[go: up one dir, main page]

CN108573862B - Semiconductor structure and method of forming the same - Google Patents

Semiconductor structure and method of forming the same Download PDF

Info

Publication number
CN108573862B
CN108573862B CN201710131028.2A CN201710131028A CN108573862B CN 108573862 B CN108573862 B CN 108573862B CN 201710131028 A CN201710131028 A CN 201710131028A CN 108573862 B CN108573862 B CN 108573862B
Authority
CN
China
Prior art keywords
dielectric layer
initial
layer
top surface
dummy gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710131028.2A
Other languages
Chinese (zh)
Other versions
CN108573862A (en
Inventor
韩秋华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201710131028.2A priority Critical patent/CN108573862B/en
Publication of CN108573862A publication Critical patent/CN108573862A/en
Application granted granted Critical
Publication of CN108573862B publication Critical patent/CN108573862B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6212Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies having non-rectangular cross-sections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6215Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

A semiconductor structure and a method of forming the same, the method comprising: the device comprises a substrate, a first electrode, a second electrode and a third electrode, wherein the substrate is provided with a device structure which comprises an initial side wall structure; forming an initial first dielectric layer on the substrate, the device structure and the initial side wall structure; flattening the initial first dielectric layer to form a first dielectric layer; removing part of the initial side wall structure to form a side wall structure, wherein the top surface of the side wall structure is lower than or level to the lowest point of the top surface of the first medium layer; after the side wall structure is formed, densifying the first medium layer to form an initial second medium layer, wherein the bottom surface of the initial second medium layer is lower than the top surface of the side wall structure, and the density of the initial second medium layer is greater than that of the first medium layer; after the initial second dielectric layer is formed, the device removing structure forms an opening structure, and a material layer is formed in the opening structure and on the initial second dielectric layer; and flattening the material layer and the initial second dielectric layer until the top surface of the side wall structure is exposed to form a grid structure and a second dielectric layer. The second dielectric layer has good isolation performance.

Description

半导体结构及其形成方法Semiconductor structure and method of forming the same

技术领域technical field

本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

随着技术节点的降低,传统的栅介质层不断变薄,晶体管漏电量随之增加,引起半导体器件功耗浪费等问题。为解决上述问题,现有技术提供一种将金属栅极替代多晶硅栅极的解决方案。其中,后栅极(gate last)工艺为形成金属栅极的一个主要工艺。With the reduction of technology nodes, the traditional gate dielectric layer is continuously thinner, and the leakage of transistors increases accordingly, causing problems such as waste of power consumption of semiconductor devices. In order to solve the above problems, the prior art provides a solution of replacing the polysilicon gate with a metal gate. Among them, the gate last process is a main process for forming the metal gate.

然而,在后栅工艺的过程中,金属栅极的金属材料使得半导体结构中的介质层的隔离性能变差,从而影响半导体结构的性能。However, during the gate-last process, the metal material of the metal gate deteriorates the isolation performance of the dielectric layer in the semiconductor structure, thereby affecting the performance of the semiconductor structure.

发明内容SUMMARY OF THE INVENTION

本发明解决的技术问题是提供一种半导体结构及其形成方法,能够改善半导体结构性能。The technical problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which can improve the performance of the semiconductor structure.

为解决上述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有器件结构,所述器件结构包括初始侧墙结构;在所述基底、器件结构以及初始侧墙结构的顶部表面形成初始第一介质层;平坦化所述初始第一介质层,直至暴露出初始侧墙结构的顶部表面,形成第一介质层;去除部分初始侧墙结构形成侧墙结构,所述侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点;形成所述侧墙结构之后,对部分所述第一介质层进行密实化处理形成初始第二介质层,所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层的密度大于所述第一介质层的密度;形成所述初始第二介质层之后,去除器件结构形成开口结构;在所述开口结构内以及初始第二介质层上形成材料层;平坦化所述材料层以及初始第二介质层直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate with a device structure on the substrate, the device structure including an initial spacer structure; forming an initial first dielectric layer on the top surface of the initial spacer structure; planarizing the initial first dielectric layer until the top surface of the initial spacer structure is exposed to form a first dielectric layer; removing part of the initial spacer structure to form a spacer structure, the top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer; after the sidewall structure is formed, part of the first dielectric layer is densified to form an initial the second dielectric layer, the bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, and the density of the initial second dielectric layer is greater than the density of the first dielectric layer; forming the initial second dielectric layer After the second dielectric layer, the device structure is removed to form an opening structure; a material layer is formed in the opening structure and on the initial second dielectric layer; the material layer and the initial second dielectric layer are planarized until the top of the spacer structure is exposed On the surface, a gate structure and a second dielectric layer are formed.

可选的,所述基底包括:第一区和第二区。Optionally, the substrate includes: a first area and a second area.

可选的,所述器件结构包括位于所述第一区的第一伪栅极结构和位于所述第二区的第二伪栅极结构;所述第一伪栅极结构包括:第一伪栅介质层以及位于所述第一伪栅介质层上的第一伪栅极层;所述第二伪栅极结构包括:第二伪栅介质层以及位于所述第二伪栅介质层上的第二伪栅极层。Optionally, the device structure includes a first dummy gate structure located in the first region and a second dummy gate structure located in the second region; the first dummy gate structure includes: a first dummy gate structure a gate dielectric layer and a first dummy gate layer located on the first dummy gate dielectric layer; the second dummy gate structure includes: a second dummy gate dielectric layer and a gate dielectric layer located on the second dummy gate dielectric layer the second dummy gate layer.

可选的,所述第一伪栅极结构沿沟道长度方向的尺寸小于第二伪栅极结构沿沟道长度方向的尺寸。Optionally, the size of the first dummy gate structure along the channel length direction is smaller than the size of the second dummy gate structure along the channel length direction.

可选的,所述第一伪栅极层的顶部表面具有第一掩膜层;所述第二伪栅极层的顶部表面具有第二掩膜层;所述第一掩膜层厚度较第二掩膜层厚度薄。Optionally, the top surface of the first dummy gate layer has a first mask layer; the top surface of the second dummy gate layer has a second mask layer; the thickness of the first mask layer is thicker than that of the third mask layer. The thickness of the second mask layer is thin.

可选的,所述初始侧墙结构包括初始第一侧墙和初始第二侧墙,所述初始第一侧墙位于所述第一伪栅介质层和第一伪栅极层的侧壁,所述初始第二侧墙位于所述第二伪栅介质层和第二伪栅极层的侧壁。Optionally, the initial spacer structure includes an initial first spacer and an initial second spacer, and the initial first spacer is located on sidewalls of the first dummy gate dielectric layer and the first dummy gate layer, The initial second spacers are located on sidewalls of the second dummy gate dielectric layer and the second dummy gate layer.

可选的,平坦化所述初始第一介质层的过程中,还包括:去除第一掩膜层和第二掩膜层。Optionally, the process of planarizing the initial first dielectric layer further includes: removing the first mask layer and the second mask layer.

可选的,所述初始第一介质层的材料包括:氧化硅。Optionally, the material of the initial first dielectric layer includes: silicon oxide.

可选的,所述初始第一介质层的形成工艺包括:流体化学气相沉积工艺。Optionally, the formation process of the initial first dielectric layer includes: a fluid chemical vapor deposition process.

可选的,平坦化所述初始第一介质层的工艺包括:化学机械研磨工艺。Optionally, the process of planarizing the initial first dielectric layer includes: a chemical mechanical polishing process.

可选的,去除部分初始侧墙结构的工艺包括:各项同性干法刻蚀工艺或湿法刻蚀工艺。Optionally, the process for removing part of the initial spacer structure includes: an isotropic dry etching process or a wet etching process.

可选的,所述各项同性干法刻蚀工艺的工艺参数包括:刻蚀气体包括:CH3F、CH2F2和O2,其中,CH3F的流量为:10标准毫升/分钟~500标准毫升/分钟,CH2F2的流量为:10标准毫升/分钟~200标准毫升/分钟,O2的流量为:10标准毫升/分钟~300标准毫升/分钟,压力为:2毫托~50毫托,功率:100瓦~200瓦。Optionally, the process parameters of the isotropic dry etching process include: the etching gas includes: CH 3 F, CH 2 F 2 and O 2 , wherein the flow rate of CH 3 F is: 10 standard ml/min ~500 standard ml/min, flow rate of CH 2 F 2 : 10 standard ml/min ~ 200 standard ml/min, flow rate of O 2 : 10 standard ml/min ~ 300 standard ml/min, pressure: 2 mm Torr to 50 mtorr, power: 100 watts to 200 watts.

可选的,所述初始侧墙结构沿垂直于所述基底顶部表面的方向上的去除量为:3纳米~10纳米。Optionally, the removal amount of the initial spacer structure along a direction perpendicular to the top surface of the substrate is: 3 nanometers to 10 nanometers.

可选的,对所述第一介质层进行密实化处理形成初始第二介质层的工艺包括:高温等离子体处理;所述高温等离子体处理工艺的工艺参数包括:气体包括:氦气,氦气的流量为:100标准毫升/分钟~1000标准毫升/分钟,温度:300摄氏度~500摄氏度,功率100瓦~1000瓦,压力:0.2托~5托。Optionally, the process of densifying the first dielectric layer to form the initial second dielectric layer includes: high temperature plasma treatment; the process parameters of the high temperature plasma treatment process include: gases include: helium, helium The flow rate is: 100 standard ml/min ~ 1000 standard ml/min, temperature: 300 degrees Celsius ~ 500 degrees Celsius, power 100 watts ~ 1000 watts, pressure: 0.2 Torr ~ 5 Torr.

可选的,所述第二介质层的最小厚度为:5纳米~20纳米。Optionally, the minimum thickness of the second dielectric layer is 5 nanometers to 20 nanometers.

可选的,平坦化所述材料层以及初始第二介质层的工艺包括:化学机械磨平工艺。Optionally, the process of planarizing the material layer and the initial second dielectric layer includes: a chemical mechanical polishing process.

相应的,本发明还提供一种采用上述方法形成的一种半导体结构,包括:基底,所述基底上具有栅极结构,所述栅极结构包括侧墙结构,所述侧墙结构的顶部表面与所述栅极结构的顶部表面齐平;位于所述基底上的第一介质层,所述第一介质层的顶部表面低于所述侧墙结构的顶部表面;位于所述第一介质层上的第二介质层,所述第二介质层的顶部表面与所述侧墙结构的顶部表面齐平。Correspondingly, the present invention also provides a semiconductor structure formed by the above method, comprising: a substrate having a gate structure on the substrate, the gate structure including a spacer structure, and a top surface of the spacer structure flush with the top surface of the gate structure; a first dielectric layer on the substrate, the top surface of the first dielectric layer is lower than the top surface of the spacer structure; located on the first dielectric layer The second dielectric layer on the top surface of the second dielectric layer is flush with the top surface of the sidewall structure.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

本发明技术方案提供的半导体结构的形成方法中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面仍然完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the method for forming a semiconductor structure provided by the technical solution of the present invention, by removing part of the initial spacer structure, the top surface of the spacer structure formed is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is still completely covered by the second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.

本发明技术方案提供的半导体结构中,位于所述第一介质层上的第二介质层的密度较所述第一介质层的密度大,所述第二介质层的顶部表面平整,所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the semiconductor structure provided by the technical solution of the present invention, the density of the second dielectric layer on the first dielectric layer is higher than that of the first dielectric layer, the top surface of the second dielectric layer is flat, and the first dielectric layer has a flat top surface. The performance of the two dielectric layers separating different semiconductor devices is better, thereby improving the performance of the semiconductor structure.

附图说明Description of drawings

图1至图2是一种半导体结构的形成方法各步骤的结构示意图;1 to 2 are schematic structural diagrams of each step of a method for forming a semiconductor structure;

图3至图8是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。3 to 8 are schematic structural diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.

具体实施方式Detailed ways

正如背景技术所述,所述半导体结构中的介质层的隔离性能不好。As mentioned in the background art, the isolation performance of the dielectric layer in the semiconductor structure is not good.

图1至图2是一种半导体结构的形成方法各步骤的结构示意图。FIG. 1 to FIG. 2 are schematic structural diagrams of various steps of a method for forming a semiconductor structure.

请参考图1,提供基底,所述基底包括第一区A和第二区B,所述第一区A基底上具有第一伪栅极结构101,所述第一伪栅极结构101包括第一伪栅侧墙102和第一伪栅极层(图中未标出),所述第一伪栅极结构101顶部表面具有第一掩膜层(图中未标出),所述第二区B基底上具有第二伪栅极结构103,所述第二伪栅极结构103包括第二伪栅侧墙104和第二伪栅极层(图中未标出),所述第二伪栅极结构103顶部表面具有第二掩膜层(图中未标出),所述基底、第一伪栅极结构101以及第二伪栅极结构103上具有初始第一介质层;平坦化所述初始第一介质层,直至暴露出第一伪栅侧墙102和第二伪栅侧墙104的顶部表面,形成第一介质层105,所述第一介质层105的顶部表面低于所述第一伪栅侧墙102和第二伪栅侧墙104的顶部表面。Referring to FIG. 1, a substrate is provided, the substrate includes a first region A and a second region B, the first region A has a first dummy gate structure 101 on the substrate, and the first dummy gate structure 101 includes a first dummy gate structure 101. A dummy gate spacer 102 and a first dummy gate layer (not shown in the figure), the top surface of the first dummy gate structure 101 has a first mask layer (not shown in the figure), the second The region B has a second dummy gate structure 103 on the substrate, the second dummy gate structure 103 includes a second dummy gate spacer 104 and a second dummy gate layer (not shown in the figure), the second dummy gate The top surface of the gate structure 103 has a second mask layer (not marked in the figure), and the substrate, the first dummy gate structure 101 and the second dummy gate structure 103 have an initial first dielectric layer; The initial first dielectric layer is formed until the top surfaces of the first dummy gate spacers 102 and the second dummy gate spacers 104 are exposed to form a first dielectric layer 105, and the top surface of the first dielectric layer 105 is lower than the Top surfaces of the first dummy gate spacers 102 and the second dummy gate spacers 104 .

请参考图2,去除所述第一伪栅极结构101形成第一开口,在所述第一开口内形成第一栅极结构107;去除所述第二伪栅极结构103形成第二开口,在所述第二开口内形成第二栅极结构108。Referring to FIG. 2, the first dummy gate structure 101 is removed to form a first opening, and a first gate structure 107 is formed in the first opening; the second dummy gate structure 103 is removed to form a second opening, A second gate structure 108 is formed within the second opening.

所述初始第一介质层的材料包括:氧化硅;形成所述初始第一介质层的工艺包括:流体化学气相沉积工艺。The material of the initial first dielectric layer includes: silicon oxide; the process of forming the initial first dielectric layer includes: a fluid chemical vapor deposition process.

所述第一掩膜层和第二掩膜层的材料包括:氮化硅。The materials of the first mask layer and the second mask layer include: silicon nitride.

然而,采用上述方法制备的半导体结构性能较差,原因在于:However, the semiconductor structures prepared by the above methods have poor performance due to:

上述方法中,所述第一区A用于形成短沟道区,所述第二区B用于形成长沟道区,所述短沟道区的器件间距较长沟道区的器件间距小。为了形成形貌良好的第一伪栅极结构101和第二伪栅极结构103,位于所述第一伪栅极结构101上的所述第一掩膜层的厚度较位于所述第二伪栅极结构103上的第二掩膜层的厚度薄。In the above method, the first region A is used to form a short channel region, the second region B is used to form a long channel region, and the device spacing in the short channel region is longer and the device spacing in the channel region is small. . In order to form the first dummy gate structure 101 and the second dummy gate structure 103 with good topography, the thickness of the first mask layer on the first dummy gate structure 101 is thicker than that on the second dummy gate structure 101 The thickness of the second mask layer on the gate structure 103 is thin.

后续利用化学机械研磨工艺平坦化所述初始第一介质层,直至暴露出所述第一伪栅侧墙102和第二伪栅侧墙104的顶部表面,形成所述第一介质层105。在平坦化所述初始第一介质层的过程中,所述第一掩膜层和第二掩膜层也被去除。由于所述第一掩膜层和第二掩膜层的密度较所述初始第一介质层的密度大,因此,在平坦化去除所述初始第一介质层、第一掩膜层以及第二掩膜层的过程中,所述平坦化工艺过程对所述初始第一介质层的机械研磨速率大于对所述第一掩膜层和第二掩膜层的机械研磨速率,进而使得采用平坦化工艺形成的第一介质层105的顶部表面具有凹陷。Subsequently, the initial first dielectric layer is planarized by chemical mechanical polishing until the top surfaces of the first dummy gate spacers 102 and the second dummy gate spacers 104 are exposed to form the first dielectric layer 105 . In the process of planarizing the initial first dielectric layer, the first mask layer and the second mask layer are also removed. Since the density of the first mask layer and the second mask layer is higher than that of the initial first dielectric layer, the initial first dielectric layer, the first mask layer and the second initial dielectric layer are removed during planarization. In the process of the mask layer, the mechanical polishing rate of the initial first dielectric layer in the planarization process is greater than the mechanical polishing rate of the first mask layer and the second mask layer, so that the planarization process is adopted. The top surface of the first dielectric layer 105 formed by the process has recesses.

具体的,在平坦化去除部分所述初始第一介质层、第一掩膜层以及第二掩膜层的过程中,由于所述第一掩膜层的厚度较第二掩膜层的厚度薄,因此,当所述第一掩膜层被完全去除时,所述第二掩膜层仍有残留。当所述第一掩膜层被完全去除时,位于第一区A和第二区B的第一介质层105的顶部表面均产生凹陷。去除所述第一掩膜层之后,为了去除第二掩膜层,继续对部分所述初始第一介质层和第二掩膜层进行平坦化,导致第二区B的第一介质层表面的凹陷加深。因此,当第二掩膜层被完全去除时,位于所述第一区A的第一介质层105顶部表面具有第一凹陷,位于第二区B的第一介质105顶部表面具有第二凹陷,而且所述第一凹陷的最大深度小于第二凹陷的最大深度。Specifically, in the process of planarizing and removing part of the initial first dielectric layer, the first mask layer and the second mask layer, since the thickness of the first mask layer is thinner than that of the second mask layer Therefore, when the first mask layer is completely removed, the second mask layer still remains. When the first mask layer is completely removed, the top surfaces of the first dielectric layer 105 in both the first region A and the second region B are recessed. After the first mask layer is removed, in order to remove the second mask layer, part of the initial first dielectric layer and the second mask layer are continued to be planarized, resulting in the surface of the first dielectric layer in the second region B being flattened. The depression deepens. Therefore, when the second mask layer is completely removed, the top surface of the first dielectric layer 105 located in the first region A has the first depression, and the top surface of the first dielectric layer 105 located in the second region B has the second depression, And the maximum depth of the first recess is smaller than the maximum depth of the second recess.

后续在所述第一开口内形成第一栅极结构107,在所述第二开口内形成第二栅极结构108。所述第一栅极结构107和第二栅极结构108的形成步骤包括:在所述第一开口、第二开口内以及第一介质层105上形成材料层;对所述材料层进行平坦化直至暴露出第一伪栅侧墙102和第二伪栅侧墙104的顶部表面。对所述材料层进行平坦化时,位于第一凹陷处和第二凹陷处易沉积材料层,使得所述第一介质层105隔离半导体不同器件的性能较差,进而影响半导体结构的性能。Subsequently, a first gate structure 107 is formed in the first opening, and a second gate structure 108 is formed in the second opening. The steps of forming the first gate structure 107 and the second gate structure 108 include: forming a material layer in the first opening, the second opening and on the first dielectric layer 105 ; and planarizing the material layer until the top surfaces of the first dummy gate spacers 102 and the second dummy gate spacers 104 are exposed. When the material layer is planarized, the material layers are easily deposited at the first recess and the second recess, so that the performance of the first dielectric layer 105 in isolating different semiconductor devices is poor, thereby affecting the performance of the semiconductor structure.

为解决上述技术问题,本发明技术方案提供一种半导体结构的形成方法,包括:提供基底,所述基底上具有器件结构,所述器件结构包括初始侧墙结构;在所述基底、器件结构以及初始侧墙结构的顶部表面形成初始第一介质层;平坦化所述初始第一介质层,直至暴露出初始侧墙结构的顶部表面,形成第一介质层;去除部分初始侧墙结构形成侧墙结构,所述侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点;形成所述侧墙结构之后,对部分所述第一介质层进行密实化处理形成初始第二介质层,所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层的密度大于所述第一介质层的密度;形成所述初始第二介质层之后,去除器件结构形成开口结构;在所述开口结构内、以及初始第二介质层上形成材料层;平坦化所述材料层以及初始第二介质层直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层。In order to solve the above-mentioned technical problems, the technical solution of the present invention provides a method for forming a semiconductor structure, which includes: providing a substrate with a device structure on the substrate, and the device structure includes an initial spacer structure; forming an initial first dielectric layer on the top surface of the initial spacer structure; planarizing the initial first dielectric layer until the top surface of the initial spacer structure is exposed to form a first dielectric layer; removing part of the initial spacer structure to form a spacer structure, the top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer; after the sidewall structure is formed, part of the first dielectric layer is densified to form an initial the second dielectric layer, the bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, and the density of the initial second dielectric layer is greater than the density of the first dielectric layer; forming the initial second dielectric layer After the second dielectric layer, the device structure is removed to form an opening structure; a material layer is formed in the opening structure and on the initial second dielectric layer; the material layer and the initial second dielectric layer are planarized until the spacer structure is exposed. On the top surface, a gate structure and a second dielectric layer are formed.

所述方法中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。In the method, by removing part of the initial sidewall structure, the top surface of the formed sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is completely covered by a second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图3至图8是本发明一实施例的半导体结构的形成方法的各步骤的结构示意图。3 to 8 are schematic structural diagrams of each step of a method for forming a semiconductor structure according to an embodiment of the present invention.

请参考图3,提供基底200,所述基底200具有器件结构(图中未标出),所述器件结构包括初始侧墙结构(图中未标出);在所述基底200、器件结构以及初始侧墙结构上形成初始第一介质层201。Referring to FIG. 3, a substrate 200 is provided, the substrate 200 has a device structure (not shown in the figure), and the device structure includes an initial spacer structure (not shown in the figure); in the substrate 200, the device structure and the An initial first dielectric layer 201 is formed on the initial spacer structure.

在本实施例中,所述基底200包括:衬底202以及位于衬底202上的鳍部203。在其它实施例中,所述基底为平面衬底。In this embodiment, the base 200 includes: a substrate 202 and a fin 203 on the substrate 202 . In other embodiments, the substrate is a planar substrate.

所述基底200的形成步骤包括:提供初始衬底;图形化所述初始衬底,形成衬底202和位于衬底202上的鳍部203。The steps of forming the base 200 include: providing an initial substrate; patterning the initial substrate to form the substrate 202 and the fins 203 on the substrate 202 .

本实施例中,所述初始衬底的材料为硅。在其他实施例中,所述初始衬底还可以为锗衬底、硅锗衬底、绝缘体上硅或绝缘体上锗等半导体衬底。In this embodiment, the material of the initial substrate is silicon. In other embodiments, the initial substrate may also be a germanium substrate, a silicon germanium substrate, a silicon-on-insulator or a germanium-on-insulator or other semiconductor substrate.

所述基底200还包括隔离结构(图中未标出),所述隔离结构用于实现半导体不同器件之间的电绝缘。The substrate 200 also includes an isolation structure (not shown in the figure) for realizing electrical isolation between different devices of the semiconductor.

在本实施例中,所述基底200包括第一区Ⅰ和第二区Ⅱ,所述第一区Ⅰ用于形成短沟道器件,所述第二区Ⅱ用于形成长沟道器件。In this embodiment, the substrate 200 includes a first region I and a second region II, the first region I is used for forming short-channel devices, and the second region II is used for forming long-channel devices.

在本实施例中,所述器件结构包括:位于所述第一区Ⅰ的第一伪栅极结构204和位于所述第二区Ⅱ的第二伪栅极结构205,且所述第一伪栅极结构204沿沟道长度方向的尺寸小于第二伪栅极结构205沿沟道长度方向的尺寸。In this embodiment, the device structure includes: a first dummy gate structure 204 located in the first region I and a second dummy gate structure 205 located in the second region II, and the first dummy gate structure 205 The size of the gate structure 204 along the channel length direction is smaller than the size of the second dummy gate structure 205 along the channel length direction.

在本实施例中,还包括:在所述第一伪栅极结构204两侧的所述鳍部203内形成第一源漏掺杂区208;在第二伪栅极结构205两侧的所述鳍部203内形成第二源漏掺杂区209。In this embodiment, the method further includes: forming first source-drain doped regions 208 in the fins 203 on both sides of the first dummy gate structure 204 ; A second source-drain doped region 209 is formed in the fin portion 203 .

所述第一伪栅极结构204沿沟道长度方向的尺寸指的是:所述第一伪栅极结构204沿两侧第一源漏掺杂区208连线方向上的尺寸。The size of the first dummy gate structure 204 along the channel length direction refers to the size of the first dummy gate structure 204 along the direction of the connection between the first source and drain doped regions 208 on both sides.

所述第二伪栅极结构205沿沟道长度方向的尺寸指的是:所述第二伪栅极结构205沿两侧第二源漏掺杂区209连线方向上的尺寸。The dimension of the second dummy gate structure 205 along the channel length direction refers to the dimension of the second dummy gate structure 205 along the connection direction of the second source-drain doped regions 209 on both sides.

在本实施例中,所述初始侧墙结构包括:初始第一侧墙206和初始第二侧墙207。In this embodiment, the initial sidewall structure includes: an initial first sidewall 206 and an initial second sidewall 207 .

所述第一伪栅极结构204包括:第一伪栅介质层、位于第一伪栅介质层上的第一伪栅极层以及位于所述第一伪栅介质层侧壁和第一伪栅极层侧壁的初始第一侧墙206。The first dummy gate structure 204 includes: a first dummy gate dielectric layer, a first dummy gate layer on the first dummy gate dielectric layer, sidewalls and a first dummy gate on the first dummy gate dielectric layer The initial first spacer 206 of the sidewall of the pole layer.

所述第二伪栅极结构205包括:第二伪栅介质层、位于第二伪栅介质层上的第二伪栅极层以及位于所述第二伪栅介质层侧壁和第二伪栅极层侧壁的初始第二侧墙207。The second dummy gate structure 205 includes: a second dummy gate dielectric layer, a second dummy gate layer on the second dummy gate dielectric layer, sidewalls of the second dummy gate dielectric layer and a second dummy gate The initial second spacer 207 of the sidewall of the pole layer.

所述初始第一侧墙206与所述初始第二侧墙207的厚度一致。The initial first sidewall 206 and the initial second sidewall 207 have the same thickness.

在本实施例中,所述第一伪栅极结构204的顶部表面具有第一掩膜层(图中未标出),所述第一掩膜层作为刻蚀形成所述第一伪栅极层的掩膜。所述第二伪栅极结构205的顶部表面具有第二掩膜层(图中未标出),所述第二掩膜层作为刻蚀形成所述第二伪栅极层的掩膜,且所述第一掩膜层厚度较第二掩膜层厚度薄。In this embodiment, the top surface of the first dummy gate structure 204 has a first mask layer (not shown in the figure), and the first mask layer is used for etching to form the first dummy gate layer mask. The top surface of the second dummy gate structure 205 has a second mask layer (not shown in the figure), the second mask layer serves as a mask for etching to form the second dummy gate layer, and The thickness of the first mask layer is thinner than that of the second mask layer.

所述第一掩膜层厚度较第二掩膜层厚度薄的原因包括:所述第一区Ⅰ用于形成短沟道区,所述第二区Ⅱ用于形成长沟道区,所述短沟道区的器件间距较长沟道区的器件间距小。为了形成形貌良好的第一伪栅极结构204和第二伪栅极结构205,位于所述第一伪栅极结构204上的第一掩膜层的厚度较位于所述第二伪栅极结构205上的第二掩膜层的厚度薄。The reasons why the thickness of the first mask layer is thinner than that of the second mask layer include: the first region I is used to form a short channel region, the second region II is used to form a long channel region, and the The device pitch in the short channel region is longer, and the device pitch in the channel region is small. In order to form the first dummy gate structure 204 and the second dummy gate structure 205 with good topography, the thickness of the first mask layer on the first dummy gate structure 204 is higher than that on the second dummy gate The thickness of the second mask layer on the structure 205 is thin.

所述第一掩膜层和所述第二掩膜层的材料包括:氮化硅。Materials of the first mask layer and the second mask layer include: silicon nitride.

形成所述初始第一介质层201之前,还包括:对所述第一伪栅极结构204和第二伪栅极结构205两侧的所述鳍部203进行轻掺杂离子注入;所述轻掺杂离子注入之后,在所述第一伪栅极结构204两侧的所述鳍部203内形成第一源漏掺杂区208;在第二伪栅极结构205两侧的所述鳍部203内形成第二源漏掺杂区209;形成所述第一源漏掺杂区208和第二源漏掺杂区209之后,在所述基底200、第一源漏掺杂区208、第二源漏掺杂区209、所述第一掩膜层以及第二掩膜层上形成停止层210。Before forming the initial first dielectric layer 201, the method further includes: performing lightly doped ion implantation on the fins 203 on both sides of the first dummy gate structure 204 and the second dummy gate structure 205; After doping ion implantation, first source and drain doped regions 208 are formed in the fins 203 on both sides of the first dummy gate structure 204 ; the fins on both sides of the second dummy gate structure 205 are formed. A second source and drain doped region 209 is formed in 203; after the first source and drain doped region 208 and the second source and drain doped region 209 are formed, the substrate 200, the first source and drain A stop layer 210 is formed on the two source and drain doped regions 209 , the first mask layer and the second mask layer.

所述第一源漏掺杂区208的形成步骤包括:采用刻蚀工艺在所述第一伪栅极结构204两侧的鳍部203内形成开口;采用选择性外延沉积工艺在所述开口内形成外延层;在所述外延层内掺杂P型离子或N型离子,形成所述第一源漏掺杂区208。The steps of forming the first source-drain doped region 208 include: using an etching process to form openings in the fins 203 on both sides of the first dummy gate structure 204; using a selective epitaxial deposition process to form openings in the openings An epitaxial layer is formed; P-type ions or N-type ions are doped in the epitaxial layer to form the first source-drain doped region 208 .

所述第二源漏掺杂区209的形成步骤包括:采用刻蚀工艺在所述第二伪栅极结构205两侧的鳍部203内形成开口;采用选择性外延沉积工艺在所述开口内形成外延层;在所述外延层内掺杂P型离子或N型离子,形成所述第二源漏掺杂区209。The steps of forming the second source and drain doped regions 209 include: using an etching process to form openings in the fins 203 on both sides of the second dummy gate structure 205; using a selective epitaxial deposition process to form openings in the openings An epitaxial layer is formed; P-type ions or N-type ions are doped in the epitaxial layer to form the second source-drain doped region 209 .

所述停止层210的材料包括:氮化硅。The material of the stop layer 210 includes: silicon nitride.

所述初始第一介质层201的材料包括:氧化硅。所述初始第一介质层201的形成工艺包括:流体化学气相沉积工艺。所述初始第一介质层201用于实现半导体不同器件之间的电绝缘。The material of the initial first dielectric layer 201 includes: silicon oxide. The formation process of the initial first dielectric layer 201 includes: a fluid chemical vapor deposition process. The initial first dielectric layer 201 is used to achieve electrical isolation between different semiconductor devices.

请参考图4,平坦化所述初始第一介质层201直至暴露出所述初始侧墙结构的顶部表面,形成第一介质层211。Referring to FIG. 4 , the initial first dielectric layer 201 is planarized until the top surface of the initial spacer structure is exposed to form a first dielectric layer 211 .

平坦化所述初始第一介质层201的过程中,还包括:去除第一掩膜层和第二掩膜层。In the process of planarizing the initial first dielectric layer 201, the process further includes: removing the first mask layer and the second mask layer.

所述平坦化工艺包括:化学机械研磨工艺。由于所述第一掩膜层和第二掩膜层的密度较所述初始第一介质层201的密度大,因此,在平坦化去除部分所述初始第一介质层201、第一掩膜层以及第二掩膜层的过程中,所述平坦化工艺对所述初始第一介质层201的机械研磨速率大于对所述第一掩膜层和第二掩膜层的机械研磨速率,使得采用平坦化工艺形成的第一介质层211的顶部表面具有凹陷。The planarization process includes: a chemical mechanical polishing process. Since the density of the first mask layer and the second mask layer is higher than that of the initial first dielectric layer 201 , the initial first dielectric layer 201 and the first mask layer are removed during planarization. And in the process of the second mask layer, the mechanical polishing rate of the planarization process for the initial first dielectric layer 201 is greater than the mechanical polishing rate for the first mask layer and the second mask layer, so that the use of The top surface of the first dielectric layer 211 formed by the planarization process has recesses.

第一区Ⅰ第一介质层211顶部表面具有第一凹陷,第二区Ⅱ第一介质层211顶部表面具有第二凹陷。所述第一凹陷的最大深度为:H1,所述第二凹陷的最大深度为:H2,且H1小于H2。The top surface of the first dielectric layer 211 in the first region I has a first recess, and the top surface of the first dielectric layer 211 in the second region II has a second recess. The maximum depth of the first recess is: H1, the maximum depth of the second recess is: H2, and H1 is less than H2.

所述第一凹陷的最大深度H1指的是:位于第一区Ⅰ第一介质层211的顶部表面到第一伪栅结构204的顶部表面的最大尺寸。The maximum depth H1 of the first recess refers to the maximum dimension from the top surface of the first dielectric layer 211 in the first region I to the top surface of the first dummy gate structure 204 .

所述第二凹陷的最大深度H2指的是:位于第二区Ⅱ第一介质层211的顶部表面到第二伪栅结构205的顶部表面的最大尺寸。The maximum depth H2 of the second recess refers to the maximum dimension from the top surface of the first dielectric layer 211 in the second region II to the top surface of the second dummy gate structure 205 .

H1小于H2,H1小于H2的原因包括:当所述第一掩膜层被完全去除时,位于所述第一区Ⅰ和第二区Ⅱ第一介质层211顶部表面均出现凹陷。去除所述第一掩膜层之后,为了完全去除第二掩膜层,对所述初始第一介质层201以及第二掩膜层继续进行平坦化,导致第二区Ⅱ的第一介质层211顶部表面的凹陷加深。因此,当第二掩膜层被完全去除时,使得第一凹陷的最大深度H1小于第二凹陷的最大深度H2。The reasons why H1 is smaller than H2 and H1 is smaller than H2 include: when the first mask layer is completely removed, the top surfaces of the first dielectric layers 211 in the first region I and the second region II are both depressed. After removing the first mask layer, in order to completely remove the second mask layer, the initial first dielectric layer 201 and the second mask layer are further planarized, resulting in the first dielectric layer 211 in the second region II The depression on the top surface deepens. Therefore, when the second mask layer is completely removed, the maximum depth H1 of the first recess is made smaller than the maximum depth H2 of the second recess.

所述第二凹陷的最大深度H2的深度为:3纳米~10纳米。The depth of the maximum depth H2 of the second recess is 3 nanometers to 10 nanometers.

所述第二凹陷的最大深度H2决定后续所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量。The maximum depth H2 of the second recess determines the subsequent removal amount of the initial spacer structure along the direction perpendicular to the top surface of the fins 203 .

请参考图5,去除部分初始侧墙结构形成侧墙结构,所述侧墙结构顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。Referring to FIG. 5 , part of the initial spacer structure is removed to form a spacer structure, and the top surface of the spacer structure is lower than or flush with the lowest point of the top surface of the first dielectric layer 211 .

去除部分初始侧墙结构的工艺包括:各项同性干法刻蚀工艺或湿法刻蚀工艺。The process for removing part of the initial spacer structure includes: an isotropic dry etching process or a wet etching process.

所述各项同性干法刻蚀工艺的工艺参数包括:刻蚀气体包括:CH3F、CH2F2和O2,其中,CH3F的流量为:10标准毫升/分钟~500标准毫升/分钟,CH2F2的流量为:10标准毫升/分钟~200标准毫升/分钟,O2的流量为:10标准毫升/分钟~300标准毫升/分钟,压力为:2毫托~50毫托,功率:100瓦~200瓦。The process parameters of the isotropic dry etching process include: the etching gas includes: CH 3 F, CH 2 F 2 and O 2 , wherein the flow rate of CH 3 F is: 10 standard milliliters per minute to 500 standard milliliters /min, the flow rate of CH 2 F 2 is: 10 standard ml/min ~ 200 standard ml/min, the flow rate of O 2 is: 10 standard ml/min ~ 300 standard ml/min, the pressure is: 2 mTorr ~ 50 m Support, power: 100 watts to 200 watts.

所述第一介质层211顶部表面的最低点位于第二凹陷最大深度H2处的位置。The lowest point of the top surface of the first dielectric layer 211 is located at the maximum depth H2 of the second recess.

所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量是由所述第二凹陷的最大深度H2决定。The removal amount of the initial spacer structure in a direction perpendicular to the top surface of the fins 203 is determined by the maximum depth H2 of the second recess.

去除部分初始侧墙结构的过程中,所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量为:3纳米~10纳米。选择所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量的意义在于:所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量小于3纳米,后续在所述第一介质层211上形成第二介质层,所述第二介质层的顶部表面在形成栅极结构时仍残留部分的材料层,从而影响第二介质层的影响隔离性能,进而影响半导体结构的性能;若所述初始侧墙结构沿垂直于所述鳍部203顶部表面方向上的去除量大于10纳米,后续形成的栅极结构的高度过低,不利于半导体结构的性能。In the process of removing part of the initial spacer structure, the removal amount of the initial spacer structure along the direction perpendicular to the top surface of the fins 203 is 3 nanometers to 10 nanometers. The significance of selecting the removal amount of the initial spacer structure in the direction perpendicular to the top surface of the fin 203 is that the removal amount of the initial spacer structure in the direction perpendicular to the top surface of the fin 203 is less than 3 nm , a second dielectric layer is subsequently formed on the first dielectric layer 211, and a part of the material layer remains on the top surface of the second dielectric layer when the gate structure is formed, thereby affecting the isolation performance of the second dielectric layer, This further affects the performance of the semiconductor structure; if the removal amount of the initial spacer structure along the direction perpendicular to the top surface of the fins 203 is greater than 10 nanometers, the height of the subsequently formed gate structure is too low, which is not conducive to the performance of the semiconductor structure .

所述侧墙结构包括:第一侧墙212和第二侧墙213。The side wall structure includes: a first side wall 212 and a second side wall 213 .

所述第一侧墙212的形成步骤包括:去除部分初始第一侧墙206,形成第一侧墙212,所述第一侧墙212顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。The forming step of the first sidewall 212 includes: removing part of the initial first sidewall 206 to form a first sidewall 212 , and the top surface of the first sidewall 212 is lower than or flush with the first dielectric layer 211 . The lowest point on the top surface.

所述第二侧墙213的形成步骤包括:去除部分初始第二侧墙207,形成第二侧墙213,所述第二侧墙213顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点。The forming step of the second sidewall 213 includes: removing part of the initial second sidewall 207 to form a second sidewall 213 , and the top surface of the second sidewall 213 is lower than or flush with the first dielectric layer 211 The lowest point on the top surface.

所述侧墙结构顶部表面低于或者齐平于所述第一介质层211顶部表面的最低点,目的在于:为了确保后续在所述第一介质层211上形成第二介质层时,所述第二介质层的顶部表面在形成栅极结构时无材料层的残留,从而提高第二介质层的隔离性能,进而提高半导体结构的性能。The top surface of the sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer 211 , in order to ensure that when the second dielectric layer is subsequently formed on the first dielectric layer 211 , the When the gate structure is formed on the top surface of the second dielectric layer, no material layer remains, thereby improving the isolation performance of the second dielectric layer, thereby improving the performance of the semiconductor structure.

请参考图6,形成所述侧墙结构之后,对部分所述第一介质层211进行密实化处理形成初始第二介质层214,所述初始第二介质层214的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质214的密度大于所述第一介质层211的密度。Referring to FIG. 6 , after the sidewall structure is formed, a portion of the first dielectric layer 211 is densified to form an initial second dielectric layer 214 , and the bottom surface of the initial second dielectric layer 214 is lower than the sidewalls. The top surface of the wall structure, and the density of the initial second dielectric layer 214 is greater than the density of the first dielectric layer 211 .

对所述第一介质层211进行密实化处理形成初始第二介质层214的工艺包括:高温等离子体处理工艺;所述高温等离子体处理工艺的工艺参数包括:气体包括:氦气,氦气的流量为:100标准毫升/分钟~1000标准毫升/分钟,温度:300摄氏度~500摄氏度,功率100瓦~1000瓦,压力:0.2托~5托。The process of densifying the first dielectric layer 211 to form the initial second dielectric layer 214 includes: a high temperature plasma treatment process; the process parameters of the high temperature plasma treatment process include: gases include: helium, helium The flow rate is: 100 standard ml/min ~ 1000 standard ml/min, temperature: 300 degrees Celsius ~ 500 degrees Celsius, power 100 watts ~ 1000 watts, pressure: 0.2 Torr ~ 5 Torr.

所述初始第二介质214的密度大于所述第一介质层211的密度的原理包括:在所述高温等离子体处理工艺下,部分所述第一介质层211高温重组形成密度较大的初始第二介质层214。The principle that the density of the initial second medium 214 is greater than the density of the first medium layer 211 includes: under the high temperature plasma treatment process, part of the first medium layer 211 is reorganized at high temperature to form an initial first medium layer with a higher density. Two dielectric layers 214 .

所述初始第二介质层214的最小厚度为:5纳米~20纳米,选择所述初始第二介质层214最小厚度的意义在于:若所述初始第二介质层214的最小厚度小于5纳米,后续在形成栅极结构时,对所述初始第二介质层214上的材料层进行平坦化处理时,所述初始第二介质层214厚度过薄,使得所述初始第二介质层214对第一介质层211的保护力度不够。即,所述初始第二介质层被平坦化去除之后,还平坦化去除部分所述第一介质层211。由于所述第一介质层211是通过流体化学气相沉积工艺形成的,因此,所述第一介质层211质地较软。在平坦化去除部分所述第一介质层211的过程中,所述第一介质层211易在后续形成栅极结构两侧出现凹陷,具有凹陷的第一介质层211的隔离性能较差,不利于提高半导体结构的性能;若所述初始第二介质层214的最小厚度大于20纳米,增大密实化处理部分所述第一介质层211的工艺难度。The minimum thickness of the initial second dielectric layer 214 is 5 nanometers to 20 nanometers. The significance of selecting the minimum thickness of the initial second dielectric layer 214 is: if the minimum thickness of the initial second dielectric layer 214 is less than 5 nanometers, When the gate structure is subsequently formed, when the material layer on the initial second dielectric layer 214 is planarized, the thickness of the initial second dielectric layer 214 is too thin, so that the initial second dielectric layer 214 is not suitable for the first dielectric layer 214 . The protection strength of a dielectric layer 211 is insufficient. That is, after the initial second dielectric layer is planarized and removed, part of the first dielectric layer 211 is also planarized and removed. Since the first dielectric layer 211 is formed by a fluid chemical vapor deposition process, the texture of the first dielectric layer 211 is relatively soft. In the process of planarizing and removing part of the first dielectric layer 211 , the first dielectric layer 211 is prone to concavities on both sides of the gate structure subsequently formed, and the first dielectric layer 211 with concavities has poor isolation performance and does not It is beneficial to improve the performance of the semiconductor structure; if the minimum thickness of the initial second dielectric layer 214 is greater than 20 nanometers, the process difficulty of the first dielectric layer 211 in the densification treatment part is increased.

所述初始第二介质层214的底部表面低于所述侧墙结构的顶部表面,且所述初始第二介质层214的密度大于所述第一介质层211的密度,使得后续平坦化材料层形成的第二介质层214的顶部表面平整性好,进而使得所述第二介质层214的电学隔离性能好,从而提高半导体结构的性能。The bottom surface of the initial second dielectric layer 214 is lower than the top surface of the spacer structure, and the density of the initial second dielectric layer 214 is greater than the density of the first dielectric layer 211, so that the subsequent planarization material layer The top surface of the formed second dielectric layer 214 has good flatness, so that the electrical isolation performance of the second dielectric layer 214 is good, thereby improving the performance of the semiconductor structure.

请参考图7,去除器件结构形成开口结构。Referring to FIG. 7 , the device structure is removed to form an opening structure.

所述开口结构包括:第一开口215和第二开口216,所述第一开口215和第二开口216的形成步骤包括:去除所述第一伪栅极结构204,形成第一开口215;去除所述第二伪栅极结构205,形成第二开口216。The opening structure includes: a first opening 215 and a second opening 216, and the steps of forming the first opening 215 and the second opening 216 include: removing the first dummy gate structure 204 to form the first opening 215; removing The second dummy gate structure 205 forms a second opening 216 .

去除第一伪栅极结构204和第二伪栅极结构205的工艺包括:各项异性干法刻蚀工艺或干法刻蚀工艺与湿法刻蚀工艺相结合。The process of removing the first dummy gate structure 204 and the second dummy gate structure 205 includes: an anisotropic dry etching process or a combination of a dry etching process and a wet etching process.

所述各项异性干法刻蚀工艺与湿法刻蚀工艺相结合的工艺参数包括:刻蚀气体包括:溴化氢、氯气和氧气,其中,溴化氢的流量为:10标准毫升/分钟~500标准毫升/分钟,氯气的流量为:10标准毫升/分钟~500标准毫升/分钟,氧气的流量为:2标准毫升/分钟~100标准毫升/分钟,功率:100瓦~1000瓦,刻蚀剂包括:稀氢氟酸,氢氟酸与水的浓度比值为:50:1~2000:1,四甲基氢氧化铵的质量分数为:0.5%~5%。The process parameters of the combination of the anisotropic dry etching process and the wet etching process include: the etching gas includes: hydrogen bromide, chlorine and oxygen, wherein the flow rate of hydrogen bromide is: 10 standard ml/min ~500 standard ml/min, the flow rate of chlorine gas is: 10 standard ml/min~500 standard ml/min, the flow rate of oxygen is: 2 standard ml/min~100 standard ml/min, power: 100 watts~1000 watts, engraved The etchant includes: dilute hydrofluoric acid, the concentration ratio of hydrofluoric acid to water is 50:1-2000:1, and the mass fraction of tetramethylammonium hydroxide is: 0.5%-5%.

请参考图8,形成所述开口结构之后,在所述开口结构内沉积材料层,平坦化所述材料层以及部分初始第二介质层214直至暴露出侧墙结构的顶部表面,形成栅极结构和第二介质层219。Referring to FIG. 8 , after the opening structure is formed, a material layer is deposited in the opening structure, and the material layer and part of the initial second dielectric layer 214 are planarized until the top surface of the spacer structure is exposed to form a gate structure and the second dielectric layer 219.

所述栅极结构包括:第一栅极结构217和第二栅极结构218,所述第一栅极结构217和第二栅极结构218的形成步骤包括:在所述第一开口215、第二开口216内以及初始第二介质层214上形成材料层;平坦化所述材料层直至暴露出侧墙结构的顶部表面,在第一开口215内形成第一栅极结构217,在所述第二开口216内形成第二栅极结构218。The gate structure includes: a first gate structure 217 and a second gate structure 218 , and the forming steps of the first gate structure 217 and the second gate structure 218 include: the first opening 215 , the second gate structure 218 A material layer is formed in the two openings 216 and on the initial second dielectric layer 214 ; the material layer is planarized until the top surface of the spacer structure is exposed, a first gate structure 217 is formed in the first opening 215 , and a first gate structure 217 is formed in the first opening 215 . A second gate structure 218 is formed in the two openings 216 .

所述材料层的材料包括:金属层,所述金属层的材料包括:钨。The material of the material layer includes: a metal layer, and the material of the metal layer includes: tungsten.

所述平坦化所述材料层的工艺包括:化学机械研磨工艺。The process of planarizing the material layer includes: a chemical mechanical polishing process.

所述第二介质层219的顶部表面平整性良好,使得所述第二介质层的隔离性能较好,从而提高半导体结构的性能。The top surface of the second dielectric layer 219 has good flatness, so that the isolation performance of the second dielectric layer is better, thereby improving the performance of the semiconductor structure.

综上,在本实施例中,通过去除部分初始侧墙结构,使所形成的侧墙结构的顶部表面低于或者齐平于所述第一介质层顶部表面的最低点。后续对部分所述第一介质层进行密实化处理形成初始第二介质层,则所形成的初始第二介质层的顶部表面高于或齐平于所述侧墙的顶部表面。即使所述初始第二介质层的表面具有凹陷,在后续经过平坦化之后,所形成的第二介质层表面依旧平坦。所述初始第二介质层的底部表面低于所述侧墙结构的顶部表面,使得后续平坦化所述材料层直至暴露出侧墙结构的顶部表面时,所述第一介质层的顶部表面仍然完全由第二介质层覆盖。并且,所述初始第二介质层的密度较所述第一介质层的密度大,因此,更有利于使平坦化后形成的第二介质层的顶部表面平整,使得所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。To sum up, in this embodiment, by removing part of the initial sidewall structure, the top surface of the formed sidewall structure is lower than or flush with the lowest point of the top surface of the first dielectric layer. A part of the first dielectric layer is subsequently densified to form an initial second dielectric layer, and the top surface of the formed initial second dielectric layer is higher than or flush with the top surface of the sidewall. Even if the surface of the initial second dielectric layer has depressions, after subsequent planarization, the surface of the formed second dielectric layer is still flat. The bottom surface of the initial second dielectric layer is lower than the top surface of the spacer structure, so that when the material layer is subsequently planarized until the top surface of the spacer structure is exposed, the top surface of the first dielectric layer is still completely covered by the second dielectric layer. In addition, the density of the initial second dielectric layer is higher than that of the first dielectric layer, so it is more beneficial to flatten the top surface of the second dielectric layer formed after planarization, so that the second dielectric layer is isolated The performance between different devices of the semiconductor is better, thereby improving the performance of the semiconductor structure.

本发明实施例还提供一种采用上述方法所形成的半导体结构,请参考图8,包括:An embodiment of the present invention also provides a semiconductor structure formed by the above method, please refer to FIG. 8 , including:

基底200,所述基底200上具有栅极结构,所述栅极结构具有侧墙结构,所述侧墙结构的顶部表面与所述栅极结构的顶部表面齐平;a substrate 200 having a gate structure on the substrate 200, the gate structure having a spacer structure, and the top surface of the spacer structure is flush with the top surface of the gate structure;

位于所述基底200上的第一介质层211(见图5),所述第一介质层211的顶部表面低于所述栅极结构的顶部表面;a first dielectric layer 211 on the substrate 200 (see FIG. 5 ), the top surface of the first dielectric layer 211 is lower than the top surface of the gate structure;

位于所述第一介质层211上的第二介质层219,所述第二介质层219的顶部表面与所述栅极结构的顶部表面齐平。For the second dielectric layer 219 on the first dielectric layer 211, the top surface of the second dielectric layer 219 is flush with the top surface of the gate structure.

综上,在本实施例中,位于所述第一介质层上的第二介质层的密度较所述第一介质层的密度大,所述第二介质层的顶部表面平整,因此,所述第二介质层隔离半导体不同器件之间的性能较好,从而提高半导体结构的性能。To sum up, in this embodiment, the density of the second dielectric layer on the first dielectric layer is higher than that of the first dielectric layer, and the top surface of the second dielectric layer is flat. Therefore, the The performance of the second dielectric layer in isolating different semiconductor devices is better, thereby improving the performance of the semiconductor structure.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (17)

1. A method of forming a semiconductor structure, comprising:
providing a substrate, wherein the substrate is provided with a device structure, and the device structure comprises an initial side wall structure;
forming an initial first dielectric layer on the top surfaces of the substrate, the device structure and the initial side wall structure;
flattening the initial first dielectric layer until the top surface of the initial side wall structure is exposed to form a first dielectric layer;
removing part of the initial side wall structure to form a side wall structure, wherein the top surface of the side wall structure is lower than or flush with the lowest point of the top surface of the first medium layer;
after the side wall structure is formed, performing densification treatment on part of the first dielectric layer to form an initial second dielectric layer, wherein the bottom surface of the initial second dielectric layer is lower than the top surface of the side wall structure, and the density of the initial second dielectric layer is greater than that of the first dielectric layer;
after the initial second dielectric layer is formed, forming an opening structure by removing the device structure;
forming a material layer in the opening structure and on the initial second dielectric layer;
and flattening the material layer and the initial second dielectric layer until the top surface of the side wall structure is exposed to form a grid structure and a second dielectric layer.
2. The method of forming a semiconductor structure of claim 1, wherein the substrate comprises: a first region and a second region.
3. The method of forming a semiconductor structure of claim 2, wherein the device structure comprises a first dummy gate structure in the first region and a second dummy gate structure in the second region; the first dummy gate structure includes: the first dummy gate layer is positioned on the first dummy gate dielectric layer; the second dummy gate structure includes: the second dummy gate dielectric layer and a second dummy gate layer are positioned on the second dummy gate dielectric layer.
4. The method of forming a semiconductor structure of claim 3, wherein a dimension of the first dummy gate structure in a channel length direction is smaller than a dimension of the second dummy gate structure in the channel length direction.
5. The method for forming a semiconductor structure according to claim 4, wherein a top surface of the first dummy gate layer has a first mask layer; the top surface of the second pseudo gate layer is provided with a second mask layer; the thickness of the first mask layer is thinner than that of the second mask layer.
6. The method for forming the semiconductor structure according to claim 3, wherein the initial sidewall structure comprises an initial first sidewall and an initial second sidewall, the initial first sidewall is located on sidewalls of the first dummy gate dielectric layer and the first dummy gate layer, and the initial second sidewall is located on sidewalls of the second dummy gate dielectric layer and the second dummy gate layer.
7. The method of forming a semiconductor structure of claim 5, wherein planarizing the initial first dielectric layer further comprises: and removing the first mask layer and the second mask layer.
8. The method of forming a semiconductor structure of claim 1, wherein a material of the initial first dielectric layer comprises: silicon oxide.
9. The method of forming a semiconductor structure of claim 1, wherein the forming of the initial first dielectric layer comprises: a fluid chemical vapor deposition process.
10. The method of forming a semiconductor structure of claim 1, wherein planarizing the initial first dielectric layer comprises: and (5) carrying out a chemical mechanical polishing process.
11. The method of claim 1, wherein the step of removing a portion of the initial sidewall spacer structure comprises: an isotropic dry etching process or a wet etching process.
12. The method of forming a semiconductor structure of claim 11, wherein the process parameters of the isotropic dry etch process comprise: the etching gas includes: CH (CH)3F、CH2F2And O2In which CH3The flow rate of F is: 10-500 ml/min, CH2F2The flow rate of (A) is as follows: 10-200 ml/min, O2The flow rate of (A) is as follows: 10-300 standard ml/min, pressure: 2 mtorr to 50 mtorr, power: 100-200 watts.
13. The method for forming a semiconductor structure of claim 1, wherein the removal amount of the initial sidewall structure in a direction perpendicular to the top surface of the substrate is: 3 to 10 nanometers.
14. The method of claim 1, wherein the densifying the first dielectric layer to form an initial second dielectric layer comprises: a high-temperature plasma treatment process; the technological parameters of the high-temperature plasma treatment process comprise: the gas comprises: helium, the flow rate of helium is: 100-1000 ml/min, temperature: 300-500 ℃, 100-1000W of power, pressure: 0.2 to 5 torr.
15. The method of forming a semiconductor structure of claim 1, wherein the minimum thickness of the second dielectric layer is: 5 to 20 nanometers.
16. The method of claim 1, wherein planarizing the material layer and the initial second dielectric layer comprises: and (3) a chemical mechanical polishing process.
17. A semiconductor structure formed by the method of any of claims 1 to 16, comprising:
the grid structure comprises a side wall structure, and the top surface of the side wall structure is flush with the top surface of the grid structure;
the first dielectric layer is positioned on the substrate, and the top surface of the first dielectric layer is lower than that of the side wall structure;
and the top surface of the second dielectric layer is flush with the top surface of the side wall structure.
CN201710131028.2A 2017-03-07 2017-03-07 Semiconductor structure and method of forming the same Active CN108573862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710131028.2A CN108573862B (en) 2017-03-07 2017-03-07 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710131028.2A CN108573862B (en) 2017-03-07 2017-03-07 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108573862A CN108573862A (en) 2018-09-25
CN108573862B true CN108573862B (en) 2020-09-08

Family

ID=63577156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710131028.2A Active CN108573862B (en) 2017-03-07 2017-03-07 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108573862B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148552B (en) * 2019-04-15 2021-10-15 上海华力集成电路制造有限公司 Method for manufacturing zero-layer interlayer film
CN113327980B (en) * 2020-02-28 2023-03-28 中芯国际集成电路制造(天津)有限公司 Semiconductor structure and forming method thereof
CN114530502B (en) * 2020-11-23 2025-04-25 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method for forming the same
CN114551334B (en) * 2020-11-24 2025-05-20 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN114792628A (en) * 2021-01-26 2022-07-26 中芯国际集成电路制造(上海)有限公司 Method of forming a semiconductor structure
CN118248628B (en) * 2024-05-29 2025-04-29 浙江创芯集成电路有限公司 Method for forming semiconductor structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110650A (en) * 2009-12-29 2011-06-29 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
CN102479694A (en) * 2010-11-30 2012-05-30 中芯国际集成电路制造(北京)有限公司 Formation method of metal gate and MOS transistor
CN103094213A (en) * 2011-11-02 2013-05-08 中芯国际集成电路制造(上海)有限公司 Manufacturing method for metal gate electrode of complementary metal oxide semiconductor (CMOS) device
CN103107091A (en) * 2011-11-15 2013-05-15 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof
CN104752215A (en) * 2013-12-30 2015-07-01 中芯国际集成电路制造(上海)有限公司 Transistor forming method
CN104795331A (en) * 2014-01-21 2015-07-22 中芯国际集成电路制造(上海)有限公司 Transistor formation method
CN104979206A (en) * 2014-04-04 2015-10-14 中芯国际集成电路制造(上海)有限公司 Formation method of transistor
CN105428237A (en) * 2014-08-28 2016-03-23 中芯国际集成电路制造(上海)有限公司 Negative metal oxide transistor (NMOS) transistor and forming method thereof
CN105513965A (en) * 2014-09-26 2016-04-20 中芯国际集成电路制造(上海)有限公司 Transistor forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225937B (en) * 2014-06-30 2018-03-30 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110650A (en) * 2009-12-29 2011-06-29 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
CN102479694A (en) * 2010-11-30 2012-05-30 中芯国际集成电路制造(北京)有限公司 Formation method of metal gate and MOS transistor
CN103094213A (en) * 2011-11-02 2013-05-08 中芯国际集成电路制造(上海)有限公司 Manufacturing method for metal gate electrode of complementary metal oxide semiconductor (CMOS) device
CN103107091A (en) * 2011-11-15 2013-05-15 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof
CN104752215A (en) * 2013-12-30 2015-07-01 中芯国际集成电路制造(上海)有限公司 Transistor forming method
CN104795331A (en) * 2014-01-21 2015-07-22 中芯国际集成电路制造(上海)有限公司 Transistor formation method
CN104979206A (en) * 2014-04-04 2015-10-14 中芯国际集成电路制造(上海)有限公司 Formation method of transistor
CN105428237A (en) * 2014-08-28 2016-03-23 中芯国际集成电路制造(上海)有限公司 Negative metal oxide transistor (NMOS) transistor and forming method thereof
CN105513965A (en) * 2014-09-26 2016-04-20 中芯国际集成电路制造(上海)有限公司 Transistor forming method

Also Published As

Publication number Publication date
CN108573862A (en) 2018-09-25

Similar Documents

Publication Publication Date Title
CN108573862B (en) Semiconductor structure and method of forming the same
CN105097521B (en) The forming method of semiconductor devices
CN108305850B (en) Semiconductor structure and method of forming the same
CN107039272B (en) Method for forming fin type transistor
WO2015089951A1 (en) Method for preparing quasi soi source/drain field effect transistor device
CN104733314B (en) Semiconductor structure and forming method thereof
CN104752215B (en) The forming method of transistor
CN103515282A (en) Fin field-effect transistor and forming method thereof
CN106952816B (en) Method of forming a fin transistor
CN105655284A (en) Formation method of trench isolation structure
CN103811323A (en) Fin portion manufacturing method and fin type field effect transistor and manufacturing method thereof
CN111489972B (en) Semiconductor structure and forming method thereof
CN104425263A (en) Method for forming semiconductor structure
CN104425264B (en) The forming method of semiconductor structure
CN104681490A (en) Forming method of CMOS (complementary metal-oxide-semiconductor) transistor
CN109216439B (en) Method of fabricating semiconductor device with field plate structure with graded thickness in trenches
CN106952815A (en) Method for forming fin transistors
CN106571298B (en) The forming method of semiconductor structure
CN107978525B (en) Semiconductor structure and method of forming the same
CN106847697A (en) The forming method of fin formula field effect transistor
CN113937002B (en) Semiconductor structure and method for forming the same
CN110034069B (en) Semiconductor structure and method of forming the same
CN112563200B (en) Semiconductor device and method of forming the same
CN106571302A (en) Formation method of fin field effect transistor
CN107170685A (en) The forming method of fin transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant