[go: up one dir, main page]

CN108474029B - 通过扩展显微法的蛋白质和核酸的纳米级成像 - Google Patents

通过扩展显微法的蛋白质和核酸的纳米级成像 Download PDF

Info

Publication number
CN108474029B
CN108474029B CN201680058184.4A CN201680058184A CN108474029B CN 108474029 B CN108474029 B CN 108474029B CN 201680058184 A CN201680058184 A CN 201680058184A CN 108474029 B CN108474029 B CN 108474029B
Authority
CN
China
Prior art keywords
nucleic acid
target nucleic
biological sample
rna
oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680058184.4A
Other languages
English (en)
Other versions
CN108474029A (zh
Inventor
A·瓦西
F·陈
E·S·博伊登
S·阿龙
E·道格哈尔西
G·丘奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College Board
Massachusetts Institute of Technology
Original Assignee
Harvard College Board
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College Board, Massachusetts Institute of Technology filed Critical Harvard College Board
Publication of CN108474029A publication Critical patent/CN108474029A/zh
Application granted granted Critical
Publication of CN108474029B publication Critical patent/CN108474029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6841In situ hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/364Embedding or analogous mounting of samples using resins, epoxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明使得能够在已经物理扩展的生物样本中进行核酸的原位基因组学和转录组学评估。本发明利用扩展显微(ExM)技术以便在本文中称为“扩展荧光原位杂交”(ExFISH)的新过程中提供用于核酸的原位基因组学和转录组学评估的新方法。

Description

通过扩展显微法的蛋白质和核酸的纳米级成像
相关申请
本申请要求2015年8月7日提交的美国临时申请序列号 62/202,421的权益,其内容以引用的方式整体并入本文。
政府资助
本发明是通过由NIH、Hertz Foundation、ODGE Lemelson& Viterbi授予的5-DP1-N S087724,由NIH和NSF授予的5-DP1-N S087724的政府支持来作出的。政府对本发明拥有某些权利。
发明背景
细胞、组织和器官中的RNA的纳米级分辨率成像对于理解局部 RNA加工、确定RNA的结构作用以及限定细胞类型和状态是关键的。然而,以精确地确定与细胞区室或蛋白质的相关性所需要的纳米级精确度来对完整组织中的RNA成像仍然是困难的,这些细胞区室或蛋白质对于RNA功能来说是重要的。
扩展显微法(ExM)可以以~70nm横向分辨率来对厚保存标本成像。使用ExM,通过在成像之前物理扩展生物样本来规避光学衍射极限,从而使亚衍射限制结构达到可通过常规衍射限制显微法来观察的尺寸范围。ExM可以以衍射限制显微法的体素率但是以超分辨率显微法的体素尺寸来对生物标本成像。扩展样品是透明的,并且与水的折射率匹配,因为扩展材料是>99%的水。原始ExM协议通过使用可凝胶锚定的荧光团标记感兴趣的生物分子来运作。然后,在样品中合成可溶胀的聚电解质凝胶,这样它将标记物并入。最后,用非特异性蛋白酶处理样品以使其机械特性均匀,接着在水中透析以介导聚合物-样本复合物的均匀物理扩展。除了可凝胶锚定的标记物以外,ExM所需的所有化学品都可以购买,这种标记物需要定制合成并且对研究人员采用所述方法造成了障碍。ExM协议的另一个缺点是遗传编码的荧光团不能在没有抗体标记的情况下成像。另外,ExM不能在凝胶中保留天然蛋白质,并且使用不能广泛获得的定制试剂。因此,需要利用ExM来设计将样品内的核酸和蛋白质保持在原位并且加以成像的新方法。
发明内容
合成小分子接头以使得RNA共价地连接到ExM凝胶。这种被称为ExFISH的方法能够实现RNA荧光原位杂交(FISH),其能够以单分子精确度来原位鉴定转录物。在RNA FISH中,与mRNA的靶链互补的一组荧光探针得以递送2,3。单分子FISH(smFISH)可使用通过寡核苷酸探针来递送到单一mRNA的多个荧光团来进行4。在完整的组织中,扩增策略,诸如杂交链式反应(HCR)5,6和分支DNA扩增7,8,可将大量的荧光团靶向输送到单一mRNA。ExFISH可支持细胞培养物中的smFISH和完整小鼠脑组织中的HCR扩增FISH。ExFISH可揭示长链非编码RNA(lncRNA)的纳米级结构和将神经mRNA定位到单个树突棘上。ExFISH将有助于涉及RNA的结构和位置与生物功能的关系的各种问题。
附图简述
从如在附图中示出的本发明的优选实施方案的以下更加具体的描述中将明白本发明的前述和其他目的、特征以及优点,在附图中相似元件符号指代不同视图中的相同部分。附图未必按比例绘制,而是将重点放在示出本发明的原理上。
专利或申请文件含有至少一幅彩色附图。在提出请求并支付必要费用后,本事务所将提供具有彩色附图的本专利或专利申请公布的副本。
图1A-1I:ExFISH化学的设计和验证。(1A)使丙烯酰基-X SE(左上)与
Figure BDA0001618899660000031
胺(右上)通过NHS-酯化学反应以形成LabelX(中),其通过使RNA的碱基(例如,鸟嘌呤的N7位置)烷基化来使得RNA 可凝胶锚定(下)。(1B)ExFISH的工作流程:使用LabelX来处理生物样本(左),这使RNA能够锚定到ExM凝胶(中)。在凝胶化、消化和扩展后,锚定的RNA可通过杂交被探测(右)。(1C)扩展前ACTB的smFISH图像。插图显示放大的区域,突出显示核中的转录位点。(1D) 如(1C)中,使用ExFISH。(1E)针对七种不同的转录物,扩展前相比于扩展后的smFISH计数(n=59细胞;每个符号代表一种细胞)。(1F) 在扩展前HEK293细胞的核中XIST长链非编码RNA(lncRNA)的 smFISH图像(在1F-1H中,白线表示核被膜)。(1G)如(1F)中,使用 ExFISH。(1H)HeLa细胞的核中NEAT1 lncRNA的扩展前(上)和使用ExFISH(下)的smFISH图像。品红和绿色表示结合到NEAT1的5' (1-3756nts)的不同部分的探针组(参见方法)。(1I)插图显示smFISH(左) 和ExFISH(右)的NEAT1簇((1H)的加框区域)。比例尺(白色,以扩展前单位;蓝色比例尺除以记录的扩展系数))):(1C,1D)10μm(扩展系数,3.3×),插图2μm;(1F,1G)2μm(3.3×),Z尺度以扩展前单位由颜色编码表示;(1H)2μm(3.3×);(1I)200nm(3.3×)。
图2A-2E:连续杂交和多重ExFISH。(2A)靶向GAPDH的 ExFISH的广角荧光图像。(2B)(2A)的加框区域,显示在去除探针后 5次重复染色(参见方法);右下图,5幅图像(各自具有不同颜色,红色、绿色、蓝色、品红色、黄色)的重叠显示共定位。(2C)针对每一轮的ExFISH RNA计数,相对于第1轮计数来归一化;绘制的是均值 +标准误差;n=(2A)的3个区域。(2D)(2A)的五轮染色中ExFISH的信噪比(SNR),以平均斑点亮度除以背景的标准偏差计算。(2E)复合图像显示在培养的HeLa细胞中针对6个RNA靶标的连续递送的探针的ExFISH(图9中的原始图像);颜色如下:NEAT1,蓝色;EEF2,橙色;GAPDH,黄色;ACTB,紫色;UBC,绿色;USF2,淡蓝色。比例尺(扩展的坐标):(2A)20μm;(2B)10μm;(2E)20μm。
图3A-3K:哺乳动物脑中RNA的纳米级成像。(3A)Thy1-YFP小鼠脑的广角荧光图像。(3B)(3A)的扩展后广角图像。(3C)显示(3B) 的样品中YFP mRNA的HCR-ExFISH的广角荧光。(3D)如(3C)中,但针对Gad1 mRNA。(3E)(3B-3D)的复合,突出显示Gad1对 Thy1-YFP mRNA的分布。(3F)显示单一RNA斑点的(e)的小鼠海马组织的共焦图像。插图,加框区域的一个平面(红色,YFP蛋白;青色,YFP mRNA;品红,Gad1 mRNA)。在Thy1-YFP小鼠组织(绿色, YFP蛋白质)中使用错义Dlg4探针的HCR-ExFISH的(3G(i))共焦图像和(3G(ii))已处理图像。原始图像(3G(i))使用两种颜色的交替探针 (红色,Dlg4错义偶数;蓝色,Dlg4错义奇数)。已处理的图像(3G(ii)) 显示零共定位的点(品红)。(3H,3I)如(3G(i)和3G(ii))中一样,但针对靶向Thy1-YFP小鼠脑中的Actb的HCR-ExFISH(在(3H(i))中,绿色, YFP蛋白;红色,Actb偶数,和蓝色,Actb奇数;在(3H(ii))中,品红中的共定位点)。(3I)显示重叠在YFP(绿色)上的共定位的Dlg4斑点(品红)的海马组织的共焦图像。(3J(i)、3J(ii))具有定位到棘的Dlg4mRNA的树突的两个代表性示例(箭头)。(3K(i)、3K(ii)),如(3J)中,但其中Camk2a mRNA的HCR-ExFISH显示树突棘和树状突中的转录物。比例尺(白色,以扩展前单位;蓝色比例尺除以记录的扩展系数): (3A)500μm;(3B-3E)500μm(扩展系数2.9×);(3F)50μm(2.9×),插图10μm;(3G-3I)10μm(3×);(3J,3K)2μm(3×)。(3E、3I)最大强度投影(MIP)27μm厚(扩展前单位);(3G、3H、3J、3K)MIP~1.6μm 厚。
图4A-4B:(4A)针对在没有LabelX处理的情况下扩展的HeLa 细胞上的GAPDH的单分子FISH(smFISH)的落射荧光图像。(4B)针对使用LabelX处理的扩展的HeLa细胞上的GAPDH进行的smFISH 的落射荧光图像。图像是3-D堆叠的最大强度投影。使用DAPI染色的细胞核(显示为蓝色)。比例尺:20μm(扩展后单位)。
图5A-5E:为了评估LabelX对荧光原位杂交的影响,使用smFISH 探针组将固定的HeLa细胞染色,然后进行DNA酶I处理以去除染色。然后将细胞用LabelX处理,并且用相同的smFISH探针组再次染色。(5A)在LabelX处理之前的UBC染色和(5B)在探针去除和 LabelX处理之后的UBC染色。(5C)在LabelX处理前进行EEF2染色。(5D)探针去除和LabelX处理后的EEF2染色。(5E)在LabelX 之前和在去除探针和应用LabelX之后针对单个细胞计数的smFISH 点的比较。使用自动点计数算法(每栏n=7个细胞)量化给定细胞中检测到的RNA分子的数量。绘制的是均值+标准误差;在LabelX之前相比于之后的点计数没有显著差异(对于UBC,之前相比于之后p> 0.5,针对EEF2之前相比于之后p>0.5;t检验,未配对,双尾)。5A-5D 中的图像是3-D堆叠的最大强度投影;比例尺:10μm(扩展前单位)。
图6A-6G:在具有LabelX处理的ExM之前和之后,通过HeLa 细胞中的单分子RNA荧光原位杂交(FISH)检测到在丰度上横跨3个数量级的不同RNA种类(图1E中示出)。(6A)针对单细胞,扩展后检测到的FISH点与扩展前检测的点的比例。显示代表性ExFISH之前相比于之后的图像:(6B,6C)TFRC;(6D,6E)GAPDH;(6F, 6G)ACTB。比例尺,6B、6D、6F中10μm(扩展前单位);6C、6E、 6G,扩展物理尺寸21μm(PBS中成像)。
图7A-7E:(7A)为了使核(上图)和针对ACTB的smFISH探针(下图)可视化,用DAPI染色的培养的HeLa细胞的扩展前广角图像。(7B) 与(a)中相同细胞的扩展后广角图像。(7C)用DAPI染色(右图)的 LabelX处理的Thy1-YFP脑切片(左图,YFP蛋白)的扩展前广角图像(MIP,4μm z-深度)。(7D)与(c)相同区域的扩展后图像(MIP,12μm)。 (7E)各个细胞的细胞体的扩展系数与它们各自核的扩展系数的比率。smFISH染色用于描画培养细胞的细胞体的边界,而内源YFP蛋白用于标定Thy1-YFP脑切片中神经元的细胞体。绘制的是均值±标准误差。培养的细胞和脑切片两者的比彼此没有显著偏离(两者均为 p>0.05,1-样品t检验;n=6,培养的HeLa细胞;n=7,1个脑切片中的细胞)。比例尺,10μm。
图8A-8D:(8A)在扩展前单个HeLa细胞中TOP2A的代表性 FISH图像(细胞厚度的MIP)。(8B)用相同的光学参数拍摄的(8A)中的细胞的ExFISH图像。(8C)(8A)和(8B)的合并图像(红色和绿色分别用于扩展之前和之后);扩展之前(L,红线)和之后(L',绿线;注意这些线几乎完全重叠)的成对mRNA点之间的距离测量结果用于量化扩展各向同性。(8D)针对所有成对mRNA点,相对于测量长度(L)来绘制测量误差的绝对值(即|L-L’|)的均值(均值±标准偏差,N=4个样品, 6.8x 105个测量值)。比例尺:白色,10μm扩展前单位;蓝色,白色比例尺除以扩展系数。橙线表示所用显微镜的衍射极限(详见方法)。
图9A-9B:(9A)应用于图2a的细胞的GAPDH的五个连续的广角荧光图像(从上到下,然后从左到右)。(9B)显示针对培养的HeLa 细胞中6个RNA靶(从右到左,然后从上到下:NEAT1、EEF2、ACTB、 UBC、GAPDH以及USF2)的连续递送的探针的ExFISH的广角荧光图像(图2E中显示的复合的原始图像)。比例尺:在扩展单元中20μm。
图10:带有HCR引发剂的FISH探针杂交到靶mRNA。在扩增期间,带有荧光团的亚稳态DNA发夹装配到聚合物链中的引发剂上,从而扩增FISH探针杂交事件下游的信号。
图11A-11C:(11A)用针对YFP(红色)和Gad1(品红)的探针染色,然后进行HCR扩增的LabelX处理的Thy1-YFP脑切片(YFP蛋白,绿色)的广角图像。使用B1扩增器组扩增针对YFP转录物的探针(参见方法),而用B2扩增器组(MIP,59μm)扩增针对Gad1转录物的探针。(11B)在没有添加探针的情况下,用与(a)相同的HCR扩增器(即 B1(红色)和B2(品红))处理的LabelX处理的Thy1-YFP脑切片(YFP蛋白,绿色)的广角图像(MIP,50μm)。(11C)每个体积的扩增样品所检测到的HCR点。对使用或未使用FISH探针处理然后HCR扩增的样品进行分析。使用自动点计数算法来计数HCR点。使用内源YFP 蛋白来描绘用于分析的区域。绘制的是均值±标准误差。在探针存在下,HCR点计数显著不同于没有探针(对于B1和B2扩增器组两者, p<0.05,Welch t-检验;各自n=4个视野)。比例尺:50μm。
图12A-12C:(12A)使用靶向YFP(红色)和Gad1(蓝色)mRNA的 HCR-ExFISH通过光片显微镜获得的Thy1-YFP(绿色)脑组织的体积绘制图。(12B)体积小部分的最大强度投影(Z中~8μm),显示通过光片成像的成像扩展样本的高成像分辨率和单分子定位(比例尺:10 μm,在扩展前单位中,扩展系数,3×)。(12C)(12A)中的体积绘制图的放大(比例尺:20μm,在扩展前单位中,3×)。
图13A-13K:(13A)示意图显示相同靶标的两种颜色扩增。感兴趣的转录物通过针对序列的交替部分并且带有两个不同的HCR引发剂的探针进行靶向,从而允许以两种颜色进行扩增。(13B)显示以两种颜色(红色和蓝色;YFP荧光以绿色显示)针对Camk2a转录物进行的具有HCR扩增的FISH染色的共焦图像。(13C)对(13B)中所示的数据集进行的自动双色点共定位分析的结果。每个紫色点代表由算法鉴定并在YFP的共焦图像上重叠的正性共定位。(13D,13E)针对 Camk2a转录物用HCR扩增的双色FISH染色的树突的放大。(13F, 13G)如(13D,13E)中,但针对Dlg4转录物。上排示出了原始双色染色数据,对应于下排,其显示通过自动化算法鉴定的共定位点(为了方便起见从图3J(i-ii)和图3K(i-ii)复制)。比例尺:(13B,13C)10μm (3×);(13D-13G)2μm(3×)。(13B-13G)在未扩展的坐标中是~1.6μm 厚的MIP。
图14A-14B:(14A)HCR扩增和逆转的示意图。用定制的HCR 发夹引发HCR扩增,所述HCR发夹具有立足点介导的链置换的立足点。扩增后,加入分解链通过链置换引发HCR聚合物的分解。(14B) 显示ExFISH处理的Thy1-YFP脑切片(YFP呈蓝色)用具有HCR引发剂并且使用定制的HCR发夹扩增的YFP FISH探针来染色,所述HCR 发夹带有用于链置换的立足点(绿色点)。不同的图显示了在加入链以引发HCR聚合物的分解之后的不同时间HCR逆转的状态。比例尺: 20μm(在扩展后单位中)。
图15:RNA FISH点强度对于扩增程度和LabelX浓度的依赖性。将使用稀释至不同最终浓度的Label-It胺浓度的LabelX处理的HeLa 细胞扩增并且用针对GAPDH的探针组染色。染色后,将凝胶化的样品在1×PBS(~2×扩展比)和水(~4×扩展比)中扩展,并且量化不同样品的点强度。绘制的是均值+标准误差;N=6个细胞。
发明详述
本发明提供将核酸锚定到扩展显微法(ExM)的可膨胀凝胶中(既用于原位基因组和转录组评估两者)和使核酸条形码能够用于鉴定基本上任意数量的分子。通过引用并入本文的国际专利申请序列号 PCT/US15/16788教导了常规显微法的分辨率可通过物理扩展样本(称为“扩展显微”(ExM)的方法)来增加。总之,生物样本被包埋在可膨胀的凝胶材料中,经过处理以便破坏天然的生物网络,并且然后扩展。 ExM的优点包括组织透明化,分辨率提高以及由于z轴上的样本扩展导致的切片误差更高的容差。
在ExM中,荧光团直接锚定到聚合物凝胶,从而使蛋白质可视化;然而,RNA分子没有保存在凝胶中,而是在扩展过程期间丢失。因此,无法探测样品的转录组信息。
在一个实施方案中,本发明提供将天然核酸分子和抗体条形码共价锚定到扩展显微法(ExM)的可扩展凝胶基质的方法。使用小分子标签修饰核酸,使核酸在凝胶期间中参与自由基聚合。在凝胶形成步骤期间,将带有反应性基团的任何生物分子锚定到凝胶中并且随着凝胶扩展而各向同性地分离。
在一个实施方案中,本发明提供了也携带可被并入凝胶中的化学基团的核酸反应性试剂。在使用此试剂处理样品后,用此试剂共价标记核酸(包括DNA和RNA)。之后,在凝胶形成期间,标记的核酸共价并入到凝胶中。使用这种锚定的核酸,核酸中的信息可用作条形码,例如条形码抗体可用于ExM的多重原位染色,从而能够“任意颜色”成像。
通过共价锚定核酸,可将用于读出RNA和DNA的现有技术应用于扩展情形。这些策略包括单分子FISH(Imaging individual mRNA molecules using multiple singlylabeled probes.Nature Methods,2008年 10月;5(10):877-9)、oligo-paint("Versatiledesign and synthesis platform for visualizing genomes with Oligopaint FISHprobes."PNAS 109.52 (2012):21301-21306)和许多其他基于杂交的读出策略。此外,共价锚定允许顺序杂交,导致各种多重策略,包括连续、频谱和时间条形码编码方案。本发明提供了用DNA条形码化的一级抗体进行标记和染色的方法,允许任意数量的蛋白质标签与ExM一起使用。这是“无限颜色”成像的关键步骤,因为之前的扩展显微法只能够3色成像。
在另一个实施方案中,本发明提供了用于进行针对共价结合到 ExM凝胶中的核酸的顺序杂交的方法。首先,提供了将带有荧光团的互补寡核苷酸与ExM凝胶中的核酸杂交的缓冲条件。第二,将ExM 凝胶重新包埋在聚丙烯酰胺凝胶中以使由缓冲液变化引起的变形最小化。第三,已经开发了用于去除与共价锚定到凝胶上的核酸杂交的寡核苷酸的化学和酶策略,这能够用相同或不同的寡核苷酸重新染色。化学策略包括使用甲酰胺和高温将与凝胶中的核酸形成双链体的寡核苷酸去杂交。酶策略涉及使用特异性消化与核酸杂交的寡核苷酸的核酸内切酶,同时使锚定在凝胶中的核酸保持完整。
在另一个实施方案中,本发明提供了使用扩展显微法对蛋白质和转录物进行多重成像。首先,已经开发了通过使寡核苷酸与它们的靶抗体共价和非共价两者缔合使用寡核苷酸来对一级抗体进行条形码化的策略。尽管共价连接方案涉及与抗体上发现的胺和糖链反应,但非共价连接方案使用缀合到寡核苷酸条形码的第二Fab片段。第二,已经开发了使用这些寡核苷酸条形码化的一级抗体进行免疫染色的一组条件。这些条件包括用于最小化非特异性结合的独特缓冲液组合物以及用于获得足够免疫染色的温度范围。与这些抗体反应的寡核苷酸具有可并入ExM凝胶中以形成凝胶的化学基团。因此,在凝胶形成期间,这些寡核苷酸都被锚定到ExM凝胶中,同时所有的蛋白质都被降解。另外,已经开发了使用顺序杂交在ExM凝胶中多重读出寡核苷酸和核酸(包括RNA和DNA)的策略。这种方法包括连续将带有荧光团的互补链逐一顺序杂交到每个独特的寡核苷酸或核酸上。最后,由外(out)技术提供的一组功能能够实现最近由几个小组展示的指数条形码方案。例如,这种方法允许通过时间颜色条形码或时间二进制条形码对核酸进行条形码化。
存在于生物样品中的靶核酸的原位基因组学和转录组学评估方法的一个实施方案包括以下步骤:
a)使用能够连接至少一种靶核酸和可溶胀材料的小分子接头处理生物样品;
b)包埋生物样品,其中小分子接头结合到生物样品中的至少一种靶核酸和可溶胀材料;
c)使生物样品经受物理破坏方法;
d)使可溶胀材料溶胀以形成扩展的生物样品;
e)提供与至少一种靶核酸互补的至少一种寡核苷酸,其中至少一种寡核苷酸与至少一种靶核酸杂交;和
f)基因组学或转录组学地评估扩展的生物样品。
在这个和其他方法中,小分子接头通过能够共价结合靶核酸的化学反应性基团连接到靶核酸。小分子接头可被标记,或至少一个寡核苷酸可被标记。
在另一个实施方案中,将生物样品包埋在可溶胀材料中可包括用包含可溶胀聚合物的前体的组合物渗透生物样品并且原位形成可溶胀聚合物。
在另一个实施方案中,将至少一种靶核酸锚定到可溶胀材料上。
在另一个实施方案中,物理破坏方法是酶消化。
在刚描述的方法的另一个实施方案中,靶核酸是DNA和/或 RNA。
在另一个实施方案中,扩展的生物样品表达一种或多种经标记的靶核酸。
在另一个实施方案中,可在提供至少一种寡核苷酸之前缓冲扩展的样品。缓冲之后,扩展的样品可在基因组学或转录组学地评估扩展的生物样品之前重新包埋在不可溶胀的材料中。缓冲能够通过化学或酶方式去除至少一种寡核苷酸。例如,甲酰胺和高温可用于化学去除至少一种寡核苷酸,而特异性消化至少一种寡核苷酸的内切核酸酶可酶促地完成相同的任务。缓冲之后,可通过重复去除至少一个寡核苷酸并且提供相同或不同的至少一个寡核苷酸的步骤在相同的扩展样品上进行连续或顺序的基因组学和转录组学评估。
方法
a.ExM-FISH和ExM FISH-HCR
通过Solulink商业试剂盒将二级抗体缀合到带有5'丙烯酰胺基 (acrydite)和3'胺的DNA寡聚条形码。一级和二级抗体染色后,按照 ExM程序将样品凝胶化、消化并且进行扩展。扩展之后,通过将扩展的凝胶与丙烯酰胺、双丙烯酰胺和自由基引发剂一起温育,将凝胶化的样品重新包埋在4%的聚丙烯酰胺凝胶中。为了进行原位杂交,将凝胶化的样品与荧光标记的寡核苷酸一起温育,并且随后洗掉过量的寡核苷酸。为了利用杂交链式反应(HCR)信号扩增进行原位杂交,凝胶化样品与带有抗体缀合的寡核苷酸条形码互补的区域和HCR起始位点的寡核苷酸探针一起温育。洗掉过量的探针后,洗涤HCR发夹以引发扩增。
b.一级Fab抗体缀合和染色
通过Solulink商业试剂盒将Fab二级抗体缀合到带有5'丙烯酰胺基和3'胺的DNA寡聚条形码。为了将IgG一级抗体与寡聚标记的Fab 缀合。将Fab与一级抗体以及与条形码互补的荧光标记的寡核苷酸一起温育。随后,使用离心旋转过滤器去除过量fab和寡核苷酸。
培养的HeLa细胞用4%甲醛固定。随后,通过将缀合的适当纯化一级fab在含有硫酸葡聚糖、正常驴血清和兔γ-球蛋白的封闭缓冲液中混合来制备染色抗体混合物。最后,将固定的细胞与抗体混合物一起温育过夜,并且洗去任何过量物。
ExFISH:RNA锚定化学的设计和验证
由于ExM期间发生的反应的性质,将RNA直接共价连接至ExM 凝胶是必要的。尽管转录物在固定期间交联到蛋白质,但ExM的强蛋白水解排除了依赖蛋白质保持RNA的能力(图4A、4B)。因此,通过小分子接头将RNA分子直接共价固定到ExM凝胶使得扩展后这些分子的询问(interrogation)成为可能。试剂由两种结构单元合成:既含有胺又含有主要与鸟嘌呤的N7反应的烷基化基团的分子,以及含有胺反应性琥珀酰胺酯和可聚合丙烯酰胺部分的分子。存在满足这两种特征中每一种的商业试剂,诸如Label-It胺(MirusBio)和6-((丙烯酰基) 氨基)己酸(Acryloyl-X SE,这里缩写为AcX,Life Technologies,所有试剂列于表1中)。图1A描绘了这种分子,其能够使RNA与自由基可聚合基团共价官能化,并且将被称为LabelX。如图5E所示,LabelX 不妨碍smFISH读出。最初的ExM协议和LabelX的使用允许一种程序,其中样品可使用LabelX处理以使其RNA可凝胶锚定,然后凝胶形成、蛋白水解和渗透溶胀,如原始ExM协议中进行。因此,一旦样品扩展,则可通过FISH来询问RNA(图1B)。
为了量化扩展后RNA转录物锚定产量,使用smFISH探针,靶向不同拷贝数的mRNA(7个靶标,每个细胞的拷贝数在~10到~10,000 的范围内,在所有7个靶标中,n=59个细胞)。用扩展前(图1C)和后(图1D)的递送到相同细胞探针拍摄的smFISH图像显示,对于低拷贝数和高拷贝数转录物,扩展的转录物可检测性没有损失(图1E)。在低转录计数(例如几十个)中检测到的转录物的比率接近于一,然而,在高度表达的mRNA(例如几千个)中扩展之后检测到更多的转录物 (图9A、9B,表2)。这种差异是由于在未扩展状态下这些靶标的smFISH点密度较高,扩展过程使以前是无法区分的点变疏。例如,对于针对ACTB的smFISH,甚至在核内转录灶内(图1C相比于图 1D)(由于转录突发,这些转录灶与mRNA一样可以是密集的),我们能够解析扩展后单个ACTB mRNA斑点。因此,ExFISH能够支持扩展状态下的单分子RNA读出。由于Label-It也与DNA反应,所以 ExFISH方法使核能够均匀扩展(图7A-C)。ExFISH的各向同性(图8) 在数值上与当蛋白质靶标在原始ExM协议1中标记和扩展时观察到的各向同性相似。在最近的ExM协议中(使用相似的接头,将蛋白质锚定到如ExFISH中使用的相同水凝胶上)9,10,失真很小(在细胞和组织中失真百分之几)。这些早期的结果,因为它们是通过相似的聚合物化学获得的,所以可用于限制ExFISH失真。由于支持探针杂交所需的盐,扩展系数略低于我们最初的ExM论文(即~3.3×相比于~4×,扩展系数可见于此稿件的图例)。
使用ExFISH的lncRNA的纳米级成像
使已知在细胞生物学中起结构作用的长非编码RNA(lncRNA)成像。使lncRNA XIST成像。它在灭活X染色体中的作用可取决于通过仍在被揭示的过程与特定染色质分区的初始关联11。扩展前的图像 (图1F)显示了两个明亮的球状荧光区域,推测其对应于正在进行灭活的HEK细胞的X染色体11-13,但是扩展后、单个斑点在球状区域内以及附近均是明显的(图1G)。ExFISH另外用于检查之前描述14的 NEAT1 lncRNA的整体环状形态(图1H),其已被假设在基因表达调控和核mRNA保持中起重要作用15。在扩展之前,NEAT1以明亮的衍射限制斑点的形式呈现(图1H、图1I),但是在扩展之后,环状形态变得清晰(图1H、图1I)。鉴于基因组的复杂3-D结构16,映射lncRNA 可用于定义关键的染色质调节复合物及其空间构型。
使用ExFISH的RNA的超分辨多重成像
将共价RNA锚定到ExM凝胶上以及由于扩展所导致的局部环境变疏的组合可促进基于与多个探针组的顺序杂交针对多重RNA读出17–19提出的策略。为了促进FISH的多次循环,我们在电荷中性聚丙烯酰胺中重新包埋扩展样本。这个过程允许扩展的凝胶被固定以用于多轮成像,并且另外在整个协议的盐浓度变化中稳定扩展的样本。这些重新包埋的样品表现出与未重新包埋的样品相似的扩展因子(即~3×),并且如通过重复应用相同的探针组评估,对于多次洗涤-染色循环是稳健的(图2A,图9A,显示针对培养的细胞上GAPDH的5轮smFISH染色)。即使在设计为使各个循环之间的串扰最小化的严格洗涤条件(例如100%甲酰胺)下也观察到了这种稳定性。在5轮中,单个RNA点的位置在各轮之间没有失真(图2B),检测效率或信噪比也没有变化(图2C、2D)。验证了各个循环之间的一致性后,我们接下来通过连续应用GAPDH、UBC、NEAT1、USF2、ACTB以及EEF2 探针展示多重ExFISH的能力,从而能够在相同细胞中鉴定和定位6 个单个RNA(图2E、图9B)。因此,连续FISH适用于在将RNA固定到如本文所述的可溶胀聚合物之后扩展的样品,使得应用经计算设计以在每个FISH循环,例如MERFISH中产生更多信息的探针组变得简单18–20
小鼠脑组织中RNA的3D纳米级成像
ExM允许在传统显微硬件1上进行厚的3-D样本(诸如脑组织)的简易超分辨率成像。将ExFISH应用于Thy1-YFP小鼠脑组织21的样品,使用YFP蛋白来描绘神经形态(图3A、3B)。使用proExM协议9通过AcX将内源性YFP蛋白锚定到聚丙烯酸酯凝胶上并且通过LabelX锚定RNA。由于smFISH产生的信号太暗而不能在完整组织中使用共焦成像可视化,应用先前描述的杂交链式反应(HCR)技术5,特别是下一代DNA HCR扩增器架构6(图10中的示意图)。在含有小鼠皮层和海马区域的样品中,YFP(图3C)和谷氨酸脱羧酶1Gad1(图 3D)的mRNA容易用广角显微镜可视化,其中YFP mRNA很好地定位到YFP-荧光细胞(图3E)并且Gad1mRNA定位到整个皮层和海马特定层的特征性排列的细胞群22。使用共焦旋转盘显微镜在高放大倍数下检查脑样本揭示,由于ExM的物理放大,可区分单个转录物(图 3F,突出显示YFP和Gad1 mRNA),并且甚至高度过表达的转录物(例如YFP)得以清楚地分解成单个斑点(图3F)。当省略FISH探针时,观察到最小的背景HCR扩增(图11A-C)。鉴于ExM能够在衍射限制显微镜上实现超分辨率成像,所述衍射限制显微镜能够定标至极快成像速度23,我们在Thy1-YFP脑切片上使用了商业可获得的光片显微镜以能够以单分子精确度在仅3小时内在整个~575μm×575μm×160 μm厚的体积中使多个转录物可视化(~6×1010像素,3种颜色;图12A-C)。
HCR将靶结合事件扩增成明亮的荧光信号(图10)。用于评估检测准确性的严格方法是使用具有不同颜色的不同探针组标记单个 RNA24,25,这表明如此靶向的mRNA的50-80%将当在细胞培养中评估时被双重标记;50%的共定位被解释为
Figure BDA0001618899660000151
的检测效率(假设探针独立);这是下限,因为它排除了假阳性。为了评估扩展组织中单分子可视化的假阳性和阴性率,递送了具有不同引发剂的靶向相同转录物的探针对组。这种方案导致来自相同靶标的两种不同颜色的扩增的荧光信号(图13A-B),给出杂交效率的量度。递送针对不存在的转录物的探针组也给出了假阳率的量度。使用Thy1-YFP小鼠脑样品,针对错义探针(Dlg4逆转,图3G(i-ii))以及不存在的转录物(mCherry,表3)递送探针组,并且发现低的但非零空间密度的暗淡但扩增的斑点 (未扩展的坐标中,每61μm3一个斑点,Dlg4逆转;每48μm3一个斑点,mCherry)。基本上这些斑点中零个表现出共定位(0/1,209个点, Dlg4逆转;4/1,540个点mCherry)。相比之下,当存在转录物(Actb) 时,大部分的斑点表现出共定位(在一种颜色中平均58%的探针与其他颜色共定位,15,866/27,504个点,图3H(i-ii),表3),指示75%的检测效率,与上述非扩增单分子研究相当。
针对mRNA,使用双色HCR ExFISH以将其在需要纳米级分辨率进行精确鉴定或分割的细胞区室诸如树突棘内的位置成像。探测 Dlg4mRNA,其编码突出的突触后支架蛋白PSD-95,并且已知其是树枝状富集的7。获得一定程度的共定位(53%,5,174/9,795个点),从而表明高检测效率,73%(图3I)。还探测了Camk2a的mRNA,发现 78%的检测效率(共定位,61%,8,799/14,440个点,图13D-E)。关注共定位的斑点,因此抑制了假阳性错误,并且给出了转录物检测的下限(图13)。关注这些扩展样品中的单个树突显示,在树突棘的稀疏子集以及细小树状突中确实可检测到单个Dlg4(图3J(i-ii))和Camk2a (图3K(i-ii))mRNA。为了促进多重HCR读出,我们开发了修饰的HCR 发夹,其可以使用立足点介导的链置换26来分解(图14A-B)。这些修饰的HCR扩增器通过在连续循环之间分解HCR聚合物来实现多个 HCR循环。鉴于神经元可以有数以万计的突触,并且mRNA可以是低拷贝数,所以在整个神经轴突处突触上映射mRNA的能力可用于从可塑性到发育到退化的神经科学中的多种问题。
论述
存在很容易从商业前体合成的使RNA共价锚定以便进行扩展显微的新型试剂。所得到的程序ExFISH能够通过单分子FISH标记以及杂交链式反应(HCR)扩增来探测RNA。验证扩展之前与扩展之后的 RNA保持,发现RNA的出色的产量和变疏以用于更准确的RNA计数和定位。这使得能够以纳米级精确度和单分子分辨率来可视化 RNA结构诸如XIST和NEAT1,长链非编码RNA(其突现结构直接影响其生物学作用)的。锚定足够稳健以支持连续smFISH,包括重复洗涤和探针杂交步骤,以及多重读出RNA的身份和位置,意味着使用根据特定编码策略17–19设计的探针将支持组合多路复用,其中每个另外的循环产生指数级更多的转录物信息。RNA共价锚定到ExM凝胶还可支持在完整样品内,在扩展的样品中进行的酶反应,诸如反转录、滚环扩增(RCA)、荧光原位测序(FISSEQ)27以及用于转录组学读出或SNP检测28的其他策略。
ExM,物理形式的放大,即使在传统的衍射限制显微镜上也能实现纳米级的分辨率。扩展样品使得它们在折射率上是透明和均匀的,部分是因为体积稀释,并且部分是因为非锚定组分的洗涤1。因此,将ExM与快速衍射限制法(像光片显微镜23)组合的策略可能产生“两全其美”的性能指标:经典超分辨率方法的体素尺寸,但日益快速的衍射限制显微的体素采集速率1。RNA变疏具有另一个关键优势:减少HCR的自组装扩增产物的有效尺寸,这里遵循参考文献5,6的协议应用,以便能够在完整组织中进行RNA的纳米级分辨率可视化(平行进行的一篇论文最近还进行了单分子HCR FISH29)。扩展后样品中 500nm的尺寸的HCR扩增子由于RNA之间的距离更远而具有500/ 3.5=~150nm的有效尺寸。扩增子的较低堆积密度促进具有纳米级精确度的每个实验19的更多转录物的成像。其他获得更亮信号的方法也是可以的。例如,更亮的荧光团,诸如量子点30或瓶刷荧光团31原则上可避免信号扩增的需要。扩展状态可以使这些和其他庞大的荧光团更好地递送到样品中。其他扩增策略也是可能的,包括酶(例如, RCA28、酪胺扩增22、HRP扩增)以及非酶(例如分支DNA)方法,尽管必须考虑反应效率和试剂在样品中的扩散。
ExFISH可在神经科学和其他生物领域有许多用途。例如,在大脑中,已知RNA随着局部突触活性32和内含子含量33而被转移到特定的突触,并且被局部翻译7,34,35,并且轴突RNA的存在和翻译仍在研究中36。可以预见的是,与简单的多重编码方案结合,这种方法可用于原位神经元细胞类型的转录组学剖析,以及完整脑回路中神经元连接性和突触组织的超分辨表征,这对神经回路功能和功能障碍潜在机制的综合理解是关键的。更广泛地说,可视化细胞内的RNA,以及它们与RNA加工和转移机制的关系,可能揭示生物学和医学中的新见解。
方法信息
表1
Figure BDA0001618899660000181
Figure BDA0001618899660000191
表2
Figure BDA0001618899660000192
表3
Figure BDA0001618899660000193
表4
Figure BDA0001618899660000194
Figure BDA0001618899660000201
Figure BDA0001618899660000211
Figure BDA0001618899660000221
Figure BDA0001618899660000231
Figure BDA0001618899660000241
Figure BDA0001618899660000251
Figure BDA0001618899660000261
Figure BDA0001618899660000271
Figure BDA0001618899660000281
Figure BDA0001618899660000291
Figure BDA0001618899660000301
Figure BDA0001618899660000311
Figure BDA0001618899660000321
Figure BDA0001618899660000331
Figure BDA0001618899660000341
细胞培养和固定:
在补充有10%FBS(Invitrogen)、1%青霉素/链霉素(Cellgro)和1%丙酮酸钠(BioWhittaker)的D10培养基(Cellgro)中,在Nunc Lab-Tek II 腔室盖玻片(ThermoScientific)上培养HeLa(ATCC CCL-2)细胞和 HEK293-FT细胞(Invitrogen)。生产商对细胞进行验证,并且测试支原体污染是否符合其标准严格水平,并在此使用,因为它们是用于测试新工具的常见细胞系。将培养的细胞用DPBS(Cellgro)洗涤一次,用10%福尔马林固定10分钟,并且用1×PBS洗涤两次。然后将固定的细胞在4℃下储存在70%乙醇中直至使用。
LabelX的制备:
将丙烯酰基-X,SE(6-((丙烯酰基)氨基)己酸,琥珀酰亚胺酯,在此缩写为AcX;Thermo-Fisher)以10mg/mL的浓度重悬于无水DMSO 中,等分并且冷冻储存于干燥环境。将
Figure BDA0001618899660000351
胺修饰试剂(Mirus Bio,LLC)以1mg/ml重悬于提供的Mirus重构溶液中并且在干燥的环境中冷冻储存。为了制备LabelX,将10μL的AcX(10mg/mL)与100 μL的
Figure BDA0001618899660000352
胺修饰试剂(1mg/mL)在室温下伴以振摇反应过夜。随后将LabelX冷冻(-20℃)储存在干燥的环境中直至使用。
小鼠灌注:
动物护理和使用的所有方法均由麻省理工学院动物护理委员会批准,并符合美国国家卫生研究院关于护理和使用实验室动物的指南。以下所有溶液均由从无核酸酶试剂制备的1×磷酸盐缓冲盐水 (PBS)制成。小鼠用异氟烷麻醉并用冰冷的4%多聚甲醛经心脏灌注。解剖出脑,在4℃下4%多聚甲醛中放置1天,然后移至含有100mM 甘氨酸的PBS中。切片(50μm和200μm)在振动切片机(Leica VT1000S)上切片并且在4℃下储存在PBS中直到使用。图3和相关分析中使用的小鼠是6-8周龄范围的Thy1-YFP(Tg(Thy1-YFP)16Jrs) 雄性小鼠。没有进行样本量估算,因为目标是展示技术。没有进行样品的排除、随机化或盲法。
培养的细胞和脑切片的LabelX处理:
将固定的细胞用1×PBS洗涤两次,用20mM MOPS pH 7.7洗涤一次,并在37℃下用LabelX(在MOPS缓冲液(20mM MOPS pH 7.7) 中稀释到所需的最终浓度)温育过夜,接着用1×PBS洗涤两次。对于细胞,使用产生0.006-0.02mg/mL的
Figure BDA0001618899660000353
胺浓度的LabelX范围;较高的浓度导致smFISH染色稍微暗淡(图15),但是在其他方面对于此范围内的
Figure BDA0001618899660000354
胺浓度,没有观察到染色质量的差异。对于图1e、图4、图5以及图6,将固定的细胞与稀释至0.02mg/mL 的最终
Figure BDA0001618899660000361
胺浓度的LabelX温育。对于细胞的所有其他实验,将固定的细胞使用稀释至0.006mg/mL的最终
Figure BDA0001618899660000362
胺浓度的LabelX处理。
如上制备的脑切片与20mM MOPS pH 7.7温育30分钟,并且随后在37℃下与在MOPS缓冲液(20mM MOPS pH 7.7)中稀释至0.1 mg/mL的最终
Figure BDA0001618899660000363
胺浓度的LabelX(由于固定后它们的厚度增加和甲醛引起碎片化增加)一起温育过夜。对于YFP保持,将切片用在PBS中的0.05mg/mL AcX在室温下处理>6小时。
扩展前固定培养细胞的smFISH:
用洗涤缓冲液(10%甲酰胺,2×SSC)将固定的细胞短暂洗涤一次,并且在37℃在杂交缓冲液(10%甲酰胺,10%硫酸葡聚糖,2×SSC)中与RNA FISH探针杂交过夜。杂交后,将样品用洗涤缓冲液洗涤两次,每次洗涤30分钟,并且使用1×PBS洗涤一次。成像在1×PBS中进行。
靶向TFRC、ACTB、GAPDH、XIST以及NEAT1的5'部分的人转录物的smFISH探针组从Stellaris与Quasar 570染料一起定购。合成针对UBC、EEF2、USF2、TOP2A以及全长NEAT1的探针组,缀合到荧光团,并且随后如前37所述通过HPLC纯化。探针组的寡核苷酸序列和登录号可见于表4。
凝胶化、消化和扩展:
将单体溶液(1×PBS,2M NaCl,8.625%(w/w)丙烯酸钠、2.5% (w/w)丙烯酰胺,0.15%(w/w)N,N'-亚甲基双丙烯酰胺)混合、在等分试样中冷冻并且在使用前解冻。使用前将单体溶液冷却至4℃。对于使用LabelX处理的凝胶培养细胞,将VA-044的浓储液(25%w/w,代替原始ExM协议1中的过硫酸铵(APS)/四甲基乙二胺(TEMED),因为APS/TEMED导致自发荧光,所述自发荧光程度较小但在smFISH 的情况下是可察觉的)加入单体溶液中至0.5%(w/w)的最终浓度并且在200μl等分试样中脱气15分钟。将细胞与单体溶液加VA-044一起短暂温育,并且转移到加湿室中。随后,使用氮气吹扫加湿室。为了引发凝胶化,将加湿室转移到60℃的温育箱中2小时。对于使用 LabelX处理的凝胶化的脑切片,如原始ExM协议进行凝胶化(因为在 HCR扩增的情况下,APS/TEMED的轻微自发荧光是可忽略不计的)。使用在消化缓冲液(50mM Tris(pH 8),1mM EDTA,0.5%Triton X-100,500mM NaCl)中的1:100稀释至8单位/mL的蛋白酶K(New England Biolabs)消化凝胶培养细胞和脑切片,并且消化在37℃过夜进行。在高渗透压消化缓冲液(~1.5×)中凝胶略微扩展。消化后,将凝胶储存在1×PBS中直至使用,并且如前所述进行扩展。
扩展后smFISH染色:
使用洗涤缓冲液(10%甲酰胺,2×SSC)将扩展的凝胶在室温下温育30分钟,并且在37℃在杂交缓冲液(10%甲酰胺,10%硫酸葡聚糖, 2×SSC)中与RNA FISH探针杂交过夜。杂交后,将样品用洗涤缓冲液洗涤两次,每次洗涤30分钟,并且使用1×PBS再洗涤一次,持续 30分钟。成像在1×PBS中进行。
对在培养细胞进行的smFISH的图像处理和分析:
首先使用具有200像素半径的滚球背景减法算法(FIJI)38处理在扩展之前或之后进行的smFISH染色的广角图像。随后,生成这些图像的最大强度Z投影。然后使用由Raj实验室开发并且可在线获得的代码对点进行定位和计数(http://rajlab.seas.upenn.edu/StarSearch/launc h.html)。针对图1C-E、图2A-C、图图5A-E、图6A-G、图7A-E、图 9A-B、11A-C进行这种图形分析。
扩展各向同性分析:
使用FIJI插件Turboreg39通过两个控制点严格对齐TOP2A扩展前后的smFISH图像。点被定位并且通过由Raj实验室开发的定制点计数Matlab代码计数(完整的源代码和说明可见于https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home)。长度测量是通过定制的Matlab脚本在扩展之前的所有点对和扩展之后相应的点对上进行。测量误差定义为扩展前后长度测量的绝对差值 (图8C)。
丙烯酰胺基质中扩展凝胶的重新包埋:
为了在细胞中连续染色,将扩展凝胶重新包埋在丙烯酰胺中以使凝胶稳定处于扩展状态。简而言之:凝胶在水中扩展并且使用不锈钢刀片手工切割至约~1mm厚。将切割的凝胶在具有0.05%APS、0.05% TEMED和5mM Tris ph 10.5的3%丙烯酰胺,0.15%N,N'-亚甲基双丙烯酰胺中在摇动器中温育20分钟。在此步骤期间凝胶尺寸减少约 30%。将过量的溶液从凝胶中去除,并且将凝胶通过实验室擦拭物的轻微芯吸来干燥。在移入容器并用氮气吹扫之前,将凝胶置于结合- 硅烷(bind-silane)处理(见下文)盖玻片的顶部或玻璃底板(其中盖玻片位于凝胶顶部)。将容器移至37℃的温育箱中凝胶化1.5小时。
重新包埋的凝胶的染色:
除了将杂交后的洗涤液更换以便使用洗涤缓冲液(10%甲酰胺)洗涤两次,每次60分钟,凝胶的重新包埋染色使用上述针对扩展凝胶的精确条件进行。
针对多轮杂交,通过用DNAse I或100%甲酰胺处理将探针去除。对于DNAse I,将样品在室温下用0.5U/μL的DNAse I处理6小时。对于甲酰胺汽提,样品在37C下使用100%甲酰胺处理6小时。
盖玻片的结合-硅烷处理:
用结合-硅烷处理盖玻片和玻璃底24孔板,所述结合-硅烷是将丙烯酰基团并入到玻璃表面上以进行自由基聚合的硅烷化试剂。简言之,将5μL的结合-硅烷试剂稀释到8mL乙醇、1.8mL ddH2O和200 μL乙酸中。使用ddH2O,然后使用100%乙醇,然后使用稀释的结合 -硅烷试剂洗涤盖玻片和玻璃底24孔板。在使用稀释的结合-硅烷试剂短暂洗涤后,将盖玻片干燥,然后用100%乙醇洗涤,并且然后再次干燥。使用前立即制备盖玻片。
HCR-FISH探针设计:
mRNA靶标的探针序列和登录号可见于表4。针对HCR-FISH,通过用由3-7个碱基间隔的22聚体寡核苷酸平铺mRNA靶标的CDS 来设计探针。HCR引发剂通过2碱基间隔件(AA)附加到平铺序列上。对于2色探针组,偶数和奇数平铺探针被分配不同的HCR引发剂以允许以不同的颜色通道扩增。
具有杂交链式反应(HCR)扩增的RNA FISH:
使用洗涤缓冲液(20%甲酰胺,2×SSC)将凝胶化样品在室温下温育30分钟,并且在37℃在杂交缓冲液(20%甲酰胺,10%硫酸葡聚糖, 2×SSC)中与HCR引发剂标记的FISH探针杂交过夜。杂交后,用洗涤缓冲液洗涤样品两次,每次洗涤30分钟,并在37℃用1×PBS温育 2小时。随后,将样品在室温下用1×PBS温育至少6小时。在HCR 扩增之前,将杂交的样品用扩增缓冲液(10%硫酸葡聚糖,5×SSC, 0.1%Tween 20)预温育30分钟。为了引发扩增,将3μM的HCR发夹储备物(Alexa 456和Alexa 647荧光团)通过加热至95℃持续90秒进行快速冷却,并且在室温下放置以冷却,持续30分钟。然后将凝胶样品在室温下与在扩增缓冲液中稀释至60nM的HCR发夹一起温育3小时。扩增后,用5×SSCT(5×SSC,0.1%Tween 20)将凝胶洗涤两次,每次洗涤1小时。
使用ExFISH使培养细胞成像:
用SPECTRA X光引擎(Lumencor)和5.5Zyla sCMOS照相机 (Andor),由NIS-Elements AR软件控制,在Nikon Ti-E落射荧光显微镜上对培养细胞以及LabelX处理和扩增的培养细胞进行成像。对于图1C、1D和图6A-G、图7A-E和图8-D,使用40×1.15NA的水浸物镜。对于培养细胞的所有其他实验,使用60×1.4NA油浸物镜。
对于成像用荧光团标记的smFISH探针,使用以下过滤器立方体 (Semrock,Rochester,NY):Alexa 488,GFP-1828A-NTE-ZERO;Quasar 570,LF561-B-000;Alexa 594,FITC/TXRED-2X-B-NTE;Atto 647N, Cy5-4040C-000。
扩展脑切片的成像:
对于扩展前后脑部分的落射荧光成像(图3A-E)并且量化组织切片的扩展系数,在Nikon Ti-E落射荧光显微镜上用4×0.2NA空气物镜和SPECTRA X光引擎(Lumencor)以及5.5Zyla sCMOS照相机 (Andor),由NIS-Elements AR软件控制,使样本成像。
扩展的脑组织扩展后的共焦成像是在Nikon TI-E显微镜体上的具有40×1.15NA水分物镜(图3F-K,图13A-G)的Andor旋转圆盘 (CSU-X1Yokogawa)上进行。用具有525/40发射过滤器的488nm激光器激发GFP。Alexa 546HCR扩增子使用具有607/36发射过滤器的561nm激光器激发。Alexa 647扩增子使用具有685/40发射过滤器的 640nm激光器激发。
将凝胶用3次洗涤扩展,各自每次15分钟,0.05×SSC。扩展系数可用盐浓度来控制。发现0.05×SSC产生3×扩展,同时仍然提供足够的盐以用于杂交稳定性。为了在扩展后成像期间稳定凝胶以防止漂移,将凝胶放置在玻璃底6孔板中,其中去除所有过量的液体。如果需要的话,将液体低熔点琼脂糖(2%w/w)吸移在凝胶周围并且允许固化,以在成像之前包封凝胶。
光片成像在Zeiss Z.1光片显微镜上进行。简而言之,将样品用超级胶固定在定制的塑料支架上,并安装在Z.1光片的自由旋转台上。通过两个照明物镜(5×,NA 0.1)产生光片,并且通过20×水浸物镜(NA 1.0)检测荧光信号。两个光片都用于数据收集。单个平铺的成像体积尺寸为1400×1400×1057像素,具有227nm横向和469nm轴向的体素尺寸。用于激发的激光线是488nm、561nm和638nm。单个激光透射率设置为5%,其中最大输出功率为50mW(488nm和561nm) 和75mW(638nm)。用于分离和清除荧光响应的光学过滤器包括作为二色性的Chroma T560lpxr、用于GFP的Chroma 59001m和用于Alexa 546和Alexa 647的59007m。两台PCO.Edge 5.5m sCMOS照相机用于同时捕获两个荧光通道。平铺数据集使用Zeiss ZEN软件来采集,并且随后使用FIJI、Arivis Vision4D和Bitplane Imaris合并和处理。
切片的双色分析:
使用Z(3个光学部分)中的滑动窗平均(或最小化)方案来抑制点检测处理之前的运动伪影。RNA斑点是通过由Raj实验室开发的定制3D点计数Matlab代码检测;完整的源代码和说明可见于 https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home。
从两个颜色通道中提取点质心,并且如果点的质心位于x,y维度的3像素半径和z维度的2像素半径内,则点被确定为共定位。
通过立足点介导的链置换的HCR逆转:
HCR扩增在加入两个HCR亚稳扩增器发夹之后开始。我们设计了一对HCR扩增器,B2H1T和B2H2(参见下面的序列),其中B2H1T 带有6bp立足点以用于链置换。为了引发HCR扩增,将3μM的这些扩增器的等分试样通过加热至95℃持续90秒进行快速冷却,并且在室温下留置以冷却,持续30分钟。然后将凝胶样品在室温下与在扩增缓冲液中稀释至60nM的HCR发夹一起温育3小时。扩增后,用5×SSCT(5×SSC,0.1%Tween 20)将凝胶洗涤两次,每次洗涤1 小时。随后,通过在5×SSCT中在200nM下加入置换链(参见下面的序列)来引发HCR逆转。
B2H1T:
ggCggTTTACTggATgATTgATgAggATTTACgAggAgCTCAgTCC ATCCTCgTAAATCCTCATCAATCATCAAATAG。
B2H2:
/5'-Alexa546-C12/
CCTCgTAAATCCTCATCAATCATCCAgTAAACCgCCgATgATTgATgAggATTTACgAggATggACTgAgCT。
置换链:
CTATTTGATGATTGATGAGGATTTAcGAGGATGGAcTGAGc T。
参考文献:
1.Chen,F.,Tillberg,P.W.&Boyden,E.S.Expansion microscopy.Science(80-.).347, 543-548(2015).
2.Femino,A.M.,Fay,F.,Fogarty,K.&Singer,R.Visualization of Single RNATranscripts in Situ.Science(80-.).280,585-590(1998).
3.Levsky,J.M.&Singer,R.H.Fluorescence in situ hybridization:past,present and future.J.Cell Sci.116,2833-2838(2003).
4.Raj,A.,van den Bogaard,P.,Rifkin,S.A.,van Oudenaarden,A.&Tyagi,S.Imaging individual mRNA molecules using multiple singly labeledprobes.Nat.Methods 5, 877-9(2008).
5.Choi,H.M.T.et al.Programmable in situ amplification for multiplexedimaging of mRNA expression.Nat.Biotechnol.28,1208-12(2010).
6.Choi,H.M.T.,Beck,V.A.&Pierce,N.A.Next-Generation in SituHybridization Chain Reaction:Higher Gain,Lower Cost,Greater Durability.ACSNano 8,4284- 4294(2014).
7.Cajigas,I.J.et al.The local transcriptome in the synaptic neuropilrevealed by deep sequencing and high-resolution imaging.Neuron 74,453-66(2012).
8.Wang,F.et al.RNAscope:A novel in situ RNA analysis platform forformalin-fixed, paraffin-embedded tissues.J.Mol.Diagnostics 14,22-29(2012).
9.Tillberg,P.W.et al.Expansion Microscopy of Biological Specimenswith Protein Retention.Nat.Biotechnol.
10.Chozinski,T.J.et al.Expansion microscopy with conventionalantibodies and fluorescent proteins.Nat.Methods(2016).doi:10.1038/nmeth.3833
11.Engreitz,J.M.et al.The Xist lncRNA exploits three-dimensionalgenome architecture to spread across the X chromosome.Science 341,1237973(2013).
12.Panning,B.,Dausman,J.&Jaenisch,R.X chromosome inactivation ismediated by Xist RNA stabilization.Cell 90,907-16(1997).
13.Plath,K.,Mlynarczyk-Evans,S.,Nusinow,D.A.&Panning,B.Xist RNA andthe mechanism of X chromosome inactivation.Annu.Rev.Genet.36,233-78(2002).
14.Mito,M.,Kawaguchi,T.,Hirose,T.&Nakagawa,S.Simultaneous multicolordetection of RNA and proteins using super-resolution microscopy.Methods(2015). doi:10.1016/j.ymeth.2015.1 1.007
15.Clemson,C.M.et al.An architectural role for a nuclear noncodingRNA:NEAT1 RNA is essential for the structure of paraspeckles.Mol.Cell 33,717-26(2009).
16.Lieberman-Aiden,E.et al.Comprehensive mapping of long-rangeinteractions reveals folding principles of the human genome.Science 326,289-93(2009).
17.Lubeck,E.&Cai,L.Single-cell systems biology by super-resolutionimaging and combinatorial labeling.Nat.Methods 9,743-8(2012).
18.Lubeck,E.,Coskun,A.F.,Zhiyentayev,T.,Ahmad,M.&Cai,L.Single-cell insitu RNA profiling by sequential hybridization.Nat.Methods 11,360-1(2014).
19.Chen,K.H.,Boettiger,A.N.,Moffitt,J.R.,Wang,S.&Zhuang,X.Spatiallyresolved,highly multiplexed RNA profiling in single cells.Science(80-.).348,aaa6090-aaa6090(2015).
20.Beliveau,B.J.et al.Versatile design and synthesis platform forvisualizing genomes with Oligopaint FISH probes.Proc.Natl.Acad.Sci.U.S.A.109,21301-6(2012).
21.Feng,G.et al.Imaging neuronal subsets in transgenic miceexpressing multiple spectral variants of GFP.Neuron 28,41-51(2000).
22.Lein,E.S.et al.Genome-wide atlas of gene expression in the adultmouse brain. Nature 445,168-76(2007).
23.Huisken,J.,Swoger,J.,Bene,F.Del,Wittbrodt,J.&Stelzer,E.H.K.OpticalSectioning Deep Inside Live Embryos by Selective Plane IlluminationMicroscopy. Science 305,1007-1009(2004).
24.Batish,M.,van den Bogaard,P.,Kramer,F.R.&Tyagi,S.Neuronal mRNAstravel singly into dendrites.Proc.Natl.Acad.Sci.109,4645-4650(2012).
25.Cabili,M.N.et al.Localization and abundance analysis of humanlncRNAs at single- cell and single-molecule resolution.Genome Biol.16,20(2015).
26.Zhang,D.Y.&Seelig,G.Dynamic DNA nanotechnology using strand-displacement reactions.Nat.Chem.3,103-113(2011).
27.Lee,J.H.et al.Highly Multiplexed Subcellular RNA Sequencing inSitu.Science(80-. ).343,1360-1363(2014).
28.Ke,R.et al.In situ sequencing for RNA analysis in preserved tissueand cells.Nat. Methods 10,857-60(2013).
29.Shah,S.et al.Single-molecule RNA detection at depth viahybridization chain reaction and tissue hydrogel embedding andclearing.Development In Review,(2016).
30.Bruchez,M.et al.Semiconductor nanocrystals as fluorescentbiological labels.Science 281,2013-6(1998).
31.Fouz,M.F.et al.Bright Fluorescent Nanotags from BottlebrushPolymers with DNA- Tipped Bristles.ACS Cent.Sci.1,431-438(2015).
32.Steward,O.,Wallace,C.S.,Lyford,G.L.&Worley,P.F.Synaptic activationcauses the mRNA for the leg Arc to localize selectively near activatedpostsynaptic sites on dendrites.Neuron 21,741-751(1998).
33.Buckley,P.T.et al.Cytoplasmic Intron Sequence-RetainingTranscripts Can Be Dendritically Targeted via ID ElementRetrotransposons.Neuron 69,877-884(2011).
34.Steward,O.&Schuman,E.M.Compartmentalized synthesis and degradationof proteins in neurons.Neuron 40,347-359(2003).
35.Buxbaum,A.R.,Wu,B.&Singer,R.H.Single-Actin mRNA Detection inNeurons Reveals a Mechanism for Regulating Its Translatability.Science(80-.).343,419-422 (2014).
36.Jung,H.,Yoon,B.C.&Holt,C.E.Axonal mRNA localization and localprotein synthesis in nervous system assembly,maintenance andrepair.Nat.Rev.Neurosci.13, 308-24(2012).
37.Raj,A.&Tyagi,S.Detection of individual endogenous RNA transcriptsin situ using multiple singly labeled probes.Methods in enzymology 472,(Elsevier Inc.,2010).
38.Schindelin,J.et al.Fiji:an open-source platform for biological-image analysis.Nat. Methods 9,676-82(2012).
39.Thévenaz,P.,Ruttimann,U.E.&Unser,M.A pyramid approach to subpixelregistration based on intensity.IEEE Trans.Image Process.7,27-41(1998).
虽然已经具体显示并且参考其优选实施方案描述了本发明,但是本领域技术人员将理解可以在形式和细节中作多种改变而不脱离由附加的权利要求涵盖的本发明的范畴。

Claims (14)

1.一种用于对存在于生物样品中的靶核酸进行原位基因组学和转录组学评估的方法,其包括以下步骤:
a)使用包括能够共价结合至少一种靶核酸的化学反应性基团和可并入至可溶胀材料的化学基团的核酸反应性试剂来处理所述生物样品;
b)使用包含可溶胀材料的前体的组合物来渗透所述生物样品;
c)启动所述前体的聚合以形成可溶胀材料,其中所述核酸反应性试剂结合到所述生物样品中的所述至少一种靶核酸和所述可溶胀材料;
d)使所述生物样品经受物理破坏方法;
e)使所述可溶胀材料溶胀以形成扩展的生物样品;
f)提供与所述至少一种靶核酸互补的至少一种寡核苷酸,其中所述至少一种寡核苷酸与所述至少一种靶核酸杂交;和
g)基因组学或转录组学地评估所述扩展的生物样品。
2.根据权利要求1所述的方法,其中所述核酸反应性试剂通过能够共价结合所述靶核酸的化学反应性基团来连接到靶核酸。
3.根据权利要求1所述的方法,其中所述核酸反应性试剂被标记。
4.根据权利要求1所述的方法,其中所述至少一种寡核苷酸被标记。
5.根据权利要求1所述的方法,其中所述至少一种靶核酸锚定到所述可溶胀材料。
6.根据权利要求1所述的方法,其中所述物理破坏方法是酶消化。
7.根据权利要求1所述的方法,其中所述靶核酸是DNA和/或RNA。
8.根据权利要求3所述的方法,其中所述扩展的生物样品表达一种或多种经标记的靶核酸。
9.根据权利要求1所述的方法,还包括缓冲所述扩展样品。
10.根据权利要求9所述的方法,还包括将所述经缓冲的扩展样品重新包埋在不可溶胀材料中。
11.根据权利要求10所述的方法,还包括去除与所述至少一种靶核酸互补的所述至少一种寡核苷酸的步骤。
12.根据权利要求11所述的方法,其中重复执行提供至少一种寡核苷酸、基因组学或转录组学地评估所述扩展生物样品和去除所述至少一种寡核苷酸的步骤以便允许连续或顺序基因组学或转录组学评估所述扩展的生物样品。
13.根据权利要求11所述的方法,其中去除杂交到所述至少一种靶核酸的所述至少一种寡核苷酸包括使用甲酰胺和高温。
14.根据权利要求11所述的方法,其中去除杂交到所述至少一种靶核酸的所述至少一种寡核苷酸包括使用特异性地消化所述至少一种寡核苷酸的内切核酸酶。
CN201680058184.4A 2015-08-07 2016-08-05 通过扩展显微法的蛋白质和核酸的纳米级成像 Active CN108474029B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562202421P 2015-08-07 2015-08-07
US62/202,421 2015-08-07
PCT/US2016/045751 WO2017027367A1 (en) 2015-08-07 2016-08-05 Nanoscale imaging of proteins and nucleic acids via expansion microscopy

Publications (2)

Publication Number Publication Date
CN108474029A CN108474029A (zh) 2018-08-31
CN108474029B true CN108474029B (zh) 2021-07-23

Family

ID=56740485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680058184.4A Active CN108474029B (zh) 2015-08-07 2016-08-05 通过扩展显微法的蛋白质和核酸的纳米级成像

Country Status (5)

Country Link
US (1) US10364457B2 (zh)
EP (1) EP3332029B1 (zh)
CN (1) CN108474029B (zh)
CA (1) CA2994958C (zh)
WO (1) WO2017027367A1 (zh)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2991004T3 (es) 2011-12-22 2024-12-02 Harvard College Métodos para la detección de analitos
US9914967B2 (en) 2012-06-05 2018-03-13 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using DNA origami probes
CA2886974C (en) 2012-10-17 2021-06-29 Spatial Transcriptomics Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
CA2982146A1 (en) 2015-04-10 2016-10-13 Spatial Transcriptomics Ab Spatially distinguished, multiplex nucleic acid analysis of biological specimens
US10526649B2 (en) 2015-04-14 2020-01-07 Massachusetts Institute Of Technology Augmenting in situ nucleic acid sequencing of expanded biological samples with in vitro sequence information
US11408890B2 (en) 2015-04-14 2022-08-09 Massachusetts Institute Of Technology Iterative expansion microscopy
US10059990B2 (en) 2015-04-14 2018-08-28 Massachusetts Institute Of Technology In situ nucleic acid sequencing of expanded biological samples
EP3332258B1 (en) 2015-08-07 2020-01-01 Massachusetts Institute of Technology Protein retention expansion microscopy
US10364457B2 (en) 2015-08-07 2019-07-30 Massachusetts Institute Of Technology Nanoscale imaging of proteins and nucleic acids via expansion microscopy
GB2559526B (en) 2015-11-03 2021-02-17 Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
AU2017257624B2 (en) 2016-04-25 2023-05-25 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US11352667B2 (en) 2016-06-21 2022-06-07 10X Genomics, Inc. Nucleic acid sequencing
WO2018009463A2 (en) 2016-07-05 2018-01-11 California Institute Of Technology Fractional initiator hybridization chain reaction
EP4428536A3 (en) * 2016-08-31 2024-12-04 President and Fellows of Harvard College Methods of combining the detection of biomolecules into a single assay using fluorescent in situ sequencing
US10995361B2 (en) * 2017-01-23 2021-05-04 Massachusetts Institute Of Technology Multiplexed signal amplified FISH via splinted ligation amplification and sequencing
WO2018157074A1 (en) 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for diagnosing neoplastic lesions
WO2018157048A1 (en) * 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for examining podocyte foot processes in human renal samples using conventional optical microscopy
US11180804B2 (en) 2017-07-25 2021-11-23 Massachusetts Institute Of Technology In situ ATAC sequencing
WO2019068880A1 (en) 2017-10-06 2019-04-11 Cartana Ab RNA MATRIX LIGATION
US11753676B2 (en) 2017-10-11 2023-09-12 Expansion Technologies Multiplexed in situ hybridization of tissue sections for spatially resolved transcriptomics with expansion microscopy
WO2019103996A1 (en) * 2017-11-21 2019-05-31 Expansion Technologies Expansion microscopy compatible and multiplexed in situ hybridization of formalin fixed paraffin embedded tissue sections for spatially resolved transcriptomics
US11873374B2 (en) 2018-02-06 2024-01-16 Massachusetts Institute Of Technology Swellable and structurally homogenous hydrogels and methods of use thereof
US11414701B2 (en) 2018-05-24 2022-08-16 The Broad Institute, Inc. Multimodal readouts for quantifying and sequencing nucleic acids in single cells
WO2019241662A1 (en) 2018-06-15 2019-12-19 Carnegie Mellon University Improved expansion microscopy methods and kits
WO2020013833A1 (en) 2018-07-13 2020-01-16 Massachusetts Institute Of Technology Dimethylacrylamide (dmaa) hydrogel for expansion microscopy (exm)
CN113767175A (zh) 2018-08-28 2021-12-07 10X基因组学股份有限公司 增加空间阵列分辨率
US20210317524A1 (en) 2018-08-28 2021-10-14 10X Genomics, Inc. Resolving spatial arrays
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
US11549135B2 (en) 2018-09-14 2023-01-10 The Broad Institute, Inc. Oligonucleotide-coupled antibodies for single cell or single complex protein measurements
WO2020076976A1 (en) 2018-10-10 2020-04-16 Readcoor, Inc. Three-dimensional spatial molecular indexing
US20220025447A1 (en) 2018-12-10 2022-01-27 10X Genomics, Inc. Generating spatial arrays with gradients
WO2020142490A1 (en) 2018-12-31 2020-07-09 Expansion Technologies Expansion microscopy compatible anchorable h&e staining for histopathology
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
CN114174531A (zh) 2019-02-28 2022-03-11 10X基因组学有限公司 用空间条码化寡核苷酸阵列对生物分析物进行概况分析
CN114127309A (zh) 2019-03-15 2022-03-01 10X基因组学有限公司 使用空间阵列进行单细胞测序的方法
EP3887542A1 (en) 2019-03-22 2021-10-06 10X Genomics, Inc. Three-dimensional spatial analysis
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
CN119351523A (zh) 2019-05-31 2025-01-24 10X基因组学有限公司 检测目标核酸分子的方法
US12265004B2 (en) 2019-11-05 2025-04-01 Massachusetts Institute Of Technology Membrane probes for expansion microscopy
US12157124B2 (en) 2019-11-06 2024-12-03 10X Genomics, Inc. Imaging system hardware
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4055185A1 (en) 2019-11-08 2022-09-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
EP4058598A1 (en) 2019-11-13 2022-09-21 10X Genomics, Inc. Generating capture probes for spatial analysis
CN115004260A (zh) 2019-11-18 2022-09-02 10X基因组学有限公司 用于组织分类的系统和方法
CN117078725A (zh) 2019-11-21 2023-11-17 10X基因组学有限公司 分析物的空间分析
AU2020386521A1 (en) 2019-11-22 2022-06-23 10X Genomics, Inc. Systems and methods for spatial analysis of analytes using fiducial alignment
WO2021113505A1 (en) 2019-12-05 2021-06-10 Massachusetts Institute Of Technology Method for preparing a specimen for expansion microscopy
GB201919032D0 (en) 2019-12-20 2020-02-05 Cartana Ab Method of detecting an analyte
EP4424843A3 (en) 2019-12-23 2024-09-25 10X Genomics, Inc. Methods for spatial analysis using rna-templated ligation
EP4081656A1 (en) 2019-12-23 2022-11-02 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
WO2021142233A1 (en) 2020-01-10 2021-07-15 10X Genomics, Inc. Methods for determining a location of a target nucleic acid in a biological sample
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US12076701B2 (en) 2020-01-31 2024-09-03 10X Genomics, Inc. Capturing oligonucleotides in spatial transcriptomics
US12110548B2 (en) 2020-02-03 2024-10-08 10X Genomics, Inc. Bi-directional in situ analysis
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US12110541B2 (en) 2020-02-03 2024-10-08 10X Genomics, Inc. Methods for preparing high-resolution spatial arrays
US12112833B2 (en) 2020-02-04 2024-10-08 10X Genomics, Inc. Systems and methods for index hopping filtering
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US12129516B2 (en) 2020-02-07 2024-10-29 10X Genomics, Inc. Quantitative and automated permeabilization performance evaluation for spatial transcriptomics
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US12215379B2 (en) 2020-02-17 2025-02-04 10X Genomics, Inc. In situ analysis of chromatin interaction
WO2021168278A1 (en) 2020-02-20 2021-08-26 10X Genomics, Inc. METHODS TO COMBINE FIRST AND SECOND STRAND cDNA SYNTHESIS FOR SPATIAL ANALYSIS
AU2021224760A1 (en) 2020-02-21 2022-09-15 10X Genomics, Inc. Capturing genetic targets using a hybridization approach
EP4484571A3 (en) 2020-02-21 2025-03-19 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
US12188085B2 (en) 2020-03-05 2025-01-07 10X Genomics, Inc. Three-dimensional spatial transcriptomics with sequencing readout
EP4139485B1 (en) 2020-04-22 2023-09-06 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
EP4146819A1 (en) 2020-05-04 2023-03-15 10X Genomics, Inc. Spatial transcriptomic transfer modes
US20230194469A1 (en) 2020-05-19 2023-06-22 10X Genomics, Inc. Electrophoresis cassettes and instrumentation
ES2989052T3 (es) 2020-05-22 2024-11-25 10X Genomics Inc Medición espacio-temporal simultánea de la expresión génica y la actividad celular
EP4153776B1 (en) 2020-05-22 2025-03-05 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021237056A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Rna integrity analysis in a biological sample
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
EP4025692A2 (en) 2020-06-02 2022-07-13 10X Genomics, Inc. Nucleic acid library methods
WO2021247568A1 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Spatial trancriptomics for antigen-receptors
US12031177B1 (en) 2020-06-04 2024-07-09 10X Genomics, Inc. Methods of enhancing spatial resolution of transcripts
EP4421186A3 (en) 2020-06-08 2024-09-18 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252576A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for spatial analysis using blocker oligonucleotides
EP4165207B1 (en) 2020-06-10 2024-09-25 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
EP4164796A4 (en) 2020-06-10 2024-03-06 10x Genomics, Inc. LIQUID DISPENSING METHOD
US12209273B2 (en) 2020-06-12 2025-01-28 10X Genomics, Inc. Nucleic acid assays using click chemistry bioconjugation
AU2021294334A1 (en) 2020-06-25 2023-02-02 10X Genomics, Inc. Spatial analysis of DNA methylation
US12168801B1 (en) 2020-07-02 2024-12-17 10X Genomics, Inc. Hybrid/capture probe designs for full-length cDNA
US11981960B1 (en) 2020-07-06 2024-05-14 10X Genomics, Inc. Spatial analysis utilizing degradable hydrogels
US12209280B1 (en) 2020-07-06 2025-01-28 10X Genomics, Inc. Methods of identifying abundance and location of an analyte in a biological sample using second strand synthesis
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
WO2022025965A1 (en) 2020-07-31 2022-02-03 10X Genomics, Inc. De-crosslinking compounds and methods of use for spatial analysis
US11492662B2 (en) 2020-08-06 2022-11-08 Singular Genomics Systems, Inc. Methods for in situ transcriptomics and proteomics
US20220049303A1 (en) 2020-08-17 2022-02-17 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
US11981958B1 (en) 2020-08-20 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using DNA capture
AU2021344340A1 (en) 2020-09-15 2023-03-23 10X Genomics, Inc. Methods of releasing an extended capture probe from a substrate and uses of the same
US20230313279A1 (en) 2020-09-16 2023-10-05 10X Genomics, Inc. Methods of determining the location of an analyte in a biological sample using a plurality of wells
EP4213993A2 (en) 2020-09-18 2023-07-26 10X Genomics, Inc. Sample handling apparatus and fluid delivery methods
US20230351619A1 (en) 2020-09-18 2023-11-02 10X Genomics, Inc. Sample handling apparatus and image registration methods
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US20220112553A1 (en) * 2020-10-13 2022-04-14 Massachusetts Institute Of Technology Methods for single-molecule analysis of linearized polynucleotides
WO2022081643A2 (en) 2020-10-13 2022-04-21 10X Genomics, Inc. Compositions and methods for generating recombinant antigen binding molecules from single cells
EP4214330A1 (en) 2020-10-22 2023-07-26 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification
US12071667B2 (en) 2020-11-04 2024-08-27 10X Genomics, Inc. Sequence analysis using meta-stable nucleic acid molecules
CN116829733A (zh) 2020-11-06 2023-09-29 10X基因组学有限公司 用于将分析物结合至捕获探针的组合物和方法
EP4247978A1 (en) 2020-11-18 2023-09-27 10X Genomics, Inc. Methods and compositions for analyzing immune infiltration in cancer stroma to predict clinical outcome
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
US11333588B1 (en) 2020-12-07 2022-05-17 Nebulum Technologies Co., Ltd. Matrix-assisted methods and compositions to prepare biological samples for super-resolution imaging
US20220186300A1 (en) 2020-12-11 2022-06-16 10X Genomics, Inc. Methods and compositions for multimodal in situ analysis
WO2022140028A1 (en) 2020-12-21 2022-06-30 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
WO2022147296A1 (en) 2020-12-30 2022-07-07 10X Genomics, Inc. Cleavage of capture probes for spatial analysis
US20240068017A1 (en) 2020-12-30 2024-02-29 10X Genomics, Inc. Methods for analyte capture determination
US12060603B2 (en) 2021-01-19 2024-08-13 10X Genomics, Inc. Methods for internally controlled in situ assays using padlock probes
US11873485B2 (en) 2021-01-26 2024-01-16 California Institute Of Technology Allosteric conditional guide RNAs for cell-selective regulation of CRISPR/Cas
ES2993724T3 (en) 2021-01-29 2025-01-07 10X Genomics Inc Method for transposase mediated spatial tagging and analyzing genomic dna in a biological sample
KR102762387B1 (ko) * 2021-02-24 2025-02-05 한국과학기술원 화학적 염색과 팽창 이미징 기법의 최적화 방법
CN113004885B (zh) * 2021-03-08 2024-06-11 光华临港工程应用技术研发(上海)有限公司 一种用于膨胀超分辨成像的dna纳米结构染料及其应用
EP4301870B1 (en) 2021-03-18 2025-01-15 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
WO2022216688A1 (en) 2021-04-05 2022-10-13 10X Genomics, Inc. Recombinant ligase composition and uses thereof
EP4305196B1 (en) 2021-04-14 2025-04-02 10X Genomics, Inc. Methods of measuring mislocalization of an analyte
WO2022226057A1 (en) 2021-04-20 2022-10-27 10X Genomics, Inc. Methods for assessing sample quality prior to spatial analysis using templated ligation
WO2022235764A1 (en) 2021-05-05 2022-11-10 Singular Genomics Systems, Inc. Multiomic analysis device and methods of use thereof
EP4320271B1 (en) 2021-05-06 2025-03-19 10X Genomics, Inc. Methods for increasing resolution of spatial analysis
EP4347879B1 (en) 2021-06-03 2025-02-19 10X Genomics, Inc. Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis
US20240368711A1 (en) 2021-06-22 2024-11-07 10X Genomics, Inc. Spatial detection of sars-cov-2 using templated ligation
US20240263218A1 (en) 2021-07-13 2024-08-08 10X Genomics, Inc. Methods for spatial analysis using targeted probe silencing
EP4370896A1 (en) 2021-07-13 2024-05-22 10X Genomics, Inc. Methods for preparing polymerized matrix with controllable thickness
US12139751B2 (en) 2021-07-30 2024-11-12 10X Genomics, Inc. Circularizable probes for in situ analysis
US20250019689A1 (en) 2021-08-12 2025-01-16 10X Genomics, Inc. Methods, compositions, and systems for identifying antigen-binding molecules
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
WO2023044071A1 (en) 2021-09-17 2023-03-23 10X Genomics, Inc. Systems and methods for image registration or alignment
WO2023076345A1 (en) 2021-10-26 2023-05-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna capture
EP4430398A1 (en) 2021-11-10 2024-09-18 10X Genomics, Inc. Methods for identification of antigen-binding molecules
EP4419707A1 (en) 2021-11-10 2024-08-28 10X Genomics, Inc. Methods, compositions, and kits for determining the location of an analyte in a biological sample
EP4441741A1 (en) 2021-11-30 2024-10-09 10X Genomics, Inc. Systems and methods for identifying regions of aneuploidy in a tissue
WO2023102118A2 (en) 2021-12-01 2023-06-08 10X Genomics, Inc. Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis
EP4441711A1 (en) 2021-12-20 2024-10-09 10X Genomics, Inc. Self-test for pathology/histology slide imaging device
WO2023150098A1 (en) 2022-02-01 2023-08-10 10X Genomics, Inc. Methods, kits, compositions, and systems for spatial analysis
WO2023150171A1 (en) 2022-02-01 2023-08-10 10X Genomics, Inc. Methods, compositions, and systems for capturing analytes from glioblastoma samples
WO2023150163A1 (en) 2022-02-01 2023-08-10 10X Genomics, Inc. Methods, compositions, and systems for capturing analytes from lymphatic tissue
BE1030246B1 (nl) * 2022-02-04 2023-09-04 Leen Volker Polymeer geassisteerde biomolecule analyse
US20230306593A1 (en) 2022-02-15 2023-09-28 10X Genomics, Inc. Systems and methods for spatial analysis of analytes using fiducial alignment
CN114252324B (zh) * 2022-03-02 2022-05-13 中国人民解放军军事科学院军事医学研究院 一种方便使用的多孔脑片孵育装置
WO2023172670A2 (en) 2022-03-11 2023-09-14 10X Genomics, Inc. Sample handling apparatus and fluid delivery methods
WO2023192616A1 (en) 2022-04-01 2023-10-05 10X Genomics, Inc. Compositions and methods for targeted masking of autofluorescence
WO2023201235A2 (en) 2022-04-12 2023-10-19 10X Genomics, Inc. Compositions and methods for generating and characterizing recombinant antigen binding molecules
EP4519674A1 (en) 2022-05-06 2025-03-12 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
WO2023215552A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Molecular barcode readers for analyte detection
WO2023220300A1 (en) 2022-05-11 2023-11-16 10X Genomics, Inc. Compositions and methods for in situ sequencing
WO2023225519A1 (en) 2022-05-17 2023-11-23 10X Genomics, Inc. Modified transposons, compositions and uses thereof
WO2023229988A1 (en) 2022-05-23 2023-11-30 10X Genomics, Inc. Tissue sample mold
WO2023229982A2 (en) 2022-05-24 2023-11-30 10X Genomics, Inc. Porous structure confinement for convection suppression
US20240035071A1 (en) 2022-06-17 2024-02-01 10X Genomics, Inc. Catalytic de-crosslinking of samples for in situ analysis
WO2023250077A1 (en) 2022-06-22 2023-12-28 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
WO2024015862A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods for characterization of antigen-binding molecules from biological samples
WO2024015578A1 (en) 2022-07-15 2024-01-18 10X Genomics, Inc. Methods for determining a location of a target nucleic acid in a biological sample
WO2024031068A1 (en) 2022-08-05 2024-02-08 10X Genomics, Inc. Systems and methods for immunofluorescence quantification
WO2024036191A1 (en) 2022-08-10 2024-02-15 10X Genomics, Inc. Systems and methods for colocalization
WO2024035844A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Methods for reducing capture of analytes
US12116626B2 (en) 2022-08-16 2024-10-15 10X Genomics, Inc. AP50 polymerases and uses thereof
WO2024044703A1 (en) 2022-08-24 2024-02-29 10X Genomics, Inc. Compositions and methods for antigenic epitope mapping in biological samples
WO2024081212A1 (en) 2022-10-10 2024-04-18 10X Genomics, Inc. In vitro transcription of spatially captured nucleic acids
US20240191297A1 (en) 2022-10-14 2024-06-13 10X Genomics, Inc. Methods, compositions, and systems for assessing biological sample quality
WO2024086167A2 (en) 2022-10-17 2024-04-25 10X Genomics, Inc. Methods, compositions, and kits for determining the location of an analyte in a biological sample
WO2024102809A1 (en) 2022-11-09 2024-05-16 10X Genomics, Inc. Methods, compositions, and kits for determining the location of multiple analytes in a biological sample
WO2024137826A1 (en) 2022-12-21 2024-06-27 10X Genomics, Inc. Analysis of analytes and spatial gene expression
WO2024145224A1 (en) 2022-12-29 2024-07-04 10X Genomics, Inc. Compositions, methods, and systems for high resolution spatial analysis
WO2024145441A1 (en) 2022-12-29 2024-07-04 10X Genomics, Inc. Methods, compositions, and kits for determining a location of a target nucleic acid in a fixed biological sample
WO2024145491A1 (en) 2022-12-30 2024-07-04 10X Genomics, Inc. Methods, compositions, and kits for multiple barcoding and/or high-density spatial barcoding
WO2024145445A1 (en) 2022-12-30 2024-07-04 10X Genomics, Inc. Methods of capturing target analytes
WO2024206603A1 (en) 2023-03-28 2024-10-03 10X Genomics, Inc. Methods, compositions, and kits for reducing analyte mislocalization
WO2024220882A1 (en) 2023-04-21 2024-10-24 10X Genomics, Inc. Methods and compositions for detecting nucleic acids in a fixed biological sample
EP4500178A1 (en) 2023-05-15 2025-02-05 10x Genomics, Inc. Spatial antibody data normalization
WO2024238900A1 (en) 2023-05-17 2024-11-21 10X Genomics, Inc. Methods of reducing mislocalization of an analyte
WO2024238992A1 (en) 2023-05-18 2024-11-21 10X Genomics, Inc. Engineered non-strand displacing family b polymerases for reverse transcription and gap-fill applications
WO2024254316A1 (en) 2023-06-07 2024-12-12 10X Genomics, Inc. Compositions and methods for identifying blood clots in biological samples
WO2024258911A1 (en) 2023-06-13 2024-12-19 10X Genomics, Inc. Sequence specific dna binding proteins
WO2025029605A1 (en) 2023-07-28 2025-02-06 10X Genomics, Inc. Methods and compositions for detecting genetic variants using capture probes and primer extension
WO2025029627A1 (en) 2023-07-31 2025-02-06 10X Genomics, Inc. Methods, compositions, and kits for spatial detection of genetic variants
WO2025043076A1 (en) 2023-08-24 2025-02-27 10X Genomics, Inc. Methods, kits, and compositions for spatial detection of genetic variants
WO2025072119A1 (en) 2023-09-26 2025-04-03 10X Genomics, Inc. Methods, compositions, and kits for detecting spatial chromosomal interactions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025392A1 (en) * 2012-08-09 2014-02-13 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for preparing biological specimens for microscopic analysis
WO2015127183A2 (en) * 2014-02-21 2015-08-27 Massachusetts Institute Of Technology Expansion microscopy

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271278B1 (en) 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
CA2339734A1 (en) 1998-08-07 2000-02-17 Jan Trnovsky Gel microdrops in genetic analysis
US5952232A (en) 1998-09-17 1999-09-14 Rothman; James Edward Expandible microparticle intracellular delivery system
US6107081A (en) 1999-02-05 2000-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Uni-directional cell stretching device
JP2003524772A (ja) 1999-04-27 2003-08-19 シファーゲン バイオシステムズ, インコーポレイテッド 気相イオン分析計のためのプローブ
US6287870B1 (en) 1999-08-20 2001-09-11 Robert A. Levine Method and assembly for separating formed constituents from a liquid constituent in a complex biologic fluid sample
US6878384B2 (en) 2001-03-13 2005-04-12 Microvention, Inc. Hydrogels that undergo volumetric expansion in response to changes in their environment and their methods of manufacture and use
US7189888B2 (en) 2001-12-21 2007-03-13 Kimberly-Clark Worldwide, Inc. Nonabsorbent surge layer having discrete regions of superabsorbent and method for making
US7419593B2 (en) * 2003-11-19 2008-09-02 Amcol International Corp. Bioremediation mat and method of manufacture and use
WO2005069886A2 (en) 2004-01-16 2005-08-04 Northwestern University Sparsely cross-linked nanogels: a novel polymer structure for microchannel dna sequencing
JP2005291759A (ja) 2004-03-31 2005-10-20 Michimasa Kishimoto 二次元画像による病症診断システム
JP4496943B2 (ja) 2004-11-30 2010-07-07 日本電気株式会社 病理診断支援装置、病理診断支援プログラム、病理診断支援装置の作動方法、及び病理診断支援システム
US8367793B2 (en) * 2005-09-30 2013-02-05 Abs Materials, Inc. Swellable materials and methods of use
PT2126586E (pt) 2007-02-01 2010-09-17 Immundiagnostik Ag Determinação directa de vitamina d no soro ou plasma
EP1985682A1 (en) * 2007-04-17 2008-10-29 Services Pétroliers Schlumberger Method and composition for treatment of a well
CA2702118A1 (en) 2007-08-30 2009-03-12 President And Fellows Of Harvard College Compliant surface multi-well culture plate
US20100041128A1 (en) 2008-01-08 2010-02-18 Medtrain Technologies, Llc Microfluidic Device for Application of Shear Stress and Tensile Strain
CN102137924A (zh) 2008-01-30 2011-07-27 杰龙公司 细胞培养制品和筛选
JP4956839B2 (ja) 2008-02-13 2012-06-20 国立大学法人 大分大学 高親水性高分子モノマー水溶液による組織包埋方法
US20090241681A1 (en) 2008-03-27 2009-10-01 Andrew Machauf Hydrogel-based mems biosensor
WO2009142661A1 (en) 2008-05-20 2009-11-26 The Regents Of The University Of California Analysis of ex vivo cells for disease state detection and therapeutic agent selection and monitoring
DK3272879T3 (da) 2008-10-24 2019-08-26 Epicentre Tech Corporation Transposonendesammensætninger og fremgangsmåder til modificering af nukleinsyrer
EP2456885A2 (en) 2009-07-20 2012-05-30 Bar Harbor Biotechnology, Inc. Methods for assessing disease risk
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
CN108061677B (zh) 2010-03-12 2021-10-29 国立研究开发法人理化学研究所 用于生物材料的澄清试剂和其用途
CN103443338B (zh) 2011-02-02 2017-09-22 华盛顿大学商业化中心 大规模平行邻接作图
WO2012142664A1 (en) 2011-04-20 2012-10-26 Monash University Method and device for trapping and analysing cells and the like
EP3088416B1 (en) 2011-12-23 2019-02-27 Mayo Foundation for Medical Education and Research Assessing renal structural alterations and outcomes
JP5967528B2 (ja) 2012-06-22 2016-08-10 国立研究開発法人理化学研究所 生物材料を透明化する方法および生物材料用透明化処理キット
WO2014152984A1 (en) 2013-03-14 2014-09-25 Department of Veterans Affairs, Technology Transfer Program Optical illumination system
US11408890B2 (en) 2015-04-14 2022-08-09 Massachusetts Institute Of Technology Iterative expansion microscopy
US10059990B2 (en) 2015-04-14 2018-08-28 Massachusetts Institute Of Technology In situ nucleic acid sequencing of expanded biological samples
US10364457B2 (en) 2015-08-07 2019-07-30 Massachusetts Institute Of Technology Nanoscale imaging of proteins and nucleic acids via expansion microscopy
EP3332258B1 (en) 2015-08-07 2020-01-01 Massachusetts Institute of Technology Protein retention expansion microscopy
US11214661B2 (en) 2015-09-17 2022-01-04 Massachusetts Institute Of Technology Three-dimensional nanofabrication by patterning of hydrogels
GB2559526B (en) 2015-11-03 2021-02-17 Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025392A1 (en) * 2012-08-09 2014-02-13 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for preparing biological specimens for microscopic analysis
WO2015127183A2 (en) * 2014-02-21 2015-08-27 Massachusetts Institute Of Technology Expansion microscopy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nanoscale imaging of RNA with expansion microscopy;Chen F, Wassie AT, Cote AJ等;《Nature methods》;20160704;第13卷(第8期);第679-684页 *
Optical imaging. Expansion microscopy;Chen F, Tillberg PW, Boyden ES;《Science》;20150130;第347卷(第6221期);第543-548页 *

Also Published As

Publication number Publication date
US10364457B2 (en) 2019-07-30
CA2994958C (en) 2024-02-13
US20170067096A1 (en) 2017-03-09
EP3332029A1 (en) 2018-06-13
WO2017027367A1 (en) 2017-02-16
CN108474029A (zh) 2018-08-31
CA2994958A1 (en) 2017-02-16
EP3332029B1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
CN108474029B (zh) 通过扩展显微法的蛋白质和核酸的纳米级成像
Chen et al. Nanoscale imaging of RNA with expansion microscopy
JP7502787B2 (ja) インサイチュ遺伝子配列決定の方法
US20230212658A1 (en) Multiplex labeling of molecules by sequential hybridization barcoding
US10526649B2 (en) Augmenting in situ nucleic acid sequencing of expanded biological samples with in vitro sequence information
US20230032082A1 (en) Spatial barcoding
JP5764730B2 (ja) 1個だけで標識された多種類のプローブを用いるmRNA単一分子の画像化
CN108350486B (zh) 在横切面组织的用户定义区域中的基因表达的同时定量
EP3027773B1 (en) Quantitative dna-based imaging and super-resolution imaging
EP4050112A1 (en) Nucleic acid sequencing
US20160369329A1 (en) Multiplex labeling of molecules by sequential hybridization barcoding using probes with cleavable linkers
US20230034263A1 (en) Compositions and methods for spatial profiling of biological materials using time-resolved luminescence measurements
JP2022058977A (ja) ライゲーション増幅を使用する分子検出
JP2020516278A (ja) 多種多様なライゲーションによるオリゴヌクレオチドプローブの標識
Cao et al. Preparation of long single-strand DNA concatemers for high-level fluorescence in situ hybridization
JP2023507809A (ja) Rna検出
US20210198735A1 (en) Methods and systems for sensitive and multiplexed analysis of biological samples using cleavable fluorescent streptavidin and anti-hapten antibodies
Stein et al. Cryosectioning-enabled super-resolution microscopy for studying nuclear architecture at the single protein level
US20250075263A1 (en) Methods and compositions for enhancing signal detection in situ using metal nanoparticles
Wassie Nanoscale biomolecular mapping in cells and tissues with expansion microscopy
Stein et al. Cryosectioning-enhanced super-resolution microscopy for single-protein imaging across cells and tissues
JP2004290093A (ja) 核酸の2本鎖構造解消の測定方法およびその測定キット
JPWO2006064591A1 (ja) 基板、及び標的物質の定量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant