CN108330367B - Absorbable orthopedic implant magnesium alloy and preparation method thereof - Google Patents
Absorbable orthopedic implant magnesium alloy and preparation method thereof Download PDFInfo
- Publication number
- CN108330367B CN108330367B CN201810173358.2A CN201810173358A CN108330367B CN 108330367 B CN108330367 B CN 108330367B CN 201810173358 A CN201810173358 A CN 201810173358A CN 108330367 B CN108330367 B CN 108330367B
- Authority
- CN
- China
- Prior art keywords
- alloy
- extrusion
- magnesium
- temperature
- magnesium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 127
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000007943 implant Substances 0.000 title claims abstract description 20
- 230000000399 orthopedic effect Effects 0.000 title abstract description 8
- 238000001125 extrusion Methods 0.000 claims abstract description 103
- 239000000956 alloy Substances 0.000 claims abstract description 77
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 76
- 239000011777 magnesium Substances 0.000 claims abstract description 46
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 33
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011701 zinc Substances 0.000 claims abstract description 31
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 22
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 22
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 21
- 239000006104 solid solution Substances 0.000 claims abstract description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims description 49
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 46
- 239000000047 product Substances 0.000 claims description 34
- 229910018503 SF6 Inorganic materials 0.000 claims description 23
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 23
- 239000001569 carbon dioxide Substances 0.000 claims description 23
- 239000013067 intermediate product Substances 0.000 claims description 23
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 23
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 238000004321 preservation Methods 0.000 claims description 16
- 229910000542 Sc alloy Inorganic materials 0.000 claims description 15
- 239000000155 melt Substances 0.000 claims description 15
- 239000002893 slag Substances 0.000 claims description 15
- 230000001681 protective effect Effects 0.000 claims description 14
- 235000012438 extruded product Nutrition 0.000 claims description 10
- 238000003723 Smelting Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000012467 final product Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 238000005728 strengthening Methods 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 9
- 239000011159 matrix material Substances 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000000137 annealing Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 28
- 210000000988 bone and bone Anatomy 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000002386 leaching Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910003023 Mg-Al Inorganic materials 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 210000003606 umbilical vein Anatomy 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 206010042344 Subcutaneous emphysema Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000004821 effect on bone Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000001981 hip bone Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000004373 mandible Anatomy 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明属于生物医用材料领域,具体涉及一种可吸收骨科植入镁合金,由以下质量百分比的组分组成:4.0~8.0%的Zn、0.8~2.0%的Y、0.6~2.0%的Nd、0.2~0.4%的Sc,余量为Mg。本发明还公开了该镁合金的制备方法:以镁锭、锌锭、Mg‑Y中间合金、Mg‑Nd中间合金、Mg‑Sc中间合金为炉料熔制。本发明在纯镁中添加较高含量的Zn作为主要强化元素,通过固溶强化和弥散强化来实现骨科植入材料对强度的高要求,并复合添加少量稀土元素Y、Nd和Sc来提高合金的力学性能和耐腐蚀性能,并达到细化组织和晶粒的目的。通过多道次、大挤压比的挤压加工,结合挤压之后的退火热处理,得到一种晶粒超细化,第二项细小弥散分布于基体中的镁合金,从而大大提高了其力学性能和耐腐蚀性能。
The invention belongs to the field of biomedical materials, in particular to an absorbable orthopedic implanted magnesium alloy, which is composed of the following components in mass percentage: 4.0-8.0% Zn, 0.8-2.0% Y, 0.6-2.0% Nd, 0.2~0.4% Sc, the balance is Mg. The invention also discloses a preparation method of the magnesium alloy: using magnesium ingot, zinc ingot, Mg-Y master alloy, Mg-Nd master alloy and Mg-Sc master alloy as charge for melting. In the present invention, a relatively high content of Zn is added to pure magnesium as a main strengthening element, and the high requirements on the strength of orthopaedic implant materials are achieved through solid solution strengthening and dispersion strengthening, and a small amount of rare earth elements Y, Nd and Sc are compounded to improve the alloy. The mechanical properties and corrosion resistance properties, and to achieve the purpose of refining the structure and grain. Through multi-pass, large extrusion ratio extrusion processing, combined with annealing heat treatment after extrusion, a magnesium alloy with ultra-fine grains and the second item is finely dispersed in the matrix, thereby greatly improving its mechanical properties. performance and corrosion resistance.
Description
技术领域technical field
本发明属于生物医用材料领域,具体涉及一种可吸收骨科植入镁合金及其制备方法。The invention belongs to the field of biomedical materials, in particular to an absorbable orthopedic implanted magnesium alloy and a preparation method thereof.
背景技术Background technique
由于交通事故、运动创伤等原因造成的骨组织损伤在人们的日常生活中发生率很高,在骨组织损伤的治疗过程中,需要植入器械对骨组织进行修复和固定,因此骨科植入器械成为医疗器械产业中最重要的一种。目前,临床上广泛应用的骨科植入器械材料主要有不锈钢、钛合金以及钴合金等金属生物材料。然而,这些金属生物材料存在以下缺点:第一,植入器械的弹性模量与骨组织不匹配,植入后在与骨组织连接处产生“应力遮挡”效应,从而抑制新骨生长,降低骨愈合速度;第二,作为惰性金属,植入后会作为异物长期存留在体内,产生离子溶出,影响人体健康,因此需要进行二次手术取出,增加患者痛苦。从21世纪初开始,以镁合金为代表的具有生物可降解特性的新一代医用金属材料引起人们的关注。镁合金的优势在于其密度及弹性模量接近于人骨,可以有效缓解“应力遮挡”效应对骨生长的不利影响;而且镁合金在人体中可以逐渐降解,从而避免了二次手术,同时,其主要降解产物Mg2+不仅不会对人体产生毒性,而且具有促进成骨细胞增殖的特性。因此,镁合金作为一种可吸收骨科植入材料具有巨大的应用前景。Bone tissue damage caused by traffic accidents, sports trauma and other reasons has a high incidence in people's daily life. During the treatment of bone tissue damage, implanted devices are required to repair and fix the bone tissue. Therefore, orthopedic implanted devices Become the most important one in the medical device industry. At present, the widely used orthopedic implant device materials in clinic mainly include metal biological materials such as stainless steel, titanium alloy and cobalt alloy. However, these metal biomaterials have the following disadvantages: First, the elastic modulus of the implanted device does not match the bone tissue, and after implantation, a "stress shielding" effect occurs at the connection with the bone tissue, thereby inhibiting the growth of new bone and reducing bone growth. Second, as an inert metal, it will remain in the body as a foreign body for a long time after implantation, resulting in ion dissolution and affecting human health. Therefore, a second operation is required to remove it, which increases the pain of the patient. Since the beginning of the 21st century, a new generation of medical metal materials with biodegradable properties, represented by magnesium alloys, has attracted people's attention. The advantage of magnesium alloy is that its density and elastic modulus are close to human bone, which can effectively alleviate the adverse effect of "stress shielding" effect on bone growth; and magnesium alloy can be gradually degraded in the human body, thus avoiding secondary surgery. The main degradation product Mg 2+ is not only not toxic to the human body, but also has the property of promoting the proliferation of osteoblasts. Therefore, magnesium alloys have great application prospects as an absorbable orthopaedic implant material.
目前镁合金作为骨科植入材料的主要研究有:Lambotte于1907年首次将金属镁接骨板应用于固定下肢骨折,8d后接骨板降解,同时发现皮下产生大量气体。Troitskii和Znamenski分别在1944年和1945年报道了采用Mg-Ca和Mg-Al合金治疗骨折。这些报道中均指出,使用镁及镁合金作为内固定物时,未出现全身毒性反应和局部炎症反应。但是镁及镁合金在体内的降解速率过快,使内固定物无法在骨愈合之前保持机械完整性而导致固定失败;另外镁及镁合金在快速降解过程中产生的大量氢气会造成皮下气肿,因此,镁合金在骨科植入器械方面的应用受到了严重限制。随着合金冶炼和加工工艺的不断发展,成功开发出了Mg-Zn系、Mg-Re系、Mg-Al系Mg-Zn-RE系等不同系列的镁合金,相对于早期的镁及镁合金,其降解速率得到了大大降低,为镁合金在骨科植入器械方面的应用提供了条件。2006年,Witte等将AZ31、AZ91两种Mg-Al系镁合金和WE43、LAE442两种稀土镁合金分别植入豚鼠股骨髓腔内,18周后显示镁合金周围新骨形成较多。Duygulu等将AZ31镁合金骨钉植入山羊髋骨3个月的研究表明,镁合金骨钉发生了明显的降解,而且在镁合金和骨组织界面有新骨产生。张广道等将AZ31镁合金植入兔下颌骨,2周后,植入物周围有骨痂生成;8周后生成成熟的骨组织,未发现对动物循环、免疫、泌尿系统有负面影响。Zhang等将直径为4.5mm,长10mm的Mg-Zn合金棒植入新西兰大白兔股骨中,并检测大白兔肝肾功能电解质,对植入部位定期进行X射线检测,术后做肝、肾、脾和股骨中病理切片,研究显示,镁合金逐渐降解并在周围产生气泡,肝、肾病理切片没有明显异常,在股骨周围有新生骨的产生,说明镁合金作为可降解骨固定材料同时具有良好的生物相容性和力学性能。At present, the main researches on magnesium alloys as orthopaedic implant materials include: Lambotte first applied metal magnesium bone plates to fix lower extremity fractures in 1907. After 8 days, the bone plates degraded and a large amount of gas was generated under the skin. Troitskii and Znamenski reported the use of Mg-Ca and Mg-Al alloys to treat fractures in 1944 and 1945, respectively. All of these reports indicated that no systemic toxicity and local inflammatory reactions occurred when magnesium and magnesium alloys were used as internal fixators. However, the degradation rate of magnesium and magnesium alloys in the body is too fast, so that the internal fixation cannot maintain mechanical integrity before bone healing, resulting in fixation failure. In addition, a large amount of hydrogen generated during the rapid degradation of magnesium and magnesium alloys can cause subcutaneous emphysema. Therefore, the application of magnesium alloys in orthopedic implant devices is severely limited. With the continuous development of alloy smelting and processing technology, different series of magnesium alloys such as Mg-Zn series, Mg-Re series, Mg-Al series Mg-Zn-RE series, etc. have been successfully developed. Compared with the early magnesium and magnesium alloys , its degradation rate has been greatly reduced, which provides conditions for the application of magnesium alloys in orthopedic implant devices. In 2006, Witte et al. implanted two Mg-Al magnesium alloys AZ31 and AZ91, and two rare earth magnesium alloys WE43 and LAE442, respectively, into the femoral medullary cavity of guinea pigs. After 18 weeks, more new bone was formed around the magnesium alloy. The study by Duygulu et al. who implanted AZ31 magnesium alloy bone nails into the hip bone of goats for 3 months showed that the magnesium alloy bone nails were significantly degraded, and new bone was generated at the interface between magnesium alloy and bone tissue. Zhang Guangdao et al. implanted AZ31 magnesium alloy into the mandible of rabbits. After 2 weeks, callus formed around the implant; after 8 weeks, mature bone tissue was formed, and no negative effects on animal circulation, immunity and urinary system were found. Zhang et al. implanted a Mg-Zn alloy rod with a diameter of 4.5 mm and a length of 10 mm into the femur of New Zealand white rabbits, and detected the electrolytes of the liver and kidney function of the rabbits. In the pathological sections of the spleen and femur, the study showed that the magnesium alloy gradually degraded and produced air bubbles around it. There was no obvious abnormality in the pathological sections of the liver and kidney, and new bone was formed around the femur, indicating that the magnesium alloy as a degradable bone fixation material has good performance. biocompatibility and mechanical properties.
镁合金作为骨科植入材料在动物体内的研究证实了其在可吸收骨科植入器械方面的应用的可行性,但其力学性能、耐蚀性和生物相容性仍然需要进一步研究改善。The study of magnesium alloy as an orthopaedic implant material in animals has confirmed the feasibility of its application in absorbable orthopaedic implant devices, but its mechanical properties, corrosion resistance and biocompatibility still need further research to improve.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种力学性能、耐蚀性和细胞相容性均良好的可吸收骨科植入镁合金。The purpose of the present invention is to provide an absorbable orthopaedic implantable magnesium alloy with good mechanical properties, corrosion resistance and cell compatibility.
本发明的另一目的是提供该镁合金的制备方法。Another object of the present invention is to provide a preparation method of the magnesium alloy.
为达到上述目的之一,本发明采用以下技术方案:To achieve one of the above objects, the present invention adopts the following technical solutions:
一种可吸收骨科植入镁合金,由以下质量百分比的组分组成:4.0~8.0%的Zn、0.8~2.0%的Y、0.6~2.0%的Nd、0.2~0.4%的Sc,余量为Mg。An absorbable orthopaedic implantable magnesium alloy is composed of the following components by mass percentage: 4.0-8.0% Zn, 0.8-2.0% Y, 0.6-2.0% Nd, 0.2-0.4% Sc, and the balance is Mg.
进一步地,由以下质量百分比的组分组成:4.0%的Zn、1.2%的Y、0.8%的Nd、0.2%的Sc和93.8%的Mg。Further, it is composed of the following components by mass percentage: 4.0% Zn, 1.2% Y, 0.8% Nd, 0.2% Sc and 93.8% Mg.
一种上述的镁合金的制备方法,以镁锭、锌锭、Mg-Y中间合金、Mg-Nd中间合金、Mg-Sc中间合金为炉料熔制。A preparation method of the above-mentioned magnesium alloy is made by using magnesium ingot, zinc ingot, Mg-Y master alloy, Mg-Nd master alloy and Mg-Sc master alloy as charging materials.
进一步地,所述炉料中Zn、Y、Nd、Sc的添加量为其在镁合金中含量的1.1~1.25倍。Further, the addition amount of Zn, Y, Nd and Sc in the charge is 1.1-1.25 times of the content in the magnesium alloy.
进一步地,所述镁锭和锌锭的纯度均≥99.9%,所述Mg-Y中间合金为含25.0wt% Y的中间合金,所述Mg-Nd中间合金为含25.0wt% Nd的中间合金,所述Mg-Sc中间合金为含10.0wt% Sc的中间合金。Further, the purity of the magnesium ingot and the zinc ingot are both ≥99.9%, the Mg-Y master alloy is a master alloy containing 25.0wt% Y, and the Mg-Nd master alloy is a master alloy containing 25.0wt% Nd , the Mg-Sc master alloy is a master alloy containing 10.0wt% Sc.
进一步地,该制备方法包括以下步骤:Further, the preparation method comprises the following steps:
S1、将坩埚放入炉中加热,待炉温升至400~600°C后,向炉中通入二氧化碳和六氟化硫混合气;S1, put the crucible into the furnace and heat, after the furnace temperature rises to 400~600 ℃, feed carbon dioxide and sulfur hexafluoride gas mixture into the furnace;
S2、通混合气10~15min后,加入镁锭,将坩埚升温至700~800°C,待镁锭完全熔化后加入Mg-Sc中间合金,升温至800~850°C,保温60~120min,然后加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至700~800°C,保温8~12min之后,加入锌锭,保温20~30min后对熔体进行匀速搅拌5~10min,最后进行扒渣、浇注、脱模,得到中间产品;S2, after passing the mixed gas for 10~15min, add a magnesium ingot, the crucible is heated to 700~800 DEG C, after the magnesium ingot is completely melted, add the Mg-Sc master alloy, be warming up to 800~850 DEG C, and keep the temperature for 60~120min, Then add Mg-Y master alloy and Mg-Nd master alloy, reduce the furnace temperature to 700~800 ° C, after heat preservation for 8~12min, add zinc ingot, after heat preservation for 20~30min, uniformly stir the melt for 5~10min, Finally, carry out slag removal, pouring and demoulding to obtain intermediate products;
S3、对中间产品进行固溶处理,固溶后进行一次挤压,即可得到一次挤压态产品;S3. Perform solid solution treatment on the intermediate product, and perform one extrusion after solid solution to obtain an extruded product;
S4、对一次挤压态产品进行固溶处理,固溶后进行二次挤压,得到镁合金。S4, performing solid solution treatment on the primary extruded product, and performing secondary extrusion after solid solution to obtain a magnesium alloy.
进一步地,所述二氧化碳和六氟化硫的体积比为100:1。Further, the volume ratio of carbon dioxide and sulfur hexafluoride is 100:1.
进一步地,所述炉为电阻炉。Further, the furnace is a resistance furnace.
进一步地,所述S3中,固溶处理的条件为:固溶温度为460~530°C,固溶时间为1~4h;所述一次挤压的条件为:挤压温度450~480°C,挤压比为5~10,挤压速率是2~4m/min,挤压过程中模具的加热温度是430~470°C。Further, in described S3, the condition of solution treatment is: solution temperature is 460~530 ℃, and solution time is 1~4h; The condition of described one extrusion is: extrusion temperature 450~480 ℃ , the extrusion ratio is 5~10, the extrusion rate is 2~4m/min, and the heating temperature of the die during extrusion is 430~470°C.
进一步地,所述S4中,固溶处理的条件为:固溶温度为460~530°C,固溶时间为2~6h;所述二次挤压的条件为:挤压温度380~420°C,挤压比为10~15,挤压速率是2~4m/min,挤压过程中模具的加热温度是360~430°C。Further, in described S4, the condition of solution treatment is: solution temperature is 460~530 ℃, and solution time is 2~6h; The condition of described secondary extrusion is: extrusion temperature is 380~420 ℃ C, the extrusion ratio is 10~15, the extrusion rate is 2~4m/min, and the heating temperature of the die during extrusion is 360~430°C.
与现有的可吸收骨科植入镁合金材料相比,本发明的镁合金有益效果在于:Compared with the existing absorbable orthopaedic implanted magnesium alloy materials, the beneficial effects of the magnesium alloy of the present invention are:
1、Zn的含量高。高Zn元素添加量的目的在于,一方面通过Zn在Mg中的固溶实现固溶强化,另一方面通过析出大量含Zn强化相实现弥散强化,从而大大提高镁合金的强度,达到骨科植入材料对强度的高要求。同时,Zn是人体结构、催化和调节功能所必不可少的元素,因此高Zn含量的镁合金具有良好的生物相容性。1. The content of Zn is high. The purpose of high Zn element addition is to achieve solid solution strengthening through the solid solution of Zn in Mg, and realize dispersion strengthening through the precipitation of a large amount of Zn-containing strengthening phase, thereby greatly improving the strength of magnesium alloys and achieving orthopedic implantation. The material has high requirements for strength. At the same time, Zn is an essential element for human body structure, catalysis and regulation functions, so magnesium alloys with high Zn content have good biocompatibility.
2、通过少量的稀土元素Y、Nd和Sc的复合添加进一步提高镁合金的力学性能以及耐蚀性。Y、Nd是镁合金中常添加的稀土元素,可以有效降低镁合金的降解速率。与其他稀土元素相比,Sc不仅具有高熔点和低密度特点,可以促进镁合金在凝固过程中的形核,从而实现晶粒细化作用,而且其在镁合金中的扩散速率很低,因此,对镁合金具有更加明显的强化作用。另外,Sc在Mg基体中的最大固溶度可以达到15%,大大高于其他稀土元素,因此还可以在一定程度上起到固溶强化作用。而且,本发明的镁合金总稀土含量较低,可以将稀土元素对人体潜在的风险最小化,从而提高合金的整体生物相容性。2. The mechanical properties and corrosion resistance of magnesium alloys are further improved by the compound addition of a small amount of rare earth elements Y, Nd and Sc. Y and Nd are rare earth elements often added in magnesium alloys, which can effectively reduce the degradation rate of magnesium alloys. Compared with other rare earth elements, Sc not only has the characteristics of high melting point and low density, it can promote the nucleation of magnesium alloys during solidification, thereby achieving grain refinement, and its diffusion rate in magnesium alloys is very low, so , has a more obvious strengthening effect on magnesium alloys. In addition, the maximum solid solubility of Sc in the Mg matrix can reach 15%, which is much higher than that of other rare earth elements, so it can also play a solid solution strengthening effect to a certain extent. Moreover, the magnesium alloy of the present invention has a low total rare earth content, which can minimize the potential risk of rare earth elements to the human body, thereby improving the overall biocompatibility of the alloy.
3、采用两道次挤压工艺,可将镁合金的平均晶粒尺寸控制在0.5~2μm,通过晶粒细化实现强度和塑形同时提高的目的。另外,通过两道次挤压可以将镁合金中的MgZnY强化相进行大幅度细化,使MgZnY强化相弥散均匀分布于镁合金的晶内和晶界区域,不仅可以起到强化作用,而且可以使镁合金降解过程中形成的原电池更小,提高镁合金降解的均匀性,降低镁合金的整体降解速率。3. Using the two-pass extrusion process, the average grain size of the magnesium alloy can be controlled at 0.5~2μm, and the purpose of improving the strength and shaping at the same time is achieved through grain refinement. In addition, the MgZnY strengthening phase in the magnesium alloy can be greatly refined by two-pass extrusion, so that the MgZnY strengthening phase is dispersed and uniformly distributed in the intragranular and grain boundary regions of the magnesium alloy, which can not only play a strengthening role, but also can The galvanic cell formed during the degradation of the magnesium alloy is made smaller, the uniformity of the degradation of the magnesium alloy is improved, and the overall degradation rate of the magnesium alloy is reduced.
4、本发明通过在Mg-Zn合金中添加少量稀土元素Y、Nd和Sc制备出一种可吸收骨科植入Mg-Zn-Y-Nd-Sc合金,并通过采用两道次挤压方法细化合金的晶粒和强化相,提高其力学性能,使其抗拉强度达到325MPa,屈服强度达到306MPa,延伸率达到18%。4. The present invention prepares an absorbable orthopaedic implant Mg-Zn-Y-Nd-Sc alloy by adding a small amount of rare earth elements Y, Nd and Sc to the Mg-Zn alloy, and refines the alloy by using a two-pass extrusion method. The grains and strengthening phase of the alloy are improved to improve its mechanical properties, so that the tensile strength reaches 325MPa, the yield strength reaches 306MPa, and the elongation reaches 18%.
附图说明Description of drawings
图1为实施例4所得镁合金的室温拉伸性能图;Fig. 1 is the room temperature tensile property diagram of the magnesium alloy obtained in Example 4;
图2为实施例4所得镁合金的显微组织SEM图和EDS成分分析图;Fig. 2 is the microstructure SEM figure and EDS composition analysis figure of the magnesium alloy obtained in Example 4;
图3为实施例4所得镁合金的室温拉伸断口形貌图;Fig. 3 is the room temperature tensile fracture topography of the magnesium alloy obtained in Example 4;
图4为实施例4所得镁合金的电化学腐蚀测试曲线图;Fig. 4 is the electrochemical corrosion test curve diagram of the magnesium alloy obtained in Example 4;
图5为实施例4所得镁合金制备的浓度为10%、50%、100%浸提液培养人体脐静脉内皮细胞48h之后细胞活性图;Figure 5 is a cell activity diagram after 48h of human umbilical vein endothelial cells are cultured in extracts with concentrations of 10%, 50%, and 100% prepared from the magnesium alloy obtained in Example 4;
图6为实施例4所得镁合金制备的浓度为10%、50%、100%浸提液培养人体脐静脉内皮细胞48h之后细胞形貌图;Figure 6 is a graph of cell morphology after culturing human umbilical vein endothelial cells for 48h with extracts prepared from the magnesium alloy obtained in Example 4 with concentrations of 10%, 50% and 100%;
图7为实施例4和实施例6所得镁合金的室温拉伸性能图。FIG. 7 is a graph showing the room temperature tensile properties of the magnesium alloys obtained in Example 4 and Example 6. FIG.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步的说明。The present invention will be further described below with reference to specific embodiments.
实施例1Example 1
可吸收骨科植入镁合金,组成为:4.0wt%的Zn、1.2wt%的Y、0.8wt%的Nd、0.2wt%的Sc,余量为Mg,以及不可避免的杂质元素。Absorbable orthopaedic implant magnesium alloy, the composition is: 4.0wt% Zn, 1.2wt% Y, 0.8wt% Nd, 0.2wt% Sc, the balance is Mg, and unavoidable impurity elements.
1、前期准备1. Preliminary preparation
本实施例的原料为:The raw materials of this embodiment are:
高纯镁锭(纯度≥99.9%):2520gHigh-purity magnesium ingot (purity ≥99.9%): 2520g
高纯锌锭(纯度≥99.9%):144g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 144g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金:158g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 158g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:106g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 106g, wherein the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:72g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 72g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例中采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixed gas of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100:1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到120°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 120°C, then take it out, apply a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温400°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;B, put the processed crucible into the resistance furnace, set the furnace temperature to 400 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气10min后,加入高纯镁锭,同时将炉温升高到700°C;c, after 10min of mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 700 ℃ simultaneously;
d、在700°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至800°C,保温60min;d, at 700 DEG C, be incubated until after the magnesium ingot is completely melted, add the Mg-Sc master alloy, and the furnace temperature is raised to 800 DEG C, and is incubated for 60min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至700°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 700°C;
f、在700°C下保温8min之后,加入锌锭;f, after being incubated at 700 DEG C for 8min, add zinc ingot;
g、保温20min后对熔体进行匀速搅拌5min,然后进行扒渣,静置10min;g. After 20min of heat preservation, the melt is stirred at a constant speed for 5min, then slag is removed, and it is left to stand for 10min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-4.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.2wt% Sc合金(中间产品)。h. The melt is poured into the mold, and the mold is demolded to obtain an ordinary solidified state Mg-4.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.2wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-4.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.2wt% Sc合金(中间产品)进行固溶处理,固溶温度为460°C,固溶时间为2h;a. The prepared ordinary solidified state Mg-4.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.2wt% Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 460 ° C. The time is 2h;
b、固溶后进行一次挤压,挤压温度450°C,挤压比为7,挤压速率是2m/min,挤压过程中模具的加热温度是430°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 450°C, the extrusion ratio is 7, the extrusion rate is 2m/min, and the heating temperature of the die in the extrusion process is 430°C, and an extrusion can be obtained once state product;
c、对一次挤压态产品进行固溶处理,固溶温度460°C,固溶时间为4h;固溶后进行二次挤压,挤压温度400°C,挤压比为12,挤压速率是2m/min,挤压过程中模具的加热温度是360°C,得到最终产品。c, carry out solution treatment to the first extruded product, the solution temperature is 460 ° C, and the solution time is 4h; after the solution, the secondary extrusion is carried out, the extrusion temperature is 400 ° C, and the extrusion ratio is 12, and the extrusion ratio is 12. The speed was 2m/min, and the heating temperature of the die during extrusion was 360°C to obtain the final product.
实施例2Example 2
可吸收骨科植入镁合金,组成为:6.0wt%的Zn、1.2wt%的Y、0.8wt%的Nd、0.2wt%的Sc,余量为Mg,以及不可避免的杂质元素。Absorbable orthopaedic implant magnesium alloy, the composition is: 6.0wt% Zn, 1.2wt% Y, 0.8wt% Nd, 0.2wt% Sc, the balance is Mg, and unavoidable impurity elements.
1、前期准备1. Preliminary preparation
本实施例所需的原料为:The raw materials required for this example are:
高纯镁锭(纯度≥99.9%):1632gHigh-purity magnesium ingot (purity ≥99.9%): 1632g
高纯锌锭(纯度≥99.9%):144g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 144g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金:106g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 106g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:70g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 70g, wherein the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:48g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 48g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixture of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100. :1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到130°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 130°C, then take it out, brush a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温500°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;B, put the processed crucible into the resistance furnace, set the furnace temperature to 500 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气12min后,加入高纯镁锭,同时将炉温升高到750°C;c, after 12min of passing mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 750 ℃ simultaneously;
d、在750°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至820°C,保温80min;d, at 750 DEG C, be incubated until the magnesium ingot is completely melted, add the Mg-Sc master alloy, and the furnace temperature is raised to 820 DEG C, and is incubated for 80min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至750°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 750°C;
f、在750°C下保温10min之后,加入锌锭;f, after insulation 10min at 750 DEG C, add zinc ingot;
g、保温30min后对熔体进行匀速搅拌10min,然后进行扒渣,静置15min;g. After 30min of heat preservation, the melt is stirred at a constant speed for 10min, then slag is removed, and it is left to stand for 15min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-6.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.2wt% Sc合金(中间产品)。h. The melt is poured into the mold, and the mold is demolded to obtain an ordinary solidified state Mg-6.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.2wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-6.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.2wt% Sc合金(中间产品)进行固溶处理,固溶温度为480°C,固溶时间为2h;a. The prepared ordinary solidified state Mg-6.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.2wt% Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 480 ° C. The time is 2h;
b、固溶后进行一次挤压,挤压温度480°C,挤压比为7,挤压速率是2m/min,挤压过程中模具的加热温度是450°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 480°C, the extrusion ratio is 7, the extrusion rate is 2m/min, and the heating temperature of the die in the extrusion process is 450°C, and an extrusion can be obtained. state product;
c、对一次挤压态产品进行固溶处理,固溶温度480°C,固溶时间为4h;固溶后进行二次挤压,挤压温度420°C,挤压比为12,挤压速率是2m/min,挤压过程中模具的加热温度是380°C,得到最终产品。c, carry out solution treatment to the one-time extruded product, the solution temperature is 480 ° C, and the solution time is 4h; after the solid solution, the secondary extrusion is carried out, the extrusion temperature is 420 ° C, and the extrusion ratio is 12, and the extrusion ratio is 12. The speed was 2m/min, and the heating temperature of the die during extrusion was 380°C to obtain the final product.
实施例3Example 3
可吸收骨科植入镁合金,组成为:8.0wt%的Zn、2.0wt%的Y、0.8wt%的Nd、0.4wt%的Sc,余量为Mg,以及不可避免的杂质元素。Absorbable orthopaedic implant magnesium alloy, the composition is: 8.0wt% Zn, 2.0wt% Y, 0.8wt% Nd, 0.4wt% Sc, the balance is Mg, and unavoidable impurity elements.
1、前期准备1. Preliminary preparation
本实施例所需的原料为:The raw materials required for this example are:
高纯镁锭(纯度≥99.9%):1466gHigh-purity magnesium ingot (purity ≥99.9%): 1466g
高纯锌锭(纯度≥99.9%):192g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 192g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金 :176g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 176g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:70g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 70g, wherein the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:96g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 96g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixture of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100. :1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到150°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 150°C, then take it out, brush a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温600°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;b, put the processed crucible into the resistance furnace, set the furnace temperature to 600 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气12min后,加入高纯镁锭,同时将炉温升高到800°C;c, after 12min of passing mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 800 ℃ simultaneously;
d、在800°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至850°C,保温100min;D, at 800 DEG C, after being kept warm until the magnesium ingot is completely melted, add Mg-Sc master alloy, and the furnace temperature is raised to 850 DEG C, kept for 100min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至800°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 800°C;
f、在800°C下保温12min之后,加入锌锭;f, after being incubated 12min at 800 DEG C, add zinc ingot;
g、保温30min后对熔体进行匀速搅拌10min,然后进行扒渣,静置15min;g. After 30min of heat preservation, the melt is stirred at a constant speed for 10min, then slag is removed, and it is left to stand for 15min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-8.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.4wt% Sc合金(中间产品)。h. The melt is poured into a mold and demolded to obtain an ordinary solidified Mg-8.0wt% Zn-1.2wt% Y-0.8wt%Nd-0.4wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-8.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.4wt% Sc合金(中间产品)进行固溶处理,固溶温度为530°C,固溶时间为2h;a. The prepared ordinary solidified state Mg-8.0wt% Zn-1.2wt% Y-0.8wt% Nd-0.4wt% Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 530 ° C. The time is 2h;
b、固溶后进行一次挤压,挤压温度480°C,挤压比为5,挤压速率是2m/min,挤压过程中模具的加热温度是470°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 480 ° C, the extrusion ratio is 5, the extrusion rate is 2 m/min, and the heating temperature of the die in the extrusion process is 470 ° C, and an extrusion can be obtained once state product;
c、对一次挤压态产品进行固溶处理,固溶温度530°C,固溶时间为6h;固溶后进行二次挤压,挤压温度420°C,挤压比为15,挤压速率是2m/min,挤压过程中模具的加热温度是400°C,得到最终产品。c, carry out solution treatment to the one-time extruded product, the solution temperature is 530 ° C, and the solution time is 6h; after the solid solution, the secondary extrusion is carried out, the extrusion temperature is 420 ° C, and the extrusion ratio is 15, and the extrusion ratio is 15. The speed was 2m/min, and the heating temperature of the die during extrusion was 400°C to obtain the final product.
实施例4Example 4
可吸收骨科植入镁合金,组成为:4.0wt%的Zn、0.8wt%的Y、0.6wt%的Nd、0.2wt%的Sc,余量为Mg,以及不可避免的杂质元素。Absorbable orthopaedic implant magnesium alloy, the composition is: 4.0wt% Zn, 0.8wt% Y, 0.6wt% Nd, 0.2wt% Sc, the balance is Mg, and inevitable impurity elements.
1、前期准备1. Preliminary preparation
本实施例所需的原料为:The raw materials required for this example are:
高纯镁锭(纯度≥99.9%):2599gHigh-purity magnesium ingot (purity ≥99.9%): 2599g
高纯锌锭(纯度≥99.9%):144g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 144g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金 :106g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 106g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:79g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 79g, wherein the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:72g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 72g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixture of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100. :1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到120°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 120°C, then take it out, brush a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温400°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;b, put the processed crucible into the resistance furnace, set the furnace temperature to 400 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气10min后,加入高纯镁锭,同时将炉温升高到700°C;c, after 10min of mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 700 ℃ simultaneously;
d、在700°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至800°C,保温60min;D, at 700 DEG C, after being kept warm until the magnesium ingot is completely melted, add Mg-Sc master alloy, and the furnace temperature is raised to 800 DEG C, and keep warm for 60min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至700°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 700°C;
f、在700°C下保温10min之后,加入锌锭;f, after insulation 10min at 700 DEG C, add zinc ingot;
g、保温20min后对熔体进行匀速搅拌5min,然后进行扒渣,静置15min;g. After 20min of heat preservation, the melt is stirred at a constant speed for 5min, then slag is removed, and it is left to stand for 15min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc合金(中间产品)。h. The melt is poured into the mold, and the mold is demolded to obtain an ordinary solidified Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-4.0wt% Zn-0.8wt%Y-0.6wt% Nd-0.2wt%Sc合金(中间产品)进行固溶处理,固溶温度为460°C,固溶时间为1h;a. The prepared ordinary solidified state Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 460 ° C. The time is 1h;
b、固溶后进行一次挤压,挤压温度450°C,挤压比为7,挤压速率是4m/min,挤压过程中模具的加热温度是430°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 450°C, the extrusion ratio is 7, the extrusion rate is 4m/min, and the heating temperature of the die in the extrusion process is 430°C, and an extrusion can be obtained. state product;
c、对一次挤压态产品进行固溶处理,固溶温度460°C,固溶时间为2h;固溶后进行二次挤压,挤压温度380°C,挤压比为12,挤压速率是2m/min,挤压过程中模具的加热温度是360°C,得到最终产品。c, carry out solution treatment to the one-time extruded product, the solution temperature is 460 ° C, and the solution time is 2h; after the solid solution, carry out secondary extrusion, the extrusion temperature is 380 ° C, and the extrusion ratio is 12, and the extrusion ratio is 12. The speed was 2m/min, and the heating temperature of the die during extrusion was 360°C to obtain the final product.
实施例5Example 5
可吸收骨科植入镁合金,组成为:6.0wt%的Zn、1.2wt%的Y、2.0wt%的Nd、0.3wt%的Sc,余量为Mg,以及不可避免的杂质元素。Absorbable orthopaedic implant magnesium alloy, the composition is: 6.0wt% Zn, 1.2wt% Y, 2.0wt% Nd, 0.3wt% Sc, the balance is Mg, and unavoidable impurity elements.
1、前期准备1. Preliminary preparation
本实施例所需的原料为:The raw materials required for this example are:
高纯镁锭(纯度≥99.9%):1486gHigh-purity magnesium ingot (purity ≥99.9%): 1486g
高纯锌锭(纯度≥99.9%):144g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 144g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金 :106g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 106g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:192g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 192g, in which the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:72g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 72g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixture of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100. :1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到130°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 130°C, then take it out, brush a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温500°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;B, put the processed crucible into the resistance furnace, set the furnace temperature to 500 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气15min后,加入高纯镁锭,同时将炉温升高到750°C;c, after 15min of passing mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 750 ℃ simultaneously;
d、在750°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至850°C,保温120min;d, at 750 DEG C, be incubated until the magnesium ingot is completely melted, add the Mg-Sc master alloy, and the furnace temperature is raised to 850 DEG C, and is incubated for 120min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至750°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 750°C;
f、在750°C下保温12min之后,加入锌锭;f, after being incubated 12min at 750 DEG C, add zinc ingot;
g、保温20min后对熔体进行匀速搅拌8min,然后进行扒渣,静置15min;g. After 20min of heat preservation, the melt is stirred at a constant speed for 8min, then slag is removed, and it is left to stand for 15min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-6.0wt% Zn-1.2wt% Y-2.0wt%Nd-0.3wt%Sc合金(中间产品)。h. The melt is poured into the mold, and the mold is demolded to obtain an ordinary solidified state Mg-6.0wt% Zn-1.2wt% Y-2.0wt%Nd-0.3wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-6.0wt% Zn-1.2wt% Y-2.0wt% Nd-0.3wt%Sc合金(中间产品)进行固溶处理,固溶温度为500°C,固溶时间为4h;a. The prepared ordinary solidified state Mg-6.0wt% Zn-1.2wt% Y-2.0wt% Nd-0.3wt%Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 500 ° C. The time is 4h;
b、固溶后进行一次挤压,挤压温度480°C,挤压比为10,挤压速率是3m/min,挤压过程中模具的加热温度是470°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 480°C, the extrusion ratio is 10, the extrusion rate is 3m/min, and the heating temperature of the die in the extrusion process is 470°C, and an extrusion can be obtained. state product;
c、对一次挤压态产品进行固溶处理,固溶温度500°C,固溶时间为6h;固溶后进行二次挤压,挤压温度420°C,挤压比为12,挤压速率是3m/min,挤压过程中模具的加热温度是400°C,得到最终产品。c, carry out solution treatment to the one-time extruded product, the solution temperature is 500 ° C, and the solution time is 6h; after the solid solution, the secondary extrusion is carried out, the extrusion temperature is 420 ° C, and the extrusion ratio is 12, and the extrusion ratio is 12. The speed was 3m/min, and the heating temperature of the die during extrusion was 400°C to obtain the final product.
实施例6Example 6
可吸收骨科植入镁合金,组成为:2.0wt%的Zn、0.8wt%的Y、0.6wt%的Nd、0.2wt%的Sc,余量为Mg,以及不可避免的杂质元素。The magnesium alloy for absorbable orthopaedic implants is composed of: 2.0wt% Zn, 0.8wt% Y, 0.6wt% Nd, 0.2wt% Sc, the balance is Mg, and unavoidable impurity elements.
1、前期准备1. Preliminary preparation
本实施例所需的原料为:The raw materials required for this example are:
高纯镁锭(纯度≥99.9%):2671gHigh-purity magnesium ingot (purity ≥99.9%): 2671g
高纯锌锭(纯度≥99.9%):72g,其中Zn的含量为其在所得镁合金(目标产品)中的1.2倍;High-purity zinc ingot (purity ≥99.9%): 72g, in which the content of Zn is 1.2 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Y中间合金 :106g,其中Y的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Y master alloy: 106g, wherein the content of Y is 1.1 times that in the obtained magnesium alloy (target product);
Mg-25.0wt% Nd中间合金:79g,其中Nd的含量为其在所得镁合金(目标产品)中的1.1倍;Mg-25.0wt% Nd master alloy: 79g, wherein the content of Nd is 1.1 times that in the obtained magnesium alloy (target product);
Mg-10.0wt% Sc中间合金:72g,其中Sc的含量为其在所得镁合金(目标产品)中的1.2倍;Mg-10.0wt% Sc master alloy: 72g, wherein the content of Sc is 1.2 times that in the obtained magnesium alloy (target product);
为避免镁合金的氧化和燃烧,在整个熔炼过程中炉中一直通有保护气体,本实施例采用的保护气体为二氧化碳和六氟化硫混合气,二氧化碳和六氟化硫的体积比为100:1。In order to avoid the oxidation and combustion of the magnesium alloy, there is always a protective gas in the furnace during the whole smelting process. The protective gas used in this embodiment is a mixture of carbon dioxide and sulfur hexafluoride, and the volume ratio of carbon dioxide and sulfur hexafluoride is 100. :1.
2、中间产品的制备2. Preparation of intermediate products
a、将坩埚、扒渣工具、搅拌棒以及模具加热到120°C,然后取出,表面刷一层薄而均匀的涂料后,放入烘箱进行烘干;a. Heat the crucible, the slag removal tool, the stirring rod and the mold to 120°C, then take it out, apply a thin and uniform coating on the surface, and put it into an oven for drying;
b、将处理好的坩埚放入电阻炉中,设定炉温400°C,待炉温升至设定温度时,通入二氧化碳和六氟化硫混合气;B, put the processed crucible into the resistance furnace, set the furnace temperature to 400 ° C, when the furnace temperature rises to the set temperature, feed carbon dioxide and sulfur hexafluoride gas mixture;
c、通混合气10min后,加入高纯镁锭,同时将炉温升高到700°C;c, after 10min of mixed gas, add high-purity magnesium ingot, and furnace temperature is raised to 700 ℃ simultaneously;
d、在700°C下保温至镁锭完全熔化后,加入Mg-Sc中间合金,并将炉温升至800°C,保温60min;d, at 700 DEG C, be incubated until after the magnesium ingot is completely melted, add the Mg-Sc master alloy, and the furnace temperature is raised to 800 DEG C, and is incubated for 60min;
e、保温结束后,加入Mg-Y中间合金和Mg-Nd中间合金,将炉温降低至700°C;e. After the heat preservation, add Mg-Y master alloy and Mg-Nd master alloy, and reduce the furnace temperature to 700°C;
f、在700°C下保温10min之后,加入锌锭;f, after insulation 10min at 700 DEG C, add zinc ingot;
g、保温20min后对熔体进行匀速搅拌5min,然后进行扒渣,静置15min;g. After 20min of heat preservation, the melt is stirred at a constant speed for 5min, then slag is removed, and it is left to stand for 15min;
h、将熔体浇注到模具中,脱模,得到普通凝固态Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc合金(中间产品)。h. The melt is poured into the mold, and the mold is demolded to obtain an ordinary solidified Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc alloy (intermediate product).
3、挤压合金试样的制备3. Preparation of extruded alloy samples
a、将制备好的普通凝固态Mg-4.0wt% Zn-0.8wt%Y-0.6wt% Nd-0.2wt%Sc合金(中间产品)进行固溶处理,固溶温度为460°C,固溶时间为1h;a. The prepared ordinary solidified state Mg-4.0wt% Zn-0.8wt%Y-0.6wt%Nd-0.2wt%Sc alloy (intermediate product) is subjected to solution treatment, and the solution temperature is 460 ° C. The time is 1h;
b、固溶后进行一次挤压,挤压温度450°C,挤压比为7,挤压速率是4m/min,挤压过程中模具的加热温度是430°C,即可得到一次挤压态产品;b, carry out an extrusion after the solid solution, the extrusion temperature is 450°C, the extrusion ratio is 7, the extrusion rate is 4m/min, and the heating temperature of the die in the extrusion process is 430°C, and an extrusion can be obtained. state product;
c、对一次挤压态产品进行固溶处理,固溶温度460°C,固溶时间为2h;固溶后进行二次挤压,挤压温度380°C,挤压比为12,挤压速率是2m/min,挤压过程中模具的加热温度是360°C,得到最终产品。c, carry out solution treatment to the one-time extruded product, the solution temperature is 460 ° C, and the solution time is 2h; after the solid solution, carry out secondary extrusion, the extrusion temperature is 380 ° C, and the extrusion ratio is 12, and the extrusion ratio is 12. The speed was 2m/min, and the heating temperature of the die during extrusion was 360°C to obtain the final product.
性能测试Performance Testing
经检测,实施例1制备的二次挤压态的镁合金的室温屈服强度为300±5MPa,抗拉强度为320±3MPa,延伸率可以达到20%;实施例2制备的二次挤压态的镁合金的室温屈服强度为310±5MPa,抗拉强度为330±5MPa,延伸率可以达到18%,均达到了作为骨科植入镁合金的要求。After testing, the room temperature yield strength of the magnesium alloy in the secondary extrusion state prepared in Example 1 is 300±5MPa, the tensile strength is 320±3MPa, and the elongation can reach 20%; The room temperature yield strength of the magnesium alloy is 310±5MPa, the tensile strength is 330±5MPa, and the elongation can reach 18%, all of which meet the requirements of magnesium alloys for orthopaedic implants.
对实施例4制备的铸态和二次挤压态的镁合金的微观组织、力学性能和电化学性能进行测试。The microstructure, mechanical properties and electrochemical properties of the as-cast and double-extruded magnesium alloys prepared in Example 4 were tested.
拉伸性能测试结果如图1所示,铸态镁合金在室温下的屈服强度为120±10MPa,抗拉强度为165±10MPa,延伸率为9%;而二次挤压态的镁合金在室温下的屈服强度为306±5MPa,抗拉强度为325±6MPa,延伸率可以达到19%。经过两道次挤压工艺,镁合金的强度和塑形都得到了大幅度提高。The tensile properties test results are shown in Figure 1. The yield strength of the as-cast magnesium alloy at room temperature is 120±10MPa, the tensile strength is 165±10MPa, and the elongation is 9%; while the magnesium alloy in the secondary extrusion state is at The yield strength at room temperature is 306±5MPa, the tensile strength is 325±6MPa, and the elongation can reach 19%. After two extrusion processes, the strength and shape of the magnesium alloy have been greatly improved.
铸态镁合金的显微组织如图2(a)所示,可以看出镁合金由尺寸约100μm的粗大等轴状晶粒组成,第二相在晶界呈连续分布。二次挤压态镁合金的显微组织如图2(b)所示,可以看出镁合金由细小均匀的等轴晶和较为粗大的长条状晶粒组成混合晶粒结构,其中等轴晶的晶粒尺寸达到1~2μm,长条状晶粒长约100μm,宽约5μm,沿挤压方向呈直线型分布。从图2(c)的EDS成分分析图中可以看出,铸态和二次挤压态合金中的第二相都是W相(Mg3Zn3Y2)。同时,在二次挤压态的合金中还存在细小的纳米尺寸析出相,弥散均匀分布于合金基体中。晶粒和第二相的细化会在很大程度上提高镁合金的力学性能。The microstructure of the as-cast magnesium alloy is shown in Figure 2(a). It can be seen that the magnesium alloy is composed of coarse equiaxed grains with a size of about 100 μm, and the second phase is continuously distributed at the grain boundaries. The microstructure of the secondary extruded magnesium alloy is shown in Figure 2(b). It can be seen that the magnesium alloy is composed of fine and uniform equiaxed grains and relatively coarse elongated grains. The mixed grain structure, in which the equiaxed grains The grain size of the crystal reaches 1~2 μm, and the elongated grains are about 100 μm long and 5 μm wide, and are linearly distributed along the extrusion direction. It can be seen from the EDS composition analysis diagram of Fig. 2(c) that the second phase in both as-cast and as-extruded alloys is W-phase (Mg 3 Zn 3 Y 2 ). At the same time, there are also fine nano-sized precipitates in the alloy in the secondary extrusion state, which are uniformly dispersed in the alloy matrix. The refinement of grains and second phases will greatly improve the mechanical properties of magnesium alloys.
铸态和二次挤压态镁合金的室温拉伸断口如图3所示,可以看到铸态合金的断口呈韧性和脆性混合断裂模式,如图3(a)和(b)所示,而二次挤压态合金的断口主要由大量韧窝组成,如图3(c)和(d)所示,拉伸断裂模式是韧性断裂。因此,经过两道次挤压工艺,实施例4所得镁合金的韧性得到提高。The room temperature tensile fractures of the as-cast and double-extruded magnesium alloys are shown in Figure 3. It can be seen that the fractures of the as-cast alloys show a mixed fracture mode of ductility and brittleness, as shown in Figures 3(a) and (b), The fracture of the secondary extrusion alloy is mainly composed of a large number of dimples, as shown in Fig. 3(c) and (d), and the tensile fracture mode is ductile fracture. Therefore, after the two-pass extrusion process, the toughness of the magnesium alloy obtained in Example 4 is improved.
铸态和二次挤压态镁合金的电化学腐蚀测试结果如图4所示,从图中可以拟合得到铸态镁合金的自腐蚀电位是-1.4097,腐蚀电流密度是1.3122×10-5A/cm2;二次挤压态镁合金的自腐蚀电位是-1.336V,腐蚀电流密度是5.43×10-5A/cm2,经过两道次挤压,镁合金的腐蚀电位提高,耐蚀性也得到了提高,其耐蚀性能够满足可吸收骨科植入镁合金的要求。The electrochemical corrosion test results of as-cast and double-extruded magnesium alloys are shown in Figure 4. From the figure, it can be obtained that the self-corrosion potential of as-cast magnesium alloys is -1.4097, and the corrosion current density is 1.3122×10 -5 A/cm 2 ; the self-corrosion potential of the magnesium alloy in the secondary extrusion state is -1.336V, and the corrosion current density is 5.43×10 -5 A/cm 2 . The corrosion resistance has also been improved, and its corrosion resistance can meet the requirements of magnesium alloys for absorbable orthopaedic implants.
铸态和二次挤压态镁合金制备浓度分别为10%、50%和100%的浸提液,并采用浸提液培养人体脐静脉内皮细胞48h之后,测得的细胞相对活性结果如图5所示,从图中可以看到铸态和二次挤压态的该镁合金浸提液培养后细胞的活性均较高;观察到的细胞形态结果如图6所示,其中铸态镁合金浓度为10%、50%和100%的浸提液培养后细胞形态如图6(a)、(b)和(c)所示,而二次挤压态镁合金浓度为10%、50%和100%的浸提液培养后细胞形态如图6(d)、(e)和(f)所示。从图6中可以看到所有细胞形态均良好。结合图5和图6结果,证明实施例4所得铸态和二次挤压态镁合金都具有良好的生物相容性。The as-cast and twice-extruded magnesium alloys were prepared with leaching solutions with concentrations of 10%, 50% and 100%, respectively, and the human umbilical vein endothelial cells were cultured with the leaching solution for 48 hours. The measured relative cell activity results are shown in the figure. As shown in Figure 5, it can be seen from the figure that the cell activity of the magnesium alloy leaching solution in the as-cast state and the secondary extruded state is higher after culture; the observed cell morphology results are shown in Figure 6, in which the as-cast magnesium alloy Figures 6(a), (b), and (c) show the cell morphology of the leaching solutions with alloy concentrations of 10%, 50%, and 100%, while the secondary extruded magnesium alloy concentrations were 10%, 50%, and 50%. % and 100% leaching solution cultured cell morphology is shown in Figure 6(d), (e) and (f). From Figure 6 it can be seen that all cells are in good shape. Combined with the results in Fig. 5 and Fig. 6, it is proved that both the as-cast and the double-extruded magnesium alloy obtained in Example 4 have good biocompatibility.
实施例6制备的二次挤压态的镁合金的室温屈服强度为270±5MPa,抗拉强度为300±5MPa,延伸率为15.5%。图7为实施例4和实施例6所得二次挤压态镁合金的室温拉伸性能测试结果,实施例6的Zn含量为2%提,低于实施例4的4%,Y、Nd和Sc含量不变。可以发现,随着Zn含量提高,镁合金的室温屈服强度、抗拉强度和延伸率都得到了提高,说明Zn含量的增加有效提高了镁合金的室温拉伸性能。The room temperature yield strength of the magnesium alloy in the secondary extrusion state prepared in Example 6 is 270±5MPa, the tensile strength is 300±5MPa, and the elongation is 15.5%. Figure 7 shows the test results of room temperature tensile properties of the secondary extruded magnesium alloy obtained in Example 4 and Example 6. The Zn content of Example 6 is 2% higher than that of Example 4, which is lower than The Sc content was unchanged. It can be found that with the increase of Zn content, the room temperature yield strength, tensile strength and elongation of magnesium alloys have been improved, indicating that the increase of Zn content can effectively improve the room temperature tensile properties of magnesium alloys.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention, All should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810173358.2A CN108330367B (en) | 2018-03-02 | 2018-03-02 | Absorbable orthopedic implant magnesium alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810173358.2A CN108330367B (en) | 2018-03-02 | 2018-03-02 | Absorbable orthopedic implant magnesium alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108330367A CN108330367A (en) | 2018-07-27 |
CN108330367B true CN108330367B (en) | 2020-01-14 |
Family
ID=62930160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810173358.2A Active CN108330367B (en) | 2018-03-02 | 2018-03-02 | Absorbable orthopedic implant magnesium alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108330367B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112472868B (en) * | 2020-11-18 | 2024-02-23 | 郑州大学 | Degradable Mg-Nd-Zn-Sc biomedical magnesium alloy and preparation method thereof |
CN114366271A (en) * | 2021-11-22 | 2022-04-19 | 奚廷斐 | Bone screw suitable for biological magnesium alloy and preparation method thereof |
CN117548515B (en) * | 2023-11-16 | 2025-01-21 | 东北大学 | A secondary extrusion molding process for rare earth magnesium alloy bars |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007004589A1 (en) * | 2007-01-30 | 2008-07-31 | Orlowski, Michael, Dr. | Reabsorbable implant stent for blood vessels, urinary passages, respiratory system, biliary tract or digestive tract, comprises magnesium alloy containing magnesium, calcium or yattrium |
DE102012108089A1 (en) * | 2012-08-31 | 2014-05-15 | Gottfried Wilhelm Leibniz Universität Hannover | Magnesium alloy used for formation of work samples used as medical device e.g. implant and suture, comprises magnesium and zinc, and rare-earth metal in specified weight ratio |
CN105803282B (en) * | 2016-03-22 | 2017-12-08 | 中国兵器科学研究院宁波分院 | A kind of single-phase Multielement rare-earth magnesium alloy biodegradation material and preparation method thereof |
CN107304466A (en) * | 2016-04-19 | 2017-10-31 | 上海交通大学 | The absorbable high-strength anticorrosion magnesium alloy material of biodegradation and its preparation and use |
-
2018
- 2018-03-02 CN CN201810173358.2A patent/CN108330367B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108330367A (en) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Research progress of biodegradable magnesium-based biomedical materials: A review | |
CN109972007B (en) | An in vivo degradable Mg-Zn-Ca-M staple material and preparation method thereof | |
CN103184379B (en) | Biodegradable Mg-Gd-Zn-Ag-Zr series magnesium alloy and preparation method thereof | |
CN107557632B (en) | Degradable biomedical Mg-Zn-Zr-Nd alloy material and preparation method thereof | |
CN105349858B (en) | The bone fixation magnesium alloy implant material of degradable and preparation method | |
CN104630587A (en) | Degradable magnesium alloy plate and bar for fracture internal fixation and preparation methods thereof | |
CN104328312A (en) | Medical biodegradable zinc alloy and preparation method thereof | |
CN105986146B (en) | A kind of degradable medical is metal material embedded and preparation method thereof | |
CN107236886A (en) | A kind of polynary Mg Zn Y Ca Zr alloys of medical degradable high-strength anticorrosion and preparation method thereof | |
CN106282664A (en) | Biodegradable medical zinc lithium binary alloy material and preparation method and application | |
CN103184380B (en) | Biodegradable Mg-Gd-Zn-Sr-Zr series magnesium alloy and preparation method thereof | |
CN102258806B (en) | Degradable magnesium-base biomedical material for implantation in orthopaedics, and preparation method thereof | |
CN108330367B (en) | Absorbable orthopedic implant magnesium alloy and preparation method thereof | |
WO2020042745A1 (en) | Mg-zn-sn series magnesium alloy with controllable degradation rate, preparation method and application thereof | |
CN115029584B (en) | A kind of biodegradable medical zinc alloy and its preparation method and application | |
CN105401033B (en) | High strength and toughness anti-corrosion biomedical magnesium alloy | |
CN108165782B (en) | A kind of medical zinc-based alloy strip and preparation method thereof | |
CN108411158B (en) | A kind of biodegradable Zn-Mg-Zr alloy material, preparation method and application | |
CN107198796B (en) | A kind of biomedical Zn-Mn-Cu series zinc alloy and preparation method thereof | |
CN108642359B (en) | High-strength rapid-degradation biomedical Mg-Zn-Zr-Fe alloy material and preparation method thereof | |
CN112472868A (en) | Degradable Mg-Nd-Zn-Sc biomedical magnesium alloy and preparation method thereof | |
CN111809090A (en) | A kind of medical degradable Mg-Pr series magnesium alloy and its preparation method and application | |
CN104846247B (en) | Addition gadolinium, magnesium alloy biodegradation material of yttrium and preparation method thereof | |
CN113106312B (en) | Degradable medical alloy and preparation method and application thereof | |
CN110656260A (en) | A kind of degradable medical Zn alloy material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |