CN108572141A - 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 - Google Patents
复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 Download PDFInfo
- Publication number
- CN108572141A CN108572141A CN201810311197.9A CN201810311197A CN108572141A CN 108572141 A CN108572141 A CN 108572141A CN 201810311197 A CN201810311197 A CN 201810311197A CN 108572141 A CN108572141 A CN 108572141A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- molecule
- aptamer
- plasmon resonance
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims abstract description 13
- 108090000623 proteins and genes Proteins 0.000 title claims description 33
- 102000004169 proteins and genes Human genes 0.000 title claims description 33
- 239000000523 sample Substances 0.000 claims abstract description 54
- 239000000835 fiber Substances 0.000 claims abstract description 44
- 239000002923 metal particle Substances 0.000 claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 230000009870 specific binding Effects 0.000 claims abstract description 18
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 108091023037 Aptamer Proteins 0.000 claims description 73
- 239000010408 film Substances 0.000 claims description 45
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 15
- 230000010287 polarization Effects 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 9
- 238000005253 cladding Methods 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 3
- 231100000719 pollutant Toxicity 0.000 claims description 3
- -1 sulfhydryl compound Chemical class 0.000 claims description 3
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 3
- 239000012498 ultrapure water Substances 0.000 claims description 3
- 230000003100 immobilizing effect Effects 0.000 claims 1
- 238000002372 labelling Methods 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 102000035181 adaptor proteins Human genes 0.000 abstract 5
- 108091005764 adaptor proteins Proteins 0.000 abstract 5
- 108090000190 Thrombin Proteins 0.000 description 37
- 239000000243 solution Substances 0.000 description 25
- 229960004072 thrombin Drugs 0.000 description 9
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012460 protein solution Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000011895 specific detection Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GOMLCFUVZKLQCO-HTLAMOOLSA-N thrombin aptamer Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2CO)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)[C@@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 GOMLCFUVZKLQCO-HTLAMOOLSA-N 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000214 effect on organisms Effects 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种复合增强型光纤生物传感器及生物蛋白分子浓度检测方法,传感器包括光纤、第一适配体蛋白分子和第二适配体蛋白分子;光纤刻有倾斜光纤光栅,其侧面镀制一层厚度均匀的金属薄膜,形成光纤传感探针;第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜;通过第一适配体蛋白分子与待测生物蛋白分子的特异性结合,将待测生物蛋白分子固定到金属薄膜表面;第二适配体蛋白分子标记有纳米金属颗粒。本发明利用长程型等离子体共振波与纳米金属颗粒产生的局域等离子体共振相互作用,使光纤表面共振电场得到增强,从而分子之间的特异性结合信号得到放大,不仅大大提高了检测极限,而且这种改进方式简单易于实现,检测效果也非常稳定。
Description
技术领域
本发明涉及一种光纤生物传感器,尤其是一种复合增强型光纤生物传感器及生物蛋白分子浓度检测方法,属于光纤生物传感器设计领域。
背景技术
光纤(即光导纤维)作为一种光信号传导的工具,因其具有低损耗、宽频带、抗干扰能力强、成本低、重量轻等优势而被广泛运用于信息传输领域,逐渐取代损耗大而又高成本的传统铜线电缆通信方式。在光纤中不仅可以传导光信号,还可以对光纤进行机械加工,使其自身成为传感元件,或者与敏感元件组合做成各种类型的传感器,从而应用于传感检测领域。光纤传感器的工作原理是通过光纤将光源的光输送到检测调制区,光与待测样品相互作用使光的属性(如波长、强度、相位和频率等参数)发生改变,输出光再经过解调后,可以获得待测样品的相关参数。光纤传感器已经被运用到各个领域,例如应用于电力传输系统的光纤温度传感器,应用于塔形牢固性监测的光纤振动传感器,应用于桥梁大坝、深井油田等的干涉陀螺仪和光栅压力传感器,应用于化学物质及药物医学检测的光纤生物传感器。在这些光纤传感应用中,生物检测领域的应用发展时间还比较较短,但这些技术在国内外已经被广泛应用于医学研究检测,比如应用于胰岛素、葡萄球菌肠毒素的检测,人体细胞中的红细胞和T淋巴细胞核粒细胞的检测,牛血蛋白、甲胎蛋白的检测等。
与传统的电化学类型生物传感器相比,光纤生物传感器具有明显优势明显具有以下几点优势:
1)传感器探头直径小,可微型化处理且方便操作。光纤紧凑的结构可以使传感器应用于测量难以接近的区域,甚至有希望实现活体体内的实时测量。
2)灵敏度高。可与传统电化学检测方式的灵敏度相比拟。
3)无毒性,化学稳定性和热稳定性好,对生物体不会产生不良作用。
4)抗电磁干扰能力强。由于光纤是由二氧化硅制作成的,本身具有良好的电磁场屏蔽特性,且光纤生物传感器工作时无电流产生,周围的电磁场不会干扰到光信号的正常运作。
5)可实现在线实时、远距离检测。光纤具有低损耗特性,即使经过长距离传输也几乎不会有衰减,通过实时观察变化量,可以实现远距离地实时监测。
发明内容
本发明的目的是为了解决上述现有技术的缺陷,提供一种复合增强型光纤生物传感器,该传感器需要在激发长程型表面等离子体共振效应的金属薄膜表面修饰生物敏感膜作为特异性识别的载体,通过同样修饰了生物敏感材料的纳米金属颗粒产生的局域等离子体共振与长程型表面等离子体共振相互作用使电场增强,不仅大大提高了检测极限,而且这种改进方式简单易于实现,检测效果也非常稳定。
本发明的另一目的在于提供一种生物蛋白分子浓度检测方法。
本发明的目的可以通过采取如下技术方案达到:
复合增强型光纤生物传感器,包括光纤、第一适配体蛋白分子和第二适配体蛋白分子;所述光纤刻有倾斜光纤光栅,其侧面镀制一层厚度均匀的金属薄膜,形成光纤传感探针;所述第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜;通过第一适配体蛋白分子与待测生物蛋白分子的特异性结合,将待测生物蛋白分子固定到金属薄膜表面;所述第二适配体蛋白分子标记有纳米金属颗粒;将偏振光通入光纤中,利用长程型表面等离子体共振波对外界环境变化敏感的特性,对待测生物蛋白分子与第二适配体分子的特异性结合进行检测。
进一步的,所述纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20。
进一步的,所述偏振光为平行于倾斜光纤光栅写制方向的偏振光分量。
进一步的,所述偏振光的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
本发明的另一目的可以通过采取如下技术方案达到:
生物蛋白分子浓度检测方法,所述方法包括:先在刻有倾斜光纤光栅的光纤侧面镀制一层厚度均匀的金属薄膜,制作成光纤传感探针;再将第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜;然后通过第一适配体蛋白分子与待测生物蛋白分子的特异性结合将待测生物蛋白分子固定到金属薄膜表面;通入偏振光到光纤中,利用长程型表面等离子体共振波对外界环境变化敏感的特性,对待测生物蛋白分子与标记有纳米金属颗粒的第二适配体蛋白分子的特异性结合进行检测,从而实现生物蛋白分子浓度检测。
进一步的,所述方法具体包括以下步骤:
S1、将光路系统搭建完成后,光源输出光经过起偏器后转变成偏振光,通过调节偏振控制器使偏振光的偏振方向与光纤传感探针内倾斜光纤光栅的写制方向相一致,光纤中满足相位匹配条件的包层模可耦合至光纤包层外表面的金属薄膜并激发产生长程型表面等离子体共振波,可在光纤投射中观察到一个表面等离子体共振吸收峰,此时,开始使用计算机记录光谱数据;
S2、将已制备好金属薄膜的光纤传感探针用乙醇和超纯水彻底冲洗以除去其上的污染物,然后把光纤传感探针浸入含有29个碱基的第一适配体蛋白分子中,待该第一适配体蛋白分子在金属薄膜表面形成致密均匀的自组装单分子膜后取出,用清洗液清洗掉残留在光纤传感探针上多余的第一适配体蛋白分子;
S3、将已修饰了第一适配体蛋白单分子膜的光纤传感探针浸入生物蛋白分子溶液中,待溶液中的生物蛋白分子与第一适配体蛋白分子发生充分地特异性结合后,使用清洗液洗涤光纤传感探针数次;
S4、将修饰好生物蛋白分子的光纤传感探针放入到标记有纳米金属颗粒的含有15个碱基的第二适配体蛋白分子溶液中,等待光纤传感探针上的生物蛋白分子与第二适配体蛋白分子特异性充分结合;
S5、当第一适配体蛋白分子与生物蛋白分子特异性结合时,金属薄膜表面的长程型等离子体共振波并未能检测到,光栅光谱中的衰减包络幅度没有发生变化;随着光纤传感探针的包层外表面修饰固化的生物蛋白分子与标记有纳米金属颗粒的第二适配体蛋白分子发生特异性结合,长程型等离子体共振波与纳米金属颗粒产生的局域等离子体共振相互作用,使共振电场得到增强,从而分子之间的特异性结合信号得到放大,此时光栅光谱中的衰减包络幅度发生变化,根据幅度变化随时间的响应速率可以检测出溶液中生物蛋白分子浓度。
进一步的,所述偏振光为平行于倾斜光纤光栅写制方向的偏振光分量。
进一步的,所述偏振光的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
进一步的,所述纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20。
进一步的,所述第一适配体蛋白分子选择经过硫醇化的适配体分子或者末端为羧基的巯基化合物。
本发明相对于现有技术具有如下的有益效果:
1、本发明在刻有倾斜光纤光栅的光纤侧面镀制一层厚度均匀的金属薄膜,形成光纤传感探针,将第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜,通过第一适配体蛋白分子与生物蛋白分子的特异性结合,将生物蛋白分子固定到金属薄膜表面,通过幅度调制方式取代波长解调方法,检测过程不仅对检测样品免标记、特异性,同时具有简便、快速等优点,将生物蛋白分子固定在光纤传感探针上,利用长程表面等离子体共振波与纳米金属颗粒的局域等离子体共振相互作用,使待测生物蛋白分子与标记有纳米金属颗粒的第二适配体蛋白分子特异性结合信号放大,由于溶液中的其他成分不会与修饰在光纤传感探针上的生物蛋白分子特异性结合,因此具有特异性检测的功能。
2、本发明与传统的BCA方法(二喹啉甲酸测定法)相比,可实现对待测蛋白分子的特异性检测,排除其它蛋白分子的干扰。
3、本发明与传统的ELISA方法(酶联免疫吸附测定法)相比,无需耗费大量时间准备待测样品,也避免了需要利用统计学的方法处理大量测试数据的繁琐过程,大大降低了检测成本和简化了检测过程。
4、本发明采用了光纤传感探针,与传统电化学传感器相比,以低损耗光纤为载体的光波传感方式具有信号速度快、精度高的特点,因此可生物蛋白分子浓度的远距离实时在线监测。
5、本发明由于光纤的纤芯模式仅对温度敏感,而对环境折射率不敏感,因此通过检测光纤纤芯模式,可实现温度信息的实时测量,进而消除温度变化对测量结果的影响,具有温度自校准功能。
6、本发明通过观察长程表面等离子体共振波吸收共振包络幅度变化获得溶液中的生物蛋白分子浓度信息,检测灵敏度高达8100dB/RIU,生物蛋白分子极限检测精度为10- 9M,较长程型等离子体共振检测精度提高三个量级。
7、本发明与传统光学与电学检测方式相比,利用光纤传感器与检测信号传输线集成于同一根光纤的特点,可实现生物蛋白分子的原位测量,极大提高检测结果的准确性与稳定性。
附图说明
图1是本发明的复合增强型光纤生物传感器的凝血酶蛋白浓度检测示意图。
图2是本发明固化修饰了凝血酶蛋白的光纤传感探针浸入标记有纳米金属颗粒的适配体Apt15溶液前后的光纤透射谱图。
图3(a)是本发明的光纤传感探针浸入凝血酶蛋白溶液和标记有纳米金属颗粒的适配体Apt15溶液中时,光栅光谱衰减包络中某一模式的幅度随时间变化图。
图3(b)是本发明的光纤传感探针浸入缓冲液(不含有凝血酶蛋白)和标记有纳米金属颗粒的适配体Apt15溶液中时,光栅光谱衰减包络中某一模式的幅度随时间变化图。
图4是本发明的光纤传感探针浸入不同浓度凝血酶蛋白溶液时,光栅光谱衰减包络中某一模式的幅度变化与凝血酶蛋白浓度关系图。
其中,1-偏振光,2-光纤,3-金属薄膜,4-适配体Apt29分子,5-凝血酶蛋白,6-长程型表面等离子体共振波,7-适配体Apt15分子,8-纳米金属颗粒,9-用于检测的模式区域,10-用于校准的模式区域。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
在最近几年光纤生物传感器的研究报道中,高性能的光纤光栅传感器成为各国竞相研究的热点,尤其是新发展起来的倾斜光纤光栅传感器,它除了具备普通光纤生物传感器的特点之外,还可以利用对周围环境敏感的数百个包层模式,不仅测量精度得到提高,也大大丰富了受测量对象类型,只需要利用一支倾斜光纤光栅,便可以实现温度、折射率等多参量的区分测量,在生物医学检测领域中具有非常广阔的应用前景。
如图1所示,本实施例提供了一种复合增强型光纤生物传感器,该传感器包括光纤2、适配体Apt29分子4和适配体Apt15分子7;光纤2刻有倾斜光纤光栅,其侧面镀制一层厚度均匀的金属薄膜3,形成光纤传感探针;适配体Apt29分子4修饰固化在金属薄膜3上自组装成单分子膜;通过适配体Apt29分子4与凝血酶蛋白5的特异性结合,将凝血酶蛋白5固定到金属薄膜3表面;适配体Apt15分子7标记有纳米金属颗粒8;将偏振光1通入光纤2中,利用长程型表面等离子体共振波6对外界环境变化敏感的特性,对凝血酶蛋白5与适配体Apt15分子7的特异性结合进行检测,纳米金属颗粒8产生的局域等离子体共振与长程型表面等离子体共振相互作用使电场增强,使共振电场得到增强从而分子之间的特异性结合信号得到放大,此时光栅光谱中的衰减包络幅度发生变化,根据幅度变化随时间的响应速率可以检测出凝血酶蛋白5浓度。
在本实施例中,所述纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20,即纳米金属颗粒的尺寸为几十到二百纳米,只要纳米金属颗粒的尺寸小于长程型等离子体共振场的倏逝深度(纵向能量分布深度),就可以实现增敏;所述偏振光1为平行于倾斜光纤光栅写制方向的偏振光分量,优选地,偏振光1的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
本实施例的复合增强型光纤生物传感器的检测灵敏度高达8100dB/RIU,凝血酶蛋白极限检测精度为10-9M,较长程型等离子体共振检测精度提高三个量级。
因此,本实施例的复合增强型光纤生物传感器需要在激发长程型表面等离子体共振效应的金属薄膜表面修饰生物敏感膜作为特异性识别的载体,通过同样修饰了生物敏感材料的纳米金属颗粒产生的局域等离子体共振与长程型表面等离子体共振相互作用使电场增强,不仅大大提高了检测极限,而且这种改进方式简单易于实现,检测效果也非常稳定。
实施例2:
如图1所示,本实施例提供了一种生物蛋白分子浓度检测方法,该方法包括先在刻有倾斜光纤光栅的光纤2侧面镀制一层厚度均匀的金属薄膜3,制作成光纤传感探针;再将适配体Apt29分子4修饰固化在金属薄膜3上自组装成单分子膜;然后通过适配体Apt29分子4与凝血酶蛋白5的特异性结合将凝血酶蛋白5固定到金属薄膜3表面;通入偏振光1到光纤2中,利用长程型表面等离子体共振波6对外界环境变化敏感的特性,对凝血酶蛋白5与标记有纳米金属颗粒8的适配体Apt15分子7的特异性结合进行检测,从而实现凝血酶蛋白5浓度检测,具体步骤如下:
S1、将光路系统搭建完成后,光源输出光经过起偏器后转变成偏振光,通过调节偏振控制器使偏振光的偏振方向与光纤传感探针内倾斜光纤光栅的写制方向相一致,光纤中满足相位匹配条件的包层模可耦合至光纤包层外表面的金属薄膜并激发产生长程型表面等离子体共振波,可在光纤投射中观察到一个表面等离子体共振吸收峰,此时,开始使用计算机记录光谱数据;其中,偏振光为平行于倾斜光纤光栅写制方向的偏振光分量,优选地,偏振光的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
S2、将已制备好金属薄膜的光纤传感探针用乙醇和超纯水彻底冲洗以除去其上的污染物,然后把光纤传感探针浸入含有29个碱基的凝血酶适配体Apt29分子中,待该适配体Apt29分子在金属薄膜表面形成致密均匀的自组装单分子膜后取出,用清洗液清洗掉残留在光纤传感探针上多余的适配体Apt29分子;其中,适配体Apt29分子选择经过硫醇化的适配体分子或者末端为羧基的巯基化合物。
S3、将已修饰了适配体Apt29单分子膜的光纤传感探针浸入凝血酶蛋白溶液中,待溶液中的凝血酶蛋白与适配体Apt29分子发生充分地特异性结合后,使用清洗液洗涤光纤传感探针数次。
S4、将修饰好凝血酶蛋白的光纤传感探针放入到标记有纳米金属颗粒的含有15个碱基的凝血酶适配体Apt15分子溶液中,等待光纤传感探针上的凝血酶蛋白与适配体Apt15分子特异性充分结合;其中,纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20,即纳米金属颗粒的尺寸为几十到二百纳米,只要纳米金属颗粒的尺寸小于长程型等离子体共振场的倏逝深度(纵向能量分布深度),就可以实现增敏。
S5、当适配体Apt29与凝血酶蛋白特异性结合时,金属膜表面的长程型等离子体共振波并未能检测到,所以光栅光谱中的衰减包络幅度没有发生变化;随着光纤传感探针的包层外表面修饰固化的凝血酶蛋白与标记有纳米金属颗粒的适配体Apt15发生特异性结合,由于长程型等离子体共振波与纳米金属颗粒产生的局域等离子体共振相互作用,使共振电场得到增强,从而分子之间的特异性结合信号得到放大,此时光栅光谱中的衰减包络幅度发生变化,根据幅度变化随时间的响应速率可以检测出溶液中凝血酶蛋白浓度。
图2所示为修饰固化了凝血酶蛋白的光纤传感探针浸入标记有纳米金属颗粒的适配体Apt15溶液前后的光纤透射谱图,9是用于检测的模式(长程表面等离子体共振模式)区域,放大部分是图中长程表面等离子体共振峰处的某几个模式的幅度变化的局部放大图,其中选用标记星号“*”处的这个模式来观察整个检测过程中的幅度变化趋势;10是用于校准的模式(纤芯模式)区域,由于纤芯模式仅对温度变化敏感,因此可利用此特性将因环境温度变化引起的干扰排除,使检测结果更加精确。
图3(a)是将光纤传感探针浸入凝血酶蛋白溶液和标记有纳米金属颗粒的适配体Apt15溶液中时,光栅光谱衰减包络中某一模式的幅度随时间变化图,利用适配体Apt29将凝血酶蛋白以共价键的形式固定在金属薄膜表面,虽然金属膜表面的长程型等离子体共振波对分子之间的结合敏感,但由于凝血酶蛋白的浓度已经低于长程型等离子体共振波的检测极限,因此它并未能检测到适配体Apt29与凝血酶蛋白的特异性结合,光栅光谱中的衰减包络幅度几乎没有发生变化;当将修饰固化了凝血酶蛋白的光纤传感探针浸入标记有纳米金属颗粒的适配体Apt15溶液中时,由于长程型等离子体共振波与纳米金属颗粒产生的局域等离子体共振相互作用,使共振电场得到增强从而分子之间的特异性结合信号得到放大,随着凝血酶蛋白与标记有纳米金属颗粒的适配体Apt15发生特异性结合,光栅光谱中的衰减包络幅度发生变化,起始时结合速率较快,幅度变化迅速上升,当特异性结合趋于饱和时,连接速率逐渐减缓,幅度变化也逐渐减弱。
图3(b)是本发明光纤传感探针浸入缓冲液(不含有凝血酶蛋白)和标记有纳米金属颗粒的适配体Apt15溶液中时,光栅光谱衰减包络中某一模式的幅度随时间变化图,由于没有凝血酶蛋白作为中间键合物与适配体Apt15特异性结合,因此适配体Apt15就不能通过化学反应键连到光纤传感探针表面,只有较少量的适配体Apt15以物理吸附的方式附着到光纤传感探针上,从图中可以看出,在此过程中,与长程等离子体共振峰对应的模式的幅度几乎没有变化,说明光纤表面的纳米金属颗粒的数量很少,长程等离子体共振波没有得到有效增强,同时,还说明了此传感器具有特异性检测的功能。
图4是本发明光纤传感探针浸入不同浓度凝血酶蛋白溶液时,光栅光谱衰减包络中某一模式的幅度变化与凝血酶蛋白浓度关系图,利用该光纤传感探针探测了从0.1nM至大于35nM的凝血酶浓度。根据相关研究报道,单一长程等离子体共振无法检测到浓度低于35nM的凝血酶蛋白,而在标记了纳米金属颗粒之后,纳米金属颗粒产生的局域等离子体共振使微小的凝血酶与适配体特异性结合信号放大,从而将凝血酶的探测极限提高到了1nM。
上述实施例通过利用得到增强了的长程型等离子体共振波对凝血酶蛋白和适配体Apt15分子的特异性结合实现溶液中凝血酶蛋白浓度检测的,由于溶液中的其它分子不会与适配体Apt15分子发生特异性结合,因此具有特异性检测的功能。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。
Claims (10)
1.复合增强型光纤生物传感器,其特征在于:包括光纤、第一适配体蛋白分子和第二适配体蛋白分子;所述光纤刻有倾斜光纤光栅,其侧面镀制一层厚度均匀的金属薄膜,形成光纤传感探针;所述第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜;通过第一适配体蛋白分子与待测生物蛋白分子的特异性结合,将待测生物蛋白分子固定到金属薄膜表面;所述第二适配体蛋白分子标记有纳米金属颗粒;将偏振光通入光纤中,利用长程型表面等离子体共振波对外界环境变化敏感的特性,对待测生物蛋白分子与第二适配体分子的特异性结合进行检测。
2.根据权利要求1所述的复合增强型光纤生物传感器,其特征在于:所述纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20。
3.根据权利要求1所述的复合增强型光纤生物传感器,其特征在于:所述偏振光为平行于倾斜光纤光栅写制方向的偏振光分量。
4.根据权利要求3所述的复合增强型光纤生物传感器,其特征在于:所述偏振光的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
5.生物蛋白分子浓度检测方法,其特征在于:所述方法包括:先在刻有倾斜光纤光栅的光纤侧面镀制一层厚度均匀的金属薄膜,制作成光纤传感探针;再将第一适配体蛋白分子修饰固化在金属薄膜上自组装成单分子膜;然后通过第一适配体蛋白分子与待测生物蛋白分子的特异性结合将待测生物蛋白分子固定到金属薄膜表面;通入偏振光到光纤中,利用长程型表面等离子体共振波对外界环境变化敏感的特性,对待测生物蛋白分子与标记有纳米金属颗粒的第二适配体蛋白分子的特异性结合进行检测,从而实现生物蛋白分子浓度检测。
6.根据权利要求5所述的生物蛋白分子浓度检测方法,其特征在于:所述方法具体包括以下步骤:
S1、将光路系统搭建完成后,光源输出光经过起偏器后转变成偏振光,通过调节偏振控制器使偏振光的偏振方向与光纤传感探针内倾斜光纤光栅的写制方向相一致,光纤中满足相位匹配条件的包层模可耦合至光纤包层外表面的金属薄膜并激发产生长程型表面等离子体共振波,可在光纤投射中观察到一个表面等离子体共振吸收峰,此时,开始使用计算机记录光谱数据;
S2、将已制备好金属薄膜的光纤传感探针用乙醇和超纯水彻底冲洗以除去其上的污染物,然后把光纤传感探针浸入含有29个碱基的第一适配体蛋白分子中,待该第一适配体蛋白分子在金属薄膜表面形成致密均匀的自组装单分子膜后取出,用清洗液清洗掉残留在光纤传感探针上多余的第一适配体蛋白分子;
S3、将已修饰了第一适配体蛋白单分子膜的光纤传感探针浸入生物蛋白分子溶液中,待溶液中的生物蛋白分子与第一适配体蛋白分子发生充分地特异性结合后,使用清洗液洗涤光纤传感探针数次;
S4、将修饰好生物蛋白分子的光纤传感探针放入到标记有纳米金属颗粒的含有15个碱基的第二适配体蛋白分子溶液中,等待光纤传感探针上的生物蛋白分子与第二适配体蛋白分子特异性充分结合;
S5、当第一适配体蛋白分子与生物蛋白分子特异性结合时,金属薄膜表面的长程型等离子体共振波并未能检测到,光栅光谱中的衰减包络幅度没有发生变化;随着光纤传感探针的包层外表面修饰固化的生物蛋白分子与标记有纳米金属颗粒的第二适配体蛋白分子发生特异性结合,长程型等离子体共振波与纳米金属颗粒产生的局域等离子体共振相互作用,使共振电场得到增强,从而分子之间的特异性结合信号得到放大,此时光栅光谱中的衰减包络幅度发生变化,根据幅度变化随时间的响应速率可以检测出溶液中生物蛋白分子浓度。
7.根据权利要求5或6所述的生物蛋白分子浓度检测方法,其特征在于:所述偏振光为平行于倾斜光纤光栅写制方向的偏振光分量。
8.根据权利要求7所述的生物蛋白分子浓度检测方法,其特征在于:所述偏振光的偏振方向通过长程型表面等离子体共振波的共振峰幅度来确定,即平行于倾斜光纤光栅写制方向时长程型表面等离子体共振波的共振峰幅度最大。
9.根据权利要求5或6所述的生物蛋白分子浓度检测方法,其特征在于:所述纳米金属颗粒的尺寸为10n纳米,其中1≤n≤20。
10.根据权利要求5或6所述的生物蛋白分子浓度检测方法,其特征在于:所述第一适配体蛋白分子选择经过硫醇化的适配体分子或者末端为羧基的巯基化合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810311197.9A CN108572141B (zh) | 2018-04-09 | 2018-04-09 | 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810311197.9A CN108572141B (zh) | 2018-04-09 | 2018-04-09 | 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108572141A true CN108572141A (zh) | 2018-09-25 |
CN108572141B CN108572141B (zh) | 2021-02-05 |
Family
ID=63574194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810311197.9A Active CN108572141B (zh) | 2018-04-09 | 2018-04-09 | 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108572141B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109975244A (zh) * | 2019-04-16 | 2019-07-05 | 中国计量大学 | 基于星形金纳米修饰的大角度倾斜光纤光栅生物传感器 |
CN111965141A (zh) * | 2020-08-05 | 2020-11-20 | 合肥工业大学 | 金纳米球颗粒修饰光纤光栅的葡萄糖传感器的制作方法 |
CN112033932A (zh) * | 2020-09-07 | 2020-12-04 | 科竟达生物科技有限公司 | 一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用 |
CN113125384A (zh) * | 2021-03-03 | 2021-07-16 | 汕头大学医学院 | 探头,循环肿瘤细胞检测设备及制备方法 |
CN113203703A (zh) * | 2021-04-29 | 2021-08-03 | 闽江学院 | 一种检测三价砷离子的光纤传感器 |
CN114543847A (zh) * | 2021-12-31 | 2022-05-27 | 合肥工业大学 | 一种基于金纳米颗粒阵列增强光纤光栅传感性能的方法 |
CN115369154A (zh) * | 2022-08-11 | 2022-11-22 | 中国人民解放军总医院第四医学中心 | 无需核酸提取的可视化核酸检测方法、装置和设备 |
US20220381984A1 (en) * | 2021-05-31 | 2022-12-01 | Jinan University | Fiber optic sensing apparatus and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106526195A (zh) * | 2016-09-20 | 2017-03-22 | 暨南大学 | 水通道尿蛋白光学免标记特异性检测装置及方法 |
-
2018
- 2018-04-09 CN CN201810311197.9A patent/CN108572141B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106526195A (zh) * | 2016-09-20 | 2017-03-22 | 暨南大学 | 水通道尿蛋白光学免标记特异性检测装置及方法 |
Non-Patent Citations (2)
Title |
---|
JEE-WOONG PARK等: "An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening", 《BIOSENSORS AND BIOELECTRONICS》 * |
YANINA SHEVCHENKO等: "In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor", 《ANALYTICAL CHEMISTRY》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109975244A (zh) * | 2019-04-16 | 2019-07-05 | 中国计量大学 | 基于星形金纳米修饰的大角度倾斜光纤光栅生物传感器 |
CN111965141A (zh) * | 2020-08-05 | 2020-11-20 | 合肥工业大学 | 金纳米球颗粒修饰光纤光栅的葡萄糖传感器的制作方法 |
CN111965141B (zh) * | 2020-08-05 | 2023-05-12 | 合肥工业大学 | 金纳米球颗粒修饰光纤光栅的葡萄糖传感器的制作方法 |
CN112033932A (zh) * | 2020-09-07 | 2020-12-04 | 科竟达生物科技有限公司 | 一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用 |
CN112033932B (zh) * | 2020-09-07 | 2021-09-07 | 科竟达生物科技有限公司 | 一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用 |
CN113125384A (zh) * | 2021-03-03 | 2021-07-16 | 汕头大学医学院 | 探头,循环肿瘤细胞检测设备及制备方法 |
CN113203703A (zh) * | 2021-04-29 | 2021-08-03 | 闽江学院 | 一种检测三价砷离子的光纤传感器 |
US20220381984A1 (en) * | 2021-05-31 | 2022-12-01 | Jinan University | Fiber optic sensing apparatus and system |
CN114543847A (zh) * | 2021-12-31 | 2022-05-27 | 合肥工业大学 | 一种基于金纳米颗粒阵列增强光纤光栅传感性能的方法 |
CN115369154A (zh) * | 2022-08-11 | 2022-11-22 | 中国人民解放军总医院第四医学中心 | 无需核酸提取的可视化核酸检测方法、装置和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN108572141B (zh) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108572141A (zh) | 复合增强型光纤生物传感器及生物蛋白分子浓度检测方法 | |
Zhou et al. | Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect | |
Wang et al. | A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton | |
Zhang et al. | WaveFlex biosensor: a flexible-shaped plasmonic optical fiber sensor for histamine detection | |
CN208705231U (zh) | 基于氧化石墨烯和金纳米棒增敏的光纤spr传感器 | |
CN105158213B (zh) | 基于光纤表面等离子体共振的葡萄糖检测装置及方法 | |
Verma et al. | Surface-plasmon-resonance-based fiber-optic sensor for the detection of low-density lipoprotein | |
CN100458406C (zh) | 光纤微结构马赫-曾德尔干涉式spr化学生物传感器及系统 | |
Wang et al. | 2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection | |
CN106896066A (zh) | 光纤表面等离子体共振免疫传感探针及其制备方法 | |
US20110207237A1 (en) | Optical fiber probe | |
CN106526195A (zh) | 水通道尿蛋白光学免标记特异性检测装置及方法 | |
CN111965141B (zh) | 金纳米球颗粒修饰光纤光栅的葡萄糖传感器的制作方法 | |
CN104596992A (zh) | 极大倾角光纤光栅spr生化传感器及其制作方法 | |
CN105891155A (zh) | 一种基于珐珀干涉的免标记光纤生物传感探针 | |
Wang et al. | Cardiac troponin I detection using gold/cerium-oxide nanoparticles assisted hetro-core fiber structure | |
CN107741409A (zh) | 一种基于倾斜布拉格光栅的癌症标记物检测装置及方法 | |
CN101126714A (zh) | 光纤生物传感器的应用方法 | |
Cheng et al. | Au-nanoshells modified surface field enhanced LRSPR biosensor with low LOD for highly sensitive hIgG sensing | |
CN109342330A (zh) | 一种光纤生物传感器及其检测方法 | |
Kang et al. | A label-free biosensor for pepsin detection based on graphene oxide functionalized micro-tapered long period fiber grating | |
TWI684756B (zh) | 待測物濃度之測定方法及套組 | |
Li et al. | S-tapered waveflex biosensor based on multimode fiber and seven-core fiber composite structure for detection of alpha-fetoprotein | |
CN104359870B (zh) | 一种表面等离子体共振(spr)生物传感芯片的制备方法 | |
CN109959635A (zh) | 一种基于电场耦合的光纤spr传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |