CN108410906A - 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 - Google Patents
一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 Download PDFInfo
- Publication number
- CN108410906A CN108410906A CN201810177881.2A CN201810177881A CN108410906A CN 108410906 A CN108410906 A CN 108410906A CN 201810177881 A CN201810177881 A CN 201810177881A CN 108410906 A CN108410906 A CN 108410906A
- Authority
- CN
- China
- Prior art keywords
- editing
- crispr
- sequence
- crustaceans
- marine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002438 mitochondrial effect Effects 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000010443 CRISPR/Cpf1 gene editing Methods 0.000 title claims abstract description 8
- 235000015170 shellfish Nutrition 0.000 title 1
- 241000238424 Crustacea Species 0.000 claims abstract description 20
- 235000013601 eggs Nutrition 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 11
- 108020005004 Guide RNA Proteins 0.000 claims abstract description 9
- 238000000338 in vitro Methods 0.000 claims abstract description 9
- 238000000520 microinjection Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 210000003470 mitochondria Anatomy 0.000 claims abstract description 3
- 239000013604 expression vector Substances 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 230000012447 hatching Effects 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims description 4
- 238000012408 PCR amplification Methods 0.000 claims description 3
- 108700010070 Codon Usage Proteins 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 238000010362 genome editing Methods 0.000 abstract description 15
- 238000013461 design Methods 0.000 abstract description 4
- 239000013613 expression plasmid Substances 0.000 abstract description 3
- 230000025608 mitochondrion localization Effects 0.000 abstract description 2
- 230000035755 proliferation Effects 0.000 abstract 1
- 108091033409 CRISPR Proteins 0.000 description 23
- 239000013612 plasmid Substances 0.000 description 10
- 241001533364 Portunus trituberculatus Species 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 238000010354 CRISPR gene editing Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 5
- 101710163270 Nuclease Proteins 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 2
- 230000011559 double-strand break repair via nonhomologous end joining Effects 0.000 description 2
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000995704 Fenneropenaeus chinensis Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000530454 Litopenaeus schmitti Species 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000851180 Palaemon carinicauda Species 0.000 description 1
- 241000238552 Penaeus monodon Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000010459 TALEN Methods 0.000 description 1
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 1
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000007026 protein scission Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Veterinary Medicine (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公布了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。该方法通过在CRISPR/Cpf1表达质粒中引入海洋甲壳类线粒体定位的MLS信号,并通过后续的gRNA设计、显微注射受精卵、受精卵的离体培养和编辑效果检测,完成对海洋甲壳类线粒体基因组的编辑。利用该方法,可以实现海洋甲壳类线粒体基因组的定向编辑,对于在海洋甲壳类线粒体基因组中引入人工增殖放流标志具有重要的价值。
Description
技术领域
本发明属于分子生物学技术领域,涉及一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。
背景技术
基因编辑技术是在DNA水平,通过删除、插入等方式对DNA特定序列进行改造的技术,在经历了锌指核酸酶技术(Zinc-finger nuclease, ZFNs)和类转录激活因子效应物核酸酶技术(Transcription activator-like effector,TALENs)之后,自CRISPR/Cas9技术建立起开始发生质的飞跃。在CRISPR/Cas9系统的基础上,美国麻省理工学院的张锋课题组进一步改进CRISPR/Cas9建立了CRISPR/ Cpf1基因编辑系统,其与CRISPR/Cas9系统的主要区别在于利用Cpf1核酸酶代替了Cas9,但优势更加明显:第一、与Cas9核酸酶相比,该系统表达的Cpf1酶体积变小,因此更易于进入诸如线粒体等小的细胞器和组织中;第二、Cas9行驶核酸酶剪切作用时需要两个支架RNA分子辅助,而Cpf1只需要一个,因此更简单;第三、Cpf1剪切后可以在目标序列区形成粘性末端,因此方便后续实现DNA序列连接和克隆,而Cas9是在同一个位置同时剪切DNA分子的双链形成的平末端;第四、Cpf1系统在目标位置的选择上比Cas9具有更多选择性,虽然两者形成的剪切复合物必须首先连接一个叫做PAM的短序列,但Cpf1识别5’端的TTN序列,Cas9识别3’端的NGG序列,因此Cpf1蛋白剪切位点离PAM序列较远,有更多的位点供选择编辑;第五、Cpf1系统具有更高的编辑效率,这是因为Cas9 剪切位点离 PAM 序列很近,NHEJ 修复造成的核苷酸插入或缺失会改变 PAM 邻近序列,因此Cas9 无法识别和切割靶位点,从而阻碍同源重组修复在靶位点引入正确的基因编辑;而 Cpf1剪切时离识别位点很远, NHEJ 修复造成的核苷酸插入或缺失,不会改变 PAMCRISPR/Cas9邻近序列,Cpf1 仍然可以识别和切割靶基因,同源重组修复依然可以在靶位点引入正确的基因编辑,从而提高了 CRISPR 系统的基因编辑效率,也便于对同一位点进行多轮的基因编辑,这让研究人员在编辑位置的选择上有了更多的选项。
目前,CRISPR/ Cpf1基因编辑已经成功应用于核基因组中的基因编辑研究,如小鼠、水稻和细菌等物种中,但在线粒体基因组中的应用还未见报道。Jo等人在2015年首次探讨了CRISPR/Cas9基因在人类中进行线粒体基因组编辑的可能性,其把Cas9 蛋白N端融合的核基因组定位信号NLS替换为线粒体核特异性更强的MLS,构建出了线粒体靶向的 Cas9蛋白基因编辑系统。但除此(人类)之外,目前未见其它物种,尤其是关于甲壳类线粒体基因组相关基因编辑技术的研究报道。与人类相比,甲壳类生物属于较低等的生物,其线粒体基因组与人类基因组差异较大,尤其是编码蛋白质的密码子存在着一定的差别,因此要想实现其线粒体基因组的编辑,需要做进一步的研究,而不能照搬人类研究中的相应技术。
发明内容
本发明描述了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,为在海洋甲壳类中开展线粒体基因组的基因编辑提供了方法,主要内容为通过密码子优化构建了一个具有海洋甲壳类线粒体定位信号的、可行使线粒体基因组基因编辑功能的质粒,通过显微注射的方式注入甲壳类受精卵中,可以对受精卵中的线粒体基因组进行基因的删除、替换和插入等目的,对建立线粒体基因组人工标志技术并用于增殖放流效果评估、遗传资源调查研究等方面具有应用价值。主要包括以下步骤:
一、质粒表达载体的构建
1、在pY094质粒(http://www.addgene.org/84743/)中把Cpf1核酸酶基因末端编码细胞核定位信号NLS的DNA序列(5’AAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAG3’)替换为“5’ATG TCC GTC CTGACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGCGCC AAG ATC CAT TCG TTG3’ ”序列,该序列为我们通过统计海洋甲壳类生物如脊尾白虾(Exopalaemon carinicauda)、三疣梭子蟹(Portunus trituberculatus)、斑节对虾(Penaeus monodon)和中国明对虾(Fenneropenaeus chinensis)等物种中线粒体基因组编码氨基酸密码子的偏向性中获得的,该序列编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL(MLS)。
2、线粒体靶向引物(gRNA)设计:根据预编辑线粒体基因组序列的位置,设置线粒体靶向引物,保证靶向序列符合核酸酶Cpf1行使功能的序列特征,即含有PAM序列。
3、将上述合成的线粒体靶向引物,通过限制性内切酶酶切法导入pY094质粒的PRISPR序列区,即“重复序列(Direct Repeats)-间隔序列(Spacers)-直接重复序列(Direct Repeats)” 单元中的“间隔序列(Spacers)”区。
二、显微注射法导入受精卵进行线粒体基因组序列编辑
有两种方式可供选择:
1、将上述构建的质粒,通过显微注射法直接注射进甲壳类受精卵中,对线粒体基因组靶向序列进行编辑;
2、将上述构建的质粒进行线性化处理,分别把表达Cpf1的mRNA和crRNA+gRNA序列通过显微注射直接注射进受精卵中,对线粒体基因组靶向序列进行编辑。
三、受精卵离体培养及编辑结果检测
1、受精卵离体培养:注射后的受精卵通过人工充气的方法在体外进行孵化,孵化后变成仔虾或幼蟹时取相应个体或其部分组织提取基因组DNA(包含线粒体基因组DNA),对线粒体基因编辑的效果进行检测;
2、检测方法:在线粒体基因组靶向编辑序列两侧设计PCR扩增引物,利用PCR方法扩增相应序列区,通过测序确定相应序列区基因编辑的效果。
本发明的有益效果:首次获得了海洋甲壳类线粒体基因组的基因编辑方法,该方法操作简单,编辑效果好。
具体实施方式
在本发明中所使用的术语,除非有另外的说明,一般具有本领域普通技术人员通常理解的含义。
下面结合在三疣梭子蟹中应用的具体实施例,进一步详细地阐述本发明的实施方式。应理解,实施例仅用于说明本发明而不应当也不会用于限制本发明的范围。以下实施例中未详细描述的各种过程和方法是本领域中公知的常规方法。
1、质粒载体的构建
由于在pY094质粒Cpf1的NLS序列区无合适的限制性内切酶可用,故需要引入XcmI(位置:4870bp处)和BamHI(位置5201)两个酶切位点区,具体按照如下方式操作,人工合成“5’CACCATGGTGGCCCTGATCCGCAGCGTGCTGCAGATGCGGAACTCCAATGCCGCCACAGGCGAGGACTATATCAACAGCCCCGTGCGCGATCTGAATGGCGTGTGCTTCGACTCCCGGTTTCAGAACCCAGAGTGGCCCATGGACGCCGATGCCAATGGCGCCTACCACATCGCCCTGAAGGGCCAGCTGCTGCTGAATCACCTGAAGGAGAGCAAGGATCTGAAGCTGCAGAACGGCATCTCCAATCAGGACTGGCTGGCCTACATCCAGGAGCTGCGCAACAAAAGGCCGGCGGCCACGAAAAAGG CCGGCCAGGCAAAAAAGAAAAAG3’ ”序列时,把该序列区中蓝色划线部分置换成“5’ATG TCCGTC CTG ACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTGCCG CGC GCC AAG ATC CAT TCG TTG3’ ”序列,同时在5’和3’端合成时各分别引入XcmI和BamHI两种酶切序列,利用这两种酶的双酶切和随后的T4连接酶介导的连接反应,把合成序列插入pY094质粒载体中。
2、线粒体靶向引物(gRNA)设计
针对三疣梭子蟹线粒体基因组中D-loop区序列,依靠http://crispr.mit.edu/网站进行Guide RNA的设计;设计好的引物分别在5’和3’端引入NruI和MluI两个酶切位点,送交公司合成,并进行3’端磷酸化封闭,并经退火过程使正反向引物形成双链结构。
3、gRNA的导入和重组表达载体构建
把上述构建的质粒载体(含MLS)和gRNA引物,分别在NruI和MluI双酶切下进行连接反应,把gRNA引物插入到511-531序列区,构建重组表达载体。
4、质粒培养与抽提
将构建的重组表达载体转化至感受态细胞,扩大培养后挑选阳性克隆,测序鉴定后,进一步扩大培养以便抽提获得大量的表达质粒。
5、显微注射导入三疣梭子蟹受精卵
把上述抽提的重组表达载体利用生理盐水稀释后,同时设置对照组(不含质粒),通过显微注射仪Eppendorf TransferMan® 4注射到三疣梭子蟹受精卵中,通过荧光显微镜观察质粒中报告基因EGFP(增强型绿色荧光蛋白)的表达情况以确定是否表达质粒起作用;如不起作用或作用不明显,进一步通过体外转录的方法,获得相应基因的mRNA序列,并把mRNA序列注射入受精卵中。
5、受精卵的离体培育
注射后的受精卵立即转入甲壳类离体孵化装置进行培育,保持温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止;孵化后经正常养殖管理程序培育至3-4期幼蟹,进行后续的检测。
6、编辑效果检测
针对三疣梭子蟹线粒体基因组D-Loop区的靶向编辑序列区设计引物,通过PCR扩增的方式及后续测序的方式,对靶向编辑序列区的编辑效果进行检测。
Claims (4)
1.一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,其特征包括用于甲壳类线粒体定位编辑的表达载体构建、gRNA的合成和导入、受精卵的显微注射和离体培养、编辑效果的检测。
2.权利要求1中所述用于海洋甲壳类线粒体定位编辑的表达载体构建中引入了经优化的海洋甲壳类密码子偏向性的信号,该信号的序列为5’ATG TCC GTC CTG ACG CCG CTGCTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGC GCC AAG ATCCAT TCG TTG3’,编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL。
3.权利要求1中所述用于受精卵的显微注射和离体培养的方法为:温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止。
4.权利要求1中所述用于编辑效果的检测方法为通过构建靶向编辑序列区PCR扩增技术及测序的方式,对靶向编辑序列区的编辑效果进行检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810177881.2A CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810177881.2A CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108410906A true CN108410906A (zh) | 2018-08-17 |
Family
ID=63129948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810177881.2A Pending CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108410906A (zh) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
CN112760338A (zh) * | 2020-12-28 | 2021-05-07 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602993A (zh) * | 2016-01-19 | 2016-05-25 | 上海赛墨生物技术有限公司 | 线粒体靶向的基因编辑系统及方法 |
CN105602935A (zh) * | 2014-10-20 | 2016-05-25 | 聂凌云 | 一种新型线粒体基因组编辑工具 |
CN106191110A (zh) * | 2016-07-15 | 2016-12-07 | 湖南师范大学 | 一种wnt16基因缺失型斑马鱼 |
CN106520830A (zh) * | 2016-11-16 | 2017-03-22 | 福建师范大学 | 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法 |
CN107287245A (zh) * | 2017-05-27 | 2017-10-24 | 南京农业大学 | 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法 |
-
2018
- 2018-03-05 CN CN201810177881.2A patent/CN108410906A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602935A (zh) * | 2014-10-20 | 2016-05-25 | 聂凌云 | 一种新型线粒体基因组编辑工具 |
CN105602993A (zh) * | 2016-01-19 | 2016-05-25 | 上海赛墨生物技术有限公司 | 线粒体靶向的基因编辑系统及方法 |
CN106191110A (zh) * | 2016-07-15 | 2016-12-07 | 湖南师范大学 | 一种wnt16基因缺失型斑马鱼 |
CN106520830A (zh) * | 2016-11-16 | 2017-03-22 | 福建师范大学 | 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法 |
CN107287245A (zh) * | 2017-05-27 | 2017-10-24 | 南京农业大学 | 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法 |
Non-Patent Citations (1)
Title |
---|
ARNAUD MARTIN ET AL.: "CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution", 《CURRENT BIOLOGY》 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN112760338B (zh) * | 2020-12-28 | 2022-04-26 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
CN112760338A (zh) * | 2020-12-28 | 2021-05-07 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108410906A (zh) | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 | |
US12024727B2 (en) | Enzymes with RuvC domains | |
US20160060637A1 (en) | Improved Gene Targeting and Nucleic Acid Carrier Molecule, In Particular for Use in Plants | |
JP2022520428A (ja) | Ruvcドメインを有する酵素 | |
CN104968784A (zh) | 包含特异于靶dna的向导rna和cas蛋白质编码核酸或cas蛋白质的用于切割靶dna的组合物及其用途 | |
JP6958917B2 (ja) | 遺伝子ノックイン細胞の作製方法 | |
CN113337502B (zh) | 一种gRNA及其用途 | |
CN104611368B (zh) | 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用 | |
CN111019971A (zh) | 在rosa26位点条件性过表达hpv e6基因小鼠模型的构建方法 | |
CN108823202A (zh) | 用于特异性修复人hbb基因突变的碱基编辑系统、方法、试剂盒及其应用 | |
US20240301374A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
Takasu et al. | The use of TALENs for nonhomologous end joining mutagenesis in silkworm and fruitfly | |
CN115552002A (zh) | 基因组改造方法及基因组改造试剂盒 | |
KR20230074207A (ko) | 카고 뉴클레오타이드 서열을 전위시키기 위한 시스템 및 방법 | |
US20220220460A1 (en) | Enzymes with ruvc domains | |
US20240352433A1 (en) | Enzymes with hepn domains | |
CN111979241B (zh) | 制备视网膜色素变性非人哺乳动物模型的方法 | |
CN109593743A (zh) | 新型CRISPR/ScCas12a蛋白及其制备方法 | |
US20240110167A1 (en) | Enzymes with ruvc domains | |
CN110250108B (zh) | Rprm基因敲除小鼠模型及其构建方法与应用 | |
CN114854748B (zh) | apoc1基因启动子及其应用和由其构建的动物模型和方法 | |
CN114591962B (zh) | 一种lgals3bpb基因的启动子以及在构建斑马鱼模型中的应用 | |
WO2011091562A1 (zh) | 一种培育猪生长激素表达量增强的转基因动物的方法 | |
CN116103342A (zh) | 基于CRISPR-Cas9系统和PB转座子系统的羊早期胚胎发育的谱系示踪方法 | |
Yi et al. | The application of transcription activator-like effector nucleases for genome editing in C. elegans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180817 |