CN108573862B - Semiconductor structure and method of forming the same - Google Patents
Semiconductor structure and method of forming the same Download PDFInfo
- Publication number
- CN108573862B CN108573862B CN201710131028.2A CN201710131028A CN108573862B CN 108573862 B CN108573862 B CN 108573862B CN 201710131028 A CN201710131028 A CN 201710131028A CN 108573862 B CN108573862 B CN 108573862B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- initial
- layer
- top surface
- dummy gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract 27
- 239000004065 semiconductor Substances 0.000 title claims abstract 16
- 239000000758 substrate Substances 0.000 claims abstract 9
- 239000000463 material Substances 0.000 claims abstract 6
- 239000007789 gas Substances 0.000 claims 2
- 239000001307 helium Substances 0.000 claims 2
- 229910052734 helium Inorganic materials 0.000 claims 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 2
- 238000009832 plasma treatment Methods 0.000 claims 2
- 238000007517 polishing process Methods 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 238000005229 chemical vapour deposition Methods 0.000 claims 1
- 238000000280 densification Methods 0.000 claims 1
- 238000001312 dry etching Methods 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 238000001039 wet etching Methods 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28247—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6212—Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies having non-rectangular cross-sections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6215—Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Element Separation (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
随着技术节点的降低,传统的栅介质层不断变薄,晶体管漏电量随之增加,引起半导体器件功耗浪费等问题。为解决上述问题,现有技术提供一种将金属栅极替代多晶硅栅极的解决方案。其中,后栅极(gate last)工艺为形成金属栅极的一个主要工艺。With the reduction of technology nodes, the traditional gate dielectric layer is continuously thinner, and the leakage of transistors increases accordingly, causing problems such as waste of power consumption of semiconductor devices. In order to solve the above problems, the prior art provides a solution of replacing the polysilicon gate with a metal gate. Among them, the gate last process is a main process for forming the metal gate.
然而,在后栅工艺的过程中,金属栅极的金属材料使得半导体结构中的介质层的隔离性能变差,从而影响半导体结构的性能。However, during the gate-last process, the metal material of the metal gate deteriorates the isolation performance of the dielectric layer in the semiconductor structure, thereby affecting the performance of the semiconductor structure.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种半导体结构及其形成方法,能够改善半导体结构性能。The technical problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which can improve the performance of the semiconductor structure.
为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有器件结构,所述器件结构包括初始侧墙结构;在所述基底、器件结构以及初始侧墙结构的顶部表面形成初始第一介质层;平坦化所述初始第一介质层,直至暴露出初始侧墙结构的顶部表面,形成第一介质层;去除部分初始侧墙结构形成侧墙结构,所述侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点;形成所述侧墙结构之后,对部分所述第一介质层进行密实化处理形成初始第二介质层,所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层的密度大于所述第一介质层的密度;形成所述初始第二介质层之后,去除器件结构形成开口结构;在所述开口结构内以及初始第二介质层上形成材料层;平坦化所述材料层以及初始第二介质层直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate with a device structure on the substrate, the device structure including an initial spacer structure; forming an initial first dielectric layer on the top surface of the initial spacer structure; planarizing the initial first dielectric layer until the top surface of the initial spacer structure is exposed to form a first dielectric layer; removing part of the initial spacer structure to form a spacer structure, the top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer; after the sidewall structure is formed, part of the first dielectric layer is densified to form an initial the second dielectric layer, the bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, and the density of the initial second dielectric layer is greater than the density of the first dielectric layer; forming the initial second dielectric layer After the second dielectric layer, the device structure is removed to form an opening structure; a material layer is formed in the opening structure and on the initial second dielectric layer; the material layer and the initial second dielectric layer are planarized until the top of the spacer structure is exposed On the surface, a gate structure and a second dielectric layer are formed.
可选的,所述基底包括:第一区和第二区。Optionally, the substrate includes: a first area and a second area.
可选的,所述器件结构包括位于所述第一区的第一伪栅极结构和位于所述第二区的第二伪栅极结构;所述第一伪栅极结构包括:第一伪栅介质层以及位于所述第一伪栅介质层上的第一伪栅极层;所述第二伪栅极结构包括:第二伪栅介质层以及位于所述第二伪栅介质层上的第二伪栅极层。Optionally, the device structure includes a first dummy gate structure located in the first region and a second dummy gate structure located in the second region; the first dummy gate structure includes: a first dummy gate structure a gate dielectric layer and a first dummy gate layer located on the first dummy gate dielectric layer; the second dummy gate structure includes: a second dummy gate dielectric layer and a gate dielectric layer located on the second dummy gate dielectric layer the second dummy gate layer.
可选的,所述第一伪栅极结构沿沟道长度方向的尺寸小于第二伪栅极结构沿沟道长度方向的尺寸。Optionally, the size of the first dummy gate structure along the channel length direction is smaller than the size of the second dummy gate structure along the channel length direction.
可选的,所述第一伪栅极层的顶部表面具有第一掩膜层;所述第二伪栅极层的顶部表面具有第二掩膜层;所述第一掩膜层厚度较第二掩膜层厚度薄。Optionally, the top surface of the first dummy gate layer has a first mask layer; the top surface of the second dummy gate layer has a second mask layer; the thickness of the first mask layer is thicker than that of the third mask layer. The thickness of the second mask layer is thin.
可选的,所述初始侧墙结构包括初始第一侧墙和初始第二侧墙,所述初始第一侧墙位于所述第一伪栅介质层和第一伪栅极层的侧壁,所述初始第二侧墙位于所述第二伪栅介质层和第二伪栅极层的侧壁。Optionally, the initial spacer structure includes an initial first spacer and an initial second spacer, and the initial first spacer is located on sidewalls of the first dummy gate dielectric layer and the first dummy gate layer, The initial second spacers are located on sidewalls of the second dummy gate dielectric layer and the second dummy gate layer.
可选的,平坦化所述初始第一介质层的过程中,还包括:去除第一掩膜层和第二掩膜层。Optionally, the process of planarizing the initial first dielectric layer further includes: removing the first mask layer and the second mask layer.
可选的,所述初始第一介质层的材料包括:氧化硅。Optionally, the material of the initial first dielectric layer includes: silicon oxide.
可选的,所述初始第一介质层的形成工艺包括:流体化学气相沉积工艺。Optionally, the formation process of the initial first dielectric layer includes: a fluid chemical vapor deposition process.
可选的,平坦化所述初始第一介质层的工艺包括:化学机械研磨工艺。Optionally, the process of planarizing the initial first dielectric layer includes: a chemical mechanical polishing process.
可选的,去除部分初始侧墙结构的工艺包括:各项同性干法刻蚀工艺或湿法刻蚀工艺。Optionally, the process for removing part of the initial spacer structure includes: an isotropic dry etching process or a wet etching process.
可选的,所述各项同性干法刻蚀工艺的工艺参数包括:刻蚀气体包括:CH3F、CH2F2和O2,其中,CH3F的流量为:10标准毫升/分钟~500标准毫升/分钟,CH2F2的流量为:10标准毫升/分钟~200标准毫升/分钟,O2的流量为:10标准毫升/分钟~300标准毫升/分钟,压力为:2毫托~50毫托,功率:100瓦~200瓦。Optionally, the process parameters of the isotropic dry etching process include: the etching gas includes: CH 3 F, CH 2 F 2 and O 2 , wherein the flow rate of CH 3 F is: 10 standard ml/min ~500 standard ml/min, flow rate of CH 2 F 2 : 10 standard ml/min ~ 200 standard ml/min, flow rate of O 2 : 10 standard ml/min ~ 300 standard ml/min, pressure: 2 mm Torr to 50 mtorr, power: 100 watts to 200 watts.
可选的,所述初始侧墙结构沿垂直于所述基底顶部表面的方向上的去除量为:3纳米~10纳米。Optionally, the removal amount of the initial spacer structure along a direction perpendicular to the top surface of the substrate is: 3 nanometers to 10 nanometers.
可选的,对所述第一介质层进行密实化处理形成初始第二介质层的工艺包括:高温等离子体处理;所述高温等离子体处理工艺的工艺参数包括:气体包括:氦气,氦气的流量为:100标准毫升/分钟~1000标准毫升/分钟,温度:300摄氏度~500摄氏度,功率100瓦~1000瓦,压力:0.2托~5托。Optionally, the process of densifying the first dielectric layer to form the initial second dielectric layer includes: high temperature plasma treatment; the process parameters of the high temperature plasma treatment process include: gases include: helium, helium The flow rate is: 100 standard ml/min ~ 1000 standard ml/min, temperature: 300 degrees Celsius ~ 500 degrees Celsius, power 100 watts ~ 1000 watts, pressure: 0.2 Torr ~ 5 Torr.
可选的,所述第二介质层的最小厚度为:5纳米~20纳米。Optionally, the minimum thickness of the second dielectric layer is 5 nanometers to 20 nanometers.
可选的,平坦化所述材料层以及初始第二介质层的工艺包括:化学机械磨平工艺。Optionally, the process of planarizing the material layer and the initial second dielectric layer includes: a chemical mechanical polishing process.
相应的,本发明还提供一种采用上述方法形成的一种半导体结构,包括:基底,所述基底上具有栅极结构,所述栅极结构包括侧墙结构,所述侧墙结构的顶部表面与所述栅极结构的顶部表面齐平;位于所述基底上的第一介质层,所述第一介质层的顶部表面低于所述侧墙结构的顶部表面;位于所述第一介质层上的第二介质层,所述第二介质层的顶部表面与所述侧墙结构的顶部表面齐平。Correspondingly, the present invention also provides a semiconductor structure formed by the above method, comprising: a substrate having a gate structure on the substrate, the gate structure including a spacer structure, and a top surface of the spacer structure flush with the top surface of the gate structure; a first dielectric layer on the substrate, the top surface of the first dielectric layer is lower than the top surface of the spacer structure; located on the first dielectric layer The second dielectric layer on the top surface of the second dielectric layer is flush with the top surface of the sidewall structure.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的半导体结构的形成方法中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面仍然完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the method for forming a semiconductor structure provided by the technical solution of the present invention, by removing part of the initial spacer structure, the top surface of the spacer structure formed is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is still completely covered by the second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.
本发明技术方案提供的半导体结构中,位于所述第一介质层上的第二介质层的密度较所述第一介质层的密度大,所述第二介质层的顶部表面平整,所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the semiconductor structure provided by the technical solution of the present invention, the density of the second dielectric layer on the first dielectric layer is higher than that of the first dielectric layer, the top surface of the second dielectric layer is flat, and the first dielectric layer has a flat top surface. The performance of the two dielectric layers separating different semiconductor devices is better, thereby improving the performance of the semiconductor structure.
附图说明Description of drawings
图1至图2是一种半导体结构的形成方法各步骤的结构示意图;1 to 2 are schematic structural diagrams of each step of a method for forming a semiconductor structure;
图3至图8是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。3 to 8 are schematic structural diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,所述半导体结构中的介质层的隔离性能不好。As mentioned in the background art, the isolation performance of the dielectric layer in the semiconductor structure is not good.
图1至图2是一种半导体结构的形成方法各步骤的结构示意图。FIG. 1 to FIG. 2 are schematic structural diagrams of various steps of a method for forming a semiconductor structure.
请参考图1,提供基底,所述基底包括第一区A和第二区B,所述第一区A基底上具有第一伪栅极结构101,所述第一伪栅极结构101包括第一伪栅侧墙102和第一伪栅极层(图中未标出),所述第一伪栅极结构101顶部表面具有第一掩膜层(图中未标出),所述第二区B基底上具有第二伪栅极结构103,所述第二伪栅极结构103包括第二伪栅侧墙104和第二伪栅极层(图中未标出),所述第二伪栅极结构103顶部表面具有第二掩膜层(图中未标出),所述基底、第一伪栅极结构101以及第二伪栅极结构103上具有初始第一介质层;平坦化所述初始第一介质层,直至暴露出第一伪栅侧墙102和第二伪栅侧墙104的顶部表面,形成第一介质层105,所述第一介质层105的顶部表面低于所述第一伪栅侧墙102和第二伪栅侧墙104的顶部表面。Referring to FIG. 1, a substrate is provided, the substrate includes a first region A and a second region B, the first region A has a first
请参考图2,去除所述第一伪栅极结构101形成第一开口,在所述第一开口内形成第一栅极结构107;去除所述第二伪栅极结构103形成第二开口,在所述第二开口内形成第二栅极结构108。Referring to FIG. 2, the first
所述初始第一介质层的材料包括:氧化硅;形成所述初始第一介质层的工艺包括:流体化学气相沉积工艺。The material of the initial first dielectric layer includes: silicon oxide; the process of forming the initial first dielectric layer includes: a fluid chemical vapor deposition process.
所述第一掩膜层和第二掩膜层的材料包括:氮化硅。The materials of the first mask layer and the second mask layer include: silicon nitride.
然而,采用上述方法制备的半导体结构性能较差,原因在于:However, the semiconductor structures prepared by the above methods have poor performance due to:
上述方法中,所述第一区A用于形成短沟道区,所述第二区B用于形成长沟道区,所述短沟道区的器件间距较长沟道区的器件间距小。为了形成形貌良好的第一伪栅极结构101和第二伪栅极结构103,位于所述第一伪栅极结构101上的所述第一掩膜层的厚度较位于所述第二伪栅极结构103上的第二掩膜层的厚度薄。In the above method, the first region A is used to form a short channel region, the second region B is used to form a long channel region, and the device spacing in the short channel region is longer and the device spacing in the channel region is small. . In order to form the first
后续利用化学机械研磨工艺平坦化所述初始第一介质层,直至暴露出所述第一伪栅侧墙102和第二伪栅侧墙104的顶部表面,形成所述第一介质层105。在平坦化所述初始第一介质层的过程中,所述第一掩膜层和第二掩膜层也被去除。由于所述第一掩膜层和第二掩膜层的密度较所述初始第一介质层的密度大,因此,在平坦化去除所述初始第一介质层、第一掩膜层以及第二掩膜层的过程中,所述平坦化工艺过程对所述初始第一介质层的机械研磨速率大于对所述第一掩膜层和第二掩膜层的机械研磨速率,进而使得采用平坦化工艺形成的第一介质层105的顶部表面具有凹陷。Subsequently, the initial first dielectric layer is planarized by chemical mechanical polishing until the top surfaces of the first
具体的,在平坦化去除部分所述初始第一介质层、第一掩膜层以及第二掩膜层的过程中,由于所述第一掩膜层的厚度较第二掩膜层的厚度薄,因此,当所述第一掩膜层被完全去除时,所述第二掩膜层仍有残留。当所述第一掩膜层被完全去除时,位于第一区A和第二区B的第一介质层105的顶部表面均产生凹陷。去除所述第一掩膜层之后,为了去除第二掩膜层,继续对部分所述初始第一介质层和第二掩膜层进行平坦化,导致第二区B的第一介质层表面的凹陷加深。因此,当第二掩膜层被完全去除时,位于所述第一区A的第一介质层105顶部表面具有第一凹陷,位于第二区B的第一介质105顶部表面具有第二凹陷,而且所述第一凹陷的最大深度小于第二凹陷的最大深度。Specifically, in the process of planarizing and removing part of the initial first dielectric layer, the first mask layer and the second mask layer, since the thickness of the first mask layer is thinner than that of the second mask layer Therefore, when the first mask layer is completely removed, the second mask layer still remains. When the first mask layer is completely removed, the top surfaces of the first
后续在所述第一开口内形成第一栅极结构107,在所述第二开口内形成第二栅极结构108。所述第一栅极结构107和第二栅极结构108的形成步骤包括:在所述第一开口、第二开口内以及第一介质层105上形成材料层;对所述材料层进行平坦化直至暴露出第一伪栅侧墙102和第二伪栅侧墙104的顶部表面。对所述材料层进行平坦化时,位于第一凹陷处和第二凹陷处易沉积材料层,使得所述第一介质层105隔离半导体不同器件的性能较差,进而影响半导体结构的性能。Subsequently, a
为解决上述技术问题,本发明技术方案提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有器件结构,所述器件结构包括初始侧墙结构;在所述基底、器件结构以及初始侧墙结构的顶部表面形成初始第一介质层;平坦化所述初始第一介质层,直至暴露出初始侧墙结构的顶部表面,形成第一介质层;去除部分初始侧墙结构形成侧墙结构,所述侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点;形成所述侧墙结构之后,对部分所述第一介质层进行密实化处理形成初始第二介质层,所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层的密度大于所述第一介质层的密度;形成所述初始第二介质层之后,去除器件结构形成开口结构;在所述开口结构内、以及初始第二介质层上形成材料层;平坦化所述材料层以及初始第二介质层直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层。In order to solve the above-mentioned technical problems, the technical solution of the present invention provides a method for forming a semiconductor structure, which includes: providing a substrate with a device structure on the substrate, and the device structure includes an initial spacer structure; forming an initial first dielectric layer on the top surface of the initial spacer structure; planarizing the initial first dielectric layer until the top surface of the initial spacer structure is exposed to form a first dielectric layer; removing part of the initial spacer structure to form a spacer structure, the top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer; after the sidewall structure is formed, part of the first dielectric layer is densified to form an initial the second dielectric layer, the bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, and the density of the initial second dielectric layer is greater than the density of the first dielectric layer; forming the initial second dielectric layer After the second dielectric layer, the device structure is removed to form an opening structure; a material layer is formed in the opening structure and on the initial second dielectric layer; the material layer and the initial second dielectric layer are planarized until the spacer structure is exposed. On the top surface, a gate structure and a second dielectric layer are formed.
所述方法中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the method, by removing part of the initial sidewall structure, the top surface of the formed sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is completely covered by a second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图3至图8是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。3 to 8 are schematic structural diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.
请参考图3,提供基底200,所述基底200具有器件结构(图中未标出),所述器件结构包括初始侧墙结构(图中未标出);在所述基底200、器件结构以及初始侧墙结构上形成初始第一介质层201。Referring to FIG. 3, a
在本实施例中,所述基底200包括:衬底202以及位于衬底202上的鳍部203。在其它实施例中,所述基底为平面衬底。In this embodiment, the
所述基底200的形成步骤包括:提供初始衬底;图形化所述初始衬底,形成衬底202和位于衬底202上的鳍部203。The steps of forming the base 200 include: providing an initial substrate; patterning the initial substrate to form the
本实施例中,所述初始衬底的材料为硅。在其他实施例中,所述初始衬底还可以为锗衬底、硅锗衬底、绝缘体上硅或绝缘体上锗等半导体衬底。In this embodiment, the material of the initial substrate is silicon. In other embodiments, the initial substrate may also be a germanium substrate, a silicon germanium substrate, a silicon-on-insulator or a germanium-on-insulator or other semiconductor substrate.
所述基底200还包括隔离结构(图中未标出),所述隔离结构用于实现半导体不同器件之间的电绝缘。The
在本实施例中,所述基底200包括第一区Ⅰ和第二区Ⅱ,所述第一区Ⅰ用于形成短沟道器件,所述第二区Ⅱ用于形成长沟道器件。In this embodiment, the
在本实施例中,所述器件结构包括:位于所述第一区Ⅰ的第一伪栅极结构204和位于所述第二区Ⅱ的第二伪栅极结构205,且所述第一伪栅极结构204沿沟道长度方向的尺寸小于第二伪栅极结构205沿沟道长度方向的尺寸。In this embodiment, the device structure includes: a first
在本实施例中,还包括:在所述第一伪栅极结构204两侧的所述鳍部203内形成第一源漏掺杂区208;在第二伪栅极结构205两侧的所述鳍部203内形成第二源漏掺杂区209。In this embodiment, the method further includes: forming first source-drain doped
所述第一伪栅极结构204沿沟道长度方向的尺寸指的是:所述第一伪栅极结构204沿两侧第一源漏掺杂区208连线方向上的尺寸。The size of the first
所述第二伪栅极结构205沿沟道长度方向的尺寸指的是:所述第二伪栅极结构205沿两侧第二源漏掺杂区209连线方向上的尺寸。The dimension of the second
在本实施例中,所述初始侧墙结构包括:初始第一侧墙206和初始第二侧墙207。In this embodiment, the initial sidewall structure includes: an initial
所述第一伪栅极结构204包括:第一伪栅介质层、位于第一伪栅介质层上的第一伪栅极层以及位于所述第一伪栅介质层侧壁和第一伪栅极层侧壁的初始第一侧墙206。The first
所述第二伪栅极结构205包括:第二伪栅介质层、位于第二伪栅介质层上的第二伪栅极层以及位于所述第二伪栅介质层侧壁和第二伪栅极层侧壁的初始第二侧墙207。The second
所述初始第一侧墙206与所述初始第二侧墙207的厚度一致。The initial
在本实施例中,所述第一伪栅极结构204的顶部表面具有第一掩膜层(图中未标出),所述第一掩膜层作为刻蚀形成所述第一伪栅极层的掩膜。所述第二伪栅极结构205的顶部表面具有第二掩膜层(图中未标出),所述第二掩膜层作为刻蚀形成所述第二伪栅极层的掩膜,且所述第一掩膜层厚度较第二掩膜层厚度薄。In this embodiment, the top surface of the first
所述第一掩膜层厚度较第二掩膜层厚度薄的原因包括:所述第一区Ⅰ用于形成短沟道区,所述第二区Ⅱ用于形成长沟道区,所述短沟道区的器件间距较长沟道区的器件间距小。为了形成形貌良好的第一伪栅极结构204和第二伪栅极结构205,位于所述第一伪栅极结构204上的第一掩膜层的厚度较位于所述第二伪栅极结构205上的第二掩膜层的厚度薄。The reasons why the thickness of the first mask layer is thinner than that of the second mask layer include: the first region I is used to form a short channel region, the second region II is used to form a long channel region, and the The device pitch in the short channel region is longer, and the device pitch in the channel region is small. In order to form the first
所述第一掩膜层和所述第二掩膜层的材料包括:氮化硅。Materials of the first mask layer and the second mask layer include: silicon nitride.
形成所述初始第一介质层201之前,还包括:对所述第一伪栅极结构204和第二伪栅极结构205两侧的所述鳍部203进行轻掺杂离子注入;所述轻掺杂离子注入之后,在所述第一伪栅极结构204两侧的所述鳍部203内形成第一源漏掺杂区208;在第二伪栅极结构205两侧的所述鳍部203内形成第二源漏掺杂区209;形成所述第一源漏掺杂区208和第二源漏掺杂区209之后,在所述基底200、第一源漏掺杂区208、第二源漏掺杂区209、所述第一掩膜层以及第二掩膜层上形成停止层210。Before forming the initial first
所述第一源漏掺杂区208的形成步骤包括:采用刻蚀工艺在所述第一伪栅极结构204两侧的鳍部203内形成开口;采用选择性外延沉积工艺在所述开口内形成外延层;在所述外延层内掺杂P型离子或N型离子,形成所述第一源漏掺杂区208。The steps of forming the first source-drain doped
所述第二源漏掺杂区209的形成步骤包括:采用刻蚀工艺在所述第二伪栅极结构205两侧的鳍部203内形成开口;采用选择性外延沉积工艺在所述开口内形成外延层;在所述外延层内掺杂P型离子或N型离子,形成所述第二源漏掺杂区209。The steps of forming the second source and drain
所述停止层210的材料包括:氮化硅。The material of the
所述初始第一介质层201的材料包括:氧化硅。所述初始第一介质层201的形成工艺包括:流体化学气相沉积工艺。所述初始第一介质层201用于实现半导体不同器件之间的电绝缘。The material of the initial first
请参考图4,平坦化所述初始第一介质层201直至暴露出所述初始侧墙结构的顶部表面,形成第一介质层211。Referring to FIG. 4 , the initial first
平坦化所述初始第一介质层201的过程中,还包括:去除第一掩膜层和第二掩膜层。In the process of planarizing the initial first
所述平坦化工艺包括:化学机械研磨工艺。由于所述第一掩膜层和第二掩膜层的密度较所述初始第一介质层201的密度大,因此,在平坦化去除部分所述初始第一介质层201、第一掩膜层以及第二掩膜层的过程中,所述平坦化工艺对所述初始第一介质层201的机械研磨速率大于对所述第一掩膜层和第二掩膜层的机械研磨速率,使得采用平坦化工艺形成的第一介质层211的顶部表面具有凹陷。The planarization process includes: a chemical mechanical polishing process. Since the density of the first mask layer and the second mask layer is higher than that of the initial first
第一区Ⅰ第一介质层211顶部表面具有第一凹陷,第二区Ⅱ第一介质层211顶部表面具有第二凹陷。所述第一凹陷的最大深度为:H1,所述第二凹陷的最大深度为:H2,且H1小于H2。The top surface of the
所述第一凹陷的最大深度H1指的是:位于第一区Ⅰ第一介质层211的顶部表面到第一伪栅结构204的顶部表面的最大尺寸。The maximum depth H1 of the first recess refers to the maximum dimension from the top surface of the
所述第二凹陷的最大深度H2指的是:位于第二区Ⅱ第一介质层211的顶部表面到第二伪栅结构205的顶部表面的最大尺寸。The maximum depth H2 of the second recess refers to the maximum dimension from the top surface of the
H1小于H2,H1小于H2的原因包括:当所述第一掩膜层被完全去除时,位于所述第一区Ⅰ和第二区Ⅱ第一介质层211顶部表面均出现凹陷。去除所述第一掩膜层之后,为了完全去除第二掩膜层,对所述初始第一介质层201以及第二掩膜层继续进行平坦化,导致第二区Ⅱ的第一介质层211顶部表面的凹陷加深。因此,当第二掩膜层被完全去除时,使得第一凹陷的最大深度H1小于第二凹陷的最大深度H2。The reasons why H1 is smaller than H2 and H1 is smaller than H2 include: when the first mask layer is completely removed, the top surfaces of the first
所述第二凹陷的最大深度H2的深度为:3纳米~10纳米。The depth of the maximum depth H2 of the second recess is 3 nanometers to 10 nanometers.
所述第二凹陷的最大深度H2决定后续所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量。The maximum depth H2 of the second recess determines the subsequent removal amount of the initial spacer structure along the direction perpendicular to the top surface of the
请参考图5,去除部分初始侧墙结构形成侧墙结构,所述侧墙结构顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。Referring to FIG. 5 , part of the initial spacer structure is removed to form a spacer structure, and the top surface of the spacer structure is lower than or flush with the lowest point of the top surface of the
去除部分初始侧墙结构的工艺包括:各项同性干法刻蚀工艺或湿法刻蚀工艺。The process for removing part of the initial spacer structure includes: an isotropic dry etching process or a wet etching process.
所述各项同性干法刻蚀工艺的工艺参数包括:刻蚀气体包括:CH3F、CH2F2和O2,其中,CH3F的流量为:10标准毫升/分钟~500标准毫升/分钟,CH2F2的流量为:10标准毫升/分钟~200标准毫升/分钟,O2的流量为:10标准毫升/分钟~300标准毫升/分钟,压力为:2毫托~50毫托,功率:100瓦~200瓦。The process parameters of the isotropic dry etching process include: the etching gas includes: CH 3 F, CH 2 F 2 and O 2 , wherein the flow rate of CH 3 F is: 10 standard milliliters per minute to 500 standard milliliters /min, the flow rate of CH 2 F 2 is: 10 standard ml/min ~ 200 standard ml/min, the flow rate of O 2 is: 10 standard ml/min ~ 300 standard ml/min, the pressure is: 2 mTorr ~ 50 m Support, power: 100 watts to 200 watts.
所述第一介质层211顶部表面的最低点位于第二凹陷最大深度H2处的位置。The lowest point of the top surface of the
所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量是由所述第二凹陷的最大深度H2决定。The removal amount of the initial spacer structure in a direction perpendicular to the top surface of the
去除部分初始侧墙结构的过程中,所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量为:3纳米~10纳米。选择所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量的意义在于:所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量小于3纳米,后续在所述第一介质层211上形成第二介质层,所述第二介质层的顶部表面在形成栅极结构时仍残留部分的材料层,从而影响第二介质层的影响隔离性能,进而影响半导体结构的性能;若所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量大于10纳米,后续形成的栅极结构的高度过低,不利于半导体结构的性能。In the process of removing part of the initial spacer structure, the removal amount of the initial spacer structure along the direction perpendicular to the top surface of the
所述侧墙结构包括:第一侧墙212和第二侧墙213。The side wall structure includes: a
所述第一侧墙212的形成步骤包括:去除部分初始第一侧墙206,形成第一侧墙212,所述第一侧墙212顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。The forming step of the
所述第二侧墙213的形成步骤包括:去除部分初始第二侧墙207,形成第二侧墙213,所述第二侧墙213顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。The forming step of the
所述侧墙结构顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点,目的在于:为了确保后续在所述第一介质层211上形成第二介质层时,所述第二介质层的顶部表面在形成栅极结构时无材料层的残留,从而提高第二介质层的隔离性能,进而提高半导体结构的性能。The top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the
请参考图6,形成所述侧墙结构之后,对部分所述第一介质层211进行密实化处理形成初始第二介质层214,所述初始第二介质层214的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质214的密度大于所述第一介质层211的密度。Referring to FIG. 6 , after the sidewall structure is formed, a portion of the
对所述第一介质层211进行密实化处理形成初始第二介质层214的工艺包括:高温等离子体处理工艺;所述高温等离子体处理工艺的工艺参数包括:气体包括:氦气,氦气的流量为:100标准毫升/分钟~1000标准毫升/分钟,温度:300摄氏度~500摄氏度,功率100瓦~1000瓦,压力:0.2托~5托。The process of densifying the
所述初始第二介质214的密度大于所述第一介质层211的密度的原理包括:在所述高温等离子体处理工艺下,部分所述第一介质层211高温重组形成密度较大的初始第二介质层214。The principle that the density of the initial
所述初始第二介质层214的最小厚度为:5纳米~20纳米,选择所述初始第二介质层214最小厚度的意义在于:若所述初始第二介质层214的最小厚度小于5纳米,后续在形成栅极结构时,对所述初始第二介质层214上的材料层进行平坦化处理时,所述初始第二介质层214厚度过薄,使得所述初始第二介质层214对第一介质层211的保护力度不够。即,所述初始第二介质层被平坦化去除之后,还平坦化去除部分所述第一介质层211。由于所述第一介质层211是通过流体化学气相沉积工艺形成的,因此,所述第一介质层211质地较软。在平坦化去除部分所述第一介质层211的过程中,所述第一介质层211易在后续形成栅极结构两侧出现凹陷,具有凹陷的第一介质层211的隔离性能较差,不利于提高半导体结构的性能;若所述初始第二介质层214的最小厚度大于20纳米,增大密实化处理部分所述第一介质层211的工艺难度。The minimum thickness of the initial second
所述初始第二介质层214的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层214的密度大于所述第一介质层211的密度,使得后续平坦化材料层形成的第二介质层214的顶部表面平整性好,进而使得所述第二介质层214的电学隔离性能好,从而提高半导体结构的性能。The bottom surface of the initial second
请参考图7,去除器件结构形成开口结构。Referring to FIG. 7 , the device structure is removed to form an opening structure.
所述开口结构包括:第一开口215和第二开口216,所述第一开口215和第二开口216的形成步骤包括:去除所述第一伪栅极结构204,形成第一开口215;去除所述第二伪栅极结构205,形成第二开口216。The opening structure includes: a
去除第一伪栅极结构204和第二伪栅极结构205的工艺包括:各项异性干法刻蚀工艺或干法刻蚀工艺与湿法刻蚀工艺相结合。The process of removing the first
所述各项异性干法刻蚀工艺与湿法刻蚀工艺相结合的工艺参数包括:刻蚀气体包括:溴化氢、氯气和氧气,其中,溴化氢的流量为:10标准毫升/分钟~500标准毫升/分钟,氯气的流量为:10标准毫升/分钟~500标准毫升/分钟,氧气的流量为:2标准毫升/分钟~100标准毫升/分钟,功率:100瓦~1000瓦,刻蚀剂包括:稀氢氟酸,氢氟酸与水的浓度比值为:50:1~2000:1,四甲基氢氧化铵的质量分数为:0.5%~5%。The process parameters of the combination of the anisotropic dry etching process and the wet etching process include: the etching gas includes: hydrogen bromide, chlorine and oxygen, wherein the flow rate of hydrogen bromide is: 10 standard ml/min ~500 standard ml/min, the flow rate of chlorine gas is: 10 standard ml/min~500 standard ml/min, the flow rate of oxygen is: 2 standard ml/min~100 standard ml/min, power: 100 watts~1000 watts, engraved The etchant includes: dilute hydrofluoric acid, the concentration ratio of hydrofluoric acid to water is 50:1-2000:1, and the mass fraction of tetramethylammonium hydroxide is: 0.5%-5%.
请参考图8,形成所述开口结构之后,在所述开口结构内沉积材料层,平坦化所述材料层以及部分初始第二介质层214直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层219。Referring to FIG. 8 , after the opening structure is formed, a material layer is deposited in the opening structure, and the material layer and part of the initial second
所述栅极结构包括:第一栅极结构217和第二栅极结构218,所述第一栅极结构217和第二栅极结构218的形成步骤包括:在所述第一开口215、第二开口216内以及初始第二介质层214上形成材料层;平坦化所述材料层直至暴露出侧墙结构的顶部表面,在第一开口215内形成第一栅极结构217,在所述第二开口216内形成第二栅极结构218。The gate structure includes: a
所述材料层的材料包括:金属层,所述金属层的材料包括:钨。The material of the material layer includes: a metal layer, and the material of the metal layer includes: tungsten.
所述平坦化所述材料层的工艺包括:化学机械研磨工艺。The process of planarizing the material layer includes: a chemical mechanical polishing process.
所述第二介质层219的顶部表面平整性良好,使得所述第二介质层的隔离性能较好,从而提高半导体结构的性能。The top surface of the
综上,在本实施例中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面仍然完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。To sum up, in this embodiment, by removing part of the initial sidewall structure, the top surface of the formed sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is still completely covered by the second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.
本发明实施例还提供一种采用上述方法所形成的半导体结构,请参考图8,包括:An embodiment of the present invention also provides a semiconductor structure formed by the above method, please refer to FIG. 8 , including:
基底200,所述基底200上具有栅极结构,所述栅极结构具有侧墙结构,所述侧墙结构的顶部表面与所述栅极结构的顶部表面齐平;a
位于所述基底200上的第一介质层211(见图5),所述第一介质层211的顶部表面低于所述栅极结构的顶部表面;a first
位于所述第一介质层211上的第二介质层219,所述第二介质层219的顶部表面与所述栅极结构的顶部表面齐平。For the
综上,在本实施例中,位于所述第一介质层上的第二介质层的密度较所述第一介质层的密度大,所述第二介质层的顶部表面平整,因此,所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。To sum up, in this embodiment, the density of the second dielectric layer on the first dielectric layer is higher than that of the first dielectric layer, and the top surface of the second dielectric layer is flat. Therefore, the The performance of the second dielectric layer in isolating different semiconductor devices is better, thereby improving the performance of the semiconductor structure.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710131028.2A CN108573862B (en) | 2017-03-07 | 2017-03-07 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710131028.2A CN108573862B (en) | 2017-03-07 | 2017-03-07 | Semiconductor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108573862A CN108573862A (en) | 2018-09-25 |
CN108573862B true CN108573862B (en) | 2020-09-08 |
Family
ID=63577156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710131028.2A Active CN108573862B (en) | 2017-03-07 | 2017-03-07 | Semiconductor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108573862B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110148552B (en) * | 2019-04-15 | 2021-10-15 | 上海华力集成电路制造有限公司 | Method for manufacturing zero-layer interlayer film |
CN113327980B (en) * | 2020-02-28 | 2023-03-28 | 中芯国际集成电路制造(天津)有限公司 | Semiconductor structure and forming method thereof |
CN114530502B (en) * | 2020-11-23 | 2025-04-25 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming the same |
CN114551334B (en) * | 2020-11-24 | 2025-05-20 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
CN114792628A (en) * | 2021-01-26 | 2022-07-26 | 中芯国际集成电路制造(上海)有限公司 | Method of forming a semiconductor structure |
CN118248628B (en) * | 2024-05-29 | 2025-04-29 | 浙江创芯集成电路有限公司 | Method for forming semiconductor structure |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102110650A (en) * | 2009-12-29 | 2011-06-29 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN102479694A (en) * | 2010-11-30 | 2012-05-30 | 中芯国际集成电路制造(北京)有限公司 | Formation method of metal gate and MOS transistor |
CN103094213A (en) * | 2011-11-02 | 2013-05-08 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for metal gate electrode of complementary metal oxide semiconductor (CMOS) device |
CN103107091A (en) * | 2011-11-15 | 2013-05-15 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN104752215A (en) * | 2013-12-30 | 2015-07-01 | 中芯国际集成电路制造(上海)有限公司 | Transistor forming method |
CN104795331A (en) * | 2014-01-21 | 2015-07-22 | 中芯国际集成电路制造(上海)有限公司 | Transistor formation method |
CN104979206A (en) * | 2014-04-04 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Formation method of transistor |
CN105428237A (en) * | 2014-08-28 | 2016-03-23 | 中芯国际集成电路制造(上海)有限公司 | Negative metal oxide transistor (NMOS) transistor and forming method thereof |
CN105513965A (en) * | 2014-09-26 | 2016-04-20 | 中芯国际集成电路制造(上海)有限公司 | Transistor forming method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105225937B (en) * | 2014-06-30 | 2018-03-30 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor devices |
-
2017
- 2017-03-07 CN CN201710131028.2A patent/CN108573862B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102110650A (en) * | 2009-12-29 | 2011-06-29 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN102479694A (en) * | 2010-11-30 | 2012-05-30 | 中芯国际集成电路制造(北京)有限公司 | Formation method of metal gate and MOS transistor |
CN103094213A (en) * | 2011-11-02 | 2013-05-08 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method for metal gate electrode of complementary metal oxide semiconductor (CMOS) device |
CN103107091A (en) * | 2011-11-15 | 2013-05-15 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN104752215A (en) * | 2013-12-30 | 2015-07-01 | 中芯国际集成电路制造(上海)有限公司 | Transistor forming method |
CN104795331A (en) * | 2014-01-21 | 2015-07-22 | 中芯国际集成电路制造(上海)有限公司 | Transistor formation method |
CN104979206A (en) * | 2014-04-04 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Formation method of transistor |
CN105428237A (en) * | 2014-08-28 | 2016-03-23 | 中芯国际集成电路制造(上海)有限公司 | Negative metal oxide transistor (NMOS) transistor and forming method thereof |
CN105513965A (en) * | 2014-09-26 | 2016-04-20 | 中芯国际集成电路制造(上海)有限公司 | Transistor forming method |
Also Published As
Publication number | Publication date |
---|---|
CN108573862A (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108573862B (en) | Semiconductor structure and method of forming the same | |
CN105097521B (en) | The forming method of semiconductor devices | |
CN108305850B (en) | Semiconductor structure and method of forming the same | |
CN107039272B (en) | Method for forming fin type transistor | |
WO2015089951A1 (en) | Method for preparing quasi soi source/drain field effect transistor device | |
CN104733314B (en) | Semiconductor structure and forming method thereof | |
CN104752215B (en) | The forming method of transistor | |
CN103515282A (en) | Fin field-effect transistor and forming method thereof | |
CN106952816B (en) | Method of forming a fin transistor | |
CN105655284A (en) | Formation method of trench isolation structure | |
CN103811323A (en) | Fin portion manufacturing method and fin type field effect transistor and manufacturing method thereof | |
CN111489972B (en) | Semiconductor structure and forming method thereof | |
CN104425263A (en) | Method for forming semiconductor structure | |
CN104425264B (en) | The forming method of semiconductor structure | |
CN104681490A (en) | Forming method of CMOS (complementary metal-oxide-semiconductor) transistor | |
CN109216439B (en) | Method of fabricating semiconductor device with field plate structure with graded thickness in trenches | |
CN106952815A (en) | Method for forming fin transistors | |
CN106571298B (en) | The forming method of semiconductor structure | |
CN107978525B (en) | Semiconductor structure and method of forming the same | |
CN106847697A (en) | The forming method of fin formula field effect transistor | |
CN113937002B (en) | Semiconductor structure and method for forming the same | |
CN110034069B (en) | Semiconductor structure and method of forming the same | |
CN112563200B (en) | Semiconductor device and method of forming the same | |
CN106571302A (en) | Formation method of fin field effect transistor | |
CN107170685A (en) | The forming method of fin transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |