降低至72h,最后在144h又逐渐升高。从6h到72h没有明显的变化,是未处理的1倍多,说明PbrERF109基因对4℃低温响应不明显。结果表明干旱脱水处理能诱导该基因表达,表明它是一个干旱应答候选基因。When the plants were subjected to dehydration treatment, as shown in Figure 2A, the transcription level of the PbrERF109 gene gradually increased after the plants were dehydrated, and reached the highest level at 0.5h, which was nearly 4 times that of untreated plants, indicating that the PbrERF109 Genes respond strongly to dehydration. When the plants were treated with abscisic acid, as shown in Figure 2B, the transcription level of the PbrERF109 gene gradually increased after the plants were treated with abscisic acid, and reached the highest level at 1 h, which was more than three times that of untreated plants, indicating that The PbrERF109 gene is strongly responsive to abscisic acid. When the plants were treated with low temperature at 4°C, as shown in Figure 2C, the transcription level of PbrERF109 gene increased slowly at 6h, then gradually decreased to 72h, and finally increased gradually at 144h. There was no obvious change from 6h to 72h, which was more than 1 times that of untreated, indicating that the response of PbrERF109 gene to 4°C low temperature was not obvious. The results showed that drought-dehydration treatment could induce the expression of this gene, indicating that it was a drought-responsive candidate gene.

实施例2Example 2

PbrERF109基因亚细胞定位、转录激活分析Analysis of subcellular localization and transcriptional activation of PbrERF109 gene

由于PbrERF109基因是一个转录因子,本发明利用烟草叶肉细胞来研究PbrERF109基因的亚细胞定位。利用RT-PCR扩增出PbrERF109基因整个ORF阅读框,并在其扩增引物两端加上XbaI和BamHI两个酶切位点。其扩增引物为(正向引物PbrERF109-F2:5’-TCTAGAATGCCCTTCCATGCGAATCGGATA-3’(SEQ ID No.11);反向引物PbrERF109-R2:5’-GGATCCCCTAGTTCGTGGATAACCA-3’(SEQ ID No.12)),首先将扩增产物进行酶切。在本发明中所述梨干旱诱导转录因子PbrERF109双酶切的温度为37℃,双酶切的时间为12h;双酶切体系总体积为20μl,包括梨干旱诱导转录因子PbrERF109的PCR的纯化产物10μl,10×G缓冲液2μl,XbaI和BamHI各1μl,双蒸水6μl。同时用XbaI和BamHI双酶切pCAMBIA1302,回收产物并连接,从而得到pCAMBIA1302-PbrERF109-GFP重组载体,并将其转入农杆菌EHA105。农杆菌侵染烟草叶肉细胞按如下方法进行:(1)挑取新鲜培养基上农杆菌单克隆接种于5ml LB/Kan/Rif液体培养基(含50mg/L卡那霉素和50mg/L利福平),28℃培养1-2天,220rpm/分钟,活化菌液;(2)取活化菌液,50:1接种到50ml LB/Kan/Rif液体培养基中(含50mg/L卡那霉素和50mg/L利福平),28℃培养8~12小时,220rpm/分钟,培养期间检测菌液OD600介于0.6到0.8之间;(3)将菌液转移至50ml离心管中,4000rpm/分钟,离心5分钟,去掉上清;(4)加入10ml清洗液(10mM MES+10mM MgCl2)重悬菌体,4000rpm/分钟,离心5分钟,去上清,再用5ml清洗液重复一次,最后加入3ml清洗液,充分吸打混匀;(5)吸取重悬菌液,19:1加入清洗液中,测定OD600;(6)注射液为5ml/组合,调整两种菌液的终浓度OD600约为0.6,最后用清洗液补足至5ml,加入5μl乙酰丁香酮(acetosyringone,AS),混匀后,常温放置2-3小时,等待注射;(7)将侵染液装入注射器(5ml)内,一个组合注射2-3片叶,叶片随机选取分布于不同植株上,架取大小适中的叶片,按压注射器将液体注射到烟草叶片下表皮内;(8)注射完毕后,将烟草放置于25℃下培养,48-72小时;(9)分别向两者的叶片注射4’,6-二脒基-2-苯基吲哚进行细胞核染色,随后用激光共聚焦显微镜(Zeiss LSM 710,德国)观察报告基因定位情况,结果表明,对照载体转化时整个细胞中均有荧光,结果见图3A,而重组载体转化的细胞中荧光只能在细胞核特异染料DAPI的染色区域检测到,结果见图3B,说明PbrERF109是一个核定位蛋白。Since the PbrERF109 gene is a transcription factor, the present invention uses tobacco mesophyll cells to study the subcellular localization of the PbrERF109 gene. The entire ORF reading frame of the PbrERF109 gene was amplified by RT-PCR, and two restriction sites, XbaI and BamHI, were added at both ends of the amplification primer. The amplification primers are (forward primer PbrERF109-F2: 5'- TCTAGA ATGCCCTTCCATGCGAATCGGATA-3' (SEQ ID No.11); reverse primer PbrERF109-R2: 5'- GGATCC CCTAGTTCGTGGATAACCA-3' (SEQ ID No.12 )), firstly digest the amplified product. In the present invention, the temperature for the double digestion of the pear drought-induced transcription factor PbrERF109 is 37° C., and the time for the double digestion is 12 hours; the total volume of the double digestion system is 20 μl, including the PCR purified product of the pear drought-induced transcription factor PbrERF109 10 μl, 2 μl of 10×G buffer, 1 μl of XbaI and BamHI, 6 μl of double distilled water. At the same time, pCAMBIA1302 was digested with XbaI and BamHI, and the product was recovered and ligated to obtain the pCAMBIA1302-PbrERF109-GFP recombinant vector, which was transformed into Agrobacterium EHA105. Agrobacterium infection of tobacco mesophyll cells is carried out as follows: (1) pick the Agrobacterium monoclonal on the fresh medium and inoculate it in 5ml LB/Kan/Rif liquid medium (containing 50mg/L kanamycin and 50mg/L lizard Fuping), cultured at 28°C for 1-2 days, 220rpm/min, activated bacterial liquid; (2) Take activated bacterial liquid and inoculate it into 50ml LB/Kan/Rif liquid medium (containing 50mg/L Kan Mycin and 50mg/L rifampicin), cultured at 28°C for 8-12 hours, 220rpm/min, during the cultivation period, the OD600 of the bacterial liquid was detected to be between 0.6 and 0.8; (3) Transfer the bacterial liquid to a 50ml centrifuge tube, 4000rpm/min, centrifuge for 5 minutes, remove the supernatant; (4) Add 10ml cleaning solution (10mM MES+10mM MgCl2) to resuspend the bacteria, 4000rpm/min, centrifuge for 5 minutes, remove the supernatant, and repeat with 5ml cleaning solution , finally add 3ml cleaning solution, fully suck and mix; (5) draw resuspended bacteria liquid, add in cleaning solution at 19:1, measure OD 600 ; (6) injection is 5ml/combination, adjust two kinds of bacterial solutions The final concentration OD 600 is about 0.6, and finally make up to 5ml with cleaning solution, add 5μl acetosyringone (AS), mix well, place at room temperature for 2-3 hours, and wait for injection; (7) Put the infection solution into In the syringe (5ml), inject 2-3 leaves in one combination. The leaves are randomly selected and distributed on different plants, and the leaves of moderate size are picked up, and the liquid is injected into the lower epidermis of the tobacco leaves by pressing the syringe; (8) After the injection, Place the tobacco at 25°C for 48-72 hours; (9) inject 4',6-diamidino-2-phenylindole into the leaves of the two for nuclear staining, and then use a confocal laser microscope ( Zeiss LSM 710, Germany) observed the localization of the reporter gene, and the results showed that there was fluorescence in the whole cell when the control vector was transformed, as shown in Figure 3A, while the fluorescence in the cells transformed with the recombinant vector could only be detected in the stained area of the nucleus specific dye DAPI The results are shown in Figure 3B, indicating that PbrERF109 is a nuclear localized protein.

实施例3Example 3

植物转化超表达载体构建Plant Transformation Overexpression Vector Construction

根据pCAMBIA1301载体的多克隆位点(图5)和PbrERF109基因的编码区序列上的酶切位点分析,选择BglII和BsteII作为内切酶。首先将以PbrE RF109基因的克隆子为模板进行PCR扩增(扩增引物对正向引物:PbrERF109Forward,5’-GAAGATCTTATGCCCTTCCATGCGAATCGGATA-3’(SEQ ID No.3);反向引物:PbrERF109Reverse,5’-GGGTNACCCCTAGTTCGTGGATAACCA-3’(SEQ ID No.4)),然后将PCR产物连同pCAMBIA1301载体一起在37℃下进行酶切,酶切2~3h后纯化回收。在连接反应体系中加入PbrERF109基因与载体pCAMBIA1301的物质的量的比率为3:1,反应总体积为10μl。其中含有:10×buffer 1μl,T4DNA连接酶1μl,双酶切回收的PbrWRKY53基因4ul,双酶切回收的pCAMBIA1301载体产物2μl,双蒸水2μl,在16℃反应14-16h得到连接产物。连接产物转化大肠杆菌菌株DH5α,在含有50mg/L卡那霉素的LB固体平板中筛选,挑选单克隆PCR检测呈阳性后抽提质粒进行酶切,测序确定序列无误后,即pCAMBIA1301-PbrERF109重组载体构建成功。应用冻融法将重组载体导入根癌农杆菌GV3101中并保菌。植物超表达载体‘pCAMBIA1301-PbrERF109’的构建流程如图6所示。According to the multiple cloning site of the pCAMBIA1301 vector ( FIG. 5 ) and the restriction site analysis on the coding region sequence of the PbrERF109 gene, BglII and BsteII were selected as endonucleases. First, the clone of the PbrE RF109 gene was used as a template for PCR amplification (amplification primer pair forward primer: PbrERF109Forward, 5'-GA AGATCT TATGCCCTTCCATGCGAATCGGATA-3' (SEQ ID No.3); reverse primer: PbrERF109Reverse, 5''-G GGTNACC CCTAGTTCGTGGATAACCA-3' (SEQ ID No.4)), and then digest the PCR product together with the pCAMBIA1301 vector at 37°C for 2-3 hours and then purify and recover. The ratio of the amount of the PbrERF109 gene to the vector pCAMBIA1301 was 3:1 in the ligation reaction system, and the total reaction volume was 10 μl. It contains: 1 μl of 10×buffer, 1 μl of T4 DNA ligase, 4ul of PbrWRKY53 gene recovered by double enzyme digestion, 2μl of pCAMBIA1301 vector product recovered by double enzyme digestion, 2μl of double distilled water, and react at 16°C for 14-16h to obtain the ligation product. The ligation product was transformed into Escherichia coli strain DH5α, screened on LB solid plate containing 50mg/L kanamycin, and the single clone was selected to be positive by PCR, and the plasmid was extracted for enzyme digestion. After the sequence was confirmed to be correct, pCAMBIA1301-PbrERF109 recombination Vector construction was successful. The recombinant vector was introduced into Agrobacterium tumefaciens GV3101 by freeze-thaw method and kept. The construction process of the plant overexpression vector 'pCAMBIA1301-PbrERF109' is shown in Figure 6.

实施例4Example 4

烟草遗传转化tobacco genetic transformation

根癌农杆菌介导的烟草遗传转化步骤如下:The genetic transformation steps of tobacco mediated by Agrobacterium tumefaciens are as follows:

1.农杆菌培养:取新鲜活化的农杆菌菌液,在添加了50mg/L的卡那霉素和50mg/L的利福平LB固体平板上划线,2天后用灭菌枪头刮取平板上的菌落,放入液体MS中,28C°,200转/分钟振荡培养,待菌液浓度达到OD600=0.4~0.6时结束培养,然后用于浸染;1. Agrobacterium culture: Take the freshly activated Agrobacterium liquid, mark it on the LB solid plate with 50mg/L kanamycin and 50mg/L rifampicin, and scrape it with a sterilized pipette after 2 days Put the colony on the plate into the liquid MS, 28C °, 200 rpm shaking culture, and stop the culture when the concentration of the bacterial solution reaches OD 600 = 0.4 ~ 0.6, and then use it for dipping;

2.浸染:取健康的未转基因的野生型烟草叶片,切成方形,尺寸大小约为0.5公分长宽,将其用镊子放入培养好的GV3101农杆菌菌液中,淹没浸泡10分钟左右,培养期间放于28℃、200rpm摇床不断振荡;2. Dip dyeing: Take healthy non-transgenic wild-type tobacco leaves, cut them into squares with a size of about 0.5 cm in length and width, put them into the cultured Agrobacterium GV3101 liquid with tweezers, submerge and soak for about 10 minutes, During the cultivation period, place on a shaker at 28°C and 200rpm and shake continuously;

3.共培养:同镊子轻轻取出于MS中浸染后的叶片,用经过无菌处理的滤纸吸干表面多余的菌液,然后夹取叶片(叶表面朝上)放置于共生培养基上,25℃暗处理供培养72小时;3. Co-cultivation: Gently take out the leaves dipped in MS with tweezers, blot the excess bacterial solution on the surface with sterile filter paper, and then clamp the leaves (leaf surface facing up) and place them on the symbiotic medium. Dark treatment at 25°C for 72 hours of cultivation;

4.筛选培养:取出经过暗培养叶片,夹取叶片放入已配制好的头孢霉素溶液中浸泡,冲洗一遍,然后用无菌水对该叶片漂洗4次,用无菌滤纸吸干表面残余水分,最后再把叶片(叶表面朝下)放置于含有20mg/L潮霉素和500mg/L头孢霉素的MS培养基中;4. Screening culture: Take out the leaves that have been cultured in the dark, put the leaves into the prepared cephalosporin solution, soak them, rinse once, then rinse the leaves with sterile water for 4 times, and dry the surface residue with sterile filter paper Moisture, finally put blade (leaf surface down) in the MS medium containing 20mg/L hygromycin and 500mg/L cephalosporin;

5.生根培养:烟草叶片会在筛选培养基上长出不定芽,待目测估计不定芽长约至1公分时,将不定芽切下后,并用镊子小心放入含有20mg/L潮霉素、500mg/L头孢霉素以及0.5mg/L 6-BA的MS培养基上;5. Rooting culture: Tobacco leaves will grow adventitious buds on the screening medium. When the adventitious buds are estimated to be about 1 cm long by visual inspection, cut off the adventitious buds, and carefully put them in with tweezers containing 20mg/L hygromycin, 500mg/L cephalosporin and 0.5mg/L 6-BA MS medium;

6.烟草苗移栽:观察该转基因烟草苗长势到一定程度时,将其用镊子夹取茎部,从生根培养基中抽离出,用水冲洗干净转基因烟草苗根部的MS培养基,并在混有蛭石的无菌营养土以及干净的穴盆里进行移栽,从而得到转PbrERF109基因烟草植株。6. Tobacco seedling transplanting: When observing the growth of the transgenic tobacco seedlings to a certain extent, clamp the stem with tweezers, pull it out from the rooting medium, rinse the MS medium at the root of the transgenic tobacco seedlings with water, and place in The aseptic nutrient soil mixed with vermiculite and clean pots were transplanted to obtain transgenic tobacco plants of PbrERF109.

实施例5Example 5

梨瞬时转化Instant transformation of pears

瞬时转化梨干旱诱导转录因子PbrERF109的秋子梨株系的制备,具体方法如下:The preparation of Qiuzi pear strain transiently transformed with pear drought-induced transcription factor PbrERF109, the specific method is as follows:

1.选取在人工气候室中生长5周左右的秋子梨(Pyrus ussuriensis)用于农杆菌侵染。1. Select Pyrus ussuriensis grown in an artificial climate chamber for about 5 weeks for Agrobacterium infection.

2.于LB培养基(含50mg/L kanamycin+100mg/L rifampicin+50mg/L gentamycin)划线培养带有目的质粒的GV3101农杆菌,挑取农杆菌克隆于5mL LB培养基中28℃培养过夜。2. In LB medium (containing 50mg/L kanamycin + 100mg/L rifampicin + 50mg/L gentamycin) streak culture GV3101 Agrobacterium with the target plasmid, pick the Agrobacterium clone and culture it overnight at 28°C in 5mL LB medium .

3.测定农杆菌菌液OD600值之后,3000rpm离心10min收集菌液,弃上清。用乙酰丁香酮(acetosyringone)溶液[10mM MES(pH 5.6)+10mM MgCl2+200uM acetosyringone]悬浮,调整至OD600大约为1.5左右,室温静置3h。3. After measuring the OD600 value of the Agrobacterium bacterial liquid, centrifuge at 3000 rpm for 10 minutes to collect the bacterial liquid, and discard the supernatant. Use acetosyringone (acetosyringone) solution [10mM MES (pH 5.6) + 10mM MgCl2 + 200uM acetosyringone] to suspend, adjust to OD600 of about 1.5, and let stand at room temperature for 3h.

4.将含有目的质粒的农杆菌用于秋子梨叶片的注射。4. The Agrobacterium containing the objective plasmid was used to inject the leaves of Qiuzi pear.

5.用1mL注射器(去掉针头),在梨叶片背面注射,标记好注射过的叶片。5. Use a 1mL syringe (remove the needle), inject on the back of the pear leaves, and mark the injected leaves.

6.将注射过的梨植株放回人工气候室培养6-7天,即可观察瞬时转化的结果。6. Put the injected pear plants back into the artificial climate chamber for 6-7 days to observe the results of instantaneous transformation.

实施例6Example 6

转基因植株的分子鉴定Molecular identification of transgenic plants

1、叶片DNA提取1. Leaf DNA extraction

取适量转基因烟草植株叶片放入1.5ml离心管中,加入液氮,充分研磨到成粉末状;立即在已研磨成粉末的离心管内加入700μl 65℃预热的DNA提取液十六烷基三乙基溴化铵,提取液配方:100mM Tris-HCl(PH8.0),1.5M NaCl,50mM EDTA(PH=8.0),1%聚乙烯吡咯烷酮,2%CTAB;将混合了提取液的叶片粉末放入65℃水浴锅温浴90分钟,每隔15分钟拿出颠倒混匀;温浴后,10000g常温离心10分钟,取上清液,加入600μl氯仿,颠倒混匀,室温静置5分钟;10000g离心15分钟,取上清液,2倍体积预冷的无水乙醇,34μl 5M NaCl溶液,颠倒混匀后,放入-20℃冰箱静置30分钟;10000g离心10分钟,取上清,用1ml 75%乙醇洗涤沉淀3次,空管离心一分钟,吹干酒精,直至DNA呈无色透明状,加适量无菌双蒸水,放置于37℃培养箱中溶解40min,于1%的琼脂糖凝胶电泳检测。Take an appropriate amount of transgenic tobacco plant leaves and put them into a 1.5ml centrifuge tube, add liquid nitrogen, and grind them thoroughly until they are powdered; immediately add 700 μl 65°C preheated DNA extraction solution cetyl triethyl to the centrifuge tube that has been ground into powder ammonium bromide, extract formula: 100mM Tris-HCl (PH8.0), 1.5M NaCl, 50mM EDTA (PH=8.0), 1% polyvinylpyrrolidone, 2% CTAB; Put it in a 65°C water bath for 90 minutes, take it out and mix it upside down every 15 minutes; after warming, centrifuge at 10000g at room temperature for 10 minutes, take the supernatant, add 600μl chloroform, mix it upside down, and let it stand at room temperature for 5 minutes; centrifuge at 10000g for 15 minutes Minutes, take the supernatant, 2 times the volume of pre-cooled absolute ethanol, 34μl 5M NaCl solution, mix it upside down, put it in a -20℃ refrigerator for 30 minutes; centrifuge at 10000g for 10 minutes, take the supernatant, and use 1ml Wash the precipitate with % ethanol for 3 times, centrifuge the empty tube for one minute, and dry the alcohol until the DNA is colorless and transparent. Gel electrophoresis detection.

2、半定量RT-PCR检测PbrERF109基因的超表达2. Semi-quantitative RT-PCR detection of overexpression of PbrERF109 gene

本研究采用半定量RT-PCR分析转基因梨及烟草植株中外源基因PbrERF109的表达量,转基因株系叶片RNA提取与cDNA合成的方法同实施例1。半定量所用引物为PbrERF109基因特异引物(正向引物PbrERF109-F1:5’-AGCCGGAGAATATGCAACTG-3’(SEQ ID No.5);反向引物PbrERF109-R1:5’-TGTCCCACAACAAGAACTGG-3’(SEQ ID No.6))。反应程序为94℃预变性3分钟;94℃变性30秒,58℃退火30秒,72℃延伸30秒,30个循环;循环完成后72℃延伸5分钟。转基因烟草外源基因表达量采用半定量PCR分析,转基因烟草分析用Ubiqutin做内参,引物序列为:正向引物Ubiqutin-F:5’-TGGCGGACGGGTGAGTAACGCG-3’(SEQ IDNo.7);反向引物Ubiqutin-R:5’-GCTGGTCCGGTGGGATACCCTCC-3’(SEQ ID No.8)。转基因梨分析用Tublin做内参,正向引物Tublin-F:5’-TGGGCTTTGCTCCTCTTAC-3’(SEQ IDNo.9);反向引物Tublin-R:5’-CCTTCGTGCTCATCTTACC-3’(SEQ ID No.10)。结果表明,在转基因株系中的PbrERF109基因的表达量均比野生型高,选择亮度高的5和8,即表达量高的两个超表达株系命名OE5和OE8作为单独的转基因株系,然后分别作为收种子的母本植株。In this study, semi-quantitative RT-PCR was used to analyze the expression level of exogenous gene PbrERF109 in transgenic pear and tobacco plants, and the methods of RNA extraction and cDNA synthesis from leaves of transgenic lines were the same as in Example 1. The primers used for semi-quantitative analysis were PbrERF109 gene-specific primers (forward primer PbrERF109-F1: 5'-AGCCGGAGAATATGCAACTG-3' (SEQ ID No.5); reverse primer PbrERF109-R1: 5'-TGTCCCACAACAAGAACTGG-3' (SEQ ID No. .6)). The reaction program was pre-denaturation at 94°C for 3 minutes; denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 30 seconds, 30 cycles; and extension at 72°C for 5 minutes after the cycle was completed. The expression of exogenous genes in transgenic tobacco was analyzed by semi-quantitative PCR, and Ubiqutin was used as an internal reference for the analysis of transgenic tobacco. The primer sequence was: forward primer Ubiqutin-F: 5'-TGGCGGACGGGTGAGTAACGCG-3' (SEQ ID No.7); reverse primer Ubiqutin -R: 5'-GCTGGTCCGGTGGGATACCCTCC-3' (SEQ ID No. 8). Transgenic pear analysis uses Tublin as an internal reference, forward primer Tublin-F: 5'-TGGGCTTTGCTCCTCTTAC-3' (SEQ ID No.9); reverse primer Tublin-R: 5'-CCTTCGTGCTCATCTTACC-3' (SEQ ID No.10) . The results showed that the expression levels of the PbrERF109 gene in the transgenic lines were higher than those of the wild type, and 5 and 8 with high brightness were selected, that is, the two overexpression lines with high expression levels were named OE5 and OE8 as separate transgenic lines, Then they were used as female plants for harvesting seeds respectively.

实施例7Example 7

转基因植株的抗性评价Resistance Evaluation of Transgenic Plants

同批收的烟草未转化植株(WT)和转PbrERF109超表达系(OE5、OE8)将WT、OE5和OE8在MS生长培养基上生长15天后移栽到盆中生长20天后,正常生长的植株没有差别,但在干旱处理处理20天后,WT植株萎蔫程度严重,而OE5和OE8植株仍能正常生长,表明转基因植株的抗旱能力明显比野生型强(图9A)。统计成活率,结果表明,两个转基因系的成活率明显高于野生型(图9B)。图9(C、D)分别表示测定干旱处理后植株的失水率和电导率,结果显示转基因植株的失水速率以及电导率明显低于野生型。图9E是室温下干旱处理20天后叶绿素测定、及叶绿素提取。上述研究表明转PbrERF109基因的烟草植株抗旱能力比未转化植株(WT)明显增强。Tobacco untransformed plants (WT) and PbrERF109 overexpression lines (OE5, OE8) received in the same batch were transplanted into pots after growing WT, OE5 and OE8 on MS growth medium for 15 days and growing for 20 days, and the normal growing plants There was no difference, but after 20 days of drought treatment, the WT plants wilted severely, while the OE5 and OE8 plants still grew normally, indicating that the drought resistance of the transgenic plants was significantly stronger than that of the wild type (Fig. 9A). The survival rate was counted, and the results showed that the survival rate of the two transgenic lines was significantly higher than that of the wild type ( FIG. 9B ). Figure 9 (C, D) respectively show the water loss rate and electrical conductivity of the plants after the drought treatment, and the results show that the water loss rate and electrical conductivity of the transgenic plants are significantly lower than those of the wild type. Figure 9E is the measurement of chlorophyll and the extraction of chlorophyll after 20 days of drought treatment at room temperature. The above studies showed that the drought resistance ability of tobacco plants transfected with PbrERF109 gene was significantly enhanced compared with non-transformed plants (WT).

在转基因株系中,电导率较低和成活率高表明他们可能具有比WT有更强的抗ROS的能力。那么通过鉴定植株中ROS的积累量便成为必要。用DAB和NBT组织化学染色法对植株叶片进行染色,分别用来检测过氧化氢(H2O2)及超氧阴离子(O2-)的含量。如图10(A,B)干旱胁迫20天之后,用DAB染色的叶片,野生株系型出现褐色的叶面积明显比转基因株系要大,且颜色更深,用NBT染色的叶片,野生型株系比转基因株系的蓝色更深,面积更大。同样的,如图10(C,D)所示转基因超表达株系中丙二醛(MDA)的含量以及细胞死亡程度均要比野生型要低,细胞损伤更小。这些证据表明,表明转基因系在受到干旱胁迫后体内所积累的活性氧残留量较对照系少,进而表明,过表达的PbrERF109基因能够有效的增强转基因植株的活性氧清除能力,从而提高了植株的抗旱性。In the transgenic lines, the lower conductivity and higher survival rate indicated that they may have stronger ROS resistance than WT. Then it becomes necessary to identify the accumulation of ROS in plants. The leaves of the plants were stained with DAB and NBT histochemical staining methods to detect the content of hydrogen peroxide (H 2 O 2 ) and superoxide anion (O 2- ), respectively. As shown in Figure 10 (A, B) after 20 days of drought stress, the leaves stained with DAB, the brown leaf area of the wild-type strain was significantly larger than that of the transgenic strain, and the color was darker, and the leaves stained with NBT, the wild-type strain The blue color of the line is darker and larger than that of the transgenic line. Similarly, as shown in Figure 10 (C, D), the content of malondialdehyde (MDA) and the degree of cell death in the transgenic overexpression lines were lower than those of the wild type, and the cell damage was smaller. These evidences show that the residual amount of active oxygen accumulated in the transgenic lines is less than that of the control lines after being subjected to drought stress, and then shows that the overexpressed PbrERF109 gene can effectively enhance the active oxygen scavenging ability of transgenic plants, thereby improving the plant's drought resistance.

为了评估PbrERF109转基因梨超表达对干旱的抗性,正常生长情况下,对照及超表达系形态没有明显的差异,在干旱处理20天后,发现野生型比转基因系萎蔫更严重且呈水渍状;恢复浇水生长7天,转基因的两个系恢复快而对照极大部分不能恢复正常生长变成枯黄,且顶芽已经死亡。上述研究结果表明,转基因系的抗旱能力比野生型强。In order to evaluate the drought resistance of PbrERF109 transgenic pear overexpression, under normal growth conditions, there was no significant difference in the morphology of the control and overexpression lines. After 20 days of drought treatment, it was found that the wild type was more severely wilted and water-stained than the transgenic line; Resuming watering and growing for 7 days, the two transgenic lines recovered quickly, but most of the control lines could not return to normal growth and turned yellow, and the terminal buds had died. The above results indicated that the drought resistance of the transgenic lines was stronger than that of the wild type.

由以上实施例可以得出,本发明将抗旱转录因子PbrERF109转入到烟草和秋子梨中,得到的转基因超表达株系与对照野生型相比抗旱能力有了很大提升,烟草的转基因超表达株系中过氧化氢和丙二醛的含量均要比野生型要低,植株体内活性氧残留更低,细胞损伤更小,进而提高了烟草和秋子梨植株的抗旱能力。It can be concluded from the above examples that the present invention transfers the drought-resistant transcription factor PbrERF109 into tobacco and Qiuzi pear, and the drought-resistant ability of the obtained transgene overexpression line has been greatly improved compared with the control wild type, and the transgene overexpression of tobacco The content of hydrogen peroxide and malondialdehyde in the strain is lower than that of the wild type, the residual reactive oxygen species in the plant is lower, and the cell damage is smaller, thereby improving the drought resistance of tobacco and Qiuzi pear plants.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

序列表sequence listing

<110> 南京农业大学<110> Nanjing Agricultural University

<120> 一种抗旱转录因子PbrERF109及其制备方法、应用和编码的蛋白质及应用<120> A Drought Resistant Transcription Factor PbrERF109, Its Preparation Method, Application, Encoded Protein and Application

<160> 12<160> 12

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 795<211> 795

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atgcccttcc atgcgaatcg gatacaacag gagcaggagc actgcatcat ggtctccgcc 60atgcccttcc atgcgaatcg gatacaacag gagcaggagc actgcatcat ggtctccgcc 60

ctcaagcacg taatctccgg tggaagcatc agtgggccca cacctcagcc aatgccggcg 120ctcaagcacg taatctccgg tggaagcatc agtgggccca cacctcagcc aatgccggcg 120

gtctacaatg ccacgtcatc cgtctcgacg agcggcaccc agttggcagc gggccaacca 180gtctacaatg ccacgtcatc cgtctcgacg agcggcaccc agttggcagc gggccaacca 180

gcacaacagg acaactactt ctcgccatcg ttgccgaatc aaaacaggaa ccagcaactg 240gcacaacagg acaactactt ctcgccatcg ttgccgaatc aaaacaggaa ccagcaactg 240

agtttgggaa ccgggtttgt cgggatgaat gcgccaacta cgaggaagag caagaacaag 300agtttgggaa ccgggtttgt cgggatgaat gcgccaacta cgaggaagag caagaacaag 300

tacaggggcg tcaggcagag gccgtggggg aaatgggcgg cggagattcg agacccacga 360tacaggggcg tcaggcagag gccgtggggg aaatgggcgg cggagattcg agaccacga 360

cgggcggcga gggtgtggct agggacgttc gagacggcgg aggacgcggc cagggcttac 420cgggcggcga gggtgtggct agggacgttc gagacggcgg aggacgcggc cagggcttac 420

gacaaggccg ccgtcgagtt ccgcggaaat aaggcaaagc tcaatttccc atcggacccg 480gacaaggccg ccgtcgagtt ccgcggaaat aaggcaaagc tcaatttccc atcggacccg 480

ggcggtcaca ttgtcacgac taacgacagt tctagtagtg gaactagtgc taatgccagt 540ggcggtcaca ttgtcacgac taacgacagt tctagtagtg gaactagtgc taatgccagt 540

attaatccag gattaattaa taagcaaaag caaaagaata ttagcgaaat tggggtcatg 600attaatccag gattaattaa taagcaaaag caaaagaata ttagcgaaat tggggtcatg 600

gagaaggagg aggagaaggt tgatcaggtc aaactcaacc aggcgacgca gccggagaat 660gagaaggagg aggagaaggt tgatcaggtc aaactcaacc aggcgacgca gccggagaat 660

atgcaactgg gggtggtggc gaccgcggag agcagcgttg gtcatgagga ggatgaccag 720atgcaactgg gggtggtggc gaccgcggag agcagcgttg gtcatgagga ggatgaccag 720

ttcttgttgt gggacaatgg ctggctccga gatggtgaag atgacgactt aatggcatgg 780ttcttgttgt gggacaatgg ctggctccga gatggtgaag atgacgactt aatggcatgg 780

ttatccacga actag 795ttatccacga actag 795

<210> 2<210> 2

<211> 264<211> 264

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Pro Phe His Ala Asn Arg Ile Gln Gln Glu Gln Glu His Cys IleMet Pro Phe His Ala Asn Arg Ile Gln Gln Glu Gln Glu His Cys Ile

1 5 10 151 5 10 15

Met Val Ser Ala Leu Lys His Val Ile Ser Gly Gly Ser Ile Ser GlyMet Val Ser Ala Leu Lys His Val Ile Ser Gly Gly Ser Ile Ser Gly

20 25 30 20 25 30

Pro Thr Pro Gln Pro Met Pro Ala Val Tyr Asn Ala Thr Ser Ser ValPro Thr Pro Gln Pro Met Pro Ala Val Tyr Asn Ala Thr Ser Ser Ser Val

35 40 45 35 40 45

Ser Thr Ser Gly Thr Gln Leu Ala Ala Gly Gln Pro Ala Gln Gln AspSer Thr Ser Gly Thr Gln Leu Ala Ala Gly Gln Pro Ala Gln Gln Asp

50 55 60 50 55 60

Asn Tyr Phe Ser Pro Ser Leu Pro Asn Gln Asn Arg Asn Gln Gln LeuAsn Tyr Phe Ser Pro Ser Leu Pro Asn Gln Asn Arg Asn Gln Gln Leu

65 70 75 8065 70 75 80

Ser Leu Gly Thr Gly Phe Val Gly Met Asn Ala Pro Thr Thr Arg LysSer Leu Gly Thr Gly Phe Val Gly Met Asn Ala Pro Thr Thr Arg Lys

85 90 95 85 90 95

Ser Lys Asn Lys Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys TrpSer Lys Asn Lys Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys Trp

100 105 110 100 105 110

Ala Ala Glu Ile Arg Asp Pro Arg Arg Ala Ala Arg Val Trp Leu GlyAla Ala Glu Ile Arg Asp Pro Arg Arg Ala Ala Arg Val Trp Leu Gly

115 120 125 115 120 125

Thr Phe Glu Thr Ala Glu Asp Ala Ala Arg Ala Tyr Asp Lys Ala AlaThr Phe Glu Thr Ala Glu Asp Ala Ala Arg Ala Tyr Asp Lys Ala Ala

130 135 140 130 135 140

Val Glu Phe Arg Gly Asn Lys Ala Lys Leu Asn Phe Pro Ser Asp ProVal Glu Phe Arg Gly Asn Lys Ala Lys Leu Asn Phe Pro Ser Asp Pro

145 150 155 160145 150 155 160

Gly Gly His Ile Val Thr Thr Asn Asp Ser Ser Ser Ser Gly Thr SerGly Gly His Ile Val Thr Thr Asn Asp Ser Ser Ser Ser Gly Thr Ser

165 170 175 165 170 175

Ala Asn Ala Ser Ile Asn Pro Gly Leu Ile Asn Lys Gln Lys Gln LysAla Asn Ala Ser Ile Asn Pro Gly Leu Ile Asn Lys Gln Lys Gln Lys

180 185 190 180 185 190

Asn Ile Ser Glu Ile Gly Val Met Glu Lys Glu Glu Glu Lys Val AspAsn Ile Ser Glu Ile Gly Val Met Glu Lys Glu Glu Glu Lys Val Asp

195 200 205 195 200 205

Gln Val Lys Leu Asn Gln Ala Thr Gln Pro Glu Asn Met Gln Leu GlyGln Val Lys Leu Asn Gln Ala Thr Gln Pro Glu Asn Met Gln Leu Gly

210 215 220 210 215 220

Val Val Ala Thr Ala Glu Ser Ser Val Gly His Glu Glu Asp Asp GlnVal Val Ala Thr Ala Glu Ser Ser Val Gly His Glu Glu Asp Asp Gln

225 230 235 240225 230 235 240

Phe Leu Leu Trp Asp Asn Gly Trp Leu Arg Asp Gly Glu Asp Asp AspPhe Leu Leu Trp Asp Asn Gly Trp Leu Arg Asp Gly Glu Asp Asp Asp

245 250 255 245 250 255

Leu Met Ala Trp Leu Ser Thr AsnLeu Met Ala Trp Leu Ser Thr Asn

260 260

<210> 3<210> 3

<211> 33<211> 33

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

gaagatctta tgcccttcca tgcgaatcgg ata 33gaagatctta tgcccttcca tgcgaatcgg ata 33

<210> 4<210> 4

<211> 27<211> 27

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

gggtnacccc tagttcgtgg ataacca 27gggtnacccc tagttcgtgg ataacca 27

<210> 5<210> 5

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

agccggagaa tatgcaactg 20agccggagaa tatgcaactg 20

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

tgtcccacaa caagaactgg 20tgtccccacaa caagaactgg 20

<210> 7<210> 7

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

tggcggacgg gtgagtaacg cg 22tggcggacgg gtgagtaacg cg 22

<210> 8<210> 8

<211> 23<211> 23

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

gctggtccgg tgggataccc tcc 23gctggtccgg tgggataccc tcc 23

<210> 9<210> 9

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

tgggctttgc tcctcttac 19tgggctttgc tcctcttac 19

<210> 10<210> 10

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

ccttcgtgct catcttacc 19ccttcgtgct catcttacc 19

<210> 11<210> 11

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

tctagaatgc ccttccatgc gaatcggata 30tctagaatgc ccttccatgc gaatcggata 30

<210> 12<210> 12

<211> 25<211> 25

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

ggatccccta gttcgtggat aacca 25ggatccccta gttcgtggat aacca 25

Claims (9)

1.一种抗旱转录因子PbrERF109,具有ESQ ID No.1所示的核苷酸序列。1. A drought-resistant transcription factor PbrERF109, which has the nucleotide sequence shown in ESQ ID No.1. 2.权利要求1所述的抗旱转录因子PbrERF109编码的蛋白质具有SEQ ID No.2所示的氨基酸序列。2. The protein encoded by the drought-resistant transcription factor PbrERF109 according to claim 1 has the amino acid sequence shown in SEQ ID No.2. 3.权利要求1所述的抗旱转录因子PbrERF109的制备方法,包括以下步骤:3. the preparation method of the drought-resistant transcription factor PbrERF109 described in claim 1, comprises the following steps: 以梨cDNA为模版,用转录因子引物对进行PCR扩增,得到抗旱转录因子PbrERF109;Using pear cDNA as a template, the drought-resistant transcription factor PbrERF109 was obtained by PCR amplification with transcription factor primers; 所述转录因子引物对包括转录因子上游引物和转录因子下游引物,所述转录因子上游引物具有SEQ ID No.3所示的核苷酸序列,所述转录因子下游引物具有SEQ ID No.4所示的核苷酸序列。The transcription factor primer pair includes a transcription factor upstream primer and a transcription factor downstream primer, the transcription factor upstream primer has the nucleotide sequence shown in SEQ ID No.3, and the transcription factor downstream primer has the nucleotide sequence shown in SEQ ID No.4 The nucleotide sequence shown. 4.根据权利要求3所述的制备方法,其特征在于,所述PCR扩增使用的体系每50μl包括:100ng梨cDNA、10μl Q5 Reaction Buffer、1μl 10mM dNTP,0.5μl Taq聚合酶、2.5μl 10μM转录因子上游引物、2.5μl 10μM转录因子下游引物,余量为ddH2O;4. The preparation method according to claim 3, characterized in that, the system used in the PCR amplification comprises per 50 μl: 100ng pear cDNA, 10 μl Q5 Reaction Buffer, 1 μl 10mM dNTP, 0.5 μl Taq polymerase, 2.5 μl 10 μM Transcription factor upstream primer, 2.5 μl 10 μM transcription factor downstream primer, the balance is ddH 2 O; 所述PCR扩增的条件包括:98℃预变性30秒;98℃变性10秒,65℃退火30秒,72℃延伸30秒,35个循环;循环完成后72℃延伸2分钟。The PCR amplification conditions include: pre-denaturation at 98°C for 30 seconds; denaturation at 98°C for 10 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds, 35 cycles; and extension at 72°C for 2 minutes after the cycle is completed. 5.权利要求1所述的抗旱转录因子PbrERF109或权利要求3~5任意一项所述的制备方法制备得到的抗旱转录因子PbrERF109或权利要求2所述的蛋白质在提高植物抗旱能力中的应用。5. The application of the drought-resistant transcription factor PbrERF109 according to claim 1 or the drought-resistant transcription factor PbrERF109 prepared by the preparation method according to any one of claims 3 to 5 or the protein according to claim 2 in improving plant drought resistance. 6.根据权利要求5所述的应用,其特征在于,所述植物包括烟草或梨。6. The use according to claim 5, wherein the plant comprises tobacco or pear. 7.根据权利要求6所述的应用,其特征在于,当所述植物为烟草时,所述提高烟草的抗旱能力的方法包括以下步骤:7. application according to claim 6, is characterized in that, when described plant is tobacco, the method for described improving the drought resistance ability of tobacco comprises the following steps: 将所述抗旱转录因子PbrERF109与pEASY-T1克隆载体进行连接,得到重组载体;connecting the drought-resistant transcription factor PbrERF109 with the pEASY-T1 cloning vector to obtain a recombinant vector; 将所述重组载体转入根癌农杆菌中,得到重组根癌农杆菌;Transforming the recombinant vector into Agrobacterium tumefaciens to obtain recombinant Agrobacterium tumefaciens; 将所述重组农杆菌侵染烟草。The recombinant Agrobacterium was used to infect tobacco. 8.根据权利要求7所述的应用,其特征在于,所述pEASY-T1克隆载体连接的总体系每5μl包括:4μl抗旱转录因子PbrERF109和1μlpEASY-T1克隆载体,所述抗旱转录因子PbrERF109与载体的摩尔比为3:1;8. The application according to claim 7, characterized in that, every 5 μl of the total system connected with the pEASY-T1 cloning vector comprises: 4 μl of drought-resistant transcription factor PbrERF109 and 1 μl of pEASY-T1 cloning vector, the drought-resistant transcription factor PbrERF109 and the carrier The molar ratio is 3:1; 所述连接的条件包括:在25℃下反应30min。The connection conditions include: reacting at 25° C. for 30 minutes. 9.根据权利要求5所述的应用,其特征在于,当所述植物为梨时,所述提高梨的抗旱能力的方法包括:采用瞬时转化方法将所述抗旱转录因子PbrERF109转入到梨中。9. The application according to claim 5, characterized in that, when the plant is a pear, the method for improving the drought resistance of the pear comprises: using a transient transformation method to transfer the drought-resistant transcription factor PbrERF109 into the pear .
CN201810498908.8A 2018-05-23 2018-05-23 Drought-resistant transcription factor PbrERF109, preparation method and application thereof, encoded protein and application thereof Active CN108588088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498908.8A CN108588088B (en) 2018-05-23 2018-05-23 Drought-resistant transcription factor PbrERF109, preparation method and application thereof, encoded protein and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498908.8A CN108588088B (en) 2018-05-23 2018-05-23 Drought-resistant transcription factor PbrERF109, preparation method and application thereof, encoded protein and application thereof

Publications (2)

Publication Number Publication Date
CN108588088A true CN108588088A (en) 2018-09-28
CN108588088B CN108588088B (en) 2020-10-23

Family

ID=63632884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498908.8A Active CN108588088B (en) 2018-05-23 2018-05-23 Drought-resistant transcription factor PbrERF109, preparation method and application thereof, encoded protein and application thereof

Country Status (1)

Country Link
CN (1) CN108588088B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779268A (en) * 2021-01-15 2021-05-11 南京农业大学 Soybean GmCRF4a gene and application thereof
CN116554291A (en) * 2023-04-28 2023-08-08 南京农业大学 A pear bZIP-like transcription factor PubZIP914 and its application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779268A (en) * 2021-01-15 2021-05-11 南京农业大学 Soybean GmCRF4a gene and application thereof
CN116554291A (en) * 2023-04-28 2023-08-08 南京农业大学 A pear bZIP-like transcription factor PubZIP914 and its application
CN116554291B (en) * 2023-04-28 2024-02-09 南京农业大学 A kind of pear bZIP transcription factor PubZIP914 and its application

Also Published As

Publication number Publication date
CN108588088B (en) 2020-10-23

Similar Documents

Publication Publication Date Title
CN105255915B (en) Application of the arabidopsis AtGDSL genes in the anti-sclerotiniose of rape and in promoting seed to sprout
CN105861517B (en) A kind of Radix Notoginseng antibacterial peptide gene PnSN1 and its application
CN107164391A (en) A kind of strawberry floral genes FvbHLH78 and its application
CN110256544A (en) NsNHX1 protein and its relevant biological material are cultivating the application in resistance to inverse type poplar
CN101208430B (en) Method of constructing plant having nodules with high nitrogen fixation activity
CN109022454A (en) Protein and the application of a kind of cotton long fibre cance high-expression gene GhLFHE2 and its coding
CN104164440B (en) Plant stress reactive MYC (myelocytomatosis protein) transcription factors as well as coding genes and application thereof
CN110218247B (en) Interaction of two proteins PwRBP1 and PwNAC1 for synergistically improving plant stress tolerance and application thereof
CN114014922B (en) Protein for regulating and controlling plant salt tolerance, coding gene and application thereof
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN109439670B (en) A method for obtaining a gene for improving seed size and quality and its application
CN108588088B (en) Drought-resistant transcription factor PbrERF109, preparation method and application thereof, encoded protein and application thereof
CN111118036B (en) Gene Encoding the PHD3 Transcription Factor of Tamarix brixensis and Its Application
CN108315335A (en) The drought-induced transcription factor PbrWRKY53 of pears and its application in terms of improving plant drought ability
CN110172088B (en) Chimonanthus praecox transcription factor gene CpSNAC1 and application thereof
CN102477435A (en) Method for improving drought resistance of plant by using Poncirus trifoliata transcription factor gene PtrABF
CN109837297B (en) GhAGD13 gene related to verticillium wilt resistance and application thereof
CN104178497B (en) Cotton-derived MYC transcription factors, their coding genes and their application in regulating plant stress resistance
CN114480414B (en) Method for enhancing cold resistance of plants or cultivating high-cold-resistance plants
CN114525298B (en) Application of soybean protein GmFVE in regulation and control of salt tolerance of plants
CN104178498A (en) GhMYC1 (gossypium hirsutum L. myelocytomatosis protein 1) transcription factor from gossypium hirsutum L., coding gene thereof and applications of GhMYC1 transcription factor and coding gene
CN104120136B (en) Chloroplast iron transporter gene NtPIC1 and application thereof
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN112409467B (en) Application of plant stress tolerance-related protein GmDof41 in regulating plant stress tolerance
CN106008687A (en) Application method of stress resistance-related gene ZmHDZIV13 in regulation of plant stress resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant