CN108470803B - Epitaxial wafer of light emitting diode and manufacturing method thereof - Google Patents
Epitaxial wafer of light emitting diode and manufacturing method thereof Download PDFInfo
- Publication number
- CN108470803B CN108470803B CN201810229571.0A CN201810229571A CN108470803B CN 108470803 B CN108470803 B CN 108470803B CN 201810229571 A CN201810229571 A CN 201810229571A CN 108470803 B CN108470803 B CN 108470803B
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- carrier
- epitaxial wafer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种发光二极管的外延片及制作方法,属于光电子制造技术领域。该外延片包括衬底以及依次层叠在衬底上的缓冲层、未掺杂氮化镓层、N型层、载流子改善层、有源层、电子阻挡层、P型层和P型接触层,载流子改善层为金属导电层或金属氧化物导电层,通过在有源层和N型层之间设置载流子改善层,由于载流子改善层为金属导电层或金属氧化物导电层,载流子改善层的电阻较低,且各区域的电阻较均匀,有利于电子在载流子改善层内的横向扩展,使电子更加均匀的进入到有源层中,从而提高有源层的各区域发光亮度的均匀性和一致性。
The invention discloses an epitaxial wafer of a light-emitting diode and a manufacturing method thereof, belonging to the technical field of optoelectronic manufacturing. The epitaxial wafer includes a substrate and a buffer layer, an undoped gallium nitride layer, an N-type layer, a carrier improvement layer, an active layer, an electron blocking layer, a P-type layer, and a P-type contact stacked sequentially on the substrate. Layer, the carrier improvement layer is a metal conductive layer or a metal oxide conductive layer, by setting the carrier improvement layer between the active layer and the N-type layer, because the carrier improvement layer is a metal conductive layer or a metal oxide Conductive layer, the resistance of the carrier improvement layer is low, and the resistance of each region is relatively uniform, which is conducive to the lateral expansion of electrons in the carrier improvement layer, so that the electrons enter the active layer more uniformly, thereby improving the active layer. The uniformity and consistency of the luminance of each area of the source layer.
Description
技术领域technical field
本发明涉及光电子制造技术领域,特别涉及一种发光二极管的外延片及制作方法。The invention relates to the technical field of optoelectronic manufacturing, in particular to an epitaxial wafer and a manufacturing method of a light emitting diode.
背景技术Background technique
LED(Light Emitting Diode,发光二极管)具有体积小、寿命长、功耗低等优点,目前被广泛应用于汽车信号灯、交通信号灯、显示屏以及照明设备。LED (Light Emitting Diode, Light Emitting Diode) has the advantages of small size, long life, low power consumption, etc., and is currently widely used in automobile signal lights, traffic signal lights, display screens and lighting equipment.
现有的LED主要包括衬底以及依次层叠在衬底上的缓冲层、未掺杂氮化镓层、N型层、有源层、电子阻挡层、P型层和P型接触层,LED通电后,载流子(包括N型层的电子和P型层的空穴)会向有源层迁移,并在有源层中复合发光。The existing LED mainly includes a substrate and a buffer layer, an undoped gallium nitride layer, an N-type layer, an active layer, an electron blocking layer, a P-type layer and a P-type contact layer stacked on the substrate in sequence. Finally, carriers (including electrons in the N-type layer and holes in the P-type layer) will migrate to the active layer and recombine in the active layer to emit light.
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor finds that there are at least the following problems in the prior art:
由于电子的迁移率较快,且在N型层上的不同区域电子的迁移率也不一致,这使得有源层的各区域发光亮度不均匀。Since the mobility of electrons is relatively fast, and the mobility of electrons in different regions on the N-type layer is also inconsistent, this makes the luminance of each region of the active layer uneven.
发明内容Contents of the invention
为了解决有源层的各区域发光亮度不均匀的问题,本发明实施例提供了一种发光二极管的外延片及制作方法。所述技术方案如下:In order to solve the problem of uneven luminance in each area of the active layer, embodiments of the present invention provide an epitaxial wafer of a light emitting diode and a manufacturing method thereof. Described technical scheme is as follows:
一方面,本发明实施例提供了一种发光二极管的外延片,所述外延片包括衬底以及依次层叠在所述衬底上的缓冲层、未掺杂氮化镓层、N型层、载流子改善层、有源层、电子阻挡层、P型层和P型接触层,所述载流子改善层为金属导电层,所述金属导电层采用单一金属或合金制成,所述单一金属包括Mg、Ca、Yb中的任意一种,所述合金包括Mg:Ag、Yb:Ag中的任意一种。On the one hand, an embodiment of the present invention provides an epitaxial wafer of a light-emitting diode. The epitaxial wafer includes a substrate, a buffer layer, an undoped gallium nitride layer, an N-type layer, and a carrier layer sequentially stacked on the substrate. The carrier improving layer, the active layer, the electron blocking layer, the P-type layer and the P-type contact layer, the carrier improving layer is a metal conductive layer, and the metal conductive layer is made of a single metal or alloy, and the single The metal includes any one of Mg, Ca, and Yb, and the alloy includes any one of Mg:Ag, Yb:Ag.
可选地,所述载流子改善层的厚度为5~100nm。Optionally, the carrier improvement layer has a thickness of 5-100 nm.
另一方面,本发明实施例还提供了一种外延片的制作方法,所述制作方法包括:On the other hand, an embodiment of the present invention also provides a method for manufacturing an epitaxial wafer, the method comprising:
提供一衬底;providing a substrate;
在所述衬底上依次外延生长缓冲层、未掺杂氮化镓层、N型层、载流子改善层、有源层、电子阻挡层、P型层和P型接触层,所述载流子改善层为金属导电层,所述金属导电层采用单一金属或合金制成,所述单一金属包括Mg、Ca、Yb中的任意一种,所述合金包括Mg:Ag、Yb:Ag中的任意一种。A buffer layer, an undoped gallium nitride layer, an N-type layer, a carrier improvement layer, an active layer, an electron blocking layer, a P-type layer, and a P-type contact layer are epitaxially grown in sequence on the substrate. The flow improvement layer is a metal conductive layer, and the metal conductive layer is made of a single metal or an alloy, the single metal includes any one of Mg, Ca, and Yb, and the alloy includes Mg:Ag, Yb:Ag any of the
可选地,所述载流子改善层采用物理气相沉积法制作。Optionally, the carrier improvement layer is fabricated by physical vapor deposition.
可选地,所述载流子改善层的生长温度为400~800℃。Optionally, the growth temperature of the carrier improvement layer is 400-800°C.
可选地,所述载流子改善层的生长压力为5~150mtorr。Optionally, the growth pressure of the carrier improvement layer is 5-150 mtorr.
本发明实施例提供的技术方案带来的有益效果是:通过在有源层和N型层之间设置载流子改善层,由于载流子改善层为金属导电层或金属氧化物导电层,载流子改善层的电阻较低,且各区域的电阻较均匀,有利于电子在载流子改善层内的横向扩展,使电子更加均匀的进入到有源层中,从而提高有源层的各区域发光亮度的均匀性和一致性。The beneficial effect brought by the technical solution provided by the embodiment of the present invention is: by disposing the carrier improvement layer between the active layer and the N-type layer, since the carrier improvement layer is a metal conductive layer or a metal oxide conductive layer, The resistance of the carrier improvement layer is low, and the resistance of each region is relatively uniform, which is conducive to the lateral expansion of electrons in the carrier improvement layer, so that the electrons enter the active layer more uniformly, thereby improving the active layer. The uniformity and consistency of the brightness of each area.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1是本发明实施例提供的一种发光二极管的外延片的结构图;Fig. 1 is a structural diagram of an epitaxial wafer of a light emitting diode provided by an embodiment of the present invention;
图2是本发明实施例提供的一种有源层的结构示意图;FIG. 2 is a schematic structural diagram of an active layer provided by an embodiment of the present invention;
图3是本发明实施例提供的一种发光二极管的外延片的制作方法流程图;Fig. 3 is a flow chart of a method for manufacturing an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention;
图4是本发明实施例提供的另一种发光二极管的制作方法的流程图;Fig. 4 is a flowchart of another manufacturing method of a light emitting diode provided by an embodiment of the present invention;
图5~11是本发明实施例提供的一种发光二极管的外延片的制备过程示意图。5-11 are schematic diagrams of the preparation process of an epitaxial wafer of a light emitting diode provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
图1是本发明实施例提供的一种发光二极管的外延片的结构图。如图1所示,该外延片包括衬底10以及依次层叠在衬底10上的缓冲层20、未掺杂氮化镓层30、N型层40、载流子改善层50、有源层60、电子阻挡层70、P型层80和P型接触层90,载流子改善层50为金属导电层或金属氧化物导电层。FIG. 1 is a structural diagram of an epitaxial wafer of a light emitting diode provided by an embodiment of the present invention. As shown in FIG. 1, the epitaxial wafer includes a substrate 10 and a buffer layer 20, an undoped gallium nitride layer 30, an N-type layer 40, a carrier improvement layer 50, and an active layer sequentially stacked on the substrate 10. 60. The electron blocking layer 70, the P-type layer 80 and the P-type contact layer 90, the carrier improving layer 50 is a metal conductive layer or a metal oxide conductive layer.
本发明实施例通过在有源层和N型层之间设置载流子改善层,由于载流子改善层为金属导电层或金属氧化物导电层,载流子改善层的电阻较低,且各区域的电阻较均匀,有利于电子在载流子改善层内的横向扩展,使电子更加均匀的进入到有源层中,从而提高有源层的各区域发光亮度的均匀性和一致性。In the embodiment of the present invention, the carrier improvement layer is provided between the active layer and the N-type layer. Since the carrier improvement layer is a metal conductive layer or a metal oxide conductive layer, the resistance of the carrier improvement layer is low, and The resistance of each region is relatively uniform, which is conducive to the lateral expansion of electrons in the carrier improvement layer, so that electrons can enter the active layer more uniformly, thereby improving the uniformity and consistency of the luminous brightness of each region of the active layer.
在本发明的一种实施例中,金属导电层可以采用单一金属制成。In an embodiment of the present invention, the metal conductive layer can be made of a single metal.
具体地,单一金属可以包括Mg、Ca、Yb中的任意一种,Mg、Ca、Yb具有良好的导电性,有利于电子更加均匀的迁移到有源层。Specifically, the single metal may include any one of Mg, Ca, and Yb. Mg, Ca, and Yb have good electrical conductivity, which is conducive to more uniform migration of electrons to the active layer.
在本发明的另一种实施例中,金属导电层也可以采用合金制成。In another embodiment of the present invention, the metal conductive layer can also be made of alloy.
具体地,合金可以包括Mg:Ag、Yb:Ag中的任意一种。Specifically, the alloy may include any one of Mg:Ag and Yb:Ag.
在本发明的另一种实施例中,金属导电层可以是金属氧化物导电层,金属氧化物导电层可以包括Mg、Ca、Yb中的任意一种的氧化物。Mg、Ca、Yb的氧化物也具有良好的导电性,有利于电子更加均匀的迁移到有源层。In another embodiment of the present invention, the metal conductive layer may be a metal oxide conductive layer, and the metal oxide conductive layer may include any one of oxides of Mg, Ca, and Yb. Oxides of Mg, Ca, and Yb also have good electrical conductivity, which is conducive to more uniform migration of electrons to the active layer.
可选地,载流子改善层50的厚度可以为5~100nm。该厚度下,载流子改善层50呈半透明状,可以将有源层60发出的光向P型层70一侧反射,有利于提高LED的正面的出光效率。Optionally, the thickness of the carrier improvement layer 50 may be 5-100 nm. Under this thickness, the carrier improvement layer 50 is translucent, and can reflect the light emitted by the active layer 60 to the side of the P-type layer 70, which is beneficial to improving the light extraction efficiency of the front side of the LED.
可选地,衬底10可以为蓝宝石衬底,蓝宝石衬底为一种常用衬底,技术成熟,成本低。Optionally, the substrate 10 may be a sapphire substrate, which is a commonly used substrate with mature technology and low cost.
缓冲层20可以为GaN缓冲层,缓冲层20的厚度可以为15~35nm,生长的GaN缓冲层的厚度不同,最终形成的外延层的质量也会不同,若GaN缓冲层的厚度过薄,则会导致GaN缓冲层的表面较为疏松和粗糙,不能为后续结构的生长提供一个好的模板,随着GaN缓冲层厚度的增加,GaN缓冲层的表面逐渐变得较为致密和平整,有利于后续结构的生长,但是若GaN缓冲层的厚度过厚,则会导致GaN缓冲层的表面过于致密,同样不利于后续结构的生长,无法减少外延层中的晶格缺陷。The buffer layer 20 can be a GaN buffer layer, and the thickness of the buffer layer 20 can be 15-35 nm. The thickness of the grown GaN buffer layer is different, and the quality of the finally formed epitaxial layer will also be different. If the thickness of the GaN buffer layer is too thin, then It will cause the surface of the GaN buffer layer to be relatively loose and rough, which cannot provide a good template for the growth of subsequent structures. As the thickness of the GaN buffer layer increases, the surface of the GaN buffer layer will gradually become denser and smoother, which is conducive to the subsequent structure. However, if the thickness of the GaN buffer layer is too thick, the surface of the GaN buffer layer will be too dense, which is also not conducive to the growth of subsequent structures, and the lattice defects in the epitaxial layer cannot be reduced.
可选地,未掺杂氮化镓层30的厚度可以为1~5μm,在本实施例中,未掺杂氮化镓层30的厚度为3μm。Optionally, the thickness of the undoped GaN layer 30 may be 1-5 μm, and in this embodiment, the thickness of the undoped GaN layer 30 is 3 μm.
可选地,N型层40为N型GaN层,N型层40的厚度可以为1~5μm,N型层40中的Si的掺杂浓度可以为1018~1019cm-3。Optionally, the N-type layer 40 is an N-type GaN layer, the thickness of the N-type layer 40 may be 1-5 μm, and the doping concentration of Si in the N-type layer 40 may be 10 18 -10 19 cm -3 .
图2是本发明实施例提供的一种有源层的结构示意图,如图2所示,有源层60可以包括交替层叠的5~11个周期的InxGa1-xN层61和GaN层62,0<x<1,其中,InxGa1-xN层61的厚度可以为2~4nm,GaN层62的厚度可以为9~20nm,本实施例中,InxGa1-xN层61的厚度为3nm,GaN层62的厚度为15nm。Fig. 2 is a schematic structural diagram of an active layer provided by an embodiment of the present invention. As shown in Fig. 2, the active layer 60 may include alternately stacked 5-11 periods of In x Ga 1-x N layers 61 and GaN Layer 62, 0<x<1, where the In x Ga 1-x N layer 61 may have a thickness of 2-4 nm, and the GaN layer 62 may have a thickness of 9-20 nm. In this embodiment, the In x Ga 1-x The thickness of the N layer 61 is 3 nm, and the thickness of the GaN layer 62 is 15 nm.
需要说明的是,图2中所示出的InxGa1-xN层61和GaN层62的层数仅为示意,并不用以限制其各自的层数。It should be noted that the numbers of the In x Ga 1-x N layer 61 and the GaN layer 62 shown in FIG. 2 are only for illustration and are not intended to limit their respective numbers.
电子阻挡层70可以是P型AlyGa1-yN层,其中,0.1<y<0.5。电子阻挡层70的厚度可以为50~150nm,本实施例中,电子阻挡层70的厚度为100nm。The electron blocking layer 70 may be a P-type Al y Ga 1-y N layer, where 0.1<y<0.5. The thickness of the electron blocking layer 70 may be 50-150 nm, and in this embodiment, the thickness of the electron blocking layer 70 is 100 nm.
可选地,P型层80为P型GaN层,P型层80的厚度可以为100~800nm,在本实施例中,P型层80的厚度为500nm。Optionally, the P-type layer 80 is a P-type GaN layer, and the thickness of the P-type layer 80 may be 100-800 nm. In this embodiment, the thickness of the P-type layer 80 is 500 nm.
可选地,P型接触层90的厚度可以为5~300nm,在本实施例中,P型接触层90的厚度为200nm。Optionally, the thickness of the P-type contact layer 90 may be 5-300 nm. In this embodiment, the thickness of the P-type contact layer 90 is 200 nm.
图3是本发明实施例提供的一种发光二极管的外延片的制作方法流程图,用于制作如图1所示的外延片,如图3所示,该制作方法包括:Fig. 3 is a flow chart of a method for manufacturing an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention, which is used to manufacture the epitaxial wafer shown in Fig. 1 , as shown in Fig. 3 , the manufacturing method includes:
S11:提供一衬底。S11: Provide a substrate.
本实施例中,选用蓝宝石衬底。In this embodiment, a sapphire substrate is selected.
S12:在衬底上依次外延生长缓冲层、未掺杂氮化镓层、N型层、载流子改善层、有源层、电子阻挡层、P型层和P型接触层。S12: epitaxially growing a buffer layer, an undoped gallium nitride layer, an N-type layer, a carrier improvement layer, an active layer, an electron blocking layer, a P-type layer, and a P-type contact layer on the substrate in sequence.
其中,载流子改善层为金属导电层或金属氧化物导电层。Wherein, the carrier improvement layer is a metal conductive layer or a metal oxide conductive layer.
本发明实施例通过在有源层和N型层之间设置载流子改善层,由于载流子改善层为金属导电层或金属氧化物导电层,载流子改善层的电阻较低,且各区域的电阻较均匀,有利于电子在载流子改善层内的横向扩展,使电子更加均匀的进入到有源层中,从而提高有源层的各区域发光亮度的均匀性和一致性。In the embodiment of the present invention, the carrier improvement layer is provided between the active layer and the N-type layer. Since the carrier improvement layer is a metal conductive layer or a metal oxide conductive layer, the resistance of the carrier improvement layer is low, and The resistance of each region is relatively uniform, which is conducive to the lateral expansion of electrons in the carrier improvement layer, so that electrons can enter the active layer more uniformly, thereby improving the uniformity and consistency of the luminous brightness of each region of the active layer.
图4是本发明实施例提供的另一种发光二极管的制作方法的流程图,下面结合附图5~11对图4提供的制作方法进行详细说明:Fig. 4 is a flow chart of another light-emitting diode manufacturing method provided by an embodiment of the present invention. The manufacturing method provided in Fig. 4 will be described in detail below in conjunction with accompanying drawings 5-11:
S21:提供一衬底。S21: Provide a substrate.
实现时,该衬底可以是蓝宝石衬底,蓝宝石衬底是一种常见的衬底,技术成熟,成本低。When implemented, the substrate may be a sapphire substrate, which is a common substrate with mature technology and low cost.
在步骤S21中,可以对蓝宝石衬底进行预处理,具体可以包括在氢气气氛中对蓝宝石衬底进行退火8分钟,退火温度为1000~1200℃,再对蓝宝石衬底进行氮化处理。In step S21, the sapphire substrate may be pretreated, which may specifically include annealing the sapphire substrate in a hydrogen atmosphere for 8 minutes at an annealing temperature of 1000-1200° C., and then nitriding the sapphire substrate.
S22:在衬底上外延生长缓冲层。S22: epitaxially growing a buffer layer on the substrate.
如图5所示,在衬底10上生长有GaN缓冲层20。As shown in FIG. 5 , a GaN buffer layer 20 is grown on the substrate 10 .
其中,GaN缓冲层的厚度可以为15nm~35nm。生长的GaN缓冲层的厚度不同,最终形成的外延层的质量也会不同,若GaN缓冲层的厚度过薄,则会导致GaN缓冲层的表面较为疏松和粗糙,不能为后续结构的生长提供一个好的模板,随着GaN缓冲层厚度的增加,GaN缓冲层的表面逐渐变得较为致密和平整,有利于后续结构的生长,但是若GaN缓冲层的厚度过厚,则会导致GaN缓冲层的表面过于致密,同样不利于后续结构的生长,无法减少外延层中的晶格缺陷。Wherein, the thickness of the GaN buffer layer may be 15nm-35nm. The thickness of the grown GaN buffer layer is different, and the quality of the final epitaxial layer will also be different. If the thickness of the GaN buffer layer is too thin, the surface of the GaN buffer layer will be relatively loose and rough, which cannot provide a solid foundation for the growth of subsequent structures. For a good template, as the thickness of the GaN buffer layer increases, the surface of the GaN buffer layer gradually becomes denser and smoother, which is conducive to the growth of subsequent structures. However, if the thickness of the GaN buffer layer is too thick, it will cause the GaN buffer layer The surface is too dense, which is also not conducive to the growth of subsequent structures, and cannot reduce the lattice defects in the epitaxial layer.
具体地,生长GaN缓冲层时,生长温度可以为400~600℃,生长压力可以为400torr~600torr。Specifically, when growing the GaN buffer layer, the growth temperature may be 400-600° C., and the growth pressure may be 400 torr-600 torr.
在生长GaN缓冲层后,还可以对缓冲层进行原位退火处理,温度为1000~1200℃,退火时间为5~10分钟,退火压力为400torr~600torr。After growing the GaN buffer layer, in-situ annealing can also be performed on the buffer layer, the temperature is 1000-1200°C, the annealing time is 5-10 minutes, and the annealing pressure is 400torr-600torr.
S23:在缓冲层上生长未掺杂氮化镓层。S23: growing an undoped gallium nitride layer on the buffer layer.
如图6所示,在缓冲层20上生长有未掺杂氮化镓层30。未掺杂氮化镓层30的厚度可以为1~5μm,在本实施例中,未掺杂氮化镓层30的厚度为3μm。As shown in FIG. 6 , an undoped GaN layer 30 is grown on the buffer layer 20 . The thickness of the undoped GaN layer 30 may be 1-5 μm, and in this embodiment, the thickness of the undoped GaN layer 30 is 3 μm.
未掺杂氮化镓层30的生长温度可以为1000~1100℃,生长压力可以为100torr~500torr。The growth temperature of the undoped gallium nitride layer 30 may be 1000-1100° C., and the growth pressure may be 100 torr-500 torr.
S24:在未掺杂氮化镓层上生长N型层。S24: growing an N-type layer on the undoped GaN layer.
如图7所示,在未掺杂氮化镓层30上生长有N型层40。As shown in FIG. 7 , an N-type layer 40 is grown on the undoped GaN layer 30 .
实现地,N型层40为N型GaN层,N型层40的厚度可以为1~5μm,N型层40中的Si的掺杂浓度可以为1018~1019cm-3。Realistically, the N-type layer 40 is an N-type GaN layer, the thickness of the N-type layer 40 can be 1-5 μm, and the doping concentration of Si in the N-type layer 40 can be 10 18 -10 19 cm −3 .
N型层40的生长温度可以为1000~1200℃,生长压力可以为100torr~500torr。The growth temperature of the N-type layer 40 may be 1000-1200° C., and the growth pressure may be 100 torr-500 torr.
S25:在N型层上生长载流子改善层。S25: growing a carrier improvement layer on the N-type layer.
如图8所示,在N型层40上生长有载流子改善层50。载流子改善层50可以为金属导电层或金属氧化物导电层。As shown in FIG. 8 , a carrier improving layer 50 is grown on the N-type layer 40 . The carrier improvement layer 50 can be a metal conductive layer or a metal oxide conductive layer.
在本发明的一种实施例中,金属导电层可以采用单一金属制成。In an embodiment of the present invention, the metal conductive layer can be made of a single metal.
具体地,单一金属可以包括Mg、Ca、Yb中的任意一种,Mg、Ca、Yb具有良好的导电性,有利于电子更加均匀的迁移到有源层。Specifically, the single metal may include any one of Mg, Ca, and Yb. Mg, Ca, and Yb have good electrical conductivity, which is conducive to more uniform migration of electrons to the active layer.
在本发明的另一种实施例中,金属导电层也可以采用合金制成。In another embodiment of the present invention, the metal conductive layer can also be made of alloy.
具体地,合金可以包括Mg:Ag、Yb:Ag中的任意一种。Specifically, the alloy may include any one of Mg:Ag and Yb:Ag.
在本发明的另一种实施例中,金属导电层可以是金属氧化物导电层,金属氧化物导电层可以包括Mg、Ca、Yb中的任意一种的氧化物。Mg、Ca、Yb的氧化物也具有良好的导电性,有利于电子更加均匀的迁移到有源层。In another embodiment of the present invention, the metal conductive layer may be a metal oxide conductive layer, and the metal oxide conductive layer may include any one of oxides of Mg, Ca, and Yb. Oxides of Mg, Ca, and Yb also have good electrical conductivity, which is conducive to more uniform migration of electrons to the active layer.
具体地,载流子改善层50可以采用物理气相沉积法制作。可以在氩气气氛下进行载流子改善层50的制作,基材与靶材之间的间距可以为4~15cm,功率为2500~4000W,转速可以为30~200r/min。Specifically, the carrier improvement layer 50 can be fabricated by physical vapor deposition. The carrier improving layer 50 can be fabricated in an argon atmosphere, the distance between the substrate and the target can be 4-15 cm, the power can be 2500-4000 W, and the rotation speed can be 30-200 r/min.
实现时,靶材的纯度不小于99.99%,以确保制作出的金属导电层的质量。When it is realized, the purity of the target material is not less than 99.99%, so as to ensure the quality of the manufactured metal conductive layer.
载流子改善层50的生长温度可以为400~800℃。The growth temperature of the carrier improving layer 50 may be 400-800°C.
载流子改善层50的生长压力可以为5~150mtorr。The growth pressure of the carrier improvement layer 50 may be 5-150 mtorr.
S26:在载流子改善层上生长有源层。S26: growing an active layer on the carrier improvement layer.
如图9所示,在载流子改善层50上生长有有源层60。As shown in FIG. 9 , an active layer 60 is grown on the carrier improving layer 50 .
具体地,有源层60可以包括交替层叠的5~11个周期的InxGa1-xN层61和GaN层62,其中,0<x<1。Specifically, the active layer 60 may include 5-11 periods of In x Ga 1-x N layers 61 and GaN layers 62 stacked alternately, where 0<x<1.
可选地,InxGa1-xN层61的厚度可以为2~4nm,GaN层62的厚度可以为9~20nm,本实施例中,InxGa1-xN层61的厚度为3nm,GaN层62的厚度为15nm。Optionally, the thickness of the In x Ga 1-x N layer 61 may be 2-4 nm, and the thickness of the GaN layer 62 may be 9-20 nm. In this embodiment, the thickness of the In x Ga 1-x N layer 61 is 3 nm , the thickness of the GaN layer 62 is 15 nm.
实现时,InxGa1-xN层61的生长温度可以为720~829℃,生长压力可以为100~500torr。GaN层62的生长温度可以为850~959℃,生长压力可以为100~500torr。When implemented, the growth temperature of the In x Ga 1-x N layer 61 may be 720-829° C., and the growth pressure may be 100-500 torr. The growth temperature of the GaN layer 62 may be 850-959° C., and the growth pressure may be 100-500 torr.
需要说明的是,图9中所示出的InxGa1-xN层61和GaN层62的层数仅为示意,并不用以限制其各自的层数。It should be noted that the numbers of the In x Ga 1-x N layer 61 and the GaN layer 62 shown in FIG. 9 are only for illustration and are not intended to limit their respective numbers of layers.
S27:在有源层上生长电子阻挡层。S27: growing an electron blocking layer on the active layer.
如图10所示,在有源层60上生长有电子阻挡层70。电子阻挡层70可以是P型AlyGa1-yN层,其中,0.1<y<0.5。As shown in FIG. 10 , an electron blocking layer 70 is grown on the active layer 60 . The electron blocking layer 70 may be a P-type Al y Ga 1-y N layer, where 0.1<y<0.5.
电子阻挡层70的生长温度可以为850~1080℃,生长压力可以为200~500torr。所生长的电子阻挡层70的厚度可以为50~150nm,本实施例中,电子阻挡层70的厚度为100nm。若电子阻挡层70的厚度过薄,则电子比较容易穿过电子阻挡层70,若电子阻挡层70过厚,会增加电子阻挡层70对光的吸收,导致亮度降低。The growth temperature of the electron blocking layer 70 may be 850-1080° C., and the growth pressure may be 200-500 torr. The thickness of the grown electron blocking layer 70 may be 50-150 nm, and in this embodiment, the thickness of the electron blocking layer 70 is 100 nm. If the thickness of the electron blocking layer 70 is too thin, electrons can easily pass through the electron blocking layer 70 , and if the electron blocking layer 70 is too thick, the absorption of light by the electron blocking layer 70 will be increased, resulting in reduced brightness.
S28:在电子阻挡层上生长P型层。S28: growing a P-type layer on the electron blocking layer.
如图11所示,在电子阻挡层70上生长有P型层80。As shown in FIG. 11 , a P-type layer 80 is grown on the electron blocking layer 70 .
具体地,P型层80为P型GaN层,P型层80的厚度可以为100~800nm,在本实施例中,P型层80的厚度为500nm。Specifically, the P-type layer 80 is a P-type GaN layer, and the thickness of the P-type layer 80 may be 100-800 nm. In this embodiment, the thickness of the P-type layer 80 is 500 nm.
P型层80的生长温度可以为850~1080℃,生长压力可以为100~300torr。The growth temperature of the P-type layer 80 may be 850-1080° C., and the growth pressure may be 100-300 torr.
S29:在P型层上生长P型接触层。S29: growing a P-type contact layer on the P-type layer.
参照图1,在P型层80上生长有P型接触层90。Referring to FIG. 1 , a P-type contact layer 90 is grown on the P-type layer 80 .
具体地,P型接触层90的厚度可以为5~300nm,在本实施例中,P型接触层90的厚度为200nm。Specifically, the thickness of the P-type contact layer 90 may be 5-300 nm. In this embodiment, the thickness of the P-type contact layer 90 is 200 nm.
P型接触层90的生长温度可以为850~1080℃,生长压力可以为100~300torr。The growth temperature of the P-type contact layer 90 may be 850-1080° C., and the growth pressure may be 100-300 torr.
在完成P型接触层90的生长后,可以在氨气气氛中进行退火处理,退火温度为650~850℃,退火处理时间为5~15分钟。After the growth of the P-type contact layer 90 is completed, annealing treatment may be performed in an ammonia atmosphere, the annealing temperature is 650-850° C., and the annealing treatment time is 5-15 minutes.
在完成步骤S29后可以对外延片进行后续加工,以完成LED芯片的制作。After step S29 is completed, subsequent processing can be performed on the epitaxial wafer to complete the fabrication of the LED chip.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810229571.0A CN108470803B (en) | 2018-03-20 | 2018-03-20 | Epitaxial wafer of light emitting diode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810229571.0A CN108470803B (en) | 2018-03-20 | 2018-03-20 | Epitaxial wafer of light emitting diode and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108470803A CN108470803A (en) | 2018-08-31 |
CN108470803B true CN108470803B (en) | 2019-11-12 |
Family
ID=63264538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810229571.0A Active CN108470803B (en) | 2018-03-20 | 2018-03-20 | Epitaxial wafer of light emitting diode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108470803B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109545918B (en) * | 2018-09-27 | 2020-11-27 | 华灿光电(浙江)有限公司 | A kind of gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof |
CN110047982B (en) * | 2019-02-27 | 2020-07-07 | 华灿光电(苏州)有限公司 | Light-emitting diode, epitaxial wafer and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1140897A (en) * | 1997-07-22 | 1999-02-12 | Oki Electric Ind Co Ltd | Semiconductor laser element and its manufacture |
CN102208503A (en) * | 2011-01-25 | 2011-10-05 | 中山大学佛山研究院 | Light-emitting diode (LED) epitaxial structure and manufacturing method thereof |
CN105449052A (en) * | 2014-08-25 | 2016-03-30 | 东莞市中镓半导体科技有限公司 | Method for preparing high-efficiency near-ultraviolet LED with asymmetric current expansion layer by using MOCVD |
CN106384772A (en) * | 2016-10-21 | 2017-02-08 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN206148461U (en) * | 2016-10-09 | 2017-05-03 | 惠州比亚迪实业有限公司 | Light -emitting diode |
CN106981563A (en) * | 2017-05-16 | 2017-07-25 | 广东工业大学 | A kind of power-type uv-LED device |
CN107437542A (en) * | 2017-07-31 | 2017-12-05 | 广东工业大学 | A kind of UV LED chip and preparation method thereof |
-
2018
- 2018-03-20 CN CN201810229571.0A patent/CN108470803B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1140897A (en) * | 1997-07-22 | 1999-02-12 | Oki Electric Ind Co Ltd | Semiconductor laser element and its manufacture |
CN102208503A (en) * | 2011-01-25 | 2011-10-05 | 中山大学佛山研究院 | Light-emitting diode (LED) epitaxial structure and manufacturing method thereof |
CN105449052A (en) * | 2014-08-25 | 2016-03-30 | 东莞市中镓半导体科技有限公司 | Method for preparing high-efficiency near-ultraviolet LED with asymmetric current expansion layer by using MOCVD |
CN206148461U (en) * | 2016-10-09 | 2017-05-03 | 惠州比亚迪实业有限公司 | Light -emitting diode |
CN106384772A (en) * | 2016-10-21 | 2017-02-08 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and preparation method thereof |
CN106981563A (en) * | 2017-05-16 | 2017-07-25 | 广东工业大学 | A kind of power-type uv-LED device |
CN107437542A (en) * | 2017-07-31 | 2017-12-05 | 广东工业大学 | A kind of UV LED chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108470803A (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108091736B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN114597293B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN108346725B (en) | GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN109346576B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN104465898B (en) | Growing method of light-emitting diode epitaxial wafer and light emitting diode epitaxial wafer | |
CN108649109A (en) | A kind of LED epitaxial slice and its manufacturing method | |
CN106611808A (en) | Growth method of light-emitting diode epitaxial wafer | |
CN108831974B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN109256444B (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN109786521B (en) | Epitaxial wafer of light emitting diode and preparation method | |
CN113206175A (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN108878597B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN114883460A (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN107275448A (en) | The epitaxial wafer and preparation method of a kind of light emitting diode | |
CN108807620A (en) | A kind of LED epitaxial slice and preparation method thereof | |
CN108470803B (en) | Epitaxial wafer of light emitting diode and manufacturing method thereof | |
CN109671816B (en) | Epitaxial wafer of light-emitting diode and preparation method thereof | |
CN109671817B (en) | A kind of light-emitting diode epitaxial wafer and preparation method thereof | |
CN109103312B (en) | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof | |
CN108598224B (en) | A method for making a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer | |
CN108075019B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN109638114B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN109326696B (en) | A kind of preparation method of epitaxial wafer of light-emitting diode | |
CN109473521B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN109473520B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |