CN108387341A - Miniature vacuum gauge and working method thereof - Google Patents
Miniature vacuum gauge and working method thereof Download PDFInfo
- Publication number
- CN108387341A CN108387341A CN201810324826.1A CN201810324826A CN108387341A CN 108387341 A CN108387341 A CN 108387341A CN 201810324826 A CN201810324826 A CN 201810324826A CN 108387341 A CN108387341 A CN 108387341A
- Authority
- CN
- China
- Prior art keywords
- diode
- vacuum gauge
- cantilever beam
- frame
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 229920005591 polysilicon Polymers 0.000 claims description 9
- 230000003071 parasitic effect Effects 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000009461 vacuum packaging Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L21/00—Vacuum gauges
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Micromachines (AREA)
Abstract
本发明公开了一种微型真空计及其工作方法,该微型真空计包括底座、框架、绝缘基底、二极管、电阻、悬臂梁和电学连线,框架固定在底座四周,悬臂梁至少为两个,悬臂梁的一端与绝缘基底固定连接,悬臂梁的另一端固定于框架的上侧面上,至少两个悬臂梁将绝缘基底悬空固定于框架上;二极管和电阻设于绝缘基底上,电学连线将电阻和二极管电性连接并从悬臂梁上引出。本发明通过配置二极管数量、二极管的串并联方式、串联电阻大小、绝缘基底与底座之间的间隙实现对不同真空度的精确检测,具有配置灵活、灵敏度高、量程大的优点。此外,该真空计还具有结构及制作方法简单、与CMOS工艺兼容、加工误差容限大、成本低等优点。
The invention discloses a miniature vacuum gauge and its working method. The miniature vacuum gauge comprises a base, a frame, an insulating base, a diode, a resistor, a cantilever beam and electrical connection wires, the frame is fixed around the base, and there are at least two cantilever beams. One end of the cantilever beam is fixedly connected to the insulating base, the other end of the cantilever beam is fixed on the upper side of the frame, and at least two cantilever beams suspend and fix the insulating base on the frame; the diode and the resistor are arranged on the insulating base, and the electrical connection wires The resistor and the diode are electrically connected and drawn out from the cantilever beam. The invention realizes accurate detection of different vacuum degrees by configuring the number of diodes, the series-parallel connection mode of the diodes, the size of the series resistance, and the gap between the insulating base and the base, and has the advantages of flexible configuration, high sensitivity and large measuring range. In addition, the vacuum gauge also has the advantages of simple structure and manufacturing method, compatibility with CMOS technology, large processing error tolerance, low cost and the like.
Description
技术领域technical field
本发明涉及一种微型真空计及其工作方法。The invention relates to a miniature vacuum gauge and its working method.
背景技术Background technique
真空计是用于测量低于一个大气压的气体的仪器。一般是利用不同气压下气体的某种物理效应的变化进行气压的测量,在科研和工业生产中广泛应用。历经三百多年的发展,如今的真空计种类繁多,液态式真空计、电容薄膜式真空计、谐振式真空计、热传导式真空计、电离式真空计等。同时,测量范围以及测量精度得到极大的提高。A vacuum gauge is an instrument used to measure gases below one atmospheric pressure. Generally, the air pressure is measured by using the change of a certain physical effect of the gas under different air pressures, and it is widely used in scientific research and industrial production. After more than 300 years of development, there are many types of vacuum gauges today, such as liquid vacuum gauges, capacitive film vacuum gauges, resonant vacuum gauges, heat conduction vacuum gauges, and ionization vacuum gauges. At the same time, the measurement range and measurement accuracy are greatly improved.
微机电系统是在微电子技术基础上发展起来的,融合了光刻、腐蚀、薄膜、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。微机电系统是一项革命性的新技术,广泛应用于高新技术产业,它侧重于超精密机械加工,涉及微电子、材料、力学、化学、机械学等诸多学科领域。MEMS is developed on the basis of microelectronics technology, which is a high-tech electromechanical device made by combining technologies such as lithography, corrosion, thin film, silicon micromachining, non-silicon micromachining and precision machining. MEMS is a revolutionary new technology widely used in high-tech industries. It focuses on ultra-precision machining and involves many disciplines such as microelectronics, materials, mechanics, chemistry, and mechanics.
使用微细加工工艺制作的微型加速度计、微型陀螺仪等仪器近年来得到广泛的应用。微系统真空封装中真空度的保持很大程度上决定了器件的最终性能、工作的可靠性及其寿命,而对封装体内真空度的监测是真空封装中一个重要研究领域。Instruments such as micro accelerometers and micro gyroscopes made by microfabrication technology have been widely used in recent years. The maintenance of the vacuum degree in the microsystem vacuum packaging largely determines the final performance, reliability and life of the device, and the monitoring of the vacuum degree in the package is an important research field in vacuum packaging.
皮拉尼真空计也被称为电阻式真空规,属于热传导式真空计的一种。其工作原理是:真空度不同,单位体积内的空气分子数就不同,则电阻丝的散热能力随之不同,表现为电阻丝的温度不同,因为电阻丝的电阻率是温度的函数,则不同的真空度会导致电阻丝的电阻率不同,进而导致电阻不同,在电阻丝上的压降就会不同。皮拉尼计是一种精度较高、制造工艺和测试都较为简单的真空度检测器件。通过体硅加工工艺制作的微型皮拉尼计具有体积小、测量精度高、易于批量生产、成本低等优点,被广泛应用于MEMS真空封装的实时真空测量。Pirani vacuum gauge is also called resistance vacuum gauge, which is a kind of heat conduction vacuum gauge. Its working principle is: the number of air molecules per unit volume is different when the degree of vacuum is different, and the heat dissipation capacity of the resistance wire is different accordingly, which is manifested as the temperature of the resistance wire is different, because the resistivity of the resistance wire is a function of temperature, then it is different The vacuum degree will cause the resistivity of the resistance wire to be different, which will cause the resistance to be different, and the voltage drop on the resistance wire will be different. The Pirani gauge is a vacuum degree detection device with high precision, relatively simple manufacturing process and testing. The miniature Pirani gauge made by bulk silicon processing technology has the advantages of small size, high measurement accuracy, easy mass production, and low cost, and is widely used in real-time vacuum measurement of MEMS vacuum packaging.
北京大学于2008年3月11日提出公开号CN101256105A、名称为“单晶硅横向微型MEMS皮拉尼计及其制备方法”的专利申请,公开了一种应用于真空度测量的微型皮拉尼计;华中科技大学于2009年6月9日提出公开号CN101608962A、名称为“一种微型皮拉尼计”的皮拉尼计制作方法的专利申请,具有线性度好、性能稳定、化学稳定性好以及可靠性高的优点。北京大学于2014年3月19日提出了公开号为CN104931193A、名称为“一种带有参考真空室的MEMS皮拉尼计”的皮拉尼计制作方法的专利申请,可以有效消除环境温度造成的皮拉尼计的读数误差。华中科技大学于2014年9月12日提出了公开号为CN104340955A、名称为“微型皮拉尼计的制备方法及其与体硅器件集成加工的方法”的皮拉尼计的制备及集成方法的专利申请,可以降低集成封装工艺难度以及生产成本。On March 11, 2008, Peking University filed a patent application with publication number CN101256105A titled "Single Crystal Silicon Transverse Micro MEMS Pirani Meter and Its Preparation Method", disclosing a micro Pirani meter for vacuum degree measurement. meter; on June 9, 2009, Huazhong University of Science and Technology filed a patent application for a Pirani meter manufacturing method with the publication number CN101608962A and the name "a miniature Pirani meter", which has good linearity, stable performance, and chemical stability. Good and high reliability advantages. On March 19, 2014, Peking University proposed a patent application for a Pirani meter manufacturing method with the publication number CN104931193A and the name "A MEMS Pirani meter with a reference vacuum chamber", which can effectively eliminate the environmental temperature. The reading error of the Pirani gauge. On September 12, 2014, Huazhong University of Science and Technology proposed the preparation and integration method of the Pirani meter with the publication number CN104340955A and the name "Preparation method of micro-Pirani meter and its integrated processing method with bulk silicon devices". Patent application can reduce the difficulty of integrated packaging process and production cost.
目前常用的MEMS器件真空度检测方法主要有:惰性气体He值检测法、谐振器Q值检测法和薄膜变形法以及皮拉尼计。这些方法或多或少都存在一定问题,其中,He值检测法需要非常精密的检测仪器,导致成本较高,同时精度低,而且不能对真空度进行实时监测;Q值检测法主要检测真空封装的MEMS器件的Q值,再通过公式反推,外围电路复杂,受到外界干扰的影响较大;薄膜变形法的薄膜存在使得应用范围受到限制;皮拉尼计为热传导式真空计的一种,利用热敏电阻特性实现真空度检测,在保持检测精度的同时有效降低了生产成本。但是皮拉尼计在实际应用时通常要做与之匹配的外围电路;在实际加工过程中的电阻存在较大的加工误差,并且难以加工阻值较大的电阻。At present, the commonly used methods for detecting vacuum degree of MEMS devices mainly include: inert gas He value detection method, resonator Q value detection method, thin film deformation method and Pirani meter. These methods have more or less certain problems. Among them, the He value detection method requires very precise detection instruments, resulting in high cost and low precision, and it cannot monitor the vacuum degree in real time; the Q value detection method mainly detects vacuum packaging. The Q value of the MEMS device is reversed by the formula, the peripheral circuit is complex, and it is greatly affected by external interference; the existence of the thin film deformation method limits the application range; the Pirani gauge is a kind of heat conduction vacuum gauge, The detection of the vacuum degree is realized by using the characteristics of the thermistor, which effectively reduces the production cost while maintaining the detection accuracy. However, the Pirani meter usually needs to be matched with peripheral circuits in practical applications; in the actual processing process, there are large processing errors in the resistance, and it is difficult to process resistance with large resistance.
发明内容Contents of the invention
为了克服上述缺陷,本发明提供了一种微型真空计及其工作方法,利用二极管的电流-电压特性曲线的温度特性,实现二极管输出电信号的变化,从而实现真空度的检测。In order to overcome the above-mentioned defects, the present invention provides a miniature vacuum gauge and its working method, which uses the temperature characteristic of the current-voltage characteristic curve of the diode to realize the change of the output electric signal of the diode, thereby realizing the detection of the vacuum degree.
本发明为了解决其技术问题所采用的技术方案是:一种微型真空计,包括底座、框架、绝缘基底、二极管、电阻、悬臂梁和电学连线,所述框架固定在所述底座四周,所述悬臂梁至少为两个,所述悬臂梁的一端与所述绝缘基底固定连接,所述悬臂梁的另一端固定于所述框架的上侧面上,至少两个所述悬臂梁将所述绝缘基底悬空固定于所述框架上;所述二极管和电阻设于所述绝缘基底上,所述电学连线将所述电阻和二极管电性连接并从所述悬臂梁上引出。The technical solution adopted by the present invention in order to solve the technical problems is: a miniature vacuum gauge, including a base, a frame, an insulating substrate, a diode, a resistor, a cantilever beam and electrical connections, the frame is fixed around the base, and the There are at least two cantilever beams, one end of the cantilever beam is fixedly connected to the insulating base, the other end of the cantilever beam is fixed on the upper side of the frame, at least two cantilever beams connect the insulating The base is suspended and fixed on the frame; the diode and the resistor are arranged on the insulating base, and the electrical connection wire electrically connects the resistor and the diode and leads out from the cantilever beam.
作为本发明的进一步改进,所述底座为硅、石英或玻璃衬底。As a further improvement of the present invention, the base is a silicon, quartz or glass substrate.
作为本发明的进一步改进,所述框架为绝缘结构。As a further improvement of the present invention, the frame is an insulating structure.
作为本发明的进一步改进,所述二极管为PN结。As a further improvement of the present invention, the diode is a PN junction.
作为本发明的进一步改进,所述二极管为多个,多个二极管之间串联或并联连接。As a further improvement of the present invention, there are multiple diodes, and the multiple diodes are connected in series or in parallel.
作为本发明的进一步改进,所述电阻为多晶硅、金属电阻和加工产生的寄生电阻其中之一,数量为一个或多个,并与所述二极管串联。As a further improvement of the present invention, the resistor is one or more of polysilicon, metal resistors and parasitic resistors produced by processing, and is connected in series with the diode.
作为本发明的进一步改进,所述悬臂梁为绝缘梁。As a further improvement of the present invention, the cantilever beam is an insulating beam.
作为本发明的进一步改进,所述悬臂梁为L型。As a further improvement of the present invention, the cantilever beam is L-shaped.
作为本发明的进一步改进,所述电学连线为多晶硅、金属或多种材料构成,并置于所述悬臂梁中。As a further improvement of the present invention, the electrical connection is made of polysilicon, metal or multiple materials, and placed in the cantilever beam.
本发明还提供一种如上所述的微型真空计的工作方法,若所述二极管工作在恒定偏置电流下,则所述微型真空计通过电学连线测所述二极管两端电压与真空度的关系,获得真空度信息;若所述二极管工作在恒定偏置电压下,则所述微型真空计通过电学连线测所述二极管电流与真空度的关系,获得真空度信息。The present invention also provides a working method of the miniature vacuum gauge as described above. If the diode works under a constant bias current, the miniature vacuum gauge measures the voltage between the two ends of the diode and the degree of vacuum through an electrical connection. relationship to obtain vacuum degree information; if the diode works under a constant bias voltage, the micro vacuum gauge measures the relationship between the diode current and vacuum degree through an electrical connection to obtain vacuum degree information.
本发明的有益效果是:The beneficial effects of the present invention are:
1、PN结二极管存在结电压,通过配置串联二极管的数量快速提升或降低工作电压,以适应常见的CMOS电路的工作电压,不需要阻值大的电阻以及精细复杂的调理电路;1. There is a junction voltage in the PN junction diode, and the working voltage can be quickly increased or lowered by configuring the number of series diodes to adapt to the working voltage of common CMOS circuits, without the need for large resistance resistors and sophisticated conditioning circuits;
2、加工制作PN结能够允许较大的加工误差容限,产品性能一致性较好;2. The processing and manufacturing of PN junction can allow a large processing error tolerance, and the product performance consistency is good;
3、正常工作情况下的工作电流小,在基本不损失工作电压的情况下,有效降低功耗;3. The working current under normal working conditions is small, and the power consumption is effectively reduced without losing the working voltage;
4、结构以及加工步骤简单,有效降低生产成本;4. The structure and processing steps are simple, effectively reducing production costs;
5、通过配置二极管数量及串并联方式、电阻的大小及数量、牺牲层厚度以及偏置电流大小,灵活改变真空计的灵敏度以及量程。5. By configuring the number of diodes and series-parallel connection, the size and number of resistors, the thickness of the sacrificial layer and the size of the bias current, the sensitivity and range of the vacuum gauge can be flexibly changed.
附图说明Description of drawings
图1a为本发明实施例所述真空计的结构示意图;Fig. 1a is a schematic structural diagram of a vacuum gauge according to an embodiment of the present invention;
图1b为本发明实施例所述真空计的分解结构示意图;Fig. 1b is a schematic diagram of an exploded structure of a vacuum gauge according to an embodiment of the present invention;
图2a、2b、2c、2d、2e、2f为本发明实施例所述真空计的一种加工制作步骤流程图,其中:图2a为生长二氧化硅步骤,图2b为敏感结构区P型注入步骤;图2c为二极管的N型注入步骤;图2d为电学连线制作步骤;图2e为图形化悬臂梁及绝缘基底步骤;图2f为完成悬空结构制作步示意图。Fig. 2a, 2b, 2c, 2d, 2e, 2f are a kind of process flow diagram of manufacturing steps of the vacuum gauge described in the embodiment of the present invention, wherein: Fig. 2a is the step of growing silicon dioxide, and Fig. 2b is the P-type implantation in the sensitive structure region Steps; Figure 2c is the N-type injection step of the diode; Figure 2d is the step of making the electrical connection; Figure 2e is the step of patterning the cantilever beam and the insulating substrate; Figure 2f is a schematic diagram of the step of completing the suspension structure.
结合附图,作以下说明:In conjunction with the accompanying drawings, the following descriptions are made:
1.底座、2.框架、3.绝缘基底、4.二极管、5.电阻、6.悬臂梁、7.电学连线、21.体硅、22.二氧化硅、23.淀积硅、24.多晶硅或者金属。1. Base, 2. Frame, 3. Insulating substrate, 4. Diode, 5. Resistor, 6. Cantilever beam, 7. Electrical wiring, 21. Bulk silicon, 22. Silicon dioxide, 23. Deposited silicon, 24 . Polysilicon or metal.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明所述微型真空计的一种结构示意图,该微型真空计包括:底座1、框架2、绝缘基底3、二极管4、电阻5、悬臂梁6和电学连线7。框架2固定在底座1四周;绝缘基底3位于底座1上方,并与之具有间隙,通过悬空的悬臂梁6与框架2进行连接;二极管4和电阻5设置在绝缘基底3上;电学连线7与二极管4和电阻5电学连接,位于悬臂梁6上。FIG. 1 is a structural schematic view of the miniature vacuum gauge of the present invention, which comprises: a base 1, a frame 2, an insulating substrate 3, a diode 4, a resistor 5, a cantilever beam 6 and an electrical connection 7. The frame 2 is fixed around the base 1; the insulating base 3 is located above the base 1 and has a gap with it, and is connected to the frame 2 through a suspended cantilever beam 6; the diode 4 and the resistor 5 are arranged on the insulating base 3; the electrical connection 7 It is electrically connected with the diode 4 and the resistor 5, and is located on the cantilever beam 6.
所述的底座1是硅、石英或者玻璃衬底,用于为真空计提供基底支撑,真空计的完整结构均位于底座之上。为减少加工步骤,降低制作难度,优选的使用硅作为底座材料。The base 1 is a silicon, quartz or glass substrate, which is used to provide base support for the vacuum gauge, and the complete structure of the vacuum gauge is located on the base. In order to reduce processing steps and reduce manufacturing difficulty, silicon is preferably used as the base material.
所述的框架2是绝缘结构,为真空计的立体结构提供支撑,框架2位于整个真空计结构的外侧,直接决定了真空计的大小;框架2部分没有任何电学连接要求。一般真空计的框架2材料可以为:氧化硅、氮化硅等,氧化硅为优先使用的材料。The frame 2 is an insulating structure that provides support for the three-dimensional structure of the vacuum gauge. The frame 2 is located outside the entire vacuum gauge structure and directly determines the size of the vacuum gauge; the frame 2 part does not require any electrical connection. Generally, the material of the frame 2 of the vacuum gauge can be: silicon oxide, silicon nitride, etc., and silicon oxide is the preferred material.
所述的二极管4是PN结,二极管4的电流-电压特性曲线随着二极管温度的升高而左移,不同的真空度会导致二极管上的温度不同,利用真空度对二极管4温度的影响,导致二极管4的电流-电压特性发生变化实现对真空度的检测。The diode 4 is a PN junction, and the current-voltage characteristic curve of the diode 4 shifts to the left as the temperature of the diode increases, and different degrees of vacuum will cause different temperatures on the diode. As a result, the current-voltage characteristics of the diode 4 change to detect the degree of vacuum.
所述二极管4可以是一个,也可以是多个;多个二极管4之间是串联或者并联。在恒定偏置电流下,串联多个二极管可以提升检测灵敏度,并联多个二极管可以提升热源功率,串并联均使用可以在提升热源功率的同时可以提升检测灵敏度。The diode 4 can be one or multiple; multiple diodes 4 are connected in series or in parallel. Under constant bias current, connecting multiple diodes in series can improve the detection sensitivity, connecting multiple diodes in parallel can increase the heat source power, and using both in series and parallel can improve the detection sensitivity while increasing the heat source power.
所述电阻5是专门制作的多晶硅电阻或金属电阻,也可以是加工过程中产生的寄生电阻。电阻的数量可以是一个或者多个,与二极管进行串联。电阻的作用在于为真空计提供额外的热源,影响二极管4的温度,辅助二极管4进行真空度的检测。The resistor 5 is a specially made polysilicon resistor or metal resistor, or it may be a parasitic resistor generated during processing. There can be one or more resistors, which are connected in series with the diodes. The function of the resistance is to provide an additional heat source for the vacuum gauge, which affects the temperature of the diode 4, and the auxiliary diode 4 detects the degree of vacuum.
所述的悬臂梁6是绝缘梁,形状可以是“L”型梁、折叠型鱼骨型或者其他形状的悬臂梁。悬臂梁6连接绝缘基底3和框架2,为悬空的绝缘基底3提供支撑。同时,悬臂梁6为电学连线提供引出通路,电学连线制作在悬臂梁6上,悬臂梁6本身没有电学连接要求。The cantilever beam 6 is an insulating beam, and its shape can be an "L" beam, a folded herringbone or other shapes of the cantilever beam. The cantilever beam 6 connects the insulating base 3 and the frame 2 to provide support for the suspended insulating base 3 . At the same time, the cantilever beam 6 provides a lead-out path for the electrical connection, and the electrical connection is made on the cantilever beam 6, and the cantilever beam 6 itself has no requirement for electrical connection.
所述的电学连线7是多晶硅、金属连线或者多种材料构成的连线。电学连线7通过悬臂梁6提供的通路将真空计的电学信号连接到外部。特别地使用金属Al作为电学连线材料。The electrical connection 7 is polysilicon, metal connection or connection made of multiple materials. The electrical connection 7 connects the electrical signal of the vacuum gauge to the outside through the path provided by the cantilever beam 6 . In particular, metal Al is used as the electrical connection material.
为了提升本发明对真空度的检测灵敏度,一个简单可行的方法是增加二极管4的数量。二极管4的连接方式包括:串联、并联、串并联混合。串联二极管可提升检测的灵敏度,并联二极管可以提升二极管作为热源的功率,串并联混合使用则可以在提升热源功率的同时提升检测灵敏度。具体使用二极管的数量以及连接方式需要依据需要测量真空度的范围以及精度需求进行设计。In order to improve the detection sensitivity of the present invention to the degree of vacuum, a simple and feasible method is to increase the number of diodes 4 . The connection modes of the diode 4 include: series connection, parallel connection, and mixed series and parallel connection. Connecting diodes in series can increase the sensitivity of detection, connecting diodes in parallel can increase the power of diodes as a heat source, and using a combination of series and parallel connections can increase the power of heat sources and improve detection sensitivity at the same time. The specific number of diodes used and the connection method need to be designed according to the range and accuracy requirements of the vacuum degree to be measured.
一种典型的实现本发明的加工步骤包括:A kind of typical processing step of realizing the present invention comprises:
1),在抛光的硅基片正面生长牺牲层;1), growing a sacrificial layer on the front side of the polished silicon substrate;
2),在生长的牺牲层上淀积硅;2), depositing silicon on the grown sacrificial layer;
3),在淀积的硅上制作二极管、电阻;3), making diodes and resistors on the deposited silicon;
4),图形化悬臂梁,完成电学连线制作;4), Graphical cantilever beams to complete the electrical connection production;
5),腐蚀释放牺牲层,完成真空计制作。5), corrode and release the sacrificial layer, and complete the manufacture of the vacuum gauge.
通过控制牺牲层厚度,可以控制牺牲层释放之后二极管到底座之间的间隙,从而影响真空计的量程与灵敏度,牺牲层的材料可以是二氧化硅、聚酰亚胺、BCB、多晶硅、非晶硅或者体硅等。在牺牲层上淀积的硅作为绝缘基底,在绝缘基底上制作二极管作为敏感结构层,二极管本身作为核心敏感单元的同时,也作为热源。在绝缘基底上制作的电阻作为一个热源,可以是专门制作的电阻,也可以是加工过程中的寄生电阻。电阻可以是普通电阻,也可以是热敏电阻。当使用普通电阻时,它仅仅作为一个热源;当使用热敏电阻时,它可以辅助提升真空计的灵敏度,一般情况下,不需要专门设计电阻。悬臂梁结构的材料可以是硅,二氧化硅,氮化硅,Ti、Al、Au等金属。电学连线可以是金属、多晶硅或者多种材料构成的电学连线。By controlling the thickness of the sacrificial layer, the gap between the diode and the base after the sacrificial layer is released can be controlled, thereby affecting the range and sensitivity of the vacuum gauge. The material of the sacrificial layer can be silicon dioxide, polyimide, BCB, polysilicon, amorphous silicon or bulk silicon etc. The silicon deposited on the sacrificial layer is used as an insulating base, and a diode is fabricated on the insulating base as a sensitive structural layer. The diode itself is used as a core sensitive unit and also as a heat source. The resistance fabricated on the insulating substrate acts as a heat source, which can be a specially fabricated resistance or a parasitic resistance during processing. Resistors can be ordinary resistors or thermistors. When using a common resistor, it is only used as a heat source; when using a thermistor, it can help improve the sensitivity of the vacuum gauge. Generally, there is no need to design a special resistor. The material of the cantilever beam structure can be silicon, silicon dioxide, silicon nitride, Ti, Al, Au and other metals. The electrical connection can be made of metal, polysilicon or multiple materials.
本实施例的微型真空计使用普通硅片的制备流程包括以下步骤:The preparation process of the miniature vacuum gauge of this embodiment using ordinary silicon wafers includes the following steps:
在抛光的硅基片21正面生长二氧化硅22,如图2a所示;Growing silicon dioxide 22 on the front side of the polished silicon substrate 21, as shown in Figure 2a;
在二氧化硅之上淀积硅3,同时在敏感结构区域进行P型注入,如图2b所示;Deposit silicon 3 on the silicon dioxide, and perform P-type implantation in the sensitive structure area at the same time, as shown in Figure 2b;
在淀积的硅23上进行N型注入,退火形成二极管,完成二极管制作,如图2c所示;Perform N-type implantation on the deposited silicon 23, anneal to form a diode, and complete the diode fabrication, as shown in FIG. 2c;
在悬臂梁处的硅上进行重掺杂作为二极管连接引线,或者淀积金属24实现二极管两端电信号的引出,如图2d所示;Perform heavy doping on the silicon at the cantilever beam as the connecting lead of the diode, or deposit metal 24 to realize the extraction of electrical signals at both ends of the diode, as shown in Figure 2d;
图形化形成悬臂梁以及二极管敏感结构,如图2e所示;Patterning cantilever beams and diode sensitive structures, as shown in Figure 2e;
腐蚀释放牺牲层二氧化硅22,完成真空计制作,如图2f所示。Etching releases the silicon dioxide 22 of the sacrificial layer to complete the fabrication of the vacuum gauge, as shown in FIG. 2f.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权力要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. All should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810324826.1A CN108387341A (en) | 2018-04-12 | 2018-04-12 | Miniature vacuum gauge and working method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810324826.1A CN108387341A (en) | 2018-04-12 | 2018-04-12 | Miniature vacuum gauge and working method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108387341A true CN108387341A (en) | 2018-08-10 |
Family
ID=63073956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810324826.1A Pending CN108387341A (en) | 2018-04-12 | 2018-04-12 | Miniature vacuum gauge and working method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108387341A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108896612A (en) * | 2018-09-13 | 2018-11-27 | 中国科学院微电子研究所 | Miniature humidity sensor |
CN111289173A (en) * | 2020-03-11 | 2020-06-16 | 无锡物联网创新中心有限公司 | Pirani vacuum gauge system |
CN113551834A (en) * | 2021-06-30 | 2021-10-26 | 苏州容启传感器科技有限公司 | Vacuum sensor and vacuum gauge |
CN118565701A (en) * | 2024-07-31 | 2024-08-30 | 湖南大学 | MEMS composite vacuum gauge based on carbon nano tube and implementation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87200798U (en) * | 1987-02-05 | 1987-10-14 | 合肥工业大学 | Wide Range Semiconductor Vacuum Gauge |
CN2409528Y (en) * | 2000-01-28 | 2000-12-06 | 潘有顺 | On-line vacuum monitor for 10 KV vacuum switch |
JP2007147344A (en) * | 2005-11-25 | 2007-06-14 | Mitsuteru Kimura | Thin film pirani vacuum sensor and vacuum measuring device using it |
CN101256105A (en) * | 2008-03-11 | 2008-09-03 | 北京大学 | Single crystal silicon lateral micro MEMS Pirani meter and its preparation method |
US20080304544A1 (en) * | 2007-06-06 | 2008-12-11 | Infineon Technologies Sensonor As | Vacuum Sensor |
CN101571440A (en) * | 2008-04-29 | 2009-11-04 | 北京大学 | Vacuum degree measuring equipment applied to device-level vacuum packaging |
CN101608962A (en) * | 2009-06-09 | 2009-12-23 | 华中科技大学 | A kind of micro Pirani gage |
CN201765085U (en) * | 2010-07-02 | 2011-03-16 | 成都旭顺电子有限责任公司 | On-line vacuum monitoring device for vacuum switch of 27.5kV |
CN103424224A (en) * | 2013-07-24 | 2013-12-04 | 无锡微奇科技有限公司 | Micro-machined vacuum sensor |
CN104340955A (en) * | 2014-09-12 | 2015-02-11 | 华中科技大学 | Preparation method of micro Pirani gauge and method for integrally processing bulk-silicon device together with micro Pirani gauge |
CN208206381U (en) * | 2018-04-12 | 2018-12-07 | 昆山光微电子有限公司 | Miniature vacuum gauge |
CN112097991A (en) * | 2020-09-11 | 2020-12-18 | 无锡物联网创新中心有限公司 | Pirani vacuum gauge system |
-
2018
- 2018-04-12 CN CN201810324826.1A patent/CN108387341A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87200798U (en) * | 1987-02-05 | 1987-10-14 | 合肥工业大学 | Wide Range Semiconductor Vacuum Gauge |
CN2409528Y (en) * | 2000-01-28 | 2000-12-06 | 潘有顺 | On-line vacuum monitor for 10 KV vacuum switch |
JP2007147344A (en) * | 2005-11-25 | 2007-06-14 | Mitsuteru Kimura | Thin film pirani vacuum sensor and vacuum measuring device using it |
US20080304544A1 (en) * | 2007-06-06 | 2008-12-11 | Infineon Technologies Sensonor As | Vacuum Sensor |
CN101256105A (en) * | 2008-03-11 | 2008-09-03 | 北京大学 | Single crystal silicon lateral micro MEMS Pirani meter and its preparation method |
CN101571440A (en) * | 2008-04-29 | 2009-11-04 | 北京大学 | Vacuum degree measuring equipment applied to device-level vacuum packaging |
CN101608962A (en) * | 2009-06-09 | 2009-12-23 | 华中科技大学 | A kind of micro Pirani gage |
CN201765085U (en) * | 2010-07-02 | 2011-03-16 | 成都旭顺电子有限责任公司 | On-line vacuum monitoring device for vacuum switch of 27.5kV |
CN103424224A (en) * | 2013-07-24 | 2013-12-04 | 无锡微奇科技有限公司 | Micro-machined vacuum sensor |
CN104340955A (en) * | 2014-09-12 | 2015-02-11 | 华中科技大学 | Preparation method of micro Pirani gauge and method for integrally processing bulk-silicon device together with micro Pirani gauge |
CN208206381U (en) * | 2018-04-12 | 2018-12-07 | 昆山光微电子有限公司 | Miniature vacuum gauge |
CN112097991A (en) * | 2020-09-11 | 2020-12-18 | 无锡物联网创新中心有限公司 | Pirani vacuum gauge system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108896612A (en) * | 2018-09-13 | 2018-11-27 | 中国科学院微电子研究所 | Miniature humidity sensor |
CN111289173A (en) * | 2020-03-11 | 2020-06-16 | 无锡物联网创新中心有限公司 | Pirani vacuum gauge system |
CN113551834A (en) * | 2021-06-30 | 2021-10-26 | 苏州容启传感器科技有限公司 | Vacuum sensor and vacuum gauge |
CN118565701A (en) * | 2024-07-31 | 2024-08-30 | 湖南大学 | MEMS composite vacuum gauge based on carbon nano tube and implementation method thereof |
CN118565701B (en) * | 2024-07-31 | 2024-11-29 | 湖南大学 | MEMS composite vacuum gauge based on carbon nano tube and implementation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5778619B2 (en) | Pressure sensor | |
CN105241369B (en) | MEMS strain gauge chip and manufacturing process thereof | |
CN105241600B (en) | A kind of MEMS pressure gauges chip and its manufacturing process | |
CN101608962B (en) | Micro Pirani gage | |
CN108387341A (en) | Miniature vacuum gauge and working method thereof | |
JP5412682B2 (en) | Pressure sensor with resistance strain gauge | |
CN102620878B (en) | Capacitive micromachining ultrasonic sensor and preparation and application methods thereof | |
WO2012043164A1 (en) | Thermal flow rate sensor | |
CN102798498A (en) | Multi-range integrated pressure sensor chip | |
US12187601B2 (en) | Electronic sensors with sensor die in package structure cavity | |
US7051595B2 (en) | Monolithic multi-functional integrated sensor and method for fabricating the same | |
JPH0854269A (en) | Thermal micro flow sensor and method of manufacturing the same | |
CN105181231A (en) | Pressure sensor of packaging structure and preparation method thereof | |
Kumar et al. | Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study | |
Belwanshi et al. | Performance study of MEMS piezoresistive pressure sensors at elevated temperatures | |
CN107607210A (en) | A kind of temperature sensor based on metamaterial structure | |
CN106744651A (en) | A kind of condenser type microelectronics baroceptor and preparation method thereof | |
CN208206381U (en) | Miniature vacuum gauge | |
JP2004245760A (en) | Sensor for detecting both pressure and acceleration, and its manufacturing method | |
US20040183150A1 (en) | Silicon pressure sensor and the manufacturing method thereof | |
CN106586942A (en) | Microelectronic air pressure sensor and preparation method therefor | |
Cheng et al. | A resonant differential pressure microsensor with stress isolation and Au-Au bonding in packaging | |
WO2013020275A1 (en) | Manufacturing method of mems piezoresistive pressure chip and sensor | |
CN113884701A (en) | A wind speed and direction sensor with improved measurement range and full-scale accuracy | |
CN100367527C (en) | Capacitive semiconductor pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |
|
RJ01 | Rejection of invention patent application after publication |