CN108389800A - The manufacturing method of shield grid trench FET - Google Patents
The manufacturing method of shield grid trench FET Download PDFInfo
- Publication number
- CN108389800A CN108389800A CN201810094738.7A CN201810094738A CN108389800A CN 108389800 A CN108389800 A CN 108389800A CN 201810094738 A CN201810094738 A CN 201810094738A CN 108389800 A CN108389800 A CN 108389800A
- Authority
- CN
- China
- Prior art keywords
- oxide layer
- layer
- shielding
- epitaxial layer
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000005530 etching Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000000151 deposition Methods 0.000 claims abstract description 21
- 238000001039 wet etching Methods 0.000 claims abstract description 19
- 238000011049 filling Methods 0.000 claims abstract description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 58
- 229920005591 polysilicon Polymers 0.000 claims description 58
- 238000002955 isolation Methods 0.000 claims description 48
- 210000000746 body region Anatomy 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 29
- 230000005669 field effect Effects 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000005137 deposition process Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- 230000008021 deposition Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
- H10D30/0297—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/018—Spacers formed inside holes at the prospective gate locations, e.g. holes left by removing dummy gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/117—Recessed field plates, e.g. trench field plates or buried field plates
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体器件设计及制造领域,特别是涉及一种屏蔽栅沟槽场效应晶体管的制造方法。The invention belongs to the field of design and manufacture of semiconductor devices, in particular to a method for manufacturing a shielded gate trench field effect transistor.
背景技术Background technique
屏蔽栅沟槽MOSFET是目前最先进的功率MOSFET器件技术,能够同时实现低导通电阻(Rdson)和低反向恢复电容(Crss),从而同时降低了系统的导通损耗和开关损耗,提高了系统使用效率。Shielded gate trench MOSFET is currently the most advanced power MOSFET device technology, which can realize low on-resistance (Rdson) and low reverse recovery capacitance (Crss) at the same time, thereby reducing the conduction loss and switching loss of the system at the same time, and improving System usage efficiency.
如图1所示,以N型器件为例,现有常见屏蔽栅沟槽(SGT)MOSFET的单元结构包括:As shown in Figure 1, taking an N-type device as an example, the unit structure of an existing common shielded gate trench (SGT) MOSFET includes:
轻掺杂N-型外延层104,形成于重掺杂N++型硅衬底102上,金属漏极100,形成于重掺杂N++型硅衬底102下;The lightly doped N - type epitaxial layer 104 is formed on the heavily doped N ++ type silicon substrate 102, and the metal drain 100 is formed under the heavily doped N ++ type silicon substrate 102;
深沟槽106形成于轻掺杂N-型外延层104中,沟槽106侧壁长有屏蔽氧化层108,沟槽106中填充有屏蔽多晶硅110和栅极多晶硅116;屏蔽多晶硅110和栅极多晶硅116之间有氧化层112隔离;The deep trench 106 is formed in the lightly doped N - type epitaxial layer 104, and the trench 106 has a shielding oxide layer 108 on the side wall, and the trench 106 is filled with shielding polysilicon 110 and gate polysilicon 116; shielding polysilicon 110 and gate There is an oxide layer 112 isolation between the polysilicon 116;
P型体区118形成于轻掺杂N-型外延层104表面,源区120形成在P型体区118中;接触孔124穿过氧化介质层122和源区120进入P型体区118;金属源极130设置在接触孔124和氧化介质层122上;The P-type body region 118 is formed on the surface of the lightly doped N - type epitaxial layer 104, and the source region 120 is formed in the P-type body region 118; the contact hole 124 enters the P-type body region 118 through the oxide dielectric layer 122 and the source region 120; The metal source 130 is disposed on the contact hole 124 and the oxide dielectric layer 122;
栅极多晶硅116通过版图布局在沟槽106末端引出(未画出),屏蔽多晶硅110通过版图布局使其与源极120相连,源极120和P型体区118通过金属源极130共同引出。The gate polysilicon 116 is drawn out at the end of the trench 106 through a layout layout (not shown), the shielding polysilicon 110 is connected to the source 120 through a layout layout, and the source 120 and the P-type body region 118 are jointly drawn out through a metal source 130 .
如图2a至图2h所示,以N型器件为例,现有常见屏蔽栅沟槽MOSFET的制造方法主要步骤包括:As shown in Figures 2a to 2h, taking an N-type device as an example, the main steps of the existing common shielded gate trench MOSFET manufacturing method include:
如图2a所示,在硅衬底102上生长外延层104,在所述外延层104中形成沟槽106;在所述沟槽106侧壁生长屏蔽氧化层108,然后填充屏蔽多晶硅110;As shown in FIG. 2a, an epitaxial layer 104 is grown on a silicon substrate 102, and a trench 106 is formed in the epitaxial layer 104; a shielding oxide layer 108 is grown on the sidewall of the trench 106, and then a shielding polysilicon 110 is filled;
如图2b所示,减薄表面屏蔽氧化层108和屏蔽多晶硅110至目标厚度;As shown in FIG. 2b, thinning the surface shielding oxide layer 108 and the shielding polysilicon 110 to a target thickness;
如图2c所示,在晶圆表面淀积一层氮化硅(SIN)111;通过光刻在屏蔽多晶硅110上方形成一窗口,然后干法刻蚀掉窗口中氮化硅;As shown in Figure 2c, a layer of silicon nitride (SIN) 111 is deposited on the surface of the wafer; a window is formed above the shielding polysilicon 110 by photolithography, and then the silicon nitride in the window is dry etched away;
如图2d所示,干法刻蚀或者湿法刻蚀将屏蔽多晶硅110和屏蔽氧化层108回刻刻蚀至目标深度;As shown in FIG. 2d, dry etching or wet etching etches back the shielding polysilicon 110 and the shielding oxide layer 108 to a target depth;
如图2e所示,淀积高密度等离子体(HDP)氧化层,以形成隔离屏蔽多晶硅110和栅极多晶硅116的隔离氧化层112;As shown in FIG. 2e, a high-density plasma (HDP) oxide layer is deposited to form an isolation oxide layer 112 that isolates the shield polysilicon 110 and the gate polysilicon 116;
如图2f所示,化学机械抛光(CMP)晶圆表面隔离氧化层止于氮化硅层(SIN)111;As shown in FIG. 2f, the chemical mechanical polishing (CMP) wafer surface isolation oxide layer stops at the silicon nitride layer (SIN) 111;
如图2g所示,去除表面氮化硅层(SIN)111,回刻刻蚀隔离氧化层112至第一目标深度;As shown in FIG. 2g, the surface silicon nitride layer (SIN) 111 is removed, and the isolation oxide layer 112 is etched back to the first target depth;
如图2h所示,栅氧化层114生长,栅极多晶硅116淀积并回刻刻蚀至稍低于硅表面约1000埃至3000埃;正面离子注入P型杂质,以形成P型体区(P-Body)118;正面离子注入N型杂质,以形成源极(Source)120;隔离介质层(ILD)122淀积、接触孔(Contact)124刻蚀、源极金属层130淀积回刻、钝化层淀积(未画出)、漏极金属层100淀积等。As shown in FIG. 2h, the gate oxide layer 114 is grown, and the gate polysilicon 116 is deposited and etched back to about 1000 angstroms to 3000 angstroms slightly below the silicon surface; the positive ion is implanted with P-type impurities to form a P-type body region ( P-Body) 118; positive ion implantation of N-type impurities to form source (Source) 120; isolation dielectric layer (ILD) 122 deposition, contact hole (Contact) 124 etching, source metal layer 130 deposition and etching back , passivation layer deposition (not shown), drain metal layer 100 deposition, and the like.
现有方法为取得隔离氧化层的目标深度,如图2c所示,需要淀积截止层(stop-layer)氮化硅(SIN)111,且需要在该层回刻出窗口,在步骤6)中又需要使用化学机械抛光(CMP)技术,并要求该工艺止于截止层(stop-layer)氮化硅(SIN)111上,后续又需要去掉该停止层,工艺复杂且要求严格,导致制造成本较高。The existing method is to obtain the target depth of the isolation oxide layer, as shown in Figure 2c, it is necessary to deposit a stop-layer (stop-layer) silicon nitride (SIN) 111, and it is necessary to etch a window on this layer, in step 6) In addition, chemical mechanical polishing (CMP) technology needs to be used, and the process is required to stop on the stop-layer (stop-layer) silicon nitride (SIN) 111, and the stop layer needs to be removed later. The process is complex and strict, which leads to manufacturing higher cost.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种屏蔽栅沟槽场效应晶体管的制造方法,用于解决现有技术中屏蔽栅沟槽场效应晶体管的制造成本过高的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a method for manufacturing a shielded gate trench field effect transistor, which is used to solve the problem of high manufacturing cost of the shielded gate trench field effect transistor in the prior art .
为实现上述目的及其他相关目的,本发明提供一种屏蔽栅沟槽场效应晶体管的制造方法,包括步骤:1)提供一衬底,于所述衬底的上表面形成外延层,于所述外延层中形成深沟槽,于所述深沟槽的内壁与所述外延层表面形成屏蔽氧化层,于所述深沟槽内填充屏蔽多晶硅,所述屏蔽多晶硅还覆盖位于所述外延层上方的所述屏蔽氧化层;2)减薄所述外延层上方的所述屏蔽多晶硅和所述屏蔽氧化层,所述外延层上方保留有所述屏蔽氧化层;3)以所述屏蔽氧化层为掩膜回刻刻蚀所述屏蔽多晶硅,以形成一刻蚀槽,所述刻蚀槽两侧显露所述深沟槽内的所述屏蔽氧化层;4)湿法刻蚀所述刻蚀槽两侧的所述屏蔽氧化层,同时使得所述屏蔽多晶硅的上方部分凸出于所述屏蔽氧化层;5)沉积隔离氧化层,所述隔离氧化层包含填充于所述深沟槽中的填充部以及覆盖于所述外延层上方的凸起部;6)湿法刻蚀回刻所述隔离氧化层,将所述填充部刻蚀至目标厚度的同时去除所述凸起部及位于所述外延层上的所述屏蔽氧化层;7)于所述深沟槽的内壁和所述隔离氧化层表面沉积栅氧化层,以形成栅极沟槽,在所述栅极沟槽中填充栅极多晶硅以形成栅极;以及8)于所述深沟槽两侧的所述外延层中形成体区,于所述体区中形成源极,于所述外延层上方形成上金属结构,于所述衬底下表面形成漏极金属层。To achieve the above object and other related objects, the present invention provides a method for manufacturing a shielded gate trench field effect transistor, comprising the steps of: 1) providing a substrate, forming an epitaxial layer on the upper surface of the substrate, and forming an epitaxial layer on the upper surface of the substrate. A deep trench is formed in the epitaxial layer, a shielding oxide layer is formed on the inner wall of the deep trench and the surface of the epitaxial layer, and shielding polysilicon is filled in the deep trench, and the shielding polysilicon also covers and is located above the epitaxial layer 2) thinning the shielding polysilicon and the shielding oxide layer above the epitaxial layer, and the shielding oxide layer remains above the epitaxial layer; 3) taking the shielding oxide layer as Etching back the shielding polysilicon with a mask to form an etching groove, and the shielding oxide layer in the deep trench is exposed on both sides of the etching groove; 4) wet etching both sides of the etching groove side of the shielding oxide layer, while making the upper portion of the shielding polysilicon protrude from the shielding oxide layer; 5) depositing an isolation oxide layer, the isolation oxide layer includes a filling portion filled in the deep trench and the raised portion covering the epitaxial layer; 6) Wet etch back the isolation oxide layer, etch the filling portion to the target thickness while removing the raised portion and the epitaxial layer. 7) deposit a gate oxide layer on the inner wall of the deep trench and the surface of the isolation oxide layer to form a gate trench, and fill the gate polysilicon in the gate trench and 8) forming a body region in the epitaxial layer on both sides of the deep trench, forming a source in the body region, forming an upper metal structure above the epitaxial layer, and A drain metal layer is formed on the lower surface of the substrate.
优选地,步骤4)所述湿法刻蚀中,所述屏蔽多晶硅的上方部分两侧的所述屏蔽氧化层间被部分去除以分别形成侧边凹槽,所述湿法刻蚀后,所述刻蚀槽两侧及所述外延层表面保留有一定厚度的所述屏蔽氧化层。Preferably, in step 4) in the wet etching, the shielding oxide layers on both sides of the upper part of the shielding polysilicon are partially removed to form side grooves respectively, and after the wet etching, the A certain thickness of the shielding oxide layer remains on both sides of the etching groove and on the surface of the epitaxial layer.
进一步地,所述侧边凹槽包含弧形底部。Further, the side groove includes an arc-shaped bottom.
进一步地,步骤5)中,采用高密度等离子体沉积工艺形成所述隔离氧化层,所述隔离氧化层包含平坦状的所述填以及尖峰状的所述凸起部,以使得步骤6)中,将所述填充部刻蚀至目标厚度的同时完全去除所述凸起部及位于所述外延层上的所述屏蔽氧化层。Further, in step 5), the isolation oxide layer is formed by using a high-density plasma deposition process, and the isolation oxide layer includes the flat filling and the peak-shaped protrusion, so that in step 6) and etching the filling portion to a target thickness while completely removing the raised portion and the shielding oxide layer on the epitaxial layer.
优选地,步骤1)中,所述屏蔽氧化层的厚度不小于1000埃。Preferably, in step 1), the thickness of the shielding oxide layer is not less than 1000 angstroms.
优选地,所述体区的底部不低于所述栅极沟槽的底部。Preferably, the bottom of the body region is not lower than the bottom of the gate trench.
优选地,所述衬底、所述外延层、所述源极具有第一导电类型离子掺杂,所述体区具有第二导电类型离子掺杂,所述第一导电类型与所述第二导电类型互为相反的导电类型。Preferably, the substrate, the epitaxial layer, and the source are doped with ions of the first conductivity type, the body region is doped with ions of the second conductivity type, and the first conductivity type and the second conductivity type are The conductivity types are mutually opposite conductivity types.
进一步地,所述衬底包含N++型衬底,所述外延层包含N-型外延层,所述N型源极包含N+型源极,所述体区包含P-型体区。Further, the substrate includes an N++ type substrate, the epitaxial layer includes an N-type epitaxial layer, the N-type source includes an N+ type source, and the body region includes a P-type body region.
优选地,步骤7)还包括对所述栅极多晶硅进行回刻的步骤,以使得所述栅极多晶硅的顶面低于所述外延层的顶面。Preferably, step 7) further includes the step of etching back the gate polysilicon, so that the top surface of the gate polysilicon is lower than the top surface of the epitaxial layer.
优选地,步骤8)于所述外延层上方形成所述上金属结构包括步骤:8-1)于所述栅极多晶硅与所述外延层上沉积隔离介质层,刻蚀所述隔离介质层以形成源极接触孔以及栅极接触孔,所述源极接触孔的底部显露所述体区,侧壁显露所述源极,所述栅极接触孔显露所述栅极多晶硅;以及8-2)于所述隔离介质层、所述源极接触孔以及所述栅极接触孔上沉积金属层,以实现所述源极与所述栅极多晶硅的电性引出。Preferably, step 8) forming the upper metal structure on the epitaxial layer includes the steps: 8-1) depositing an isolation dielectric layer on the gate polysilicon and the epitaxial layer, etching the isolation dielectric layer to Forming a source contact hole and a gate contact hole, the bottom of the source contact hole exposes the body region, the sidewall exposes the source, and the gate contact hole exposes the gate polysilicon; and 8-2 ) depositing a metal layer on the isolation dielectric layer, the source contact hole and the gate contact hole, so as to realize the electrical extraction of the source and the gate polysilicon.
进一步地,步骤8-2)在沉积所述金属层之前,还包括于所述源极接触孔中的所述体区中形成掺杂接触区的步骤。Further, step 8-2) further includes the step of forming a doped contact region in the body region in the source contact hole before depositing the metal layer.
如上所述,本发明的屏蔽栅沟槽场效应晶体管的制造方法,具有以下有益效果:As mentioned above, the manufacturing method of the shielded gate trench field effect transistor of the present invention has the following beneficial effects:
本发明取消了常规工艺方法中为了得到隔离氧化层的深度而必须进行的截止层的淀积、回刻、去除,以及化学机械抛光(CMP)的截止或找平,仅增加了隔离氧化层(高密度等离子体氧化层)淀积前的湿法刻蚀步骤,利用高密度等离子体填充工艺的特性,使该隔离氧化层的填充具备特有形貌,组合各向同性的湿法刻蚀特性,在深沟槽中形成目标厚度的隔离氧化层的同时去除表面多余的隔离氧化层,达到与常规工艺基本相同的工艺目标效果,大大降低了工艺成本及工艺时间,在半导体器件设计及制造领域具有广泛的应用前景。The present invention cancels the deposition, etching back, removal of the cut-off layer, and the cut-off or leveling of chemical mechanical polishing (CMP) necessary to obtain the depth of the isolation oxide layer in the conventional process, and only increases the isolation oxide layer (high The wet etching step before the deposition of the high-density plasma oxide layer) utilizes the characteristics of the high-density plasma filling process to make the filling of the isolation oxide layer have a unique shape, combined with isotropic wet etching characteristics, in Forming the isolation oxide layer with the target thickness in the deep trench while removing the redundant isolation oxide layer on the surface achieves the same process target effect as the conventional process, greatly reducing the process cost and process time, and has a wide range of applications in the field of semiconductor device design and manufacturing. application prospects.
附图说明Description of drawings
图1显示为现有技术中的一种屏蔽栅沟槽场效应晶体管的结构示意图。FIG. 1 is a schematic structural diagram of a shielded gate trench field effect transistor in the prior art.
图2a~图2h显示为现有技术中的屏蔽栅沟槽场效应晶体管的制造方法各步骤所呈现的结构示意图。2a to 2h are schematic diagrams showing the structure of each step of the manufacturing method of the shielded gate trench field effect transistor in the prior art.
图3~图9显示为本发明的屏蔽栅沟槽场效应晶体管的制造方法各步骤所呈现的结构示意图。3 to 9 are schematic diagrams showing the structure of each step of the manufacturing method of the shielded gate trench field effect transistor of the present invention.
图10显示为本发明的屏蔽栅沟槽场效应晶体管的制造方法步骤流程示意图。FIG. 10 is a schematic flow chart showing the steps of the manufacturing method of the shielded gate trench field effect transistor of the present invention.
元件标号说明Component designation description
100 漏极金属层100 Drain metal layer
102 衬底102 substrate
104 外延层104 epitaxial layer
106 深沟槽106 deep groove
108 屏蔽氧化层108 shielding oxide layer
109 刻蚀槽109 etch groove
110 屏蔽多晶硅110 shielded polysilicon
112 隔离氧化层112 isolation oxide layer
113 侧边凹槽113 side groove
114 栅氧化层114 gate oxide layer
115 弧形底部115 curved bottom
116 栅极多晶硅116 gate polysilicon
118 体区118 body area
120 源极120 source
122 隔离介质层122 isolation dielectric layer
124 源极接触孔124 Source contact hole
130 金属层130 metal layers
S11~S18 步骤1)~步骤8)S11~S18 Step 1)~Step 8)
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图3~图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 3 to Figure 10. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, so that only the components related to the present invention are shown in the diagrams rather than the number, shape and Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
如图3~图10所示,本实施例提供一种屏蔽栅沟槽场效应晶体管(SGT MOSFET)的制造方法,所述屏蔽栅沟槽场效应晶体管可以为N型器件,也可以为P型器件,本实施例以N型器件为例进行说明。所述制造方法包括步骤:As shown in FIGS. 3 to 10 , this embodiment provides a method for manufacturing a shielded gate trench field effect transistor (SGT MOSFET), and the shielded gate trench field effect transistor can be an N-type device or a P-type device. device, this embodiment uses an N-type device as an example for illustration. The manufacturing method comprises the steps of:
如图3及图10所示,首先进行步骤1)S11,提供一衬底102,于所述衬底102的上表面形成外延层104,于所述外延层104中形成深沟槽106,于所述深沟槽106的内壁与所述外延层104表面形成屏蔽氧化层108,于所述深沟槽106内填充屏蔽多晶硅110,所述屏蔽多晶硅110还覆盖位于所述外延层104上方的所述屏蔽氧化层108。As shown in Fig. 3 and Fig. 10, at first carry out step 1) S11, provide a substrate 102, form epitaxial layer 104 on the upper surface of described substrate 102, form deep groove 106 in described epitaxial layer 104, in The inner wall of the deep trench 106 and the surface of the epitaxial layer 104 form a shielding oxide layer 108, and the shielding polysilicon 110 is filled in the deep trench 106, and the shielding polysilicon 110 also covers all the layers above the epitaxial layer 104. The shielding oxide layer 108 is described above.
所述衬底102可以为N++型掺杂的硅衬底、锗硅衬底、碳化硅衬底等,在本实施例中,所述衬底102选用为N++型掺杂的硅衬底,所述外延层104选用为N-型单晶硅外延层。The substrate 102 can be an N++ type doped silicon substrate, a silicon germanium substrate, a silicon carbide substrate, etc. In this embodiment, the substrate 102 is selected as an N++ type doped silicon substrate, so The epitaxial layer 104 is selected as an N-type single crystal silicon epitaxial layer.
采用光刻-刻蚀工艺于所述外延层104中形成深沟槽106,然后采用热氧化工艺于所述深沟槽106的内壁与所述外延层104表面形成屏蔽氧化层108,所述屏蔽氧化层108的厚度不小于1000埃,以达到良好的屏蔽效果,例如,所述屏蔽氧化层108的厚度可以介于1000埃~8000埃之间。A deep trench 106 is formed in the epitaxial layer 104 by a photolithography-etching process, and then a shielding oxide layer 108 is formed on the inner wall of the deep trench 106 and the surface of the epitaxial layer 104 by a thermal oxidation process. The thickness of the oxide layer 108 is not less than 1000 angstroms to achieve a good shielding effect, for example, the thickness of the shielding oxide layer 108 may be between 1000 angstroms-8000 angstroms.
如图4及图10所示,然后进行步骤2)S12,减薄所述外延层104上方的所述屏蔽多晶硅110和所述屏蔽氧化层108,所述外延层104上方保留有所述屏蔽氧化层108。As shown in FIG. 4 and FIG. 10, then step 2) S12 is performed to thin the shielding polysilicon 110 and the shielding oxide layer 108 above the epitaxial layer 104, and the shielding oxide layer 108 remains above the epitaxial layer 104. Layer 108.
例如,可以采用机械化学研磨工艺减薄所述外延层104上方的所述屏蔽多晶硅110和所述屏蔽氧化层108,所述外延层104上方保留有所述屏蔽氧化层108,作为后续刻蚀的掩膜。For example, the shielding polysilicon 110 and the shielding oxide layer 108 above the epitaxial layer 104 can be thinned using a mechanochemical polishing process, and the shielding oxide layer 108 remains above the epitaxial layer 104 as a subsequent etching. mask.
如图5及图10所示,接着进行步骤3)S13,以所述屏蔽氧化层108为掩膜回刻刻蚀所述屏蔽多晶硅110,以形成一刻蚀槽109,所述刻蚀槽109两侧显露所述深沟槽106内的所述屏蔽氧化层108。As shown in Fig. 5 and Fig. 10, proceed to step 3) S13, use the shielding oxide layer 108 as a mask to etch back the shielding polysilicon 110 to form an etching groove 109, and the etching groove 109 has two sides The shield oxide layer 108 within the deep trench 106 is exposed.
作为示例,所述刻蚀槽109的深度可以介于所述深沟槽106深度的四分之一至二分之一之间,以保证所述屏蔽多晶硅110的所需保留量,并为后续的屏蔽氧化层108及栅极多晶硅116提高足够的制作空间。As an example, the depth of the etched groove 109 may be between 1/4 and 1/2 of the depth of the deep trench 106, so as to ensure the required retention of the shielding polysilicon 110, and for subsequent The shielding oxide layer 108 and the gate polysilicon 116 provide sufficient manufacturing space.
如图6及图10所示,然后进行步骤4)S14,湿法刻蚀所述刻蚀槽109两侧的所述屏蔽氧化层108,同时使得所述屏蔽多晶硅110的上方部分凸出于所述屏蔽氧化层108。As shown in Figure 6 and Figure 10, then proceed to step 4) S14, wet etching the shielding oxide layer 108 on both sides of the etching groove 109, while making the upper part of the shielding polysilicon 110 protrude from the The shielding oxide layer 108 is described above.
作为示例,所述湿法刻蚀中,所述屏蔽多晶硅110的上方部分两侧的所述屏蔽氧化层108间被部分去除以分别形成侧边凹槽113,所述湿法刻蚀后,所述刻蚀槽109两侧及所述外延层104表面保留有一定厚度的所述屏蔽氧化层108。进一步地,所述侧边凹槽113包含弧形底部115。As an example, in the wet etching, the shielding oxide layer 108 on both sides of the upper part of the shielding polysilicon 110 is partially removed to form side grooves 113 respectively. After the wet etching, the A certain thickness of the shielding oxide layer 108 remains on both sides of the etching groove 109 and on the surface of the epitaxial layer 104 . Further, the side groove 113 includes an arc-shaped bottom 115 .
如图7及图10所示,接着进行步骤5)S15,沉积隔离氧化层112,所述隔离氧化层112包含填充于所述深沟槽106中的填充部以及覆盖于所述外延层104上方的凸起部。As shown in FIG. 7 and FIG. 10, step 5) S15 is then performed to deposit an isolation oxide layer 112, the isolation oxide layer 112 includes the filling portion filled in the deep trench 106 and covers the epitaxial layer 104 of the bulge.
作为示例,采用高密度等离子体沉积工艺形成所述隔离氧化层112,由于步骤4)所形成的结构形貌以及高密度等离子体沉积工艺的特性,所述隔离氧化层112包含平坦状的所述填以及尖峰状的所述凸起部,以使得后续步骤6)中,将所述填充部刻蚀至目标厚度的同时完全去除所述凸起部及位于所述外延层104上的所述屏蔽氧化层108。As an example, the isolation oxide layer 112 is formed by a high-density plasma deposition process. Due to the structure and morphology formed in step 4) and the characteristics of the high-density plasma deposition process, the isolation oxide layer 112 includes the planar Filling and peaking the raised portion, so that in the subsequent step 6), the filling portion is etched to the target thickness while completely removing the raised portion and the shielding on the epitaxial layer 104 oxide layer 108 .
如图8及图10所示,然后进行步骤6)S16,湿法刻蚀回刻所述隔离氧化层112,将所述填充部刻蚀至目标厚度的同时去除所述凸起部及位于所述外延层104上的所述屏蔽氧化层108。As shown in FIG. 8 and FIG. 10 , then step 6) S16 is performed to etch back the isolation oxide layer 112 by wet etching, and the filling portion is etched to the target thickness while removing the raised portion and the The shielding oxide layer 108 on the epitaxial layer 104.
基于各向同性的湿法刻蚀回刻所述隔离氧化层112,由于隔离氧化层112的特有形貌,尖峰状的所述凸起部会较容易被优先去除,而位于所述深沟槽106中的所述平坦状的填充部则会被部分保留,作为最终隔离所述屏蔽多晶硅110与栅极多晶硅116的隔离氧化层112。Based on the isotropic wet etching back to etch the isolation oxide layer 112, due to the unique shape of the isolation oxide layer 112, the peak-shaped protrusions are easier to be preferentially removed, while the deep trenches 106 The planar filling part in the structure will be partly retained as the isolation oxide layer 112 for finally isolating the shielding polysilicon 110 and the gate polysilicon 116 .
如图9及图10所示,接着进行步骤7)S17及步骤8)S18,于所述深沟槽106的内壁和所述隔离氧化层112表面沉积栅氧化层114,以形成栅极沟槽,在所述栅极沟槽中填充栅极多晶硅116以形成栅极,对所述栅极多晶硅116进行回刻的步骤,以使得所述栅极多晶硅116的顶面低于所述外延层104的顶面,于所述深沟槽106两侧的所述外延层104中形成体区118,于所述体区118中形成源极120,于所述外延层104上方形成上金属结构,于所述衬底102下表面形成漏极金属层100。As shown in FIG. 9 and FIG. 10, step 7) S17 and step 8) S18 are then performed to deposit a gate oxide layer 114 on the inner wall of the deep trench 106 and the surface of the isolation oxide layer 112 to form a gate trench. , filling the gate polysilicon 116 in the gate trench to form a gate, performing the step of etching back the gate polysilicon 116, so that the top surface of the gate polysilicon 116 is lower than the epitaxial layer 104 , forming a body region 118 in the epitaxial layer 104 on both sides of the deep trench 106, forming a source electrode 120 in the body region 118, forming an upper metal structure above the epitaxial layer 104, and A drain metal layer 100 is formed on the lower surface of the substrate 102 .
作为示例,所述衬底102、所述外延层104、所述源极120具有第一导电类型离子掺杂,所述体区118具有第二导电类型离子掺杂,所述第一导电类型与所述第二导电类型互为相反的导电类型。例如,对于N型器件,所述衬底102包含N++型衬底,所述外延层104包含N-型外延层,所述N型源极120包含N+型源极,所述体区118包含P-型体区118。As an example, the substrate 102, the epitaxial layer 104, and the source electrode 120 have ion doping of the first conductivity type, and the body region 118 has ion doping of the second conductivity type, and the first conductivity type and The second conductivity types are opposite to each other. For example, for an N-type device, the substrate 102 includes an N++ type substrate, the epitaxial layer 104 includes an N-type epitaxial layer, the N-type source 120 includes an N+ type source, and the body region 118 includes a P - Body area 118.
作为示例,所述体区118的底部不低于所述栅极沟槽的底部,即所述体区118的底部与所述栅极沟槽的底部具有一高度差Woverlap,以进一步提高所述栅极多晶硅116对所述屏蔽栅沟槽场效应晶体管的沟道控制能力。As an example, the bottom of the body region 118 is not lower than the bottom of the gate trench, that is, there is a height difference W overlap between the bottom of the body region 118 and the bottom of the gate trench, so as to further improve the The gate polysilicon 116 can control the channel of the shield gate trench field effect transistor.
具体地,步骤8)于所述外延层104上方形成所述上金属结构包括步骤:Specifically, step 8) forming the upper metal structure above the epitaxial layer 104 includes the steps of:
步骤8-1),于所述栅极多晶硅116与所述外延层104上沉积隔离介质层122,刻蚀所述隔离介质层122以形成源极接触孔124以及栅极接触孔,所述源极接触孔124的底部显露所述体区118,侧壁显露所述源极120,所述栅极接触孔显露所述栅极多晶硅116;Step 8-1), depositing an isolation dielectric layer 122 on the gate polysilicon 116 and the epitaxial layer 104, etching the isolation dielectric layer 122 to form a source contact hole 124 and a gate contact hole, the source The bottom of the electrode contact hole 124 exposes the body region 118, the sidewall exposes the source electrode 120, and the gate contact hole exposes the gate polysilicon 116;
步骤8-2),于所述隔离介质层122、所述源极接触孔124以及所述栅极接触孔上沉积金属层130,以实现所述源极120与所述栅极多晶硅116的电性引出。Step 8-2), depositing a metal layer 130 on the isolation dielectric layer 122, the source contact hole 124 and the gate contact hole, so as to realize the electrical connection between the source electrode 120 and the gate polysilicon 116 sex elicited.
优选地,步骤8-2)在沉积所述金属层130之前,还包括于所述源极接触孔124中的所述体区118中形成掺杂接触区的步骤,在本实施例中,所述掺杂接触区选用为P+型掺杂接触区,以降低所述金属层130与所述体区118的接触电阻。最后,进行退火处理,使得所述金属层130与所述源极120、所述体区118与所述栅极多晶硅116形成欧姆接触,以进一步降低接触电阻。Preferably, step 8-2) further includes the step of forming a doped contact region in the body region 118 in the source contact hole 124 before depositing the metal layer 130. In this embodiment, the The doped contact region is selected as a P+ type doped contact region to reduce the contact resistance between the metal layer 130 and the body region 118 . Finally, an annealing treatment is performed so that the metal layer 130 forms ohmic contact with the source electrode 120 , the body region 118 and the gate polysilicon 116 , so as to further reduce contact resistance.
如上所述,本发明的屏蔽栅沟槽场效应晶体管的制造方法,具有以下有益效果:As mentioned above, the manufacturing method of the shielded gate trench field effect transistor of the present invention has the following beneficial effects:
本发明取消了常规工艺方法中为了得到隔离氧化层112的深度而必须进行的截止层的淀积、回刻、去除,以及化学机械抛光(CMP)的截止或找平,仅增加了隔离氧化层112(高密度等离子体氧化层)淀积前的湿法刻蚀步骤,利用高密度等离子体填充工艺的特性,使该隔离氧化层112的填充具备特有形貌,组合各向同性的湿法刻蚀特性,在深沟槽106中形成目标厚度的隔离氧化层112的同时去除表面多余的隔离氧化层112,达到与常规工艺基本相同的工艺目标效果,大大降低了工艺成本及工艺时间,在半导体器件设计及制造领域具有广泛的应用前景。The present invention cancels the deposition, etching back, and removal of the cut-off layer that must be carried out in order to obtain the depth of the isolation oxide layer 112 in the conventional process, and the cut-off or leveling of chemical mechanical polishing (CMP), and only increases the isolation oxide layer 112 The wet etching step before the deposition of (high-density plasma oxide layer) utilizes the characteristics of the high-density plasma filling process to make the filling of the isolation oxide layer 112 have a unique morphology, combined with isotropic wet etching characteristics, forming the isolation oxide layer 112 of the target thickness in the deep trench 106 while removing the redundant isolation oxide layer 112 on the surface, achieving basically the same process target effect as the conventional process, greatly reducing the process cost and process time, in semiconductor devices The field of design and manufacture has broad application prospects.
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094738.7A CN108389800A (en) | 2018-01-31 | 2018-01-31 | The manufacturing method of shield grid trench FET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094738.7A CN108389800A (en) | 2018-01-31 | 2018-01-31 | The manufacturing method of shield grid trench FET |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108389800A true CN108389800A (en) | 2018-08-10 |
Family
ID=63074234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810094738.7A Pending CN108389800A (en) | 2018-01-31 | 2018-01-31 | The manufacturing method of shield grid trench FET |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108389800A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111599685A (en) * | 2020-06-28 | 2020-08-28 | 上海华虹宏力半导体制造有限公司 | Power semiconductor device and manufacturing method thereof |
CN111681963A (en) * | 2020-08-11 | 2020-09-18 | 中芯集成电路制造(绍兴)有限公司 | Shielded gate field effect transistor and method of forming the same |
CN111681962A (en) * | 2020-07-30 | 2020-09-18 | 上海华虹宏力半导体制造有限公司 | Shielded grid power device and its manufacturing method |
CN112652652A (en) * | 2019-10-12 | 2021-04-13 | 华润微电子(重庆)有限公司 | Groove type field effect transistor structure and preparation method thereof |
CN113035715A (en) * | 2019-12-25 | 2021-06-25 | 华润微电子(重庆)有限公司 | Shielded gate trench field effect transistor and method of making same |
CN113299557A (en) * | 2021-06-24 | 2021-08-24 | 绍兴中芯集成电路制造股份有限公司 | Shielded gate field effect transistor and method of forming the same |
CN114050109A (en) * | 2022-01-12 | 2022-02-15 | 广州粤芯半导体技术有限公司 | Manufacturing method of shielded gate trench power device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048775A (en) * | 1999-05-24 | 2000-04-11 | Vanguard International Semiconductor Corporation | Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes |
US6228780B1 (en) * | 1999-05-26 | 2001-05-08 | Taiwan Semiconductor Manufacturing Company | Non-shrinkable passivation scheme for metal em improvement |
KR20050067555A (en) * | 2003-12-29 | 2005-07-05 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
CN101238581A (en) * | 2005-08-09 | 2008-08-06 | 飞兆半导体公司 | Structure and method for forming an interpolysilicon dielectric in a shielded gate field effect transistor |
CN101388341A (en) * | 2007-09-07 | 2009-03-18 | 应用材料股份有限公司 | Impurity control in hdp-cvd dep/etch/dep processes |
US20100041245A1 (en) * | 2008-08-18 | 2010-02-18 | Macronix International Co., Ltd. | Hdp-cvd process, filling-in process utilizing hdp-cvd, and hdp-cvd system |
CN107017167A (en) * | 2017-03-01 | 2017-08-04 | 上海华虹宏力半导体制造有限公司 | The manufacture method of trench-gate device with shield grid |
-
2018
- 2018-01-31 CN CN201810094738.7A patent/CN108389800A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048775A (en) * | 1999-05-24 | 2000-04-11 | Vanguard International Semiconductor Corporation | Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes |
US6228780B1 (en) * | 1999-05-26 | 2001-05-08 | Taiwan Semiconductor Manufacturing Company | Non-shrinkable passivation scheme for metal em improvement |
KR20050067555A (en) * | 2003-12-29 | 2005-07-05 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
CN101238581A (en) * | 2005-08-09 | 2008-08-06 | 飞兆半导体公司 | Structure and method for forming an interpolysilicon dielectric in a shielded gate field effect transistor |
CN101388341A (en) * | 2007-09-07 | 2009-03-18 | 应用材料股份有限公司 | Impurity control in hdp-cvd dep/etch/dep processes |
US20100041245A1 (en) * | 2008-08-18 | 2010-02-18 | Macronix International Co., Ltd. | Hdp-cvd process, filling-in process utilizing hdp-cvd, and hdp-cvd system |
CN107017167A (en) * | 2017-03-01 | 2017-08-04 | 上海华虹宏力半导体制造有限公司 | The manufacture method of trench-gate device with shield grid |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112652652A (en) * | 2019-10-12 | 2021-04-13 | 华润微电子(重庆)有限公司 | Groove type field effect transistor structure and preparation method thereof |
WO2021068420A1 (en) * | 2019-10-12 | 2021-04-15 | 华润微电子(重庆)有限公司 | Trench-type field-effect transistor structure and preparation method therefor |
CN113035715A (en) * | 2019-12-25 | 2021-06-25 | 华润微电子(重庆)有限公司 | Shielded gate trench field effect transistor and method of making same |
CN111599685A (en) * | 2020-06-28 | 2020-08-28 | 上海华虹宏力半导体制造有限公司 | Power semiconductor device and manufacturing method thereof |
CN111599685B (en) * | 2020-06-28 | 2023-08-11 | 上海华虹宏力半导体制造有限公司 | A kind of power semiconductor device and its manufacturing method |
CN111681962A (en) * | 2020-07-30 | 2020-09-18 | 上海华虹宏力半导体制造有限公司 | Shielded grid power device and its manufacturing method |
CN111681962B (en) * | 2020-07-30 | 2023-06-09 | 上海华虹宏力半导体制造有限公司 | Shielded grid power device and manufacturing method thereof |
CN111681963A (en) * | 2020-08-11 | 2020-09-18 | 中芯集成电路制造(绍兴)有限公司 | Shielded gate field effect transistor and method of forming the same |
CN113299557A (en) * | 2021-06-24 | 2021-08-24 | 绍兴中芯集成电路制造股份有限公司 | Shielded gate field effect transistor and method of forming the same |
CN114050109A (en) * | 2022-01-12 | 2022-02-15 | 广州粤芯半导体技术有限公司 | Manufacturing method of shielded gate trench power device |
CN114050109B (en) * | 2022-01-12 | 2022-04-15 | 广州粤芯半导体技术有限公司 | Manufacturing method of shielded gate trench power device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108389800A (en) | The manufacturing method of shield grid trench FET | |
US11088253B2 (en) | Gate structure of semiconductor device and manufacturing method therefor | |
CN102683390B (en) | Polysilicon interlayer dielectric in dhield grid MOSFET element | |
TWI471942B (en) | Semiconductor device and method of manufacturing same | |
CN102789987B (en) | Method for manufacturing super junction power transistor with low miller capacitance | |
US8034686B2 (en) | Method of manufacturing a trench MOSFET having trench contacts integrated with trench Schottky rectifiers having planar contacts | |
CN106847880A (en) | A kind of semiconductor devices and preparation method thereof | |
CN107808903A (en) | Shield grid groove MOSFET device and its manufacture method | |
CN108172517A (en) | A method of manufacturing a shielded gate trench MOSFET | |
CN106024894A (en) | Groove gate power MOSFET structure and manufacturing method thereof | |
CN102208414A (en) | Super-junction trench metal oxide semiconductor field effect transistor and manufacturing method thereof | |
CN102569363B (en) | A kind of high pressure resistant tunneling transistor and preparation method thereof | |
US8492221B2 (en) | Method for fabricating power semiconductor device with super junction structure | |
CN109216470A (en) | Semiconductor structure and forming method thereof | |
CN108172563A (en) | A kind of ditch flute profile device and its manufacturing method with self-aligned contact hole | |
CN107994076A (en) | The manufacture method of groove grid super node device | |
US20190067427A1 (en) | Inter-poly oxide in field effect transistors | |
CN114038751A (en) | Manufacturing method of shielded gate MOSFET device with upper and lower structures | |
CN108400166A (en) | The power transistor with terminal groove in terminal reduces surface field region | |
CN114284149B (en) | Preparation method of shielded gate trench field effect transistor | |
CN104103693A (en) | U-groove power device and manufacturing method thereof | |
CN104103586A (en) | Method for forming semiconductor device | |
CN113594043A (en) | Trench type MOSFET device and manufacturing method thereof | |
CN112133750A (en) | Deep trench power device and method of making the same | |
CN116598205A (en) | Groove type MOSFET device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |