CN108365105A - A kind of perovskite solar cell and preparation method thereof - Google Patents
A kind of perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN108365105A CN108365105A CN201810287497.8A CN201810287497A CN108365105A CN 108365105 A CN108365105 A CN 108365105A CN 201810287497 A CN201810287497 A CN 201810287497A CN 108365105 A CN108365105 A CN 108365105A
- Authority
- CN
- China
- Prior art keywords
- layer
- solar cell
- perovskite solar
- light
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 27
- 230000005525 hole transport Effects 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 24
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 7
- 239000011147 inorganic material Substances 0.000 claims abstract description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 7
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 7
- 239000011368 organic material Substances 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 6
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 4
- 238000004528 spin coating Methods 0.000 claims description 28
- 239000012296 anti-solvent Substances 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 10
- 230000031700 light absorption Effects 0.000 claims description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000002207 thermal evaporation Methods 0.000 claims description 4
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 4
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229920001167 Poly(triaryl amine) Polymers 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 5
- 230000027756 respiratory electron transport chain Effects 0.000 claims 4
- 230000005611 electricity Effects 0.000 claims 2
- 235000019441 ethanol Nutrition 0.000 claims 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 238000003475 lamination Methods 0.000 claims 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- 238000001771 vacuum deposition Methods 0.000 claims 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 229920002457 flexible plastic Polymers 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 23
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000010409 thin film Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- NPNMHHNXCILFEF-UHFFFAOYSA-N [F].[Sn]=O Chemical compound [F].[Sn]=O NPNMHHNXCILFEF-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013082 photovoltaic technology Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- XIOIZEVQIFUAMN-UHFFFAOYSA-K C[Pb](I)(I)I Chemical compound C[Pb](I)(I)I XIOIZEVQIFUAMN-UHFFFAOYSA-K 0.000 description 1
- -1 CuO Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种钙钛矿太阳能电池及其制备方法。一种钙钛矿太阳能电池,其特征在于,包括依次层叠设置的衬底、透明导电层、空穴传输层、吸光层、电子传输层以及顶电极;其中,衬底为玻璃或者柔性塑料类材料制成;透明导电层为一透明电极,透明导电层与衬底一体化设置;空穴传输层为有机材料或无机材料,用于将空穴传输至透明电极;吸光层为具有钙钛矿结构的光伏材料,用于吸收入射光;电子传输层为金属氧化物、PCBM、C60等具有优异电子传导效果的材料,用于传输电子,并隔离吸光层和所述顶电极;顶电极为具有较高功函数的材料;本发明还提供一种制备上述钙钛矿太阳能电池的方法;本发明提高了钙钛矿太阳能电池的短路电流和能量转换效率。
The invention discloses a perovskite solar cell and a preparation method thereof. A perovskite solar cell is characterized in that it includes a substrate, a transparent conductive layer, a hole transport layer, a light absorbing layer, an electron transport layer, and a top electrode stacked in sequence; wherein the substrate is made of glass or flexible plastic materials Made; the transparent conductive layer is a transparent electrode, and the transparent conductive layer is integrated with the substrate; the hole transport layer is an organic material or an inorganic material, which is used to transport holes to the transparent electrode; the light-absorbing layer has a perovskite structure The photovoltaic material is used to absorb incident light; the electron transport layer is a material with excellent electron conduction effect such as metal oxide, PCBM, C 60 , etc., which is used to transmit electrons and isolate the light absorbing layer from the top electrode; the top electrode is a material with A material with a higher work function; the present invention also provides a method for preparing the perovskite solar cell; the present invention improves the short-circuit current and energy conversion efficiency of the perovskite solar cell.
Description
技术领域technical field
本发明涉及钙钛矿太阳能电池制备领域,尤其涉及一种钙钛矿太阳能电池及其制备方法。The invention relates to the field of preparation of perovskite solar cells, in particular to a perovskite solar cell and a preparation method thereof.
背景技术Background technique
由于能源危机日益严重,太阳能的利用受到光伏技术的清洁和高用量的关注,引起了人们的高度关注。有机金属卤化物钙钛矿太阳能电池由于钙钛矿材料的独特性质,如高吸收系数和大的载流子扩散长度等,低成本制造工艺和高功率转换效率而被广泛研究。PSC(Perovskite Solar Cells,钙钛矿太阳能电池)的能量转换效率从2009年首次报道的3.8 %上升到近期的22.1 %。这些优势都使得PSC在众多光伏技术中处于显着地位。Due to the increasingly serious energy crisis, the utilization of solar energy has attracted great attention due to the cleanliness and high usage of photovoltaic technology. Organometal halide perovskite solar cells have been widely studied due to the unique properties of perovskite materials, such as high absorption coefficient and large carrier diffusion length, low-cost fabrication process and high power conversion efficiency. The energy conversion efficiency of PSC (Perovskite Solar Cells, perovskite solar cells) has risen from 3.8% first reported in 2009 to 22.1% recently. These advantages make PSCs in a prominent position in many photovoltaic technologies.
就钙钛矿薄膜的制备而言,可以通过使用热蒸发技术来获得高质量的薄膜。然而,溶液法制备低成本并且可与柔性技术相兼容,因此在应用上更有前景。与两步连续溶液沉积法相比,一步法溶液沉积法技术简单、省时,因此,被广泛用于制备钙钛矿薄膜。 然而,一步法制备的钙钛矿薄膜晶粒较小,而且在衬底上的覆盖率低。对于钙钛矿器件非常重要的载流子的产生和传输等物理过程都发生在钙钛矿薄膜内部,因此,钙钛矿薄膜的形貌在很大程度上影响了PSC的性能。As far as the preparation of perovskite thin films is concerned, high-quality thin films can be obtained by using thermal evaporation techniques. However, the solution-based preparation is low-cost and compatible with flexible technology, so it is more promising in application. Compared with the two-step continuous solution deposition method, the one-step solution deposition method is technically simple and time-saving, thus, it is widely used to prepare perovskite thin films. However, the perovskite thin films prepared by the one-step method have smaller grain size and low coverage on the substrate. The physical processes such as the generation and transport of carriers that are very important for perovskite devices occur inside the perovskite film. Therefore, the morphology of the perovskite film greatly affects the performance of PSCs.
理想的钙钛矿吸光层应具备均匀大晶粒、高覆盖率和表面光滑等特点。许多研究工作集中在提高钙钛矿材料的形貌上,例如,选择高沸点溶剂来配置钙钛矿前驱体溶液,通过减缓溶剂的蒸发来降低钙钛矿晶粒的生长速度,提高晶粒的尺寸和均匀性;通过优化空穴传输层或空穴传输层/钙钛矿层的界面性质,改善钙钛矿层的形貌;通过将处于高温的钙钛矿前驱体溶液旋涂在热的衬底上,得到大晶粒的钙钛矿薄膜;以溶剂蒸气对钙钛矿薄膜进行后退火,有助于晶界的愈合,增大晶粒尺寸。另一种广泛使用的方法是在旋涂钙钛矿前驱体溶液的过程中进行反溶剂清洗(ASW),该方法工艺简单并且能有效改善钙钛矿形貌。传统认为可实现高效钙钛矿太阳能电池的理想钙钛矿层的形貌,在直观下表现为光滑表面的暗棕色膜。An ideal perovskite light-absorbing layer should have the characteristics of uniform large grains, high coverage and smooth surface. Many research efforts have focused on improving the morphology of perovskite materials, for example, selecting high-boiling point solvents to configure perovskite precursor solutions, slowing down the evaporation of solvents to reduce the growth rate of perovskite grains, and improving the grain size. Size and uniformity; improve the morphology of the perovskite layer by optimizing the interface properties of the hole transport layer or the hole transport layer/perovskite layer; by spin-coating the perovskite precursor solution at high temperature on the hot substrate On the other hand, a perovskite film with large grains is obtained; post-annealing the perovskite film with solvent vapor helps to heal the grain boundary and increase the grain size. Another widely used method is anti-solvent washing (ASW) during spin-coating of perovskite precursor solution, which is simple in process and can effectively improve the morphology of perovskite. Traditionally, the morphology of the ideal perovskite layer that can realize high-efficiency perovskite solar cells is intuitively represented as a dark brown film with a smooth surface.
发明内容Contents of the invention
本发明的目的在于针对现有技术中存在的技术问题,提供一种钙钛矿太阳能电池及其制备方法,具体技术方案如下:The purpose of the present invention is to provide a perovskite solar cell and a preparation method thereof for the technical problems existing in the prior art, and the specific technical scheme is as follows:
一方面,提供一种钙钛矿太阳能电池,包括依次层叠设置的衬底、透明导电层、空穴传输层、吸光层、电子传输层以及顶电极;In one aspect, a perovskite solar cell is provided, comprising a substrate, a transparent conductive layer, a hole transport layer, a light absorbing layer, an electron transport layer, and a top electrode stacked in sequence;
其中,所述衬底为玻璃或者柔性塑料类材料制成;所述透明导电层为一透明电极,所述透明导电层与所述衬底一体化设置;所述空穴传输层为有机材料或无机材料,用于将空穴传输至所述透明电极;所述吸光层为具有钙钛矿结构的光伏材料,用于吸收入射光;所述电子传输层为金属氧化物、PCBM、C60等具有优异电子传导效果的材料,用于传输电子,并隔离所述吸光层和所述顶电极;所述顶电极为具有较高功函数的材料。Wherein, the substrate is made of glass or flexible plastic material; the transparent conductive layer is a transparent electrode, and the transparent conductive layer is integrated with the substrate; the hole transport layer is made of organic material or Inorganic materials for transporting holes to the transparent electrodes; the light-absorbing layer is a photovoltaic material with a perovskite structure for absorbing incident light; the electron-transporting layer is metal oxide, PCBM, C 60 , etc. A material with excellent electron conduction effect is used to transport electrons and isolate the light absorbing layer from the top electrode; the top electrode is a material with a higher work function.
进一步的,所述透明电极为铟锡氧化物(ITO)、氟锡氧化物(FTO)或铝锌氧化物(AZO)。Further, the transparent electrode is indium tin oxide (ITO), fluorine tin oxide (FTO) or aluminum zinc oxide (AZO).
进一步的,所述空穴传输层的厚度为50nm~300nm;所述无机材料为金属氧化物,所述有机材料为PEDOT:PSS、Spiro-MeOTAD、PTAA、P3HT、NPB等。Further, the thickness of the hole transport layer is 50nm~300nm; the inorganic material is a metal oxide, and the organic material is PEDOT:PSS, Spiro-MeOTAD, PTAA, P3HT, NPB, etc.
进一步的,所述吸光层的厚度为200nm~400nm,由钙钛矿材料的致密晶粒构成。Further, the thickness of the light-absorbing layer is 200nm-400nm, and is composed of dense grains of perovskite material.
进一步的,所述电子传输层的厚度为10nm~100nm。Further, the electron transport layer has a thickness of 10 nm to 100 nm.
进一步的,所述顶电极可以是金、银、铜、铝等金属以及导电碳材料。Further, the top electrode can be made of gold, silver, copper, aluminum and other metals and conductive carbon materials.
另一方面,提供一种钙钛矿太阳能电池的制备方法,用于制备上述钙钛矿太阳能电池,所述方法包括步骤:In another aspect, a method for preparing a perovskite solar cell is provided, for preparing the above perovskite solar cell, the method comprising the steps of:
在去离子水、丙酮和乙醇中依次对衬底进行预设时间的超声波清洗,干燥并通过臭氧等离子体清洗预设时间;The substrate is ultrasonically cleaned for a preset time in deionized water, acetone and ethanol in sequence, dried and cleaned for a preset time by ozone plasma;
在衬底上使用旋涂方式制备空穴传输层薄膜,并在100℃下对形成的薄膜进行高温退火操作,形成预设厚度的空穴传输层;Prepare a hole transport layer film on the substrate by spin coating, and perform high temperature annealing on the formed film at 100°C to form a hole transport layer with a preset thickness;
在所述空穴传输层上旋涂前驱体溶液,并在旋涂过程中通过滴管滴加定量的反溶剂进行洗涤,形成吸光层;Spin-coating a precursor solution on the hole transport layer, and dropping a quantitative amount of anti-solvent through a dropper during the spin-coating process to form a light-absorbing layer;
在吸光层上通过旋涂的方式形成电子传输层,并将所述电子传输层放置在70℃热台上进行退火处理;Forming an electron transport layer on the light absorbing layer by spin coating, and placing the electron transport layer on a hot stage at 70°C for annealing;
将依次叠层有空穴传输层、吸光层、电子传输层的衬底放置在设定真空度的真空镀腔通过热蒸发沉积顶电极。The substrate with the hole transport layer, the light absorbing layer and the electron transport layer stacked in sequence is placed in a vacuum plating chamber with a set vacuum degree to deposit the top electrode by thermal evaporation.
进一步的,所述衬底在所述去离子水、丙酮、乙醇中各进行10min~20min的超声波清洗,在所述臭氧等离子体清洗3min~5min。Further, the substrate is ultrasonically cleaned in the deionized water, acetone, and ethanol for 10 minutes to 20 minutes each, and cleaned in the ozone plasma for 3 minutes to 5 minutes.
进一步的,所述吸光层的制备包括第一阶段:在900rpm~1100rpm速度下对前驱体溶液进行旋涂操作,以及第二阶段:在4000rpm~6000rpm速度下滴加反溶剂。Further, the preparation of the light-absorbing layer includes a first stage: spin-coating the precursor solution at a speed of 900rpm-1100rpm, and a second stage: adding anti-solvent dropwise at a speed of 4000rpm-6000rpm.
进一步的,所述滴管与衬底的角度保持在40°~50°。Further, the angle between the dropper and the substrate is kept at 40°-50°.
在本发明中,使用具有钙钛矿结构的光伏材料制备钙钛矿太阳能电池中的吸光层,在吸光层制备中,使用旋涂方式,并在旋涂过程中通过反溶剂清洗工艺,最终得到不同于传统褐色薄膜层的白色镜面薄膜层,即吸光层;与现有技术相比,本发明的有益效果为:本发明中形成的白色镜面薄膜层具有多层层叠结构,有较少的水平晶界;有利于载流子的传输,达到提高钙钛矿太阳能电池的短路电流和能量转化效率的效果。In the present invention, the light-absorbing layer in the perovskite solar cell is prepared using a photovoltaic material with a perovskite structure. In the preparation of the light-absorbing layer, a spin-coating method is used, and an anti-solvent cleaning process is used during the spin-coating process to finally obtain Different from the white mirror film layer of the traditional brown film layer, that is, the light-absorbing layer; compared with the prior art, the beneficial effect of the present invention is: the white mirror film layer formed in the present invention has a multi-layer laminated structure, and there are fewer levels Grain boundary; it is conducive to the transport of carriers, and achieves the effect of improving the short-circuit current and energy conversion efficiency of perovskite solar cells.
附图说明Description of drawings
图1为本发明钙钛矿太阳能电池的结构组成示意图;Fig. 1 is the structural composition schematic diagram of perovskite solar cell of the present invention;
图2为本发明钙钛矿太阳能电池制备工艺流程框图;Fig. 2 is a block diagram of the preparation process of the perovskite solar cell of the present invention;
图3为本发明吸光层薄膜制备工艺与传统吸光层薄膜制备工艺对比示意;Fig. 3 is a comparison schematic diagram of the preparation process of the light-absorbing layer film of the present invention and the traditional light-absorbing layer film preparation process;
图4为本发明吸光层中钙钛矿薄膜照片与传统吸光层中钙钛矿薄膜照片的对比示意;Fig. 4 is the comparative representation of the perovskite film photo in the light absorbing layer of the present invention and the perovskite film photo in the traditional light absorbing layer;
图5本发明吸光层中钙钛矿薄膜SEM形貌图与传统吸光层中钙钛矿薄膜SEM形貌图的对比示意Fig. 5 SEM topography diagram of the perovskite thin film in the light-absorbing layer of the present invention and the comparison diagram of the SEM topography of the perovskite thin film in the traditional light-absorbing layer
图6为本发明钙钛矿太阳能电池与传统钙钛矿太阳能电池的电压-电流密度测试曲线示意。6 is a schematic diagram of the voltage-current density test curves of the perovskite solar cell of the present invention and the traditional perovskite solar cell.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例,附图中给出了本发明的较佳实施例。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例,相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Apparently, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments, and the preferred embodiments of the present invention are shown in the accompanying drawings. The present invention can be implemented in many different forms and is not limited to the embodiments described herein, on the contrary, these embodiments are provided for the purpose of making the disclosure of the present invention more thorough and comprehensive. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
参阅图1,在本发明实施例中,一方面提供了一种钙钛矿太阳能电池,电池包括依次层叠设置的衬底1、透明导电层2、空穴传输层3、吸光层4、电子传输层5以及顶电极6;其中,衬底1为玻璃或者柔性塑料类材料制成;透明导电层2为一透明电极,透明电极为铟锡氧化物(ITO)、氟锡氧化物(FTO)或铝锌氧化物(AZO),且透明导电层2与衬底1一体化设置;空穴传输层3为有机材料或无机材料,用于将空穴传输至透明电极,具体的,空穴传输层3的厚度为50nm~300nm,无机材料为金属氧化物,例如CuO、NiO2、CuO等,有机材料PEDOT:PSS、Spiro-MeOTAD、PTAA、P3HT、NPB等;吸光层4为具有钙钛矿结构的光伏材料,用于吸收入射光,吸光层4的厚度为200nm~400nm,由钙钛矿材料的致密晶粒构成,具体为甲基三碘化铅钙钛矿CH3NH3PbI3(MAPbI3),表面呈白色镜面;电子传输层5为金属氧化物、PCBM、C60等具有优异电子传导效果的材料,用于传输电子,并隔离吸光层4和顶电极6,且电子传输层5的厚度为10nm~100nm;顶电极6为具有较高功函数的材料,可以是金、银、铜、铝等金属以及导电碳材料。Referring to Fig. 1, in an embodiment of the present invention, on the one hand, a perovskite solar cell is provided, and the cell includes a substrate 1, a transparent conductive layer 2, a hole transport layer 3, a light absorbing layer 4, an electron transport Layer 5 and top electrode 6; wherein, the substrate 1 is made of glass or flexible plastic materials; the transparent conductive layer 2 is a transparent electrode, and the transparent electrode is indium tin oxide (ITO), fluorine tin oxide (FTO) or Aluminum zinc oxide (AZO), and the transparent conductive layer 2 is integrated with the substrate 1; the hole transport layer 3 is an organic material or an inorganic material, used to transport holes to the transparent electrode, specifically, the hole transport layer The thickness of 3 is 50nm~300nm, the inorganic materials are metal oxides, such as CuO, NiO 2 , CuO, etc., and the organic materials are PEDOT:PSS, Spiro-MeOTAD, PTAA, P3HT, NPB, etc.; the light-absorbing layer 4 has a perovskite structure The photovoltaic material is used to absorb incident light. The thickness of the light-absorbing layer 4 is 200nm~400nm, and it is composed of dense grains of perovskite materials, specifically methyl lead triiodide perovskite CH 3 NH 3 PbI 3 (MAPbI 3 ), the surface is a white mirror; the electron transport layer 5 is a material with excellent electron conduction effect such as metal oxide, PCBM, C 60 , etc., which is used to transport electrons and isolate the light absorbing layer 4 and the top electrode 6, and the electron transport layer 5 The thickness of the top electrode 6 is 10nm~100nm; the top electrode 6 is a material with a relatively high work function, which can be gold, silver, copper, aluminum and other metals and conductive carbon materials.
结合图6,图示为本发明的钙钛矿太阳能电池与现有技术中钙钛矿太阳能电池的电压-电流密度对比曲线示意图,从中可以清楚看出,相较于现有的钙钛矿太阳能电池,本发明提供的钙钛矿太阳能电池具有较高的短路电流和能量转换效率。In conjunction with Fig. 6, it is a schematic diagram of the voltage-current density comparison curve between the perovskite solar cell of the present invention and the perovskite solar cell in the prior art, from which it can be clearly seen that compared with the existing perovskite solar cell Battery, the perovskite solar cell provided by the invention has higher short-circuit current and energy conversion efficiency.
另一方面,参阅图2,本发明实施例提供一种钙钛矿太阳能电池的制备方法,用于制备上述的钙钛矿太阳能电池,所述方法包括步骤:On the other hand, referring to FIG. 2, an embodiment of the present invention provides a method for preparing a perovskite solar cell, which is used to prepare the above-mentioned perovskite solar cell. The method includes the steps of:
S1:在去离子水、丙酮和乙醇中依次对衬底进行预设时间的超声波清洗,干燥并通过臭氧等离子体清洗;S1: The substrate is ultrasonically cleaned for a preset time in deionized water, acetone and ethanol in sequence, dried and cleaned by ozone plasma;
在本发明实施例中,为了保证制备的钙钛矿太阳能电池具有良好的性能,需要在制备前对衬底进行清洗操作,具体的,衬底1还设置有一层透明电极;将叠层有透明电极的衬底1放入去离子水、丙酮和乙醇中依次进行超声波清洗操作,每种清洁剂中各需要进行10min~20min的清洗,可根据实际情况进行选择;在本实施例中,优取清洗时间为20min;清洗完成后放入真空环境中进行干燥处理,以去除洗涤剂;最后,通过臭氧等离子体再次进行3~5min的清洗操作,以去除表面的有机杂质,经过干燥处理和臭氧等离子体的处理后,有利于后续进行空穴传输层3的制备。In the embodiment of the present invention, in order to ensure that the prepared perovskite solar cell has good performance, the substrate needs to be cleaned before preparation. Specifically, the substrate 1 is also provided with a layer of transparent electrodes; The substrate 1 of the electrode is put into deionized water, acetone and ethanol to carry out ultrasonic cleaning operation sequentially, and each cleaning agent needs to be cleaned for 10min~20min, which can be selected according to the actual situation; in this embodiment, preferably The cleaning time is 20 minutes; after cleaning, put it into a vacuum environment for drying treatment to remove detergent; finally, perform another 3~5min cleaning operation through ozone plasma to remove organic impurities on the surface, after drying treatment and ozone plasma After the body is processed, it is beneficial to the subsequent preparation of the hole transport layer 3 .
优选的,在本实施例中,透明度导电层2的厚度为150nm~200nm。Preferably, in this embodiment, the thickness of the transparent conductive layer 2 is 150nm-200nm.
S2:在衬底上使用旋涂方式制备空穴传输层薄膜,并在100℃下对形成的薄膜进行高温退火操作,形成预设厚度的空穴传输层;S2: Prepare a hole transport layer film on the substrate by spin coating, and perform high-temperature annealing on the formed film at 100°C to form a hole transport layer with a preset thickness;
具体的,当对衬底1进行超声波清洗、干燥和臭氧等离子体清洗后在透明导电层2上通过旋涂的方式制备空穴传输层3;在本实施例中,以旋涂PEDOT:PSS溶液为例说明,其中,旋涂的速度为2000rpm,通过旋涂可以使PEDOT:PSS溶液均匀地在透明导电层2上形成一个薄膜层;然后,放入真空环境中,控制温度在100℃,进行20min的高温退火处理,最终形成本发明优取的20nm厚度的空穴传输薄膜层。Specifically, after ultrasonic cleaning, drying and ozone plasma cleaning are performed on the substrate 1, the hole transport layer 3 is prepared on the transparent conductive layer 2 by spin coating; in this embodiment, the PEDOT:PSS solution is spin-coated As an example, where the speed of spin coating is 2000rpm, the PEDOT:PSS solution can be uniformly formed a thin film layer on the transparent conductive layer 2 by spin coating; 20 minutes of high-temperature annealing treatment finally forms the preferred hole transport film layer of the present invention with a thickness of 20 nm.
S3:在所述空穴传输层上旋涂前驱体溶液,并在旋涂过程中通过滴管滴加定量的反溶剂进行洗涤,形成吸光层;S3: spin-coating a precursor solution on the hole transport layer, and dropping a quantitative amount of anti-solvent through a dropper during the spin-coating process to form a light-absorbing layer;
在本实施例中,空穴传输层4由前驱体溶液和反溶剂组合制备而成,具体制备为:首先,取预设量的前驱体溶液,优选的,选用MAPbI3作为本发明实施例中的前驱体溶液,将制备好的前驱体溶液以900rpm~1100rpm的速度旋涂在空穴传输层3上,在15s之后,调整旋涂速度到4000rpm~6000rpm,并在MAPbI3前驱体溶液中通过滴管滴入反溶剂甲苯进行洗涤操作,具体的:滴入的甲苯量为600 μl,并且在滴入过程中保证滴入时间为0.4s~0.6s,滴管与衬底1的角度保持在40°~50°范围内,25s之后,停止旋涂操作,形成吸光层;同样的,最后进行干燥操作,以清除旋涂后残留的溶液。In this embodiment, the hole transport layer 4 is prepared from a combination of a precursor solution and an anti-solvent. The specific preparation is as follows: first, take a preset amount of precursor solution, preferably, MAPbI 3 is selected as the Spin-coat the prepared precursor solution on the hole transport layer 3 at a speed of 900rpm~1100rpm, and after 15s, adjust the spin-coating speed to 4000rpm~6000rpm, and pass in the MAPbI 3 precursor solution Drop the anti-solvent toluene into the dropper for washing operation, specifically: the amount of toluene dropped is 600 μl, and the dropping time is guaranteed to be 0.4s~0.6s during the dropping process, and the angle between the dropper and the substrate 1 is kept at In the range of 40°~50°, after 25s, stop the spin-coating operation to form a light-absorbing layer; similarly, perform a drying operation at the end to remove the residual solution after spin-coating.
在本发明中,反溶剂可以是甲苯、氯苯、乙醚等,本发明对此并未进行限制和固定,可根据实际情况进行选择。In the present invention, the anti-solvent can be toluene, chlorobenzene, diethyl ether, etc., which are not limited and fixed in the present invention, and can be selected according to actual conditions.
参阅图3,图示为本发明制备吸光层4时滴入反溶剂时滴管与衬底1的角度与现有技术中滴管与衬底1的角度对比,从中可知,现有技术中滴管与衬底1的角度大小为90°,本发明采用滴管与衬底1成45°角的方式滴入反溶剂;结合图4和图5,比较可以得出,本发明制备形成的吸光层4中晶粒为多层层叠的结构,其水平晶界较少,为一种白色镜面薄膜。Referring to Fig. 3, it is shown that the angle of the dropper and the substrate 1 is compared with the angle of the dropper and the substrate 1 in the prior art when the anti-solvent is dripped when the light-absorbing layer 4 is prepared in the present invention. The angle between the tube and the substrate 1 is 90°, and the present invention uses a dropper to form an angle of 45° with the substrate 1 to drop the antisolvent; in combination with Fig. 4 and Fig. 5 , it can be drawn that the light absorption formed by the preparation of the present invention The crystal grains in layer 4 are a multi-layered structure with fewer horizontal grain boundaries, and it is a white mirror film.
S4:在吸光层上通过旋涂的方式形成电子传输层,并将所述电子传输层放置在70℃热台上进行退火处理;S4: forming an electron transport layer on the light absorbing layer by spin coating, and placing the electron transport layer on a hot stage at 70°C for annealing;
在本实施例中,选用PC61BM作为电子传输层5的制备材料,通过旋涂的方式形成一薄膜层,具体的,首先以3000rpm的转速旋涂PC61BM材料20s,然后调整速度至6000rpm旋涂20s,完成后,放置在设定温度为70℃的热台上进行退火处理,退火时间为60min,退火的主要目的是为了将剩余的制备材料PC61BM清除,保证干燥性,一方面有利于后续顶电极6的制备,另一方面,可提升最后钙钛矿太阳能电池成品的性能。In this embodiment, PC 61 BM is selected as the preparation material of the electron transport layer 5, and a thin film layer is formed by spin coating. Specifically, the PC 61 BM material is first spin-coated at a speed of 3000 rpm for 20 seconds, and then the speed is adjusted to 6000 rpm. Spin coating for 20s. After completion, place it on a hot stage with a set temperature of 70°C for annealing treatment. The annealing time is 60 minutes. The main purpose of annealing is to remove the remaining preparation material PC 61 BM and ensure dryness. On the one hand It is beneficial to the subsequent preparation of the top electrode 6, and on the other hand, can improve the performance of the final perovskite solar cell product.
S5:将依次叠层有空穴传输层、吸光层、电子传输层的衬底放置在设定真空度的真空镀腔通过热蒸发沉积顶电极。S5: Place the substrate with the hole transport layer, the light absorbing layer and the electron transport layer stacked in sequence in a vacuum plating chamber with a set vacuum degree to deposit the top electrode by thermal evaporation.
当空穴传输层、吸光层、电子传输层依次制备完成后,最后进行顶电极6的制备,制备顶电极6时,需将其放置在3*10-4Pa的真空环境,依次热蒸发10 nm厚的BCP和150 nm厚的Ag,形成有效面积为0.096cm2大小的顶电极6。After the hole transport layer, the light absorbing layer, and the electron transport layer are prepared sequentially, the top electrode 6 is finally prepared. When preparing the top electrode 6, it needs to be placed in a vacuum environment of 3*10 -4 Pa, and thermally evaporated 10 nm in sequence. Thick BCP and 150 nm thick Ag form the top electrode 6 with an effective area of 0.096 cm 2 .
本发明提供的钙钛矿太阳能电池制备方法最后形成的钙钛矿太阳能电池的吸光层为白色镜面薄膜,白色镜面薄膜的晶粒为多层层叠结构,有利于载流子传输,可提高电池的能量转换效率。The light-absorbing layer of the perovskite solar cell finally formed by the method for preparing the perovskite solar cell provided by the present invention is a white mirror film, and the crystal grains of the white mirror film are a multi-layer laminated structure, which is beneficial to carrier transport and can improve the efficiency of the battery. Energy conversion efficiency.
在本发明中,使用具有钙钛矿结构的光伏材料制备钙钛矿太阳能电池中的吸光层;在吸光层制备中,使用旋涂方式,并在旋涂过程中通过反溶剂清洗工艺,最终得到不同于传统褐色薄膜层的白色镜面薄膜层,即吸光层;与现有技术相比,本发明的有益效果为:本发明中形成的白色镜面薄膜层具有多层层叠结构,有较少的水平晶界;有利于载流子的传输,达到提高钙钛矿太阳能电池的短路电流和能量转化效率的效果。In the present invention, the light-absorbing layer in the perovskite solar cell is prepared using a photovoltaic material with a perovskite structure; in the preparation of the light-absorbing layer, a spin-coating method is used, and an anti-solvent cleaning process is used during the spin-coating process to finally obtain Different from the white mirror film layer of the traditional brown film layer, that is, the light-absorbing layer; compared with the prior art, the beneficial effect of the present invention is: the white mirror film layer formed in the present invention has a multi-layer laminated structure, and there are fewer levels Grain boundary; it is conducive to the transport of carriers, and achieves the effect of improving the short-circuit current and energy conversion efficiency of perovskite solar cells.
以上仅为本发明的较佳实施例,但并不限制本发明的专利范围,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。The above are only preferred embodiments of the present invention, but do not limit the patent scope of the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it can still be specific to the foregoing embodiments. The technical solutions described in the implementation modes shall be modified, or some of the technical features shall be replaced equivalently. All equivalent structures made by utilizing the contents of the specification and drawings of the present invention and directly or indirectly used in other related technical fields are also within the protection scope of the patent of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810287497.8A CN108365105B (en) | 2018-04-03 | 2018-04-03 | A kind of perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810287497.8A CN108365105B (en) | 2018-04-03 | 2018-04-03 | A kind of perovskite solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108365105A true CN108365105A (en) | 2018-08-03 |
CN108365105B CN108365105B (en) | 2021-07-20 |
Family
ID=63001669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810287497.8A Active CN108365105B (en) | 2018-04-03 | 2018-04-03 | A kind of perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108365105B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109830609A (en) * | 2019-02-13 | 2019-05-31 | 南方科技大学 | Large-area flexible perovskite solar cell and printing preparation method |
CN113571641A (en) * | 2020-04-28 | 2021-10-29 | 杭州纤纳光电科技有限公司 | A kind of perovskite solar cell with composite transport layer and preparation method thereof |
CN116914031A (en) * | 2023-09-11 | 2023-10-20 | 西安电子科技大学 | Preparation method of semitransparent and trans-type all-inorganic perovskite solar cell |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
CN107195785A (en) * | 2017-05-23 | 2017-09-22 | 郑州大学 | A kind of few Pb perovskite materials and preparation method thereof and perovskite solar cell |
US20170287648A1 (en) * | 2016-04-01 | 2017-10-05 | National Central University | Large-area perovskite film and perovskite solar cell or module and fabrication method thereof |
CN107293644A (en) * | 2016-04-01 | 2017-10-24 | 中央大学 | Large-area perovskite film, perovskite solar cell module and manufacturing method thereof |
CN107359246A (en) * | 2017-06-20 | 2017-11-17 | 太原理工大学 | A kind of preparation method of methylamine lead iodine perovskite solar cell |
CN107863443A (en) * | 2017-10-17 | 2018-03-30 | 华中科技大学 | A kind of flexible transconfiguration perovskite solar cell and preparation method thereof |
-
2018
- 2018-04-03 CN CN201810287497.8A patent/CN108365105B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170287648A1 (en) * | 2016-04-01 | 2017-10-05 | National Central University | Large-area perovskite film and perovskite solar cell or module and fabrication method thereof |
CN107293644A (en) * | 2016-04-01 | 2017-10-24 | 中央大学 | Large-area perovskite film, perovskite solar cell module and manufacturing method thereof |
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
CN107195785A (en) * | 2017-05-23 | 2017-09-22 | 郑州大学 | A kind of few Pb perovskite materials and preparation method thereof and perovskite solar cell |
CN107359246A (en) * | 2017-06-20 | 2017-11-17 | 太原理工大学 | A kind of preparation method of methylamine lead iodine perovskite solar cell |
CN107863443A (en) * | 2017-10-17 | 2018-03-30 | 华中科技大学 | A kind of flexible transconfiguration perovskite solar cell and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
MARIA KONSTANTAKOU等: ""Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells"", 《CRYSTALS》 * |
MIN ZHANG等: ""Green Anti-Solvent Processed Planar Perovskite Solar Cells with Efficiency Beyond 19%"", 《SLAR.RRL》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109830609A (en) * | 2019-02-13 | 2019-05-31 | 南方科技大学 | Large-area flexible perovskite solar cell and printing preparation method |
CN113571641A (en) * | 2020-04-28 | 2021-10-29 | 杭州纤纳光电科技有限公司 | A kind of perovskite solar cell with composite transport layer and preparation method thereof |
CN116914031A (en) * | 2023-09-11 | 2023-10-20 | 西安电子科技大学 | Preparation method of semitransparent and trans-type all-inorganic perovskite solar cell |
CN116914031B (en) * | 2023-09-11 | 2024-05-31 | 西安电子科技大学 | A method for preparing a semi-transparent inverse all-inorganic perovskite solar cell |
Also Published As
Publication number | Publication date |
---|---|
CN108365105B (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105870341B (en) | A method for improving the growth quality of perovskite crystals and a solar cell device | |
CN105789451A (en) | Perovskite crystal film and water vapor annealing preparation method and application thereof | |
CN106129251A (en) | A kind of structure of flexible perovskite battery and preparation method thereof | |
CN108470852A (en) | A kind of preparation method of modifying interface perovskite solar cell | |
CN104134720A (en) | Preparation method of organic and inorganic hybridization perovskite material growing by single-source flash evaporation method and plane solar cell of material | |
CN105609641A (en) | Perovskite solar cell and preparation method thereof | |
CN103594627A (en) | Inversed organic thin-film solar cell and manufacturing method of inversed organic thin-film solar cell | |
CN110335945B (en) | A kind of double electron transport layer inorganic perovskite solar cell and its preparation method and application | |
CN108281552B (en) | Perovskite solar cell with energy band gradient and preparation method thereof | |
CN107369764A (en) | A kind of perovskite solar cell and preparation method for adulterating lead acetate trihydrate | |
CN109786555B (en) | Perovskite solar cell and preparation method | |
CN108807675A (en) | A kind of preparation method of solar battery of surface passivation perovskite thin film | |
CN104538551A (en) | Planar perovskite solar cells based on FTO/c-TiO2 cathode and its preparation method | |
CN114093862A (en) | A kind of translucent perovskite/flexible CIGS four-terminal tandem solar cell and preparation method thereof | |
CN108365105A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN109037456A (en) | A kind of preparation method of zero sluggish efficiently perovskite solar battery | |
CN110416413A (en) | A kind of perovskite solar cell with high-performance gradient electron transport layer and its preparation method | |
CN108695435A (en) | A kind of organic solar batteries and preparation method thereof based on ultrasonic wave annealing process | |
CN109888100B (en) | Preparation of a rubidium-doped nickel oxide thin film and its application as a hole transport layer in perovskite solar cells | |
CN112420928A (en) | High stability translucent all-polymer solar cell device based on light management engineering and preparation method thereof | |
CN110556433A (en) | Cadmium telluride nanocrystalline solar cell and preparation method thereof | |
CN108461636A (en) | A kind of preparation method of embellishing cathode interface perovskite solar cell | |
CN112968128B (en) | Method for growing antimony-based thin film material by two steps of evaporation and hydrothermal method and thin film solar cell | |
CN115440895A (en) | Perovskite solar cell containing hole transport layer and preparation method thereof | |
CN112490368A (en) | Electrode and battery with optimized charge collection capacity and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |