[go: up one dir, main page]

CN108584882A - A kind of nano material preparation system and the technique using the system production nano material - Google Patents

A kind of nano material preparation system and the technique using the system production nano material Download PDF

Info

Publication number
CN108584882A
CN108584882A CN201810868112.7A CN201810868112A CN108584882A CN 108584882 A CN108584882 A CN 108584882A CN 201810868112 A CN201810868112 A CN 201810868112A CN 108584882 A CN108584882 A CN 108584882A
Authority
CN
China
Prior art keywords
plasma
gas
liquid
nanomaterials
preparation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810868112.7A
Other languages
Chinese (zh)
Inventor
蒋灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201810868112.7A priority Critical patent/CN108584882A/en
Publication of CN108584882A publication Critical patent/CN108584882A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种纳米材料制备系统及利用该系统生产纳米材料的工艺。该系统,包括将液态前驱体定量雾化的雾化装置、生成粉体纳米材料的等离子反应器、将粉体纳米材料与气相分离的纳米粉体收集装置、对分离的气相进行处理的尾气处理装置和智能控制系统。该工艺,包括以下过程:(1)前驱体溶液配置;(2)等离子体激发;(3)前驱体雾化;(4)雾化液滴法向注入等离子体;(5)收集粉体纳米材料;(6)气液分离;(7)尾气处理。本发明的制备系统及工艺,可应用于各种适合雾化的前驱体物质,具有适用范围广的特点;并且,该系统可连续化制备和收集纳米材料,生产效率高,工艺流程简单,过程可控,自动化程度高。

The invention discloses a nano material preparation system and a process for producing nano material by using the system. The system includes an atomization device for quantitative atomization of liquid precursors, a plasma reactor for generating powder nanomaterials, a nanopowder collection device for separating powder nanomaterials from the gas phase, and a tail gas treatment device for treating the separated gas phase device and intelligent control system. The process includes the following processes: (1) Precursor solution configuration; (2) Plasma excitation; (3) Precursor atomization; (4) Atomized liquid droplets are injected into plasma; (5) Collecting powder nano materials; (6) gas-liquid separation; (7) tail gas treatment. The preparation system and process of the present invention can be applied to various precursor substances suitable for atomization, and has the characteristics of wide application range; moreover, the system can continuously prepare and collect nanomaterials, with high production efficiency, simple process flow, and Controllable and highly automated.

Description

一种纳米材料制备系统及利用该系统生产纳米材料的工艺A nanomaterial preparation system and a process for producing nanomaterials using the system

技术领域technical field

本发明涉及纳米材料制备技术领域,尤其涉及一种纳米材料制备系统及利用该系统生产纳米材料的工艺。The invention relates to the technical field of nanomaterial preparation, in particular to a nanomaterial preparation system and a process for producing nanomaterials using the system.

背景技术Background technique

纳米材料是指其至少在某一方向上的尺寸小于100nm的材料,按其维度可分为零维纳米材料、一维纳米材料和二维纳米材料。纳米材料具有显著的表面效应、小尺寸效应、宏观量子遂道效应、介电限域效应等,这一系列效应使得纳米材料表现出与宏观材料明显不同的特殊物理化学性质。这些特殊性质使得纳米材料在能源、环境、功能新材料、医疗、信息技术等领域有着广泛而重要的应用。然而,由于其尺寸小,比表面积巨大,纳米材料的制备比较困难。目前,可以大规模、连续、批量生产纳米材料的方法和设备系统较少,这困扰着众多的纳米材料专家,严重制约着纳米技术的发展。Nanomaterials refer to materials whose size in at least one direction is less than 100nm, and can be divided into zero-dimensional nanomaterials, one-dimensional nanomaterials and two-dimensional nanomaterials according to their dimensions. Nanomaterials have significant surface effects, small size effects, macroscopic quantum tunneling effects, dielectric confinement effects, etc. These series of effects make nanomaterials exhibit special physical and chemical properties that are significantly different from macroscopic materials. These special properties make nanomaterials have extensive and important applications in the fields of energy, environment, functional new materials, medical treatment, and information technology. However, due to their small size and large specific surface area, the preparation of nanomaterials is difficult. At present, there are few methods and equipment systems that can produce nanomaterials in a large-scale, continuous and batch manner, which puzzles many nanomaterial experts and seriously restricts the development of nanotechnology.

根据纳米材料自身的性质不同,合成或制备纳米材料的方法非常多且相当复杂。传统的纳米材料制备方法主要包括化学法和物理法,这其中化学法的使用较为普遍,它又可分为液相化学沉淀法和气相化学沉积法(CVD)等。等离子体化学气相沉积(PCVD)是气相化学沉积法中非常重要的分支,它利用等离子体作为制备纳米材料前驱体的加热源或化学反应的激发源,使前驱体气化、裂解或反应,并在基材上冷凝沉积,特别适用于纳米膜材料的制备。然而,等离子体化学气相沉积法所使用的前驱体通常为气态物质或可经等离子体气化的物质,这严重限制了其使用范围。而且,PCVD方法通常为间歇式生产,效率较低,不适用于粉体材料的制备和收集。According to the different properties of nanomaterials, there are many and complicated methods for synthesizing or preparing nanomaterials. Traditional nanomaterial preparation methods mainly include chemical methods and physical methods, among which the use of chemical methods is more common, and it can be divided into liquid-phase chemical precipitation and vapor-phase chemical deposition (CVD). Plasma Chemical Vapor Deposition (PCVD) is a very important branch of vapor phase chemical deposition. It uses plasma as a heating source for the preparation of nanomaterial precursors or as an excitation source for chemical reactions, so that the precursors are vaporized, cracked or reacted, and Condensation deposition on the substrate is especially suitable for the preparation of nano-film materials. However, the precursors used in the plasma chemical vapor deposition method are usually gaseous substances or substances that can be vaporized by plasma, which severely limits its application range. Moreover, the PCVD method is usually a batch production with low efficiency and is not suitable for the preparation and collection of powder materials.

发明内容Contents of the invention

本发明的目的在于,针对现有技术的上述不足,提出一种结构简单、收率高的纳米材料制备系统及利用该系统生产纳米材料的工艺。The object of the present invention is to propose a nano-material preparation system with simple structure and high yield and a process for producing nano-materials by using the system to address the above-mentioned shortcomings of the prior art.

本发明的一种纳米材料制备系统,包括将液态前驱体定量雾化的雾化装置、生成粉体纳米材料的等离子体反应器、将粉体纳米材料与气相分离的纳米粉体收集装置、对分离的气相进行处理的尾气处理装置和用以调控前驱体制备纳米材料过程中各反应参数和过程参数的智能控制系统。A nanomaterial preparation system of the present invention includes an atomization device for quantitatively atomizing liquid precursors, a plasma reactor for generating powder nanomaterials, a nanopowder collection device for separating powder nanomaterials from the gas phase, and A tail gas treatment device for processing the separated gas phase and an intelligent control system for regulating various reaction parameters and process parameters in the process of preparing nanomaterials from precursors.

优选的,所述等离子体反应器包括等离子体发生装置、等离子体反应腔和冷凝部。Preferably, the plasma reactor includes a plasma generating device, a plasma reaction chamber and a condensation part.

优选的,所述等离子体发生装置是直流等离子体发生器,微波等离子体发生器或电感耦合等离子体发生器。Preferably, the plasma generating device is a DC plasma generator, a microwave plasma generator or an inductively coupled plasma generator.

优选的,所述等离子体反应腔包括两个同轴的套接的圆筒。Preferably, the plasma reaction chamber includes two coaxial socketed cylinders.

优选的,雾化的液态前驱体由载气将其以法向方式注入到同轴布置的等离子体反应腔中。Preferably, the atomized liquid precursor is injected into the coaxially arranged plasma reaction chamber by a carrier gas in a normal direction.

优选的,所述雾化装置为高压喷雾或超声喷雾装置。Preferably, the atomization device is a high-pressure spray or an ultrasonic spray device.

优选的,纳米粉体收集装置4包括气液分离装置50、收集瓶41、气固分离装置45,气固分离装置45为旋风分离器40、湿法分离器或布袋收集器。Preferably, the nanopowder collection device 4 includes a gas-liquid separation device 50, a collection bottle 41, and a gas-solid separation device 45, and the gas-solid separation device 45 is a cyclone separator 40, a wet separator or a bag collector.

优选的,所述气液分离装置冷却方式是水冷、气冷或冷却液冷却。Preferably, the cooling method of the gas-liquid separation device is water cooling, air cooling or cooling liquid cooling.

优选的,所述尾气处理装置包括装填有吸收液的处理池;所述吸收液为酸性吸收液或碱性吸收液。Preferably, the tail gas treatment device includes a treatment tank filled with an absorption liquid; the absorption liquid is an acidic absorption liquid or an alkaline absorption liquid.

本发明的利用上述的的系统生产纳米材料的工艺,包括以下过程:(1)前驱体溶液配置;(2)等离子体激发;(3)前驱体雾化;(4)雾化液滴法向注入等离子体;(5)收集粉体纳米材料;(6)气液分离;(7)尾气处理。The process of producing nanomaterials using the above-mentioned system of the present invention includes the following processes: (1) Precursor solution configuration; (2) Plasma excitation; (3) Precursor atomization; (4) Atomized droplet normal direction Plasma injection; (5) collection of powder nanomaterials; (6) gas-liquid separation; (7) tail gas treatment.

本发明所提供的一种纳米材料制备系统及利用该系统生产纳米材料的工艺,可应用于各种适合雾化的前驱体物质,具有适用范围广的特点;并且,该系统可连续化制备和收集各种零维、一维或二维的无机纳米材料、金属纳米材料、纳米金属氧化物或硫化物、碳纳米材料及杂化纳米材料,生产效率高,工艺流程简单,过程可控,自动化程度高,是一种新型的粉体纳米材料制备技术和系统。A nanomaterial preparation system provided by the present invention and a process for producing nanomaterials using the system can be applied to various precursor substances suitable for atomization, and have the characteristics of a wide range of applications; moreover, the system can be continuously prepared and Collect various zero-dimensional, one-dimensional or two-dimensional inorganic nanomaterials, metal nanomaterials, nanometal oxides or sulfides, carbon nanomaterials and hybrid nanomaterials, with high production efficiency, simple process flow, controllable process, and automation It is a new type of powder nanomaterial preparation technology and system.

附图说明Description of drawings

图1是本发明的纳米材料制备系统示意图;Fig. 1 is a schematic diagram of a nanomaterial preparation system of the present invention;

图2是本发明的工艺流程图。Fig. 2 is a process flow diagram of the present invention.

1-等离子体反应器;10-等离子体发生装置;11-等离子体电源;12-等离子体枪;13-等离子体枪进气阀;14-等离子体工作气体;15-冷却介质;16-等离子体枪前端;17-等离子体;20-前驱体雾化装置;21-蠕动泵;22-前驱体;23-雾化器;24-雾化室;25-载气管路电磁阀;26-载气;27-雾化室前端; 30-等离子体反应腔;31-等离子体反应腔外腔体;32-等离子体反应腔内腔体;321-注入口; 34-等离子体辅助气体进气口;341-等离子体辅助气体;35-等离子体辅助气体管路电磁阀;36-等离子体反应腔内腔体尾端;3-冷凝部;37-冷却介质电磁阀;38-冷凝管;39-等离子体反应腔尾部;4-纳米粉体收集装置;40 -旋风分离器;41-收集瓶;42 -旋风分离器下端;43-旋风分离器上端;44-旋风分离器的进气口;45-气固分离装置;50-气液分离装置;51-冷凝管;52-冷却介质电磁阀;53-气液分离装置的前端;54-气液分离装置的底部;55-气液分离装置的底部排液口;56 -气液分离装置的尾部;57-液相收集瓶;60-尾气处理装置;61- 进气管;62-进气管底端;63-排气口;64-排气口底端;65-处理池;70-智能控制系统;71、72、73、74、75-热电偶;81、82、83、84、85、86 -连接法兰。1-plasma reactor; 10-plasma generator; 11-plasma power supply; 12-plasma gun; 13-plasma gun intake valve; 14-plasma working gas; 15-cooling medium; 16-plasma Front end of body gun; 17-plasma; 20-precursor atomization device; 21-peristaltic pump; 22-precursor; 23-atomizer; 24-spray chamber; 25-carrier gas pipeline solenoid valve; 27- Front end of atomization chamber; 30- Plasma reaction chamber; 31- External cavity of plasma reaction chamber; 32- Internal cavity of plasma reaction chamber; 321- Injection port; 34- Plasma auxiliary gas inlet ; 341-plasma auxiliary gas; 35-plasma auxiliary gas pipeline electromagnetic valve; 36-plasma reaction chamber inner cavity tail end; 3-condensing part; 37-cooling medium electromagnetic valve; 38-condensing pipe; Tail of the plasma reaction chamber; 4-nanometer powder collection device; 40-cyclone separator; 41-collection bottle; 42-the lower end of the cyclone separator; 43-the upper end of the cyclone separator; 44-the air inlet of the cyclone separator; 45 -gas-solid separation device; 50-gas-liquid separation device; 51-condenser; 52-cooling medium solenoid valve; 53-front end of gas-liquid separation device; 54-bottom of gas-liquid separation device; 55-gas-liquid separation device Bottom liquid outlet; 56-tail of gas-liquid separation device; 57-liquid phase collection bottle; 60-tail gas treatment device; 61-inlet pipe; 62-bottom of air inlet pipe; Bottom; 65-processing tank; 70-intelligent control system; 71, 72, 73, 74, 75-thermocouple; 81, 82, 83, 84, 85, 86-connecting flange.

具体实施方式Detailed ways

以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。The following are specific embodiments of the present invention and in conjunction with the accompanying drawings, the technical solutions of the present invention are further described, but the present invention is not limited to these embodiments.

如图1所示,本发明的纳米材料制备系统包含有:包括将液态前驱体定量雾化的前驱体雾化装置20、生成粉体纳米材料的等离子体反应器1、将粉体纳米材料与气相分离的纳米粉体收集装置4、对分离的气相进行处理的尾气处理装置60和用以调控前驱体制备纳米材料过程中各反应参数和过程参数的智能控制系统70。As shown in FIG. 1 , the nanomaterial preparation system of the present invention includes: a precursor atomization device 20 for quantitatively atomizing liquid precursors, a plasma reactor 1 for generating powder nanomaterials, and a powder nanomaterial and The nanopowder collection device 4 for gas phase separation, the tail gas treatment device 60 for treating the separated gas phase, and the intelligent control system 70 for regulating various reaction parameters and process parameters in the process of preparing nanomaterials from precursors.

等离子体反应器1可以包括等离子体发生装置10、等离子体反应腔30和冷凝部3。The plasma reactor 1 may include a plasma generating device 10 , a plasma reaction chamber 30 and a condensation part 3 .

一由等离子体电源11和等离子体枪12组成的等离子体发生装置10、一前驱体雾化装置20、一由圆柱形等离子体反应腔外腔体31和等离子体反应腔内腔体32同轴水平布置的等离子体反应腔体30、一旋风分离器40、一气液分离装置50、一尾气处理装置60和一智能控制系统70;等离子体电源11提供等离子体枪12电能,将送入到等离子体枪12中的等离子体工作气体14激发,并在由两圆形、同轴布置的等离子体反应腔外腔体31和内腔体32组成的等离子体反应腔30中形成等离子体17,其后,前驱体22经蠕动泵21定量送入雾化器23中进行雾化,雾化后的液滴进入到雾化室24中形成高浓度前驱体雾化液滴,再由载气26通过雾化室24与等离子体反应内腔体32相连的注入口321将前驱体雾化液滴法向注入到等离子体17中,使其迅速反应,其中通过载气管路电磁阀25来控制载气26的流量,其反应后的产物在等离体体反应腔尾部39的冷凝部3中冷凝成粉体纳米材料,粉体纳米材料由等离子工作气体14、等离子体辅助气体341和载气26共同将其送入到旋风分离器40中,等离子体枪进气阀13控制等离子工作气体14的进入量,粉体纳米材料在收集瓶41中收集,而气相部分进入到气液分离装置50中,经安装在气液分离装置50的前端53的冷凝管51冷凝后,其中低沸点的部分被冷却成液态而收集在液相收集瓶57中,其余气相部分则送入到尾气处理装置60中以除去污染性有毒气体。智能控制系统70通过控制等离子体电源11的功率、等离子工作气体14开关及流量和采集热电偶71数据,调控等离子体17的直径和温度,并通过采集蠕动泵21转速数据和控制载气管路电磁阀开关,设置前驱体22进入雾化器23的流速,使其定量雾化,并控制其进入等离子体17中的速度,以到达合适的反应条件和反应速率;通过采集制备过程中各关键区域热电偶72、73、74、75的数据和控制各冷却介质管路的冷却介质电磁阀37、52,智能调节设置粉体纳米材料冷凝区温度和气液分离温度。A plasma generating device 10 consisting of a plasma power source 11 and a plasma gun 12, a precursor atomization device 20, a cylindrical plasma reaction chamber outer chamber 31 and a plasma reaction chamber inner chamber 32 coaxial Horizontally arranged plasma reaction chamber 30, a cyclone separator 40, a gas-liquid separation device 50, a tail gas treatment device 60 and an intelligent control system 70; The plasma working gas 14 in the body gun 12 is excited, and forms a plasma 17 in the plasma reaction chamber 30 composed of two circular, coaxially arranged plasma reaction chamber outer chambers 31 and inner chambers 32, which Finally, the precursor 22 is quantitatively sent to the atomizer 23 through the peristaltic pump 21 for atomization, and the atomized droplets enter the atomization chamber 24 to form high-concentration precursor atomized droplets, and then the carrier gas 26 passes through The injection port 321 of the atomization chamber 24 connected to the plasma reaction inner cavity 32 injects the atomized liquid droplets of the precursor into the plasma 17 in the normal direction to make it react rapidly, wherein the carrier gas is controlled by the electromagnetic valve 25 of the carrier gas pipeline 26 flow rate, the product after the reaction is condensed into powder nanomaterials in the condensation part 3 of plasma reaction chamber tail 39, and powder nanomaterials are jointly formed by plasma working gas 14, plasma auxiliary gas 341 and carrier gas 26. It is sent into the cyclone separator 40, the plasma gun inlet valve 13 controls the entering amount of the plasma working gas 14, the powder nano material is collected in the collection bottle 41, and the gas phase part enters in the gas-liquid separation device 50, After being condensed by the condensation pipe 51 installed at the front end 53 of the gas-liquid separation device 50, the part with low boiling point is cooled into a liquid state and collected in the liquid phase collection bottle 57, and the remaining gas phase part is sent to the tail gas treatment device 60 for Remove polluting toxic gases. The intelligent control system 70 regulates the diameter and temperature of the plasma 17 by controlling the power of the plasma power supply 11, the switch and flow of the plasma working gas 14, and collecting the data of the thermocouple 71, and controls the electromagnetic flow rate of the carrier gas pipeline by collecting the speed data of the peristaltic pump 21 and controlling the temperature of the plasma 17. Valve switch, set the flow rate of the precursor 22 into the atomizer 23, make it quantitatively atomized, and control its speed into the plasma 17, so as to achieve the appropriate reaction conditions and reaction rate; The data of the thermocouples 72, 73, 74, 75 and the cooling medium solenoid valves 37, 52 controlling each cooling medium pipeline intelligently adjust and set the temperature of the condensation zone of the powder nanomaterial and the temperature of the gas-liquid separation.

等离子体发生装置10可以由等离子体电源11和等离子体枪12构成。等离子体电源11可以是直流等离子体电源、微波等离子体电源或电感耦合等离子体电源。The plasma generator 10 can be composed of a plasma power source 11 and a plasma gun 12 . The plasma power supply 11 can be a DC plasma power supply, a microwave plasma power supply or an inductively coupled plasma power supply.

等离子体枪前端16可以伸入到等离子体反应腔内腔体32内部,并与其同轴布置,等离子体枪12尾端18连接有等离子体工作气体14的进气管路和枪体的冷却介质15的管路,且等离子体工作气体14的进气管路连接有电磁阀,可以控制其开头及流速大小,以调节等离子体17的直径和温度。冷却介质15用于冷却枪体部件以免受损影响使用寿命。The front end 16 of the plasma gun can extend into the cavity 32 of the plasma reaction chamber and be arranged coaxially with it. The tail end 18 of the plasma gun 12 is connected with the air intake pipeline of the plasma working gas 14 and the cooling medium 15 of the gun body. The pipeline, and the inlet pipeline of the plasma working gas 14 is connected with a solenoid valve, which can control its opening and flow rate, so as to adjust the diameter and temperature of the plasma 17. The cooling medium 15 is used to cool the parts of the gun body so as not to be damaged and affect the service life.

前驱体雾化装置20可以由蠕动泵21、雾化器23和雾化室24组成。蠕动泵21将前驱体22定量送入到雾化器23中进行雾化,雾化后的微小液滴进入雾化室24,雾化室前端27与载气26的管路连接,另一端通过法兰81与注入口321连接,雾化后的前驱体由载气26以法向方式注入到等离子体中进行反应。根据注入口321的数目,前驱体雾化装置20与其对应配套连接。The precursor atomization device 20 may consist of a peristaltic pump 21 , an atomizer 23 and an atomization chamber 24 . The peristaltic pump 21 quantitatively sends the precursor 22 into the atomizer 23 for atomization, and the atomized tiny droplets enter the atomization chamber 24, the front end 27 of the atomization chamber is connected to the pipeline of the carrier gas 26, and the other end passes through The flange 81 is connected to the injection port 321 , and the atomized precursor is normally injected into the plasma by the carrier gas 26 to react. According to the number of injection ports 321 , the precursor atomization device 20 is matched with the corresponding connection.

等离子反应腔30可以包括两个同轴的套接的圆筒。在本实施例中,等离子体反应腔30由两个不同大小的圆柱形等离子体反应腔外腔体31和等离子体反应腔内腔体32同轴套嵌而成,外腔体31和内腔体32可以由耐高温的金属合金、刚玉、石英或耐火砖材质制成,优选的外腔体31由耐火砖砌成,以提高其保温效率。内腔体32靠近等离子体枪前端16的位置沿着腔体径向方向开有多个对称分布的注入口321,并延伸至外腔体31外侧与前驱体雾化装置20相连。等离子体反应腔30与等离子体枪12连接一端在内腔体32和外腔体31之间分布有多个辅助气进气口34,辅助气341的开关和流量由等离子体辅助气体管路电磁阀35控制,起到冷却内腔体32避免其高温损坏的作用,同时吹扫粉体纳米材料,将其送入旋风分离器40。在注入口321附近及内腔体32尾端36出口处安装有热电偶,以检测等离子体反应温度及等离子体出口温度。在等离子体反应腔体尾部39安装有冷凝管38,冷却介质流经冷凝管38起到降低腔内温度的作用,其腔体内温度由热电偶73检测,降低反应腔内温度目的是为了促使反应后产物冷凝以形成粉体纳米材料,同时提供后续气液分离效率。The plasma reaction chamber 30 may include two coaxial socketed cylinders. In this embodiment, the plasma reaction chamber 30 is formed by coaxially nesting two cylindrical plasma reaction chamber outer chambers 31 and plasma reaction chamber inner chambers 32 of different sizes. The outer chamber body 31 and the inner chamber The body 32 can be made of high temperature resistant metal alloy, corundum, quartz or refractory bricks, and the outer cavity 31 is preferably made of refractory bricks to improve its thermal insulation efficiency. A plurality of symmetrically distributed injection ports 321 are opened in the inner cavity 32 near the front end 16 of the plasma gun along the radial direction of the cavity, and extend to the outside of the outer cavity 31 to connect with the precursor atomization device 20 . A plurality of auxiliary gas inlets 34 are distributed between the inner cavity body 32 and the outer cavity body 31 at one end connected to the plasma reaction chamber 30 and the plasma gun 12, and the switch and flow of the auxiliary gas 341 are electromagnetically controlled by the plasma auxiliary gas pipeline. The valve 35 is controlled to cool the inner cavity 32 to avoid its high-temperature damage, and at the same time, purge the powder nanomaterials and send them into the cyclone separator 40 . A thermocouple is installed near the injection port 321 and at the outlet of the tail end 36 of the inner cavity 32 to detect the plasma reaction temperature and the plasma outlet temperature. A condenser tube 38 is installed at the tail part 39 of the plasma reaction chamber. The cooling medium flows through the condenser tube 38 to reduce the temperature in the chamber. The temperature in the chamber is detected by a thermocouple 73. The purpose of reducing the temperature in the reaction chamber is to promote the reaction. The final product is condensed to form powder nanomaterials, while providing subsequent gas-liquid separation efficiency.

纳米粉体收集装置4包括气液分离装置50、收集瓶41、气固分离装置45,气固分离装置45可以为旋风分离器40、湿法分离器或布袋收集器。在本实施例中,气固分离装置45为旋风分离器40。The nanopowder collection device 4 includes a gas-liquid separation device 50, a collection bottle 41, and a gas-solid separation device 45. The gas-solid separation device 45 can be a cyclone separator 40, a wet separator or a bag collector. In this embodiment, the gas-solid separation device 45 is a cyclone separator 40 .

旋风分离器40的进气口44与等离子体反应腔30经法兰82同轴连接,旋风分离器下端42通过法兰84连接有粉体纳米材料的收集瓶41,旋风分离器上端43与气液分离装置50通过法兰83连接。The air inlet 44 of the cyclone separator 40 is coaxially connected with the plasma reaction chamber 30 through the flange 82, the lower end 42 of the cyclone separator is connected with the collection bottle 41 of powder nanomaterial through the flange 84, and the upper end 43 of the cyclone separator is connected with the gas The liquid separator 50 is connected by a flange 83 .

气液分离装置50的前端53与旋风分离器40通过法兰连接,并在气液分离装置50的前端53设置一热电偶74,以检测进入到气液分离装置50中气相部分的温度,通过调节加装在气液分离装置前端的冷凝管51的冷却介质电磁阀52,以及通过热电偶75检测冷凝后气相温度,控制冷却介质开关,实现对气相中低沸点物质的冷凝,将其从气相中分离,并流入到与气液分离装置50的底部54排液口55相连的液相收集瓶57中,排液口55通过法兰85与液相收集瓶57连接,实现低沸点物质与气相部分的分离。The front end 53 of the gas-liquid separation device 50 is connected with the cyclone separator 40 by a flange, and a thermocouple 74 is arranged at the front end 53 of the gas-liquid separation device 50 to detect the temperature of the gas phase part entering the gas-liquid separation device 50, and pass Adjust the cooling medium solenoid valve 52 of the condensation pipe 51 installed at the front end of the gas-liquid separation device, and detect the temperature of the gas phase after condensation by the thermocouple 75, control the switch of the cooling medium, and realize the condensation of low boiling point substances in the gas phase, and remove it from the gas phase and flow into the liquid phase collection bottle 57 connected to the bottom 54 liquid discharge port 55 of the gas-liquid separation device 50, the liquid discharge port 55 is connected with the liquid phase collection bottle 57 by a flange 85 to realize the separation of the low boiling point substance and the gas phase part separation.

尾气处理装置60的进气管61与气液分离装置50的尾部56通过法兰86相连,进气管61底端62浸入到处理池65中的尾气吸收液液面以下,排气口63底端64则位于液面上方。尾气处理装置可以类似方式进行串联,其吸收液可以酸性吸收液、碱性吸收液或两者的联用,取决于反应产物气体的性质。The inlet pipe 61 of the tail gas treatment device 60 is connected to the tail portion 56 of the gas-liquid separation device 50 through a flange 86, the bottom end 62 of the inlet pipe 61 is immersed below the liquid level of the tail gas absorption liquid in the treatment tank 65, and the bottom end 64 of the exhaust port 63 above the liquid surface. Tail gas treatment devices can be connected in series in a similar manner, and the absorption liquid can be acidic absorption liquid, alkaline absorption liquid or a combination of the two, depending on the nature of the reaction product gas.

智能控制系统70设有人机交互界面,其通过采集各关键区域热电偶温度参数,控制各气、液管路中工作气体和液体流量及开头,结合特定算法,可智能调节等离子体电源功率、各气体和液体流量及开头,实现各种纳米材料的连续化制备。The intelligent control system 70 is equipped with a human-computer interaction interface, which controls the flow and opening of the working gas and liquid in each gas and liquid pipeline by collecting the temperature parameters of the thermocouples in each key area. Combined with specific algorithms, it can intelligently adjust the power of the plasma power supply, each Gas and liquid flow and opening, realize the continuous preparation of various nanomaterials.

如图2所示,本发明的利用上述系统生产粉体纳米材料的工艺包括前驱体溶液的配置、等离子体激发、前驱体雾化、雾化液滴法向注入等离子体、收集粉体纳米材料、气液分离和尾气处理。首先配置好前驱体溶液,再调节等离子体工作气体和辅助气体流量,打开等离子体电源,激发工作气体形成稳定的等离子体。同时,将前驱体溶液定量雾化,雾化液滴由载气法向注入到等离子体中反应,反应后的产物在反应腔中冷凝形成粉体纳米材料,再由工作气体、辅助气体和载气一同将其送入气固分离装置中以收集粉体纳米材料,气相部分则在气液分离装置中进一步冷却以除去低沸点物质和溶剂,其余部分则进入尾气吸收装置以除去污染性有毒气体,无害气体排出或回收再利用。As shown in Figure 2, the process of utilizing the above-mentioned system to produce powder nanomaterials of the present invention includes the configuration of precursor solution, plasma excitation, precursor atomization, atomized liquid droplets are injected into plasma, and powder nanomaterials are collected. , gas-liquid separation and tail gas treatment. First configure the precursor solution, then adjust the flow rate of the plasma working gas and auxiliary gas, turn on the plasma power supply, and excite the working gas to form a stable plasma. At the same time, the precursor solution is quantitatively atomized, and the atomized liquid droplets are injected into the plasma from the carrier gas to react, and the reacted products are condensed in the reaction chamber to form powder nanomaterials, and then the working gas, auxiliary gas and carrier gas The gas is sent to the gas-solid separation device to collect powder nanomaterials, the gas phase part is further cooled in the gas-liquid separation device to remove low boiling point substances and solvents, and the rest enters the tail gas absorption device to remove polluting toxic gases , Harmless gas discharge or recycling.

以上未涉及之处,适用于现有技术。What is not involved above is applicable to the prior art.

虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。Although some specific embodiments of the present invention have been described in detail by examples, those skilled in the art should understand that the above examples are only for illustration, rather than for limiting the scope of the present invention. Various modifications or additions or similar substitutions can be made to the described specific embodiments without departing from the direction of the present invention or exceeding the scope defined by the appended claims. Those skilled in the art should understand that any modifications, equivalent replacements, improvements, etc. made to the above implementations based on the technical essence of the present invention shall be included in the protection scope of the present invention.

Claims (10)

1.一种纳米材料制备系统,其特征在于:包括将液态前驱体定量雾化的前驱体雾化装置(20)、生成粉体纳米材料的等离子体反应器(1)、将粉体纳米材料与气相分离的纳米粉体收集装置(4)、对分离的气相进行处理的尾气处理装置(60)和用以调控前驱体制备纳米材料过程中各反应参数和过程参数的智能控制系统(70)。1. A nanomaterial preparation system, characterized in that it includes a precursor atomization device (20) for quantitatively atomizing liquid precursors, a plasma reactor (1) for generating powder nanomaterials, and a powder nanomaterial A nanopowder collection device (4) for separating from the gas phase, a tail gas treatment device (60) for treating the separated gas phase, and an intelligent control system (70) for regulating various reaction parameters and process parameters in the process of preparing nanomaterials from precursors . 2.如权利要求1所述的一种纳米材料制备系统,其特征在于:所述等离子体反应器(1)包括等离子体发生装置(10)、等离子体反应腔(30)和冷凝部(3)。2. A nanomaterial preparation system according to claim 1, characterized in that: the plasma reactor (1) includes a plasma generating device (10), a plasma reaction chamber (30) and a condensation part (3 ). 3.如权利要求2所述的一种纳米材料制备系统,其特征在于:所述等离子体发生装置(10)是直流等离子体发生器,微波等离子体发生器或电感耦合等离子体发生器。3. A nanomaterial preparation system according to claim 2, characterized in that: the plasma generator (10) is a DC plasma generator, a microwave plasma generator or an inductively coupled plasma generator. 4.如权利要求2所述的一种纳米材料制备系统,其特征在于:所述等离子体反应腔(30)包括两个同轴的套接的圆筒。4. A nanomaterial preparation system according to claim 2, characterized in that: the plasma reaction chamber (30) comprises two coaxial socketed cylinders. 5.如权利要求4所述的一种纳米材料制备系统,其特征在于:雾化的液态前驱体由载气将其以法向方式注入到同轴布置的等离子体反应腔(30)中。5. A nanomaterial preparation system according to claim 4, characterized in that: the atomized liquid precursor is injected into the coaxially arranged plasma reaction chamber (30) in a normal direction by a carrier gas. 6.如权利要求1所述的一种纳米材料制备系统,其特征在于:所述前驱体雾化装置(20)为高压喷雾或超声喷雾装置。6. A nanomaterial preparation system according to claim 1, characterized in that: the precursor atomization device (20) is a high-pressure spray or ultrasonic spray device. 7.如权利要求1所述的一种纳米材料制备系统,其特征在于:纳米粉体收集装置(4)包括气液分离装置(50)、收集瓶(41)、气固分离装置(45),气固分离装置(45)为旋风分离器(40)、湿法分离器或布袋收集器。7. A nanomaterial preparation system according to claim 1, characterized in that: the nanopowder collection device (4) includes a gas-liquid separation device (50), a collection bottle (41), a gas-solid separation device (45) , the gas-solid separation device (45) is a cyclone separator (40), a wet separator or a bag collector. 8.如权利要求7所述的一种纳米材料制备系统,其特征在于:所述气液分离装置(50)冷却方式是水冷、气冷或冷却液冷却。8. The nanomaterial preparation system according to claim 7, characterized in that: the cooling method of the gas-liquid separation device (50) is water cooling, air cooling or cooling liquid cooling. 9.如权利要求1所述的一种纳米材料制备系统,其特征在于:所述尾气处理装置(60)包括装填有吸收液的处理池(65);所述吸收液为酸性吸收液或碱性吸收液。9. A nanomaterial preparation system according to claim 1, characterized in that: the tail gas treatment device (60) includes a treatment tank (65) filled with an absorption liquid; the absorption liquid is an acidic absorption liquid or an alkali absorbent liquid. 10.一种利用如权利要求1~9所述的系统生产纳米材料的工艺,其特征在于:包括以下过程:(1)前驱体溶液配置;(2)等离子体激发;(3)前驱体雾化;(4)雾化液滴法向注入等离子体;(5)收集粉体纳米材料;(6)气液分离;(7)尾气处理。10. A process for producing nanomaterials using the system as claimed in claims 1-9, characterized in that it includes the following processes: (1) Precursor solution configuration; (2) Plasma excitation; (3) Precursor mist (4) Atomized liquid droplets are injected into the plasma; (5) Collecting powder nanomaterials; (6) Gas-liquid separation; (7) Tail gas treatment.
CN201810868112.7A 2018-08-02 2018-08-02 A kind of nano material preparation system and the technique using the system production nano material Pending CN108584882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810868112.7A CN108584882A (en) 2018-08-02 2018-08-02 A kind of nano material preparation system and the technique using the system production nano material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810868112.7A CN108584882A (en) 2018-08-02 2018-08-02 A kind of nano material preparation system and the technique using the system production nano material

Publications (1)

Publication Number Publication Date
CN108584882A true CN108584882A (en) 2018-09-28

Family

ID=63619075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810868112.7A Pending CN108584882A (en) 2018-08-02 2018-08-02 A kind of nano material preparation system and the technique using the system production nano material

Country Status (1)

Country Link
CN (1) CN108584882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966474A (en) * 2018-10-03 2018-12-07 张家港衡德新材料科技有限公司 A kind of high-power combination frequency ICP plasma generator
CN109012527A (en) * 2018-10-03 2018-12-18 张家港衡德新材料科技有限公司 A kind of equipment producing nano material with liquid or gaseous precursor
CN110039062A (en) * 2019-04-18 2019-07-23 北京科技大学 A method of preparing spherical nickel base powder
CN113351146A (en) * 2021-05-14 2021-09-07 南阳师范学院 Special rotatory high temperature vulcanizer of rare earth sulfide synthesis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2678760Y (en) * 2004-02-25 2005-02-16 孙陶 Prodn. appts. for synthetizing multi-kind of nano powders by utilizing plasma
CN201185505Y (en) * 2008-04-15 2009-01-21 常州泛洋电气设备有限公司 Plasma spraying gun
CN101437605A (en) * 2006-03-29 2009-05-20 西北美泰克公司 Method and apparatus for nanopowder and micropowder production using axial injection plasma spray
CN101528334A (en) * 2006-10-24 2009-09-09 Beneq有限公司 Device and method for producing nanoparticles
CN101733405A (en) * 2008-11-18 2010-06-16 广东兴发铝业有限公司 Preparation method of radio frequency glow discharge inductively coupled plasmas of nano powder material
CN201670734U (en) * 2009-03-03 2010-12-15 简临君 Spraying device for preparing nano-porous tin oxide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2678760Y (en) * 2004-02-25 2005-02-16 孙陶 Prodn. appts. for synthetizing multi-kind of nano powders by utilizing plasma
CN101437605A (en) * 2006-03-29 2009-05-20 西北美泰克公司 Method and apparatus for nanopowder and micropowder production using axial injection plasma spray
CN101528334A (en) * 2006-10-24 2009-09-09 Beneq有限公司 Device and method for producing nanoparticles
CN201185505Y (en) * 2008-04-15 2009-01-21 常州泛洋电气设备有限公司 Plasma spraying gun
CN101733405A (en) * 2008-11-18 2010-06-16 广东兴发铝业有限公司 Preparation method of radio frequency glow discharge inductively coupled plasmas of nano powder material
CN201670734U (en) * 2009-03-03 2010-12-15 简临君 Spraying device for preparing nano-porous tin oxide film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966474A (en) * 2018-10-03 2018-12-07 张家港衡德新材料科技有限公司 A kind of high-power combination frequency ICP plasma generator
CN109012527A (en) * 2018-10-03 2018-12-18 张家港衡德新材料科技有限公司 A kind of equipment producing nano material with liquid or gaseous precursor
CN109012527B (en) * 2018-10-03 2023-12-15 张家港衡德新材料科技有限公司 A device for producing nanomaterials from liquid or gaseous precursors
CN110039062A (en) * 2019-04-18 2019-07-23 北京科技大学 A method of preparing spherical nickel base powder
CN113351146A (en) * 2021-05-14 2021-09-07 南阳师范学院 Special rotatory high temperature vulcanizer of rare earth sulfide synthesis

Similar Documents

Publication Publication Date Title
CN108584882A (en) A kind of nano material preparation system and the technique using the system production nano material
Boulos The inductively coupled radio frequency plasma
EP2606003B1 (en) An apparatus, a system and a method for producing hydrogen
JP6086405B2 (en) Apparatus and method for producing particles
JP2009531258A (en) Method and apparatus for producing nano and micro powders using axial injection plasma spraying
KR20190138832A (en) Single stage continuous production apparatus and method of carbon nanotube
RU2406592C2 (en) Method and device to produce nanopowders using transformer plasmatron
CN101733405B (en) Preparation method of radio frequency glow discharge inductively coupled plasmas of nano powder material
CN203678371U (en) Device for preparing nano powder by using ultrasonic atomization-microwave pyrolysis combined method
US20130209352A1 (en) Apparatus and method for manufacturing composite nano particles
CN100542667C (en) Plasma Synthesis of Various Nano-powder Production Technology
CN201742637U (en) Atmospheric pressure medium blocking-air cold plasma fluidizing device
CN100372761C (en) Method for preparing graphite-structured hollow carbon nanospheres in solid state
CN207030957U (en) A kind of exhaust treatment system and the continuous device for preparing nano-carbon material
CN108770171A (en) A kind of plasma nano material preparation system of coaxial-type spraying
CN111872408B (en) A powder purification device
JP7562688B2 (en) Iron removal from carbon nanotubes and metal catalyst recycling
Pinjari et al. Synthesis of nanomaterials using hydrodynamic cavitation
CN201864775U (en) Instrument for preparing nano materials with gas phase method
CN206622110U (en) One kind spraying cracking system
KR101808405B1 (en) High-efficiency automatic control sampler for nano particle by vapor phase-synthesis and method using the same
KR101688512B1 (en) Large-scale composite synthesis system, reactor and composite synthesis method using the same
CN117285032A (en) Carbon nanotube preparation system and single-walled carbon nanotube preparation process
CN113401868B (en) A device for producing hydrogen and sulfur by decomposing hydrogen sulfide with an atmospheric pressure microwave plasma torch
CN104495933A (en) Production device and method of molybdenum oxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928