CN108520967A - A porous metal-supported microtubular solid oxide fuel cell and its preparation method - Google Patents
A porous metal-supported microtubular solid oxide fuel cell and its preparation method Download PDFInfo
- Publication number
- CN108520967A CN108520967A CN201810421076.XA CN201810421076A CN108520967A CN 108520967 A CN108520967 A CN 108520967A CN 201810421076 A CN201810421076 A CN 201810421076A CN 108520967 A CN108520967 A CN 108520967A
- Authority
- CN
- China
- Prior art keywords
- stainless steel
- layer
- preparation
- electrolyte
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 55
- 239000000446 fuel Substances 0.000 title claims abstract description 47
- 239000007787 solid Substances 0.000 title claims abstract description 38
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 99
- 239000010935 stainless steel Substances 0.000 claims abstract description 94
- 239000010410 layer Substances 0.000 claims abstract description 93
- 239000003792 electrolyte Substances 0.000 claims abstract description 81
- 238000003618 dip coating Methods 0.000 claims abstract description 75
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- 239000002346 layers by function Substances 0.000 claims abstract description 44
- 239000002002 slurry Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 239000006255 coating slurry Substances 0.000 claims description 61
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 19
- 229910052786 argon Inorganic materials 0.000 claims description 17
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 16
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 16
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 16
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 16
- 239000001856 Ethyl cellulose Substances 0.000 claims description 15
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 15
- 229920001249 ethyl cellulose Polymers 0.000 claims description 15
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 238000000498 ball milling Methods 0.000 claims description 8
- 239000008399 tap water Substances 0.000 claims description 7
- 235000020679 tap water Nutrition 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000012188 paraffin wax Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 238000009987 spinning Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims 6
- 230000001112 coagulating effect Effects 0.000 claims 3
- 235000019441 ethanol Nutrition 0.000 claims 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 2
- 235000015895 biscuits Nutrition 0.000 claims 2
- 229920005588 metal-containing polymer Polymers 0.000 claims 2
- RBNWAMSGVWEHFP-UHFFFAOYSA-N trans-p-Menthane-1,8-diol Chemical compound CC(C)(O)C1CCC(C)(O)CC1 RBNWAMSGVWEHFP-UHFFFAOYSA-N 0.000 claims 2
- 241000196324 Embryophyta Species 0.000 claims 1
- 229910000863 Ferronickel Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000007650 screen-printing Methods 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 description 25
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 25
- 230000015271 coagulation Effects 0.000 description 16
- 238000005345 coagulation Methods 0.000 description 16
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 14
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 14
- 229940116411 terpineol Drugs 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229910003271 Ni-Fe Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000012510 hollow fiber Substances 0.000 description 6
- 229920000620 organic polymer Polymers 0.000 description 6
- 238000000614 phase inversion technique Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910002862 Sr2Fe1.5Mo0.5O6 Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/002—Shape, form of a fuel cell
- H01M8/004—Cylindrical, tubular or wound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
一种多孔金属支撑型微管式固体氧化物燃料电池及其制备方法,属于新能源材料与电化学技术领域。所述方法具体为:浆料的制备;不锈钢微管支撑层的制备;在不锈钢微管支撑层上依次制备阳极功能层、电解质层及阴极支撑层。本发明的优点是:本发明采用不锈钢金属作为微管式固体氧化物燃料电池的支撑体,阳极功能层和电解质层采用浸涂工艺制备,阴极功能层采用丝网印刷工艺制备,结合共烧结工艺烧结成形,这种结构制备工艺简单,性能可靠,成本低廉。本发明的优点是工艺过程简单、不需要昂贵的设备,使用廉价不锈钢作为电池支撑体,极大的降低了系统成本,适合规模化生产。
A porous metal-supported microtubular solid oxide fuel cell and a preparation method thereof belong to the field of new energy materials and electrochemical technology. The method specifically includes: preparation of slurry; preparation of a stainless steel micropipe support layer; sequentially preparing an anode function layer, an electrolyte layer and a cathode support layer on the stainless steel micropipe support layer. The advantages of the present invention are: the present invention uses stainless steel metal as the support body of the microtubular solid oxide fuel cell, the anode functional layer and the electrolyte layer are prepared by a dip-coating process, the cathode functional layer is prepared by a screen printing process, combined with a co-sintering process Sintered forming, this structure has simple preparation process, reliable performance and low cost. The invention has the advantages of simple process, no need of expensive equipment, and the use of cheap stainless steel as the battery support, which greatly reduces the system cost and is suitable for large-scale production.
Description
技术领域technical field
本发明属于新能源材料与电化学技术领域,具体涉及一种多孔金属支撑型微管式固体氧化物燃料电池及其制备方法。The invention belongs to the field of new energy materials and electrochemical technology, and in particular relates to a porous metal-supported microtubular solid oxide fuel cell and a preparation method thereof.
背景技术Background technique
固体氧化物燃料电池是一种全固态能量转换装置,通过电化学反应将燃料化学能直接转化成电能。单体电池主要组成部分包括致密电解质隔膜和位于两侧的多孔阳极和多孔阴极。迄今为止,氧化钇稳定氧化锆(YSZ)是研究最为充分并且得到实际应用的氧离子导体固体电解质材料,相应地,阳极材料大多为Ni-YSZ金属陶瓷,而阴极材料则大多是La1– xSrxMnO3(LSM)等钙钛矿结构氧化物陶瓷。在电池运行过程中,氧分子吸附在多孔阴极表面,并接受外电路传来的电子,进而离解生成氧离子,氧离子再通过致密固体电解质隔膜扩散到阳极,并与多孔阳极内的氢气和天然气等燃料发生电化学氧化反应,生成H2O和CO2,释放出的电子则通过外电路传回到阴极。与传统热机发电技术相比,SOFCs具有高效率、低排放、无噪音等优点,一次发电效率可达50%~60%,与汽轮机联动后,能量转化效率可达80%以上;与质子交换膜燃料电池相比,SOFCs不需要使用贵金属催化剂,成本更低,而且其高温工作条件可以提供更高品质的热能输出;与太阳能和风能等可再生能源不同,SOFC技术不受地域、环境和气候的限制,具有很强的可靠性和适应性。是很有竞争力的绿色发电技术,在大型电站、分布式电站、家庭热电联供系统、汽车辅助电源等领域具有很大的应用前景。A solid oxide fuel cell is an all-solid-state energy conversion device that directly converts fuel chemical energy into electrical energy through electrochemical reactions. The main components of a single battery include a dense electrolyte diaphragm and porous anodes and porous cathodes on both sides. So far, yttria-stabilized zirconia (YSZ) is the most well-studied and practically applied oxygen ion conductor solid electrolyte material. Correspondingly, most anode materials are Ni-YSZ cermets, while cathode materials are mostly La 1– x Perovskite structure oxide ceramics such as Sr x MnO 3 (LSM). During the operation of the battery, oxygen molecules are adsorbed on the surface of the porous cathode and accept electrons from the external circuit, and then dissociate to generate oxygen ions. The oxygen ions then diffuse to the anode through the dense solid electrolyte diaphragm and combine with hydrogen and natural gas in the porous anode. When the fuel undergoes an electrochemical oxidation reaction to generate H 2 O and CO 2 , the released electrons are sent back to the cathode through an external circuit. Compared with traditional heat engine power generation technology, SOFCs have the advantages of high efficiency, low emission, and no noise. The primary power generation efficiency can reach 50%~60%. After being linked with a steam turbine, the energy conversion efficiency can reach more than 80%. Compared with fuel cells, SOFCs do not require the use of noble metal catalysts, and their cost is lower, and their high-temperature working conditions can provide higher-quality thermal energy output; unlike renewable energy sources such as solar energy and wind energy, SOFC technology is not affected by regions, environments, and climates. Restrictions, with strong reliability and adaptability. It is a very competitive green power generation technology, and has great application prospects in large-scale power stations, distributed power stations, household combined heat and power systems, and automotive auxiliary power supplies.
近几年,SOFC的微型化成为研究的热点之一,其典范是微管式SOFC或中空纤维SOFC。这类电池兼具管式和平板式SOFC的优点,代表了SOFC的一种未来发展方向,一直备受关注。传统的微管式SOFC采用挤出工艺制备,阳极结构调整不易。基于相转化原理提出的陶瓷膜生产技术发展成为制备SOFC支撑体、电极、电解质的一种新方法。采用该方法制得的陶瓷膜具有不对称结构,其孔隙率均匀过渡、比表面积大,满足SOFC理想支撑阳极的结构要求,并且很容易在其上沉积一层薄电解质膜以降低电解质和电极的欧姆电阻进而降低电池的操作温度。相转化法结合纺丝技术应用于生产陶瓷中空纤维,为微管式SOFC的发展开辟了一条新途径。应用相转化法制备微管式SOFC,无需贵重设备,工艺简单,可大大降低SOFC的制造成本,对保护生存环境、拉动经济发展有深远意义。In recent years, the miniaturization of SOFC has become one of the research hotspots, and its model is microtubular SOFC or hollow fiber SOFC. This type of battery has the advantages of both tubular and planar SOFCs, and represents a future development direction of SOFCs, which has attracted much attention. The traditional microtubular SOFC is prepared by extrusion process, and it is not easy to adjust the structure of the anode. The ceramic membrane production technology based on the principle of phase inversion has developed into a new method for preparing SOFC supports, electrodes and electrolytes. The ceramic membrane prepared by this method has an asymmetric structure, its porosity is evenly transitioned, and its specific surface area is large, which meets the structural requirements of an ideal support anode for SOFC, and it is easy to deposit a thin electrolyte membrane on it to reduce the electrolyte and electrode. The ohmic resistance in turn reduces the operating temperature of the battery. The application of phase inversion method combined with spinning technology to produce ceramic hollow fibers has opened up a new way for the development of microtubular SOFC. The application of phase inversion method to prepare microtubular SOFC does not require expensive equipment and the process is simple, which can greatly reduce the manufacturing cost of SOFC, and has far-reaching significance for protecting the living environment and stimulating economic development.
传统SOFC材料的高成本和电池封接的不可靠等问题严重阻碍了SOFC的商业化进程,阳极支撑、电解质支撑等陶瓷基微管式固体氧化物燃料电池存在机械强度低,抗快速热启动差等问题。SOFC向中低温发展是解决这些问题的重要方向,当操作温度降至中温(600~800 oC)或低温(450~600 oC)时,价格低廉的不锈钢材料就可以用于支撑体和电池堆的连接体,提高了电池结构的机械强度,而且在较低的操作温度下电池堆的密封比较容易实现,从而降低电池堆的复杂程度,这就使SOFC的快速启动和热循环成为可能。The high cost of traditional SOFC materials and the unreliability of battery sealing have seriously hindered the commercialization of SOFC. Ceramic-based microtubular solid oxide fuel cells such as anode support and electrolyte support have low mechanical strength and poor resistance to rapid thermal start. And other issues. The development of SOFC to medium and low temperature is an important direction to solve these problems. When the operating temperature drops to medium temperature (600~800 o C) or low temperature (450~600 o C), cheap stainless steel materials can be used for supports and batteries The connection body of the stack improves the mechanical strength of the battery structure, and the sealing of the battery stack is easier to achieve at a lower operating temperature, thereby reducing the complexity of the battery stack, which makes the rapid start-up and thermal cycle of SOFC possible.
金属支撑的电池构型具有其独特的设计理念,且可以同时满足高输出性能和低成本的优越性。低温化发展趋势驱动SOFC从传统的陶瓷支撑结构,即阳极支撑、阴极支撑和电解质支撑,逐渐向金属支撑结构转变。传统的SOFC,一般都是采用稳定的陶瓷材料或者是金属陶瓷复合材料作为其支撑体。这种支撑体的缺点是:陶瓷材料不易加工,其抗热冲击性和焊接性都比较差,不利于电池堆的组装,导致SOFC的制备成本居高不下。随着科技的发展,各国对SOFC的研究也在不断深入,特别是随着SOFC的制备技术及工艺日趋成熟,改进了电解质的成膜技术,开发了新型低温电解质材料。从而使电池能够在600~800 oC的中低温范围内工作。而且,电极材料的选择范围也得到了扩大,金属材料在SOFC中已得到越来越重要的应用,因此,以金属材料作为SOFC的支撑体制备金属支撑型SOFC(MS-SOFC)成为当前SOFC研究的热点。总结来说,传统的陶瓷支撑结构仍然存在成本高、机械强度差、制备工艺复杂的问题,急需开发一种新的SOFC电池来解决以上问题。The metal-supported battery configuration has its unique design concept and can satisfy the advantages of high output performance and low cost at the same time. The development trend of low temperature drives SOFC to gradually transform from traditional ceramic support structures, namely anode support, cathode support and electrolyte support, to metal support structures. Traditional SOFCs generally use stable ceramic materials or metal-ceramic composite materials as their supports. The disadvantages of this kind of support are: the ceramic material is not easy to process, and its thermal shock resistance and weldability are relatively poor, which is not conducive to the assembly of battery stacks, resulting in high preparation costs of SOFC. With the development of science and technology, the research on SOFC in various countries is also deepening, especially as the preparation technology and process of SOFC become more and more mature, the film-forming technology of electrolyte has been improved, and new low-temperature electrolyte materials have been developed. So that the battery can work in the medium and low temperature range of 600 ~ 800 o C. Moreover, the selection range of electrode materials has also been expanded, and metal materials have been more and more important in SOFC applications. Therefore, using metal materials as SOFC supports to prepare metal-supported SOFC (MS-SOFC) has become the current SOFC research. hotspots. In summary, the traditional ceramic support structure still has the problems of high cost, poor mechanical strength, and complicated preparation process. It is urgent to develop a new SOFC battery to solve the above problems.
发明内容Contents of the invention
本发明的目的是为了解决目前传统陶瓷支撑结构存在成本高、机械强度差、制备工艺复杂的问题,提供一种多孔金属支撑型微管式固体氧化物燃料电池及其制备方法,利用该方法制得的电池含有不锈钢微管支撑层,制得的电池机械性能得到改善,与阳极之间的界面性质得到改善,增加了在阳极处发生氢的氧化反应的实质面积,不锈钢微管支撑体具有不对称结构,并且因此改善了燃料电池的性能,燃料电池抗震动及快速热启动性能优异。The purpose of the present invention is to solve the problems of high cost, poor mechanical strength and complicated preparation process in the current traditional ceramic support structure, and provide a porous metal-supported microtubular solid oxide fuel cell and its preparation method. The obtained battery contains the stainless steel microtube support layer, the mechanical properties of the prepared battery are improved, the interface properties with the anode are improved, and the substantial area for hydrogen oxidation reaction at the anode is increased, and the stainless steel microtube support has excellent Symmetrical structure, and thus improves the performance of the fuel cell, the fuel cell has excellent anti-vibration and rapid hot start performance.
为实现上述目的,本发明采取的技术方案如下:In order to achieve the above object, the technical scheme that the present invention takes is as follows:
一种多孔金属支撑型微管式固体氧化物燃料电池,所述的固体氧化物燃料电池由内至外依次由圆筒状的不锈钢微管支撑层、阳极功能层、电解质层以及阴极功能层组成;所述的不锈钢微管支撑层内圆周面直径为1~2.6mm,壁厚为0.2~0.6mm,不锈钢微管支撑层共分3层。A porous metal-supported microtubular solid oxide fuel cell, the solid oxide fuel cell is sequentially composed of a cylindrical stainless steel microtube support layer, an anode functional layer, an electrolyte layer and a cathode functional layer from the inside to the outside ; The diameter of the inner circumference of the stainless steel microtube support layer is 1-2.6mm, the wall thickness is 0.2-0.6mm, and the stainless steel microtube support layer is divided into 3 layers.
一种上述的多孔金属支撑型微管式固体氧化物燃料电池的制备方法,所述的方法包括以下步骤:A method for preparing the above-mentioned porous metal-supported microtubular solid oxide fuel cell, the method comprising the following steps:
步骤一:浆料的制备Step 1: Preparation of slurry
(1)金属聚合物浆料:按照重量百分比计,各组分含量为:不锈钢金属粉61.8%、聚苯醚砜6.2%、N-甲基吡咯烷酮27.6%、酒精3.1%、聚乙烯吡咯烷酮1.3%,制备方法为:称量原料置于球磨罐中,采用行星式球磨机连续球磨48 h即可,球磨转速720 r/min;(1) Metal polymer slurry: in terms of weight percentage, the content of each component is: stainless steel metal powder 61.8%, polyphenylene ether sulfone 6.2%, N-methylpyrrolidone 27.6%, alcohol 3.1%, polyvinylpyrrolidone 1.3% , the preparation method is as follows: weigh the raw materials and place them in a ball mill tank, and use a planetary ball mill to continuously mill for 48 hours, and the milling speed is 720 r/min;
(2)阳极浸涂浆料成分按照重量百分比计:13.5% NiO、1.5% SSZ或YSZ、72%乙醇、11%松油醇、2%乙基纤维素;电解质浸涂浆料成分按照重量百分比计:15%SSZ或YSZ电解质粉体、72%乙醇、11%松油醇、2%乙基纤维素;阳极浸涂浆料和电解质浸涂浆料制备方法均为:称取各组分,放入球磨罐中,经48 h球磨,转速为720 r/min或5 h超声,功率为500W即可;(2) The composition of the anode dip coating slurry is based on weight percentage: 13.5% NiO, 1.5% SSZ or YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose; the electrolyte dip coating slurry composition is based on weight percentage Total: 15% SSZ or YSZ electrolyte powder, 72% ethanol, 11% terpineol, 2% ethyl cellulose; the preparation methods of anode dip coating slurry and electrolyte dip coating slurry are: weigh each component, Put it into a ball mill jar, and undergo ball milling for 48 hours at a speed of 720 r/min or ultrasonic for 5 hours with a power of 500W;
步骤二:制备不锈钢微管支撑层Step 2: Preparation of stainless steel microtube support layer
使用相转化法制备不锈钢微管支撑层,具体为:将金属聚合物浆料过200目筛去除杂质,室温下真空脱气20 min后转移至原料罐中,在原料罐中静置20 min后通入N2,相转化装置环形喷丝口内外直径分别为1.0mm和2.6mm,内、外凝固浴分别为去离子水和自来水;按照实际的工艺要求,调节装置参数,N2压力为0.02~0.05 MPa、内凝固浴流速为15~20 mL/min、气隙长度为9~11 cm,纺丝成膜,固化24 h,得到具有梯度孔隙结构的不锈钢微管素坯,将不锈钢微管素坯在室温下自然干燥24 h,然后在保护气氛下采用吊烧工艺烧结成型,即得到不锈钢微管支撑层;The stainless steel microtube support layer was prepared by the phase inversion method, specifically: the metal polymer slurry was passed through a 200-mesh sieve to remove impurities, vacuum degassed at room temperature for 20 minutes, then transferred to the raw material tank, and after standing in the raw material tank for 20 min Introduce N 2 , the inner and outer diameters of the annular spinneret of the phase inversion device are 1.0 mm and 2.6 mm, respectively, and the inner and outer coagulation baths are deionized water and tap water respectively; according to the actual process requirements, adjust the device parameters, and the N 2 pressure is 0.02 ~0.05 MPa, the flow rate of the internal coagulation bath is 15-20 mL/min, the air gap length is 9-11 cm, spinning into a film, solidified for 24 h, and the stainless steel microtube blank with gradient pore structure is obtained, the stainless steel microtube The green body was naturally dried at room temperature for 24 h, and then sintered by a hanging firing process under a protective atmosphere to obtain a stainless steel microtube support layer;
步骤三:制备阳极功能层和电解质层:采用浸渍涂敷法制备,分别将步骤一中的电解质浸涂浆料和阳极浸涂浆料转移到小烧杯中,不锈钢微管外表面清洁后,用石蜡将不锈钢微管支撑层一端封住,以0.5cm/s的速度浸入阳极浸涂浆料中,将其浸没在阳极浸涂浆料当中静置10~15s,以同样的速度将不锈钢微管支撑层从阳极浸涂浆料中提出,使其表面均匀沉积一层阳极薄膜,吊挂在铁架上室温晾干,反复浸涂5次,以获得50 μm厚的阳极功能层薄膜,涂敷完成后在1200 oC预烧2h处理;Step 3: Preparation of anode functional layer and electrolyte layer: prepared by dip coating method, respectively transfer the electrolyte dip coating slurry and anode dip coating slurry in step 1 to a small beaker, clean the outer surface of the stainless steel microtube, and use Seal one end of the stainless steel microtube support layer with paraffin, immerse it in the anode dip coating slurry at a speed of 0.5cm/s, immerse it in the anode dip coating slurry and let it stand for 10~15s, and put the stainless steel microtube at the same speed The support layer was lifted from the anode dip coating slurry to uniformly deposit a layer of anodic film on the surface, hung on an iron frame to dry at room temperature, and dip-coated repeatedly 5 times to obtain a 50 μm thick anode functional layer film. After completion, pre-burn at 1200 o C for 2 hours;
将带有阳极功能层的不锈钢微管外表面清洁后,以0.5 cm/s的速度浸入电解质浸涂浆料中10~15 s,以同样的速度将带有阳极功能层的不锈钢微管从电解质浸涂浆料中提出,使其表面均匀沉积一层电解质膜,并在空气中静置阴干,反复浸涂5次,以获得15 μm厚的的电解质薄膜,室温晾干后在氢氩混合气(5%vol氢气和95%vol氩气)下1400 oC温度下烧结2 h,得到具有阳极功能层和电解质层的金属支撑型微管式固体氧化物燃料电池;After the outer surface of the stainless steel microtube with the anode functional layer was cleaned, it was immersed in the electrolyte dipping slurry at a speed of 0.5 cm/s for 10–15 s, and the stainless steel microtube with the anode functional layer was removed from the electrolyte at the same speed. It is proposed in the dip coating slurry to uniformly deposit a layer of electrolyte film on the surface, and let it stand in the air to dry in the shade. Repeat dip coating 5 times to obtain a 15 μm thick electrolyte film. (5%vol hydrogen and 95%vol argon) were sintered at 1400 o C for 2 hours to obtain a metal-supported microtubular solid oxide fuel cell with an anode functional layer and an electrolyte layer;
步骤四:制备阴极功能层和阴极集流体:使用细毛刷在电解质层表面均匀刷涂一层SFM阴极层(0.1g的SFM粉体与0.1 mL松油醇混合,加入0.12 g淀粉,0.1 g乙基纤维素,研磨15min混合均匀),然后在氢氩混合气(5%vol氢气和95%vol氩气)下1080 oC烧结1 h,即制备得到阴极功能层;将银浆涂敷在阴极功能层表面,再将银丝缠绕在涂敷好的银浆上,80 oC烘干30min后于750 oC烧结30min,即得到多孔金属支撑型微管式固体氧化物燃料电池。Step 4: Prepare the cathode functional layer and cathode current collector: use a fine brush to evenly brush a layer of SFM cathode layer on the surface of the electrolyte layer (0.1g of SFM powder is mixed with 0.1 mL of terpineol, add 0.12 g of starch, 0.1 g of B Base cellulose, ground for 15 minutes and mixed evenly), and then sintered at 1080 o C for 1 h under hydrogen-argon gas mixture (5% vol hydrogen and 95% vol argon) to prepare the cathode functional layer; coat the silver paste on the cathode On the surface of the functional layer, the silver wire is wound on the coated silver paste, dried at 80 o C for 30 minutes, and then sintered at 750 o C for 30 minutes to obtain a porous metal-supported microtubular solid oxide fuel cell.
本发明相对于现有技术的有益效果是:The beneficial effect of the present invention relative to prior art is:
(1)本发明采用不锈钢金属作为微管式固体氧化物燃料电池的支撑体,阳极功能层和电解质层采用浸涂工艺制备,阴极功能层采用丝网印刷工艺制备,结合共烧结工艺烧结成形,这种结构制备工艺简单,性能可靠,成本低廉。(1) In the present invention, stainless steel metal is used as the support body of the microtubular solid oxide fuel cell, the anode functional layer and the electrolyte layer are prepared by the dip coating process, the cathode functional layer is prepared by the screen printing process, combined with the co-sintering process to sinter and form, The preparation process of this structure is simple, the performance is reliable, and the cost is low.
(2)本发明涉及一种全新的燃料电池结构以及用于制造金属微管的方法,该多孔不锈钢微管支撑层采用相转化法制备,材质为400系列不锈钢、300系列不锈钢、镍铁合金、NiCrAlY合金、Hastelloy-X合金、Crofer 22APU及ITM铁素体不锈钢合金,其改善了燃料电极支撑体的机械强度和封装性能,由此改善了燃料电池的性能和实用性。(2) The present invention relates to a new fuel cell structure and a method for manufacturing metal microtubes. The porous stainless steel microtube support layer is prepared by phase inversion method, and the material is 400 series stainless steel, 300 series stainless steel, nickel-iron alloy, NiCrAlY alloy, Hastelloy-X alloy, Crofer 22APU, and ITM ferritic stainless steel alloy, which improve the mechanical strength and packaging performance of the fuel electrode support, thereby improving the performance and practicality of the fuel cell.
(3)本发明的优点是工艺过程简单、不需要昂贵的设备,使用廉价不锈钢作为电池支撑体,极大的降低了系统成本,适合规模化生产。(3) The advantages of the present invention are that the process is simple, does not require expensive equipment, uses cheap stainless steel as the battery support, greatly reduces the system cost, and is suitable for large-scale production.
附图说明Description of drawings
图1为多孔金属支撑型微管式固体氧化物燃料电池横截面结构示意图,其中,1-不锈钢微管支撑层,2-阳极功能层,3-电解质层,4-阴极功能层;Fig. 1 is a schematic diagram of the cross-sectional structure of a porous metal-supported microtubular solid oxide fuel cell, wherein, 1-stainless steel microtube support layer, 2-anode functional layer, 3-electrolyte layer, 4-cathode functional layer;
图2为具有非对称结构的430L不锈钢金属支撑层扫描电镜图;Fig. 2 is a scanning electron microscope image of a 430L stainless steel metal support layer with an asymmetric structure;
图3为相转化装置整体结构示意图;Fig. 3 is a schematic diagram of the overall structure of a phase inversion device;
图4为图3中同心环孔喷丝头主视图;Fig. 4 is the front view of the spinneret with concentric ring holes in Fig. 3;
图5为图3中同心环孔喷丝头俯视图;Fig. 5 is a top view of the spinneret with concentric ring holes in Fig. 3;
图6为图3中同心环孔喷丝头内物料分布示意图;Fig. 6 is a schematic diagram of material distribution in the spinneret with concentric ring holes in Fig. 3;
图7为430L/NiO-YSZ/YSZ/LSCF微管式固体氧化物燃料电池管壁断面扫描电镜图。Fig. 7 is a scanning electron microscope image of a tube wall section of a 430L/NiO-YSZ/YSZ/LSCF microtubular solid oxide fuel cell.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修正或等同替换,而不脱离本发明技术方案的精神范围,均应涵盖在本发明的保护范围之中。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and embodiments, but it is not limited thereto. Any modification or equivalent replacement of the technical solution of the present invention without departing from the spirit of the technical solution of the present invention should be included in the scope of the present invention. Within the protection scope of the present invention.
本发明的金属支撑SOFC相比于传统陶瓷支撑结构,具有如下优势:a.成本低。金属材料的价格远低于阳极、阴极、电解质所用的陶瓷材料。b.快速启动。金属良好的导热性,能保证金属支撑SOFC快速启动性能,使之可以应用于移动领域。c.可加工性。金属不锈钢材料具有良好的延展性,这将使SOFC加工的难度大大降低。d.便于密封。利用金属材料成熟的密封技术,可以避免传统SOFC难于封接的问题。正是由于金属材料具有上述其他材料所不具备的优点,金属支撑SOFC被视为第三代SOFC,有望替代传统的电极或电解质支撑型SOFC,解决传统陶瓷基固体氧化物燃料电池机械强度差的问题。Compared with the traditional ceramic support structure, the metal-supported SOFC of the present invention has the following advantages: a. Low cost. The price of metal materials is much lower than the ceramic materials used in anodes, cathodes, and electrolytes. b.Quick start. The good thermal conductivity of metal can ensure the fast start-up performance of metal-supported SOFC, so that it can be applied in the mobile field. c. Machinability. Metal stainless steel has good ductility, which will greatly reduce the difficulty of SOFC processing. d. Easy to seal. Using the mature sealing technology of metal materials can avoid the problem of difficult sealing of traditional SOFC. It is precisely because metal materials have the advantages that other materials above do not have. Metal-supported SOFC is regarded as the third generation SOFC, which is expected to replace traditional electrode or electrolyte-supported SOFC and solve the problem of poor mechanical strength of traditional ceramic-based solid oxide fuel cells. question.
具体实施方式一:本实施方式记载的是一种多孔金属支撑型微管式固体氧化物燃料电池,所述的固体氧化物燃料电池由内至外依次由圆筒状的不锈钢微管支撑层1、阳极功能层2、电解质层3以及阴极功能层4组成;所述的不锈钢微管支撑层1内圆周面直径为1~2.6mm,壁厚为0.2~0.6mm,不锈钢微管支撑层1共分3层,该电池结构如图1所示。Specific Embodiment 1: This embodiment describes a porous metal-supported microtubular solid oxide fuel cell. The solid oxide fuel cell is sequentially composed of a cylindrical stainless steel microtubular support layer 1 , an anode functional layer 2, an electrolyte layer 3 and a cathode functional layer 4; the diameter of the inner circumference of the stainless steel microtube support layer 1 is 1~2.6mm, and the wall thickness is 0.2~0.6mm, and the stainless steel microtube support layer 1 has a total Divided into 3 layers, the battery structure is shown in Figure 1.
具体实施方式二:一种具体实施方式一所述的多孔金属支撑型微管式固体氧化物燃料电池的制备方法,所述的方法包括以下步骤:Specific embodiment two: a method for preparing the porous metal-supported microtubular solid oxide fuel cell described in specific embodiment one, the method includes the following steps:
步骤一:浆料的制备Step 1: Preparation of slurry
(1)金属聚合物浆料:按照重量百分比计,各组分含量为:不锈钢金属粉61.8%、聚苯醚砜(PESf)6.2%是一种高分子聚合物,作为粘结剂、N-甲基吡咯烷酮(NMP)27.6%、酒精3.1%、聚乙烯吡咯烷酮(PVP)1.3%,制备方法为:称量原料置于球磨罐中,采用行星式球磨机连续球磨48 h即可,球磨转速720 r/min,以确保不锈钢金属粉在有机溶剂中分散均匀,得到均一稳定的金属聚合物浆料,实验中所用的金属聚合物浆料应具有较好的稳定性和流动性,并且有一定的黏度(13~14 mPa.s)。(1) Metal polymer slurry: in terms of weight percentage, the content of each component is: stainless steel metal powder 61.8%, polyphenylene ether sulfone (PESf) 6.2% is a high molecular polymer, as a binder, N- Methylpyrrolidone (NMP) 27.6%, alcohol 3.1%, polyvinylpyrrolidone (PVP) 1.3%, the preparation method is as follows: weigh the raw materials and place them in a ball mill jar, and use a planetary ball mill for continuous ball milling for 48 h at a milling speed of 720 r /min to ensure that the stainless steel metal powder is uniformly dispersed in the organic solvent to obtain a uniform and stable metal-polymer slurry. The metal-polymer slurry used in the experiment should have good stability and fluidity, and have a certain viscosity. (13~14mPa.s).
(2)阳极浸涂浆料成分按照重量百分比计:13.5% NiO、1.5% SSZ或YSZ、72%乙醇、11%松油醇、2%乙基纤维素;电解质浸涂浆料成分按照重量百分比计:15%SSZ或YSZ电解质粉体、72%乙醇、11%松油醇、2%乙基纤维素;阳极浸涂浆料和电解质浸涂浆料制备方法均为:称取各组分,放入球磨罐中球磨48 h,转速为720 r/min或5 h超声,功率为500W即可;(2) The composition of the anode dip coating slurry is based on weight percentage: 13.5% NiO, 1.5% SSZ or YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose; the electrolyte dip coating slurry composition is based on weight percentage Total: 15% SSZ or YSZ electrolyte powder, 72% ethanol, 11% terpineol, 2% ethyl cellulose; the preparation methods of anode dip coating slurry and electrolyte dip coating slurry are: weigh each component, Put it into a ball mill jar and mill for 48 hours at a speed of 720 r/min or ultrasonically for 5 hours with a power of 500W;
步骤二:制备不锈钢微管支撑层Step 2: Preparation of stainless steel microtube support layer
使用相转化法制备不锈钢微管支撑层,具体为:将金属聚合物浆料过200目筛去除杂质,采用图3所示的装置,室温下真空脱气20 min后转移至不锈钢纺丝储液罐,即原料罐中,在原料罐中静置20 min后通入N2,自制的相转化装置环形喷丝口内外直径分别为1.0mm和2.6mm,装置图纸如图4、图5所示,内、外凝固浴分别为去离子水和自来水;按照实际的工艺要求,调节装置参数,N2压力为0.02~0.05 MPa、内凝固浴流速为15~20 mL/min、气隙长度(喷丝口至外凝固浴液面的距离)为9~11 cm,纺丝成膜,固化24 h,得到具有梯度孔隙结构的不锈钢微管素坯,将不锈钢微管素坯在室温下自然干燥24 h,然后在保护气氛下采用吊烧工艺烧结成型,即得到不锈钢微管支撑层。制备的不锈钢微管支撑层具有不对称结构,指型孔道分布在管壁的两侧,管壁的中间是海绵孔道结构,并且指型孔道通过海绵孔道相连,图2为具有非对称结构的不锈钢金属支撑层扫描电镜照片;The stainless steel microtube support layer was prepared by the phase inversion method, specifically: pass the metal-polymer slurry through a 200-mesh sieve to remove impurities, use the device shown in Figure 3, vacuum degas at room temperature for 20 min, and then transfer to the stainless steel spinning stock solution Tank, that is, the raw material tank, put N 2 into the raw material tank after standing still for 20 minutes. The inner and outer diameters of the self-made phase inversion device annular spinneret are 1.0mm and 2.6mm respectively. The drawings of the device are shown in Figure 4 and Figure 5 , the inner and outer coagulation baths were deionized water and tap water respectively; according to the actual process requirements, the parameters of the device were adjusted, the N2 pressure was 0.02-0.05 MPa, the flow rate of the inner coagulation bath was 15-20 mL/min, the air gap length (spray The distance from the thread opening to the surface of the coagulation bath) was 9-11 cm, spun to form a film, and solidified for 24 hours to obtain a stainless steel microtube blank with a gradient pore structure. The stainless steel microtube blank was naturally dried at room temperature for 24 hours. h, and then sintered and formed by a hanging firing process under a protective atmosphere to obtain a stainless steel microtube support layer. The prepared stainless steel microtube support layer has an asymmetric structure, the finger-shaped channels are distributed on both sides of the tube wall, and the middle of the tube wall is a sponge channel structure, and the finger-shaped channels are connected through the sponge channels. Figure 2 is a stainless steel with an asymmetric structure. Scanning electron micrograph of the metal support layer;
步骤三:制备阳极功能层和电解质层:采用浸渍涂敷法制备,分别将步骤一中的电解质浸涂浆料和阳极浸涂浆料转移到小烧杯中,不锈钢微管外表面清洁后,用石蜡将不锈钢微管支撑层一端封住,以0.5cm/s的速度浸入阳极浸涂浆料中,将其浸没在阳极浸涂浆料当中静置10~15s,以同样的速度将不锈钢微管支撑层从阳极浸涂浆料中提出,使其表面均匀沉积一层阳极薄膜,吊挂在铁架上室温晾干,反复浸涂5次,以获得一定厚度阳极薄膜,涂敷完成后在1200 oC预烧2h处理,以使阳极功能层与不锈钢微观支撑层之间获得一定的结合力,便于后面的电解质膜涂敷操作;然后以同样的方法浸涂电解质浸涂浆料,室温晾干后在氢氩混合气下1400 oC温度下烧结2 h,得到具有阳极功能层和电解质层的金属支撑型微管式固体氧化物燃料电池;制备所得的半电池的电解质膜光滑透明,由于采用了高温烧结对其进行致密化处理,可与阳极紧密结合。Step 3: Preparation of anode functional layer and electrolyte layer: prepared by dip coating method, respectively transfer the electrolyte dip coating slurry and anode dip coating slurry in step 1 to a small beaker, clean the outer surface of the stainless steel microtube, and use Seal one end of the stainless steel microtube support layer with paraffin, immerse it in the anode dip coating slurry at a speed of 0.5cm/s, immerse it in the anode dip coating slurry and let it stand for 10~15s, and put the stainless steel microtube at the same speed The supporting layer is taken out from the anode dip coating slurry, and a layer of anodic film is evenly deposited on the surface, hung on an iron frame to dry at room temperature, and dip-coated repeatedly for 5 times to obtain a certain thickness of anodic film. o C pre-fired for 2 hours to obtain a certain bonding force between the anode functional layer and the stainless steel microscopic support layer, which is convenient for the subsequent electrolyte membrane coating operation; then dip-coat the electrolyte dip-coating slurry in the same way, and dry at room temperature Afterwards, it was sintered at 1400 o C for 2 h under hydrogen-argon gas mixture to obtain a metal-supported microtubular solid oxide fuel cell with an anode functional layer and an electrolyte layer; the electrolyte membrane of the prepared half-cell was smooth and transparent, due to the It is densified by high-temperature sintering and can be tightly combined with the anode.
步骤四:制备阴极功能层和阴极集流体:使用细毛刷在电解质层表面均匀刷涂一层SFM阴极层浆料,然后在氢氩混合气下1080 oC烧结1 h,即制备得到阴极功能层;将银浆涂敷在阴极功能层表面,再将银丝缠绕在涂敷好的银浆上,80 oC烘干30min后于750 oC烧结30min,即得到多孔金属支撑型微管式固体氧化物燃料电池。集流体的存在便于电流的采集和电池性能测试。Step 4: Prepare the cathode functional layer and the cathode current collector: use a fine brush to evenly brush a layer of SFM cathode layer slurry on the surface of the electrolyte layer, and then sinter at 1080 o C for 1 h under hydrogen-argon mixed gas to prepare the cathode functional layer ; Coat the silver paste on the surface of the cathode functional layer, then wind the silver wire on the coated silver paste, dry at 80 o C for 30 minutes, and then sinter at 750 o C for 30 minutes to obtain a porous metal-supported microtubular solid oxide fuel cell. The presence of the current collector is convenient for current collection and battery performance testing.
本实施方式中的阳极功能层为NiO-SSZ复合材料电极,电解质层为SSZ,阴极功能层为Sr2Fe1.5Mo0.5O6。In this embodiment, the anode functional layer is a NiO-SSZ composite electrode, the electrolyte layer is SSZ, and the cathode functional layer is Sr 2 Fe 1.5 Mo 0.5 O 6 .
具体实施方式三:具体实施方式二所述的多孔金属支撑型微管式固体氧化物燃料电池的制备方法,步骤一中,所述的不锈钢金属粉的材质为400系列不锈钢、300系列不锈钢、镍铁合金、NiCrAlY合金、Hastelloy-X合金、Crofer 22APU及ITM铁素体不锈钢合金。Specific embodiment three: the preparation method of the porous metal-supported microtubular solid oxide fuel cell described in specific embodiment two, in step one, the material of the stainless steel metal powder is 400 series stainless steel, 300 series stainless steel, nickel Iron alloys, NiCrAlY alloys, Hastelloy-X alloys, Crofer 22APU and ITM ferritic stainless steel alloys.
具体实施方式四:具体实施方式二所述的多孔金属支撑型微管式固体氧化物燃料电池的制备方法,步骤二中,所述的内凝固浴流量为17.5mL/min,氮气压力为0.05MPa,气隙长度为10cm;外凝固浴为自来水。Embodiment 4: The preparation method of the porous metal-supported microtubular solid oxide fuel cell described in Embodiment 2, in step 2, the flow rate of the internal coagulation bath is 17.5mL/min, and the nitrogen pressure is 0.05MPa , the air gap length is 10cm; the external coagulation bath is tap water.
具体实施方式五:具体实施方式二所述的多孔金属支撑型微管式固体氧化物燃料电池的制备方法,步骤二中,所述的保护气氛为氩气,烧结工艺具体为:以2 oC /min的升温速率升温至1300 oC,保温2 h,自然降至室温。Embodiment 5: The preparation method of the porous metal-supported microtubular solid oxide fuel cell described in Embodiment 2, in step 2, the protective atmosphere is argon, and the sintering process is specifically: at 2 o C The temperature was raised to 1300 o C at a heating rate of 1/min, kept for 2 h, and then dropped to room temperature naturally.
所有的阳极功能层、电解质层、阴极功能层均可采用其他镀膜工艺制备(包括电化学气相沉积法、化学气相沉积法、电泳沉积法、溅射法、等离子喷涂法)。All anode functional layers, electrolyte layers, and cathode functional layers can be prepared by other coating processes (including electrochemical vapor deposition, chemical vapor deposition, electrophoretic deposition, sputtering, and plasma spraying).
本发明通过使用相转化法来制备不锈钢微管支撑体,为整个电池提供物理支撑和集流体。本发明的电池主要采用不锈钢支撑管作为阳极集流体。同样,也可采用银浆和银丝作为电池阴极和阳极的集流材料,即将银浆涂敷在电池的阴极和阳极两端的表面,再将银丝缠绕在阴极和阳极两端已涂敷的银浆之上,烘干后于750 oC烧结30min,使银浆与阴、阳极和银丝之间形成较牢固的结合力,最后,将微管式SOFC单电池用陶瓷密封胶密封在刚玉陶瓷测试管中。The invention prepares the stainless steel micropipe support body by using the phase inversion method to provide physical support and current collector for the whole battery. The battery of the present invention mainly uses a stainless steel support tube as the anode current collector. Similarly, silver paste and silver wire can also be used as current-collecting materials for the cathode and anode of the battery. On the silver paste, after drying, it was sintered at 750 o C for 30 minutes to form a strong bond between the silver paste and the cathode, anode and silver wire. Finally, the microtubular SOFC single cell was sealed on the corundum with ceramic sealant. in ceramic test tubes.
实施例1:Example 1:
制备430L/NiO-YSZ/YSZ/LSCF微管式固体氧化物燃料电池。Preparation of 430L/NiO-YSZ/YSZ/LSCF microtubular solid oxide fuel cells.
按照如下步骤:制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料;制备梯级多孔结构的不锈钢金属非对称微管;NiO基阳极催化剂沉积,YSZ电解质层沉积与烧结;LSCF阴极层沉积与烧结。According to the following steps: preparation of metal polymer slurry, electrolyte dip coating slurry, anode dip coating slurry; preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure; NiO-based anode catalyst deposition, YSZ electrolyte layer deposition and sintering; LSCF cathode layer deposition and sintering.
(1)制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料(1) Preparation of metal-polymer slurry, electrolyte dip coating slurry, and anode dip coating slurry
金属聚合物浆料中,有机聚合物是聚醚矾(PESf),溶剂是N-甲基毗咯烷酮(NMP),添加剂是聚乙烯砒咯烷酮(PVP),采用430L不锈钢金属粉(500目)作为支撑体原材料;各组分的重量百分比为:PESf 6.2%、NMP 27.6%、PVP 1.3%、430L不锈钢金属粉61.8%、酒精3.1%;阳极浸涂浆料成分为13.5%NiO、1.5%YSZ、72%乙醇、11%松油醇、2%乙基纤维素,其中的NiO作为阳极功能层;电解质浸涂浆料成分为15%YSZ,72%乙醇、11%松油醇、2%乙基纤维素,其中的YSZ作为电解质。In the metal-polymer slurry, the organic polymer is polyethersulfone (PESf), the solvent is N-methylpyrrolidone (NMP), the additive is polyvinylpyrrolidone (PVP), and 430L stainless steel metal powder ( 500 mesh) as the raw material of the support body; the weight percentage of each component is: PESf 6.2%, NMP 27.6%, PVP 1.3%, 430L stainless steel metal powder 61.8%, alcohol 3.1%; the composition of the anode dip coating slurry is 13.5%NiO, 1.5% YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose, of which NiO is used as the anode functional layer; the composition of the electrolyte dip coating slurry is 15% YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose with YSZ as electrolyte.
按照以上的重量百分比,首先称取溶剂NMP置于球磨罐中,加入添加剂PVP使其溶解,然后加入430L不锈钢金属粉,球磨24 h后,加入有机聚合物PESf,继续搅拌24 h,使其完全溶解,得到金属聚合物浆料。阳极浸涂浆料和电解质浸涂浆料方法相同,均为:按照重量百分比称取原料置于烧杯中,超声5 h。According to the above weight percentage, first weigh the solvent NMP and place it in a ball mill tank, add the additive PVP to dissolve it, then add 430L stainless steel metal powder, after ball milling for 24 hours, add the organic polymer PESf, and continue to stir for 24 hours to make it completely Dissolved to obtain a metal polymer slurry. The method of anode dip coating slurry and electrolyte dip coating slurry is the same: Weigh the raw materials according to the weight percentage, place them in a beaker, and ultrasonicate for 5 h.
(2)制备梯级多孔结构的不锈钢金属非对称微管(2) Preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure
将上述制备得到的金属聚合物浆料,采用图3所示的装置,进行真空脱气20 min后移至原料罐中,以去离子水为芯液,自来水为外凝固浴,通过同心环孔喷丝头将金属聚合物浆料纺入外凝固浴中,同心环孔喷丝头结构如图6所示,并在外凝固浴中浸泡24 h,然后取出晾干固化后得到具有梯度孔结构的430L不锈钢双层中空微管前驱体。将固化成型后的430L不锈钢双层中空纤维前驱体拉直、晾干,在氢氩混合气下1200 oC高温下烧结2 h,得到多孔不锈钢非对称微管,图2为具有非对称结构的不锈钢金属支撑层扫描电镜照片。The metal polymer slurry prepared above was vacuum-degassed for 20 min using the device shown in Figure 3, and then moved to the raw material tank, with deionized water as the core liquid and tap water as the outer coagulation bath, passing through the concentric ring holes The spinneret spun the metal-polymer slurry into the external coagulation bath. The structure of the spinneret with concentric ring holes is shown in Fig. 6. It was soaked in the external coagulation bath for 24 h, and then it was taken out to dry and solidify to obtain a gradient pore structure. 430L stainless steel double-layer hollow microtube precursor. The cured 430L stainless steel double-layer hollow fiber precursor was straightened, dried, and sintered at 1200 o C for 2 h under hydrogen-argon gas mixture to obtain porous stainless steel asymmetric microtubes. Figure 2 shows the asymmetric structure Scanning electron micrograph of the stainless steel metal support layer.
(3)制备阳极、电解质功能层(3) Preparation of anode and electrolyte functional layers
分别将(1)中的电解质浸涂浆料和阳极浸涂浆料转移到小烧杯中,用石蜡将多孔不锈钢非对称微管一端封住,以0.5cm/s的速度浸入阳极浸涂浆料中,静置10~15s后,以同样的速度提出浆料,吊挂在铁架上室温晾干,反复浸涂5次。然后以同样的方法浸涂电解质,室温晾干后在氢氩混合气下1400 oC高温下烧结2 h,得到具有阳极功能层和电解质层的金属支撑型微管式固体氧化物燃料电池。Transfer the electrolyte dip coating slurry and anode dip coating slurry in (1) to a small beaker, seal one end of the porous stainless steel asymmetric microtube with paraffin, and dip into the anode dip coating slurry at a speed of 0.5cm/s After standing still for 10~15s, take out the slurry at the same speed, hang it on the iron frame to dry at room temperature, and repeat the dip coating 5 times. Then the electrolyte was dip-coated in the same way, dried at room temperature, and then sintered at 1400 o C for 2 h under a hydrogen-argon mixture to obtain a metal-supported microtubular solid oxide fuel cell with an anode functional layer and an electrolyte layer.
(4)制备LSCF阴极功能层(4) Preparation of LSCF cathode functional layer
以松油醇为溶剂,配置60%LSCF,40%GDC的浆料,再向其中加入溶液质量10%的淀粉,12%的乙基纤维素,超声5 h,使用细毛刷在不锈钢微管电解质表面均匀刷涂一层LSCF阴极层,在氢氩混合气下1080 oC烧结1 h。Use terpineol as a solvent to prepare a slurry of 60% LSCF and 40% GDC, then add 10% starch and 12% ethyl cellulose to it, ultrasonicate for 5 h, and use a fine-bristled brush to clean the electrolyte in stainless steel microtubes. A layer of LSCF cathode layer was uniformly brushed on the surface, and sintered at 1080 o C for 1 h under hydrogen-argon gas mixture.
图7所示为430L/NiO-YSZ/YSZ/LSCF非对称微管式固体氧化物燃料电池的结构,内层的430L不锈钢微管支撑层的厚度为0.4mm,外层的NiO-YSZ阳极功能层厚度为10um,YSZ电解质层厚度为10um,LSCF阴极功能层为50um,电池管壁断面结构图如图7所示。Figure 7 shows the structure of a 430L/NiO-YSZ/YSZ/LSCF asymmetric microtube solid oxide fuel cell. The thickness of the 430L stainless steel microtube support layer in the inner layer is 0.4mm, and the NiO-YSZ anode function in the outer layer The thickness of the layer is 10um, the thickness of the YSZ electrolyte layer is 10um, and the thickness of the LSCF cathode functional layer is 50um. The cross-sectional structure of the battery tube wall is shown in Figure 7.
实施例2:Example 2:
制备ITM/NiO-YSZ/YSZ/LSCF微管式固体氧化物燃料电池。Preparation of ITM/NiO-YSZ/YSZ/LSCF microtubular solid oxide fuel cells.
按照如下步骤:制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料;制备梯级多孔结构的不锈钢金属非对称微管;NiO基阳极催化剂沉积;YSZ电解质层沉积与烧结;LSCF阴极层沉积与烧结。According to the following steps: preparation of metal polymer slurry, electrolyte dip coating slurry, anode dip coating slurry; preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure; NiO-based anode catalyst deposition; YSZ electrolyte layer deposition and sintering; LSCF cathode layer deposition and sintering.
(1)制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料(1) Preparation of metal-polymer slurry, electrolyte dip coating slurry, and anode dip coating slurry
金属聚合物浆料中,有机聚合物是聚醚矾(PESf),溶剂是N-甲基毗咯烷酮(NMP),添加剂是聚乙烯砒咯烷酮(PVP);采用ITM不锈钢金属粉(500目)作为支撑体原材料;各组分的重量百分比为:PESf 6.2%、NMP 27.6%、PVP 1.3%、ITM不锈钢金属粉61.8%、酒精3.1%;阳极浸涂浆料成分为13.5%NiO、1.5%YSZ、72%乙醇、11%松油醇、2%乙基纤维素,其中的NiO作为阳极功能层;电解质浸涂浆料成分为15%YSZ,72%乙醇、11%松油醇、2%乙基纤维素,其中的YSZ作为电解质。In the metal polymer slurry, the organic polymer is polyether vanadium (PESf), the solvent is N-methylpyrrolidone (NMP), the additive is polyvinylpyrrolidone (PVP); ITM stainless steel metal powder ( 500 mesh) as the raw material of the support body; the weight percentage of each component is: PESf 6.2%, NMP 27.6%, PVP 1.3%, ITM stainless steel metal powder 61.8%, alcohol 3.1%; the composition of the anode dip coating slurry is 13.5%NiO, 1.5% YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose, of which NiO is used as the anode functional layer; the composition of the electrolyte dip coating slurry is 15% YSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose with YSZ as electrolyte.
按照以上的重量百分比,首先称取溶剂NMP置于球磨罐中,加入添加剂PVP使其溶解,然后加入ITM不锈钢金属粉,球磨24 h后,加入有机聚合物PESf,继续搅拌24 h,使其完全溶解,得到金属聚合物浆料。阳极浸涂浆料和电解质浸涂浆料方法相同,均为:按照重量百分比称取原料置于烧杯中,超声5 h。According to the above weight percentage, first weigh the solvent NMP and place it in a ball milling tank, add the additive PVP to dissolve it, then add ITM stainless steel metal powder, after ball milling for 24 h, add the organic polymer PESf, and continue stirring for 24 h to make it completely Dissolved to obtain a metal polymer slurry. The method of anode dip coating slurry and electrolyte dip coating slurry is the same: Weigh the raw materials according to the weight percentage, place them in a beaker, and ultrasonicate for 5 h.
(2)制备梯级多孔结构的不锈钢金属非对称微管(2) Preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure
将上述制备得到的金属聚合物浆料,采用图3所示的装置,进行真空脱气20 min后移至原料罐中,以去离子水为芯液,自来水为外凝固浴,通过同心环孔喷丝头将金属聚合物浆料纺入外凝固浴中,并在外凝固浴中浸泡24 h,然后取出晾干固化后得到具有梯度孔结构的ITM不锈钢双层中空纤维前驱体。将固化成型后的ITM不锈钢双层中空纤维前驱体拉直、晾干,在氢氩混合气下1200 oC高温下烧结2 h,得到多孔不锈钢非对称微管,同心环孔喷丝头结构如图6所示。The metal polymer slurry prepared above was vacuum-degassed for 20 min using the device shown in Figure 3, and then moved to the raw material tank, with deionized water as the core liquid and tap water as the outer coagulation bath, passing through the concentric ring holes The spinneret spun the metal-polymer slurry into the external coagulation bath, soaked in the external coagulation bath for 24 h, and then took it out to dry and solidify to obtain the ITM stainless steel double-layer hollow fiber precursor with gradient pore structure. The cured ITM stainless steel double-layer hollow fiber precursor was straightened, dried, and sintered at a high temperature of 1200 o C for 2 h under hydrogen-argon gas mixture to obtain porous stainless steel asymmetric microtubes. The spinneret structure of concentric ring holes was as follows: Figure 6 shows.
(3)制备阳极、电解质功能层(3) Preparation of anode and electrolyte functional layers
分别将(1)中的电解质浸涂浆料和阳极浸涂浆料转移到小烧杯中,用石蜡将多孔不锈钢非对称微管一端封住,以0.5cm/s的速度浸入阳极浸涂浆料中,静置10~15s后,以同样的速度提出浆料,吊挂在铁架上室温晾干,反复浸涂5次。然后以同样的方法浸涂电解质,室温晾干后在氢氩混合气下1400 oC高温下烧结2 h,得到具有阳极功能层和电解质层的金属支撑型微管式固体氧化物燃料电池。Transfer the electrolyte dip coating slurry and anode dip coating slurry in (1) to a small beaker, seal one end of the porous stainless steel asymmetric microtube with paraffin, and dip into the anode dip coating slurry at a speed of 0.5cm/s After standing still for 10~15s, take out the slurry at the same speed, hang it on the iron frame to dry at room temperature, and repeat the dip coating 5 times. Then the electrolyte was dip-coated in the same way, dried at room temperature, and then sintered at 1400 o C for 2 h under a hydrogen-argon mixture to obtain a metal-supported microtubular solid oxide fuel cell with an anode functional layer and an electrolyte layer.
(4)制备LSCF阴极功能层(4) Preparation of LSCF cathode functional layer
以松油醇为溶剂,配置60%LSCF,40%GDC的浆料,再向其中加入溶液质量10%的淀粉,12%的乙基纤维素,超声5小时,使用细毛刷在不锈钢微管电解质表面均匀刷涂一层LSCF阴极层,在氢氩混合气下1080 oC烧结1小时。Use terpineol as a solvent, configure a slurry of 60% LSCF and 40% GDC, add 10% starch and 12% ethyl cellulose to it, ultrasonicate for 5 hours, and use a fine-bristled brush on the stainless steel microtube electrolyte A layer of LSCF cathode layer was uniformly brushed on the surface, and sintered at 1080 o C for 1 hour under hydrogen-argon gas mixture.
实施例3:Example 3:
制备Ni-Fe/NiO-SSZ/SSZ/SFM微管式固体氧化物燃料电池。Preparation of Ni-Fe/NiO-SSZ/SSZ/SFM microtubular solid oxide fuel cells.
按照如下步骤:制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料;制备梯级多孔结构的不锈钢金属非对称微管;NiO基阳极催化剂沉积;SSZ电解质层沉积与烧结;SFM阴极层沉积与烧结。According to the following steps: preparation of metal polymer slurry, electrolyte dip coating slurry, anode dip coating slurry; preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure; NiO-based anode catalyst deposition; SSZ electrolyte layer deposition and sintering; SFM cathode layer deposition and sintering.
(1)制备金属聚合物浆料,电解质浸涂浆料,阳极浸涂浆料(1) Preparation of metal-polymer slurry, electrolyte dip coating slurry, and anode dip coating slurry
金属聚合物浆料中,有机聚合物是聚醚矾(PESf),溶剂是N-甲基毗咯烷酮(NMP),添加剂是聚乙烯砒咯烷酮(PVP);采用Ni-Fe不锈钢金属粉(500目)作为支撑体原材料;In the metal-polymer slurry, the organic polymer is polyethersulfone (PESf), the solvent is N-methylpyrrolidone (NMP), the additive is polyvinylpyrrolidone (PVP); Ni-Fe stainless steel metal is used powder (500 mesh) as the support material;
各组分的重量百分比为:PESf 6.2%、NMP 27.6%、PVP 1.3%、Ni-Fe不锈钢金属粉61.8%、酒精3.1%;阳极浸涂浆料成分为13.5%NiO、1.5%SSZ、72%乙醇、11%松油醇、2%乙基纤维素,其中的NiO作为阳极功能层;电解质浸涂浆料成分为15%SSZ,72%乙醇、11%松油醇、2%乙基纤维素,其中的YSZ作为电解质。The weight percentage of each component is: PESf 6.2%, NMP 27.6%, PVP 1.3%, Ni-Fe stainless steel metal powder 61.8%, alcohol 3.1%; the composition of the anode dip coating slurry is 13.5%NiO, 1.5%SSZ, 72% Ethanol, 11% terpineol, 2% ethyl cellulose, of which NiO is used as the anode functional layer; electrolyte dip coating slurry composition is 15% SSZ, 72% ethanol, 11% terpineol, 2% ethyl cellulose , where YSZ acts as the electrolyte.
按照以上的重量百分比,首先称取溶剂NMP置于球磨罐中,加入添加剂PVP使其溶解,然后加入Ni-Fe不锈钢金属粉,球磨24 h后,加入有机聚合物PESf,继续搅拌24 h,使其完全溶解,得到金属聚合物浆料。阳极浸涂浆料和电解质浸涂浆料方法相同,均为:按照重量百分比称取原料置于烧杯中,超声5 h。According to the above weight percentage, first weigh the solvent NMP and place it in a ball mill tank, add the additive PVP to dissolve it, then add Ni-Fe stainless steel metal powder, after ball milling for 24 h, add the organic polymer PESf, and continue stirring for 24 h to make It dissolves completely, yielding a metal-polymer slurry. The method of anode dip coating slurry and electrolyte dip coating slurry is the same: Weigh the raw materials according to the weight percentage, place them in a beaker, and ultrasonicate for 5 h.
(2)制备梯级多孔结构的不锈钢金属非对称微管(2) Preparation of stainless steel metal asymmetric microtubes with hierarchical porous structure
将上述制备得到的金属聚合物浆料,采用图3所示的装置,进行真空脱气20 min后移至原料罐中,以去离子水为芯液,自来水为外凝固浴,通过同心环孔喷丝头将金属聚合物浆料纺入外凝固浴中,并在外凝固浴中浸泡24 h,然后取出晾干固化后得到具有梯度孔结构的Ni-Fe不锈钢双层中空微管前驱体。将固化成型后的Ni-Fe不锈钢双层中空纤维前驱体拉直、晾干,在氢氩混合气下1200 oC高温下烧结2 h,得到多孔不锈钢非对称微管,同心环孔的喷丝头结构如图3所示。The metal polymer slurry prepared above was vacuum-degassed for 20 min using the device shown in Figure 3, and then moved to the raw material tank, with deionized water as the core liquid and tap water as the outer coagulation bath, passing through the concentric ring holes The spinneret spun the metal-polymer slurry into the external coagulation bath, soaked in the external coagulation bath for 24 h, and then took it out to dry and solidify to obtain a Ni-Fe stainless steel double-layer hollow microtube precursor with a gradient pore structure. The cured Ni-Fe stainless steel double-layer hollow fiber precursor was straightened, dried, and sintered at a high temperature of 1200 o C for 2 h under a hydrogen-argon mixture to obtain a porous stainless steel asymmetric microtube with concentric ring holes. The header structure is shown in Figure 3.
(3)制备阳极、电解质功能层(3) Preparation of anode and electrolyte functional layers
分别将(1)中的电解质浸涂浆料和阳极浸涂浆料转移到小烧杯中,用石蜡将多孔不锈钢非对称微管一端封住,以0.5cm/s的速度浸入阳极浸涂浆料中,静置10~15s后,以同样的速度提出浆料,吊挂在铁架上室温晾干,反复浸涂5次。然后以同样的方法浸涂电解质,室温晾干后在氢氩混合气下1400 oC高温下烧结2 h,得到具有阳极功能层和电解质层的金属支撑型微管式固体氧化物燃料电池。Transfer the electrolyte dip coating slurry and anode dip coating slurry in (1) to a small beaker, seal one end of the porous stainless steel asymmetric microtube with paraffin, and dip into the anode dip coating slurry at a speed of 0.5cm/s After standing still for 10~15s, take out the slurry at the same speed, hang it on the iron frame to dry at room temperature, and repeat the dip coating 5 times. Then the electrolyte was dip-coated in the same way, dried at room temperature, and then sintered at 1400 o C for 2 h under a hydrogen-argon mixture to obtain a metal-supported microtubular solid oxide fuel cell with an anode functional layer and an electrolyte layer.
(4)制备LSCF阴极功能层(4) Preparation of LSCF cathode functional layer
以松油醇为溶剂,配置60%LSCF,40%GDC的浆料,再向其中加入溶液质量10%的淀粉,12%的乙基纤维素,超声5小时,使用细毛刷在微管电解质表面均匀刷涂一层LSCF阴极层,在氢氩混合气下1080 oC烧结1小时。Use terpineol as a solvent, configure a slurry of 60% LSCF and 40% GDC, add 10% starch and 12% ethyl cellulose to it, ultrasonicate for 5 hours, and use a fine-bristled brush on the surface of the microtube electrolyte Brush a layer of LSCF cathode layer evenly, and sinter at 1080 o C for 1 hour under hydrogen-argon mixed gas.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810421076.XA CN108520967A (en) | 2018-05-04 | 2018-05-04 | A porous metal-supported microtubular solid oxide fuel cell and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810421076.XA CN108520967A (en) | 2018-05-04 | 2018-05-04 | A porous metal-supported microtubular solid oxide fuel cell and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108520967A true CN108520967A (en) | 2018-09-11 |
Family
ID=63430390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810421076.XA Pending CN108520967A (en) | 2018-05-04 | 2018-05-04 | A porous metal-supported microtubular solid oxide fuel cell and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108520967A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109378488A (en) * | 2018-10-25 | 2019-02-22 | 深圳市致远动力科技有限公司 | A kind of tubular solid oxide fuel cells and preparation method thereof |
CN109921050A (en) * | 2019-03-27 | 2019-06-21 | 张克栋 | Support type micro-tubular solid oxide fuel cell and preparation method thereof |
CN111403764A (en) * | 2020-03-31 | 2020-07-10 | 西安交通大学 | Metal support type micro-tube solid oxide fuel cell stack structure |
CN111403763A (en) * | 2020-03-31 | 2020-07-10 | 西安交通大学 | Metal thin-walled tube-supported microtube solid oxide fuel cells and cell stack structures |
CN113161566A (en) * | 2021-03-19 | 2021-07-23 | 东睦新材料集团股份有限公司 | Preparation method of metal support plate for fuel cell |
CN113381041A (en) * | 2021-06-29 | 2021-09-10 | 清华四川能源互联网研究院 | Electrode supporting type solid oxide fuel cell and preparation method thereof |
CN113745617A (en) * | 2021-09-10 | 2021-12-03 | 广东石油化工学院 | Novel double-sheet integrated SOFC cell unit, manufacturing process and cell stack |
CN113871674A (en) * | 2021-10-14 | 2021-12-31 | 北京思伟特新能源科技有限公司 | CGO electrolyte-based MS-SOEC structure and preparation method thereof |
CN114204084A (en) * | 2021-11-26 | 2022-03-18 | 大连理工大学 | Method for constructing hollow fiber type proton exchange membrane fuel cell by electrospinning |
CN114678574A (en) * | 2022-04-15 | 2022-06-28 | 深圳通微新能源科技有限公司 | Spraying method for forming solid oxide fuel cell electrolyte coating by phase transfer method |
WO2022193525A1 (en) * | 2021-03-19 | 2022-09-22 | 东睦新材料集团股份有限公司 | Method for manufacturing metal support plate for fuel cell |
CN115810769A (en) * | 2022-09-27 | 2023-03-17 | 合肥工业大学 | Four-channel microtube type solid oxide fuel cell and preparation method thereof |
CN115959926A (en) * | 2022-12-30 | 2023-04-14 | 中南大学 | A kind of pore-forming method of phase-inversion pore-forming agent and fly ash ceramic flat membrane support body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1960047A (en) * | 2006-11-23 | 2007-05-09 | 上海交通大学 | Preparation method of low temperature solid oxide fuel cell supported by porous metal |
US20110008716A1 (en) * | 2009-07-09 | 2011-01-13 | Jae Hyuk Jang | Fuel cell including support having mesh structure |
CN102306817A (en) * | 2011-08-09 | 2012-01-04 | 华南理工大学 | Method for manufacturing U-shaped hollow fiber solid oxide fuel cell |
CN104157893A (en) * | 2013-05-13 | 2014-11-19 | 中国科学院大连化学物理研究所 | Low temperature solid oxide fuel cell supported by porous metal and preparation method thereof |
CN106207221A (en) * | 2016-08-11 | 2016-12-07 | 山西大学 | A kind of method preparing tubular solid oxide fuel cell |
-
2018
- 2018-05-04 CN CN201810421076.XA patent/CN108520967A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1960047A (en) * | 2006-11-23 | 2007-05-09 | 上海交通大学 | Preparation method of low temperature solid oxide fuel cell supported by porous metal |
US20110008716A1 (en) * | 2009-07-09 | 2011-01-13 | Jae Hyuk Jang | Fuel cell including support having mesh structure |
CN102306817A (en) * | 2011-08-09 | 2012-01-04 | 华南理工大学 | Method for manufacturing U-shaped hollow fiber solid oxide fuel cell |
CN104157893A (en) * | 2013-05-13 | 2014-11-19 | 中国科学院大连化学物理研究所 | Low temperature solid oxide fuel cell supported by porous metal and preparation method thereof |
CN106207221A (en) * | 2016-08-11 | 2016-12-07 | 山西大学 | A kind of method preparing tubular solid oxide fuel cell |
Non-Patent Citations (1)
Title |
---|
孙承志: "金属支撑型固体氧化物燃料电池制备及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109378488A (en) * | 2018-10-25 | 2019-02-22 | 深圳市致远动力科技有限公司 | A kind of tubular solid oxide fuel cells and preparation method thereof |
CN109921050A (en) * | 2019-03-27 | 2019-06-21 | 张克栋 | Support type micro-tubular solid oxide fuel cell and preparation method thereof |
CN109921050B (en) * | 2019-03-27 | 2023-10-13 | 苏州纳格光电科技有限公司 | Support type microtubule type solid oxide fuel cell and its preparation method |
CN111403764A (en) * | 2020-03-31 | 2020-07-10 | 西安交通大学 | Metal support type micro-tube solid oxide fuel cell stack structure |
CN111403763A (en) * | 2020-03-31 | 2020-07-10 | 西安交通大学 | Metal thin-walled tube-supported microtube solid oxide fuel cells and cell stack structures |
CN111403764B (en) * | 2020-03-31 | 2021-05-18 | 西安交通大学 | A metal-supported microtube solid oxide fuel cell stack structure |
WO2022193525A1 (en) * | 2021-03-19 | 2022-09-22 | 东睦新材料集团股份有限公司 | Method for manufacturing metal support plate for fuel cell |
CN113161566A (en) * | 2021-03-19 | 2021-07-23 | 东睦新材料集团股份有限公司 | Preparation method of metal support plate for fuel cell |
CN113381041A (en) * | 2021-06-29 | 2021-09-10 | 清华四川能源互联网研究院 | Electrode supporting type solid oxide fuel cell and preparation method thereof |
CN113745617A (en) * | 2021-09-10 | 2021-12-03 | 广东石油化工学院 | Novel double-sheet integrated SOFC cell unit, manufacturing process and cell stack |
CN113871674A (en) * | 2021-10-14 | 2021-12-31 | 北京思伟特新能源科技有限公司 | CGO electrolyte-based MS-SOEC structure and preparation method thereof |
CN114204084A (en) * | 2021-11-26 | 2022-03-18 | 大连理工大学 | Method for constructing hollow fiber type proton exchange membrane fuel cell by electrospinning |
CN114204084B (en) * | 2021-11-26 | 2023-12-22 | 大连理工大学 | Method for constructing hollow fiber type proton exchange membrane fuel cell by electrospinning |
CN114678574A (en) * | 2022-04-15 | 2022-06-28 | 深圳通微新能源科技有限公司 | Spraying method for forming solid oxide fuel cell electrolyte coating by phase transfer method |
CN114678574B (en) * | 2022-04-15 | 2024-08-16 | 深圳通微新能源科技有限公司 | Spray coating method for forming electrolyte coating of solid oxide fuel cell by phase transfer method |
CN115810769A (en) * | 2022-09-27 | 2023-03-17 | 合肥工业大学 | Four-channel microtube type solid oxide fuel cell and preparation method thereof |
CN115959926A (en) * | 2022-12-30 | 2023-04-14 | 中南大学 | A kind of pore-forming method of phase-inversion pore-forming agent and fly ash ceramic flat membrane support body |
CN115959926B (en) * | 2022-12-30 | 2023-10-24 | 中南大学 | Phase-inversion pore-forming agent and pore-forming method of fly ash ceramic flat membrane support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108520967A (en) | A porous metal-supported microtubular solid oxide fuel cell and its preparation method | |
CN101577340B (en) | Method for preparing cathode-supported tubular solid oxide fuel cells | |
CN100399611C (en) | Preparation method of solid oxide fuel cell cathode-loaded half-cell | |
TW201017968A (en) | Solid oxide fuel cell and manufacture method thereof | |
CN102088089B (en) | Preparation method and test device of fuel cell composite electrode | |
CN100589271C (en) | A kind of preparation method of hollow fiber type solid oxide fuel cell | |
CN102881930A (en) | Method for preparing flat-plate type metal-support solid oxide fuel cell | |
CN102011140A (en) | Electrolyte/oxygen electrode interface microstructure modification method for solid oxide electrolytic cell | |
CN101306954A (en) | Preparation method of porous ceramic support body | |
CN107195938A (en) | A kind of simple SOFC preparation method | |
CN102332592A (en) | Preparation method of asymmetric hollow fiber solid oxide fuel cell | |
CN102185148A (en) | NiO-based SOFC (Solid Oxide Fuel Cell) composite anode film material with nano-sheet microcellular structure and preparation method thereof | |
CN103280584B (en) | Method for preparing positive pole of composite metal-ceramic nanofiber SOFC (Solid Oxide Fuel Cell) by electrospinning method | |
Ding et al. | Slip casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells | |
CN115360398A (en) | A liquid flow battery stack structure and preparation method of electrode material | |
CN112853530B (en) | Hollow fiber pore-forming agent and application thereof in fuel cell | |
CN102306817A (en) | Method for manufacturing U-shaped hollow fiber solid oxide fuel cell | |
CN113948732A (en) | Gradient structure and pore anode, preparation method and battery | |
Yang et al. | Effects of slurry composition on the electrolyte support structure and performance of electrolyte-supported planar solid oxide fuel cells | |
CN101207218A (en) | A kind of preparation method of tubular solid oxide fuel cell | |
CN112250437A (en) | A kind of solid oxide electrolysis cell supported by oxygen electrode and preparation method thereof | |
CN110144599A (en) | Membrane electrode and its preparation method and application is precipitated in a kind of efficient oxygen | |
CN109378488A (en) | A kind of tubular solid oxide fuel cells and preparation method thereof | |
CN107305953B (en) | A solid oxide fuel cell composite substrate and its preparation process | |
CN115478287A (en) | A powder mesh composite gas diffusion layer and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180911 |