CN106282664A - Biodegradable medical zinc lithium binary alloy material and preparation method and application - Google Patents
Biodegradable medical zinc lithium binary alloy material and preparation method and application Download PDFInfo
- Publication number
- CN106282664A CN106282664A CN201610726974.7A CN201610726974A CN106282664A CN 106282664 A CN106282664 A CN 106282664A CN 201610726974 A CN201610726974 A CN 201610726974A CN 106282664 A CN106282664 A CN 106282664A
- Authority
- CN
- China
- Prior art keywords
- zinc
- alloy
- lithium
- preparation
- biodegradable medical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 74
- 229910002056 binary alloy Inorganic materials 0.000 title claims abstract description 27
- KUJOABUXCGVGIY-UHFFFAOYSA-N lithium zinc Chemical compound [Li].[Zn] KUJOABUXCGVGIY-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000011701 zinc Substances 0.000 claims abstract description 68
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 42
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 29
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000007943 implant Substances 0.000 claims abstract description 25
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000001356 surgical procedure Methods 0.000 claims abstract description 12
- 230000002792 vascular Effects 0.000 claims abstract description 11
- 210000005036 nerve Anatomy 0.000 claims abstract description 4
- 230000008439 repair process Effects 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 59
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 58
- 238000005096 rolling process Methods 0.000 claims description 24
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 18
- 238000007670 refining Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 13
- 238000001125 extrusion Methods 0.000 claims description 12
- 238000001192 hot extrusion Methods 0.000 claims description 12
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000000265 homogenisation Methods 0.000 claims description 9
- 230000000968 intestinal effect Effects 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 210000000013 bile duct Anatomy 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 210000003238 esophagus Anatomy 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 229910001297 Zn alloy Inorganic materials 0.000 abstract description 15
- 238000006731 degradation reaction Methods 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract description 8
- 238000003723 Smelting Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229920001169 thermoplastic Polymers 0.000 abstract 1
- 239000004416 thermosoftening plastic Substances 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 229910000733 Li alloy Inorganic materials 0.000 description 11
- 239000001989 lithium alloy Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000012046 mixed solvent Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011573 trace mineral Substances 0.000 description 3
- 235000013619 trace mineral Nutrition 0.000 description 3
- 239000007857 degradation product Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000012567 medical material Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010026749 Mania Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 206010048259 Zinc deficiency Diseases 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000020930 dietary requirements Nutrition 0.000 description 1
- BBQKXICLDJHVSR-QTNFYWBSSA-L dilithium;(2s)-2-aminopentanedioate Chemical compound [Li+].[Li+].[O-]C(=O)[C@@H](N)CCC([O-])=O BBQKXICLDJHVSR-QTNFYWBSSA-L 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000012890 simulated body fluid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/165—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/32—Materials or treatment for tissue regeneration for nerve reconstruction
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Inorganic Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种生物可降解医用锌锂二元合金材料及其制备方法与应用;所述合金材料由以下重量百分比的物质组成:锂 0.55~10wt.%,其余为Zn。对熔炼所得的合金在使用之前还需进行热塑性变形加工,细化合金组织从而提高合金的性能。本发明的锌合金具有优异的综合力学性能、良好的生物相容性和可调控的降解速率等优点,它可以作为制备可降解医用植入器械的材料,应用于制备血管内支架、骨内植物、颌面外科及颅脑外科植入器械、手术缝合线、各种手术用补片、吻合器、血管夹或神经修复导管等。The invention discloses a biodegradable medical zinc-lithium binary alloy material and its preparation method and application; the alloy material is composed of the following substances by weight percentage: lithium 0.55-10wt.%, the rest is Zn. The alloy obtained by smelting needs to be subjected to thermoplastic deformation processing before use, so as to refine the alloy structure and improve the performance of the alloy. The zinc alloy of the present invention has the advantages of excellent comprehensive mechanical properties, good biocompatibility, and controllable degradation rate, etc., and it can be used as a material for preparing degradable medical implant devices, and can be used in the preparation of intravascular stents and bone implants. , Maxillofacial surgery and craniocerebral surgery implants, surgical sutures, various surgical patches, staplers, vascular clips or nerve repair catheters, etc.
Description
技术领域technical field
本发明属于生物医用材料领域,具体涉及一种生物可降解医用锌锂二元合金材料及其制备方法与应用。The invention belongs to the field of biomedical materials, and in particular relates to a biodegradable medical zinc-lithium binary alloy material and a preparation method and application thereof.
背景技术Background technique
目前,手术植入人体内的医用材料一般采用的是不可降解的金属材料,例如(1)奥氏体不锈钢(316LSS);(2)钴铬合金;(3)医用钽;(4)钛及其合金;(5)镍钛形状记忆合金。这些永久性植入材料的应用存在如下弊端,例如(1)永久性金属血管支架植入人体后由于其不可降解,存在着容易形成血栓造成支架内再狭窄、内膜纤维化的不足,而且支架永久存留体内,不能再次取出,一旦在同一位置再发生血管堵塞,再植入一个血管支架变得非常困难;(2)不锈钢、钛合金骨钉、骨板等植入人体后,在骨组织痊愈后需要二次手术将其取出,增加了患者的痛苦和经济负担。因此研究和开发具有良好的力学性能与生物相容性能的体内降解的医用材料成为该领域中的重要发展方向。At present, the medical materials implanted into the human body are generally made of non-degradable metal materials, such as (1) austenitic stainless steel (316LSS); (2) cobalt-chromium alloy; (3) medical tantalum; (4) titanium and Its alloy; (5) nickel-titanium shape memory alloy. The application of these permanent implant materials has the following disadvantages, for example (1) after the permanent metal vascular stent is implanted into the human body, due to its non-degradability, there is a shortcoming of easily forming thrombus to cause restenosis and intimal fibrosis in the stent, and the stent It remains permanently in the body and cannot be taken out again. Once the blood vessel is blocked again at the same position, it becomes very difficult to implant another vascular stent; (2) After implanting stainless steel, titanium alloy bone nails, bone plates, etc. Afterwards, a second operation is required to remove it, which increases the pain and financial burden of the patient. Therefore, the research and development of biodegradable medical materials with good mechanical properties and biocompatibility has become an important development direction in this field.
目前,可降解生物材料中可降解高分子材料、生物陶瓷、镁基合金、铁基合金是近年来研究较深入的材料。但由于聚合物材料强度偏低、陶瓷材料的塑性较差而限制了其在临床上的广泛应用。镁基合金具有良好的生物相容性,但其耐蚀性较差,在人体内很快被降解,失去其力学支撑作用。铁基合金的腐蚀速率太慢,完全降解时间可能长达数年。At present, among degradable biomaterials, degradable polymer materials, bioceramics, magnesium-based alloys, and iron-based alloys are materials that have been studied in depth in recent years. However, due to the low strength of polymer materials and the poor plasticity of ceramic materials, their wide application in clinical practice is limited. Magnesium-based alloys have good biocompatibility, but their corrosion resistance is poor, and they are quickly degraded in the human body, losing their mechanical support. The corrosion rate of iron-based alloys is so slow that complete degradation can take years.
锌为人体最为基本的必要微量元素之一。在人体内几乎参与所有生理代谢过程,锌除了在多种金属酶、转录因子及其他蛋白中起着催化或构建作用外,还以神经递质或调质样的形式发挥其功能。锌能促进细胞的更新,可增强人体的免疫能力,维持肌体的生长和发育,锌缺损可能导致人体所有的生理机能紊乱。成人体内的锌含量为1.4~2.3g,健康成人每天锌的膳食许可量为15~40mg,成年人每天摄入约300mg锌才可能会有一定的毒性反应。因此,锌合金具有良好的生物相容性。纯锌的标准电极电位为-0.763V,介于纯镁(-2.37V)和纯铁(-0.44V)之间,锌基合金的腐蚀速率也位于镁基合金和铁基合金之间,其降解速率是最满足临床内植物的要求的。Zinc is one of the most basic essential trace elements for the human body. In the human body, zinc is involved in almost all physiological metabolic processes. In addition to catalytic or structural functions in various metalloenzymes, transcription factors and other proteins, zinc also performs its functions in the form of neurotransmitters or modulators. Zinc can promote cell renewal, enhance the body's immune ability, and maintain the growth and development of the body. Zinc deficiency may lead to disorders of all physiological functions of the human body. The zinc content in the adult body is 1.4-2.3g, and the dietary allowance for zinc for healthy adults is 15-40mg per day. Adults may have certain toxic reactions if they ingest about 300mg of zinc per day. Therefore, zinc alloy has good biocompatibility. The standard electrode potential of pure zinc is -0.763V, which is between pure magnesium (-2.37V) and pure iron (-0.44V), and the corrosion rate of zinc-based alloys is also between magnesium-based alloys and iron-based alloys. The degradation rate is the one that best meets the requirements of clinical implants.
但是,纯锌的综合力学性能较差,腐蚀速率也较慢,很难满足临床医学的需求,对纯锌进行合金化是改善其力学性能和腐蚀速率的主要方法,如现有技术中有在锌中同时添加Fe、Li以及微量元素Mg、Ca、Sr、Si、Mn和稀土元素,但是该技术制备的锌合金材料的强度和塑性较低,还达不到理想的血管支架用材料的性能要求。同时含有较多的合金元素,一方面在降解过程中释放较多的合金元素种类增加了对人体潜在的风险,另一方面合金制备工艺复制,增加了材料的质量控制难度,相应合金成本也增加了。我们在研究中发现锌锂二元合金具有更高的强度和塑性以及适宜的降解速率,同时由于材料组分简单,生物安全性更好,熔炼制备工艺简便,作为医用植入材料应用更具优势。However, the comprehensive mechanical properties of pure zinc are poor, and the corrosion rate is also slow, which is difficult to meet the needs of clinical medicine. Alloying pure zinc is the main method to improve its mechanical properties and corrosion rate. Fe, Li and trace elements Mg, Ca, Sr, Si, Mn and rare earth elements are added to zinc at the same time, but the strength and plasticity of the zinc alloy material prepared by this technology are low, and the performance of the ideal material for vascular stents is not yet achieved. Require. At the same time, it contains more alloying elements. On the one hand, more types of alloying elements are released during the degradation process, which increases the potential risk to the human body. On the other hand, the duplication of the alloy preparation process increases the difficulty of quality control of the material, and the corresponding alloy cost also increases. up. In our research, we found that the zinc-lithium binary alloy has higher strength and plasticity and a suitable degradation rate. At the same time, due to the simple material components, better biological safety, and simple melting and preparation process, it has more advantages as a medical implant material. .
发明内容Contents of the invention
针对现有医用可降解材料存在的不足,本发明的目的是提供一种强度高、塑性好,降解速率可控,可被生物降解的生物可降解医用锌锂二元合金材料及其制备方法与应用。Aiming at the deficiencies of existing medical degradable materials, the purpose of the present invention is to provide a biodegradable medical zinc-lithium binary alloy material with high strength, good plasticity, controllable degradation rate and biodegradability and its preparation method and application.
本发明的目的是通过以下技术方案来实现:The purpose of the present invention is to realize through the following technical solutions:
第一方面,本发明涉及一种生物可降解医用锌锂二元合金材料,所述合金材料包括如下重量百分比含量的各组分:锂0.55~10%,锌90~99.45%。In the first aspect, the present invention relates to a biodegradable medical zinc-lithium binary alloy material. The alloy material includes the following components in weight percentage: 0.55-10% lithium and 90-99.45% zinc.
优选的,所述合金材料包括如下重量百分比含量的各组分:锂1~3%,锌97~99%,或锂4.1~10%,锌90~95.9%。最优选锂1~3%,锌97~99%。Preferably, the alloy material includes the following components in weight percentage: 1-3% lithium, 97-99% zinc, or 4.1-10% lithium, 90-95.9% zinc. Most preferably lithium 1-3%, zinc 97-99%.
第二方面,本发明还涉及一种前述的生物可降解医用锌锂二元合金材料的制备方法,所述方法包括以下步骤:In a second aspect, the present invention also relates to a method for preparing the aforementioned biodegradable medical zinc-lithium binary alloy material, the method comprising the following steps:
S1、根据所述合金配比称取锌原料、锂原料;S1, weighing zinc raw material and lithium raw material according to the alloy ratio;
S2、将锌原料、混合熔剂、锂原料加热熔化,搅拌均匀,形成合金熔体;S2, heating and melting the zinc raw material, the mixed flux, and the lithium raw material, and stirring evenly to form an alloy melt;
S3、所述合金熔体经过精炼、静置、浇注后冷却,得到生物可降解医用锌锂二元合金铸锭材料。S3. The alloy melt is refined, left to stand, poured and then cooled to obtain a biodegradable medical zinc-lithium binary alloy ingot material.
优选的,所述锌原料为纯锌,所述锂原料为纯锂;步骤S2具体为:先将纯锌(纯度≥99.995%)加热至420℃~440℃待其完全熔化后,将熔体温度上升至580~620℃时加入混合熔剂,待混合熔剂完全覆盖在熔体表面同时将熔体温度降至540~560℃,在Ar气的保护下加入纯锂(纯度≥99.999%)。Preferably, the zinc raw material is pure zinc, and the lithium raw material is pure lithium; step S2 specifically includes: first heating pure zinc (purity ≥ 99.995%) to 420°C-440°C until it is completely melted, and then melting the molten When the temperature rises to 580-620°C, add mixed flux, wait until the mixed flux completely covers the surface of the melt while reducing the melt temperature to 540-560°C, add pure lithium (purity ≥ 99.999%) under the protection of Ar gas.
优选的,步骤S1中,所述锌原料为纯锌,所述锂原料为纯锂;根据所述合金配比称取具体为:纯锂按收得率80~85%计算,其他合金(Zn)元素按收得率100%计算。Preferably, in step S1, the zinc raw material is pure zinc, and the lithium raw material is pure lithium; according to the alloy ratio, it is specifically weighed: pure lithium is calculated at a yield of 80-85%, and other alloys (Zn ) elements are calculated on the basis of 100% yield.
优选的,所述混合熔剂为LiCl和LiF混合熔剂。更优选所述LiCl和LiF混合熔剂中LiCl和LiF的质量比为1∶2~4。Preferably, the mixed flux is a mixed flux of LiCl and LiF. More preferably, the mass ratio of LiCl and LiF in the mixed flux of LiCl and LiF is 1:2-4.
优选的,所述混合熔剂的用量为使得覆盖在熔体表面厚度为5~10mm。Preferably, the amount of the mixed flux is such that the thickness covered on the surface of the melt is 5-10 mm.
优选的,步骤S3中,所述精炼采用六氯乙烷进行精炼,精炼温度为540±20℃,六氯乙烷的量为合金熔体总重量的0.2~0.3%。Preferably, in step S3, the refining is carried out with hexachloroethane, the refining temperature is 540±20° C., and the amount of hexachloroethane is 0.2-0.3% of the total weight of the alloy melt.
优选的,还包括对步骤S3获得的合金铸锭材料进行均匀化处理,以及热挤压或轧制变形加工的处理。Preferably, it also includes homogenizing the alloy ingot material obtained in step S3, and performing hot extrusion or rolling deformation processing.
优选的,所述均匀化处理温度为320~380℃,处理时间4~10h;所述热挤压加工的形变温度为190~280℃,挤压比为6~50∶1;所述轧制变形加工的形变温度为190~280℃,每道次轧制量为10~30%;所述热挤压或轧制变形后水冷或空冷后得到生物可降解医用锌锂二元合金塑性形变加工态材料。Preferably, the homogenization treatment temperature is 320-380°C, and the treatment time is 4-10 hours; the deformation temperature of the hot extrusion process is 190-280°C, and the extrusion ratio is 6-50:1; the rolling The deformation temperature of the deformation processing is 190-280°C, and the rolling amount per pass is 10-30%; the hot extrusion or rolling deformation is water-cooled or air-cooled to obtain a biodegradable medical zinc-lithium binary alloy plastic deformation processing state material.
优选的,步骤S3后,还可包括通过铸造工艺把合金铸锭材料进一步制备成三维联通组织工程支架,通过挤压轧制拉拔组合工艺把合金形变态材料加工成丝材以及支架用毛细管材的步骤。Preferably, after step S3, it may also include further preparing the alloy ingot material into a three-dimensional interconnected tissue engineering scaffold through a casting process, and processing the alloy deformed material into a wire material and a capillary tube material for the bracket through a combined extrusion, rolling and drawing process A step of.
第三方面,本发明还涉及一种前述的生物可降解医用锌锂二元合金材料在制备可降解医用植入器械中的用途。In the third aspect, the present invention also relates to the use of the aforementioned biodegradable medical zinc-lithium binary alloy material in the preparation of degradable medical implant devices.
优选的,所述可降解医用植入器械为植入支架、骨内植物、颌面外科及颅脑外科植入器械、手术缝合线、各种手术用补片、吻合器、血管夹或神经修复导管;所述植入支架包括血管支架、胆管支架、气管支架、尿道支架、食道支架或肠道支架;所述骨内植物包括骨板、骨钉、内固定螺钉、髓内针或骨组织工程支架。Preferably, the degradable medical implant device is an implant stent, intraosseous implant, implant device for maxillofacial surgery and craniocerebral surgery, surgical suture, various surgical patches, stapler, vascular clip or nerve repair Catheter; the implanted stent includes vascular stent, bile duct stent, tracheal stent, urethral stent, esophageal stent or intestinal stent; the bone implant includes bone plate, bone nail, internal fixation screw, intramedullary needle or bone tissue engineering stand.
优选的,所述补片包括肠道外科手术用补片或颅脑外科手术用补片;所述吻合器包括肠道吻合器、血管吻合器。Preferably, the patch includes a patch for intestinal surgery or a patch for craniocerebral surgery; the stapler includes an intestinal stapler and a blood vessel stapler.
本发明通过在基体Zn中加入一定量的Li元素,大幅度改善合金的力学性能的同时还能调节锌合金在生物体环境内的腐蚀降解速率。The invention greatly improves the mechanical properties of the alloy by adding a certain amount of Li element into the matrix Zn, and at the same time can adjust the corrosion degradation rate of the zinc alloy in the biological environment.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明的锌锂二元合金可以在人体内自然降解,达到医疗效果后在一定时间内会从体内降解消失最终通过代谢安全地排出体外。1. The zinc-lithium binary alloy of the present invention can be naturally degraded in the human body, and after achieving medical effects, it will degrade and disappear from the body within a certain period of time, and finally be safely excreted through metabolism.
2、本发明的锌合金选用锂元素作为主要的合金化元素,可以显著提高锌锂二元合金的强度和塑性,最高拉伸断裂强度达到了501MPa,拉伸延伸率达到了48%。而且通过控制Li元素的含量(0.55~10wt.%,更优选1%~3%以及4.1~10%,最优选1.0~3wt.%)可以实现强度和塑性的调节。2. The zinc alloy of the present invention uses lithium as the main alloying element, which can significantly improve the strength and plasticity of the zinc-lithium binary alloy. The highest tensile breaking strength reaches 501MPa, and the tensile elongation reaches 48%. Moreover, the adjustment of strength and plasticity can be realized by controlling the content of Li element (0.55-10wt.%, more preferably 1%-3% and 4.1-10%, most preferably 1.0-3wt.%).
3、本发明的锌合金综合具备良好的力学性能、耐腐蚀性能和生物相容性。根据不同用途对材料性能的要求,适当调节Li元素的含量,可以获得相应的力学性能、耐腐蚀性能。如适当降低Li元素的含量,可以获得中等强度高塑性耐腐蚀的材料,适合用作拉拔成丝材和血管支架用毛细管材;适当增加Li元素的含量,腐蚀速率相应增加,可以获得高强度中等塑性的材料,适合用作骨内植物材料。3. The zinc alloy of the present invention has good mechanical properties, corrosion resistance and biocompatibility. According to the requirements of different uses for material properties, the corresponding mechanical properties and corrosion resistance can be obtained by properly adjusting the content of Li element. If the content of Li element is properly reduced, a medium-strength, high-plasticity and corrosion-resistant material can be obtained, which is suitable for drawing into wires and capillary tubes for vascular stents; if the content of Li element is appropriately increased, the corrosion rate will increase accordingly, and high strength can be obtained. Moderately plastic material, suitable for use as bone implant material.
4、与锌元素类似,本发明中Zn-Li合金中的锂元素本身也是人体必需的微量元素之一;锂对人体中枢神经系统的作用是很明显的,锂盐对于改善和稳定情绪及防止精神分裂症是有效的,它还能改善幻觉和妄想等分裂症的阳性症状。医学上用碳酸锂、硫酸锂、谷氨酸锂等锂盐来控制和治疗精神狂躁症。Li+离子对动脉粥样硬化发病率有预防作用。正常人对锂的饮食需要量约为60~100μg/d,锂的摄入量低于25μg/d将产生不利影响。4. Similar to the zinc element, the lithium element itself in the Zn-Li alloy in the present invention is also one of the essential trace elements for the human body; the effect of lithium on the central nervous system of the human body is obvious, and lithium salts are effective for improving and stabilizing emotions and preventing Schizophrenia is effective and it also improves the positive symptoms of schizophrenia such as hallucinations and delusions. Lithium salts such as lithium carbonate, lithium sulfate, and lithium glutamate are used in medicine to control and treat mania. Li + ions have a preventive effect on the incidence of atherosclerosis. Normal people's dietary requirement for lithium is about 60-100 μg/d, and lithium intake lower than 25 μg/d will have adverse effects.
5、本发明的锌锂二元合金组成简单,合金制备工艺简便,方便控制材料质量。同时腐蚀降解产物离子种类少,对人体的潜在危害小,与现有技术相比具有更好的生物相容性。5. The zinc-lithium binary alloy of the present invention has simple composition, simple alloy preparation process, and convenient material quality control. At the same time, the corrosion degradation product has fewer ion types, less potential harm to the human body, and has better biocompatibility compared with the prior art.
具体实施方式detailed description
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为0.55%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 0.55%, and the rest is Zn.
该合金材料的制备步骤如下:The preparation steps of the alloy material are as follows:
S1、根据上述合金配比称取各原材料;S1. Weigh each raw material according to the above alloy ratio;
S2、在内壁涂有保护涂层的铁坩埚中放入纯锌(纯度≥99.995%),升温至420℃待纯锌完全熔化后,将锌熔体升温至580℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至540℃,此时在Ar气的保护下加入纯锂(纯度≥99.999%),待纯锂熔化后,搅拌均匀,形成合金熔体;S2. Put pure zinc (purity ≥ 99.995%) into an iron crucible with a protective coating on the inner wall, raise the temperature to 420°C and wait for the pure zinc to completely melt, then raise the temperature of the zinc melt to 580°C, then add LiCl and LiF Mix flux (mass ratio is 1: 3), after the above-mentioned mixed solvent completely covers the surface of zinc melt, then lower the temperature of zinc melt to 540°C, at this time add pure lithium (purity ≥ 99.999% ), after the pure lithium is melted, stir evenly to form an alloy melt;
S3、对所述合金熔体采用六氯乙烷进行精炼,精炼温度为540±5℃,六氯乙烷的量为合金熔体总重量的0.25%;精炼完成后在540±5℃静置12min,浇注后冷却,得到生物可降解医用锌锂二元合金铸锭材料;S3. Refining the alloy melt with hexachloroethane, the refining temperature is 540±5°C, and the amount of hexachloroethane is 0.25% of the total weight of the alloy melt; after the refining is completed, stand at 540±5°C 12 minutes, cooling after pouring, to obtain biodegradable medical zinc-lithium binary alloy ingot material;
S4、对获得的合金铸锭材料进行均匀化处理、以及热挤压或轧制变形加工的处理,到生物可降解医用锌锂二元合金塑性形变加工态材料;其中,均匀化处理温度为350℃,处理时间8h;热挤压或轧制加工形变温度为250℃,挤压比为28∶1或每道次轧制量20%,挤压或轧制变形后水冷。S4. Perform homogenization treatment on the obtained alloy ingot material, as well as hot extrusion or rolling deformation processing, to the biodegradable medical zinc-lithium binary alloy plastic deformation processing state material; wherein, the homogenization treatment temperature is 350 ℃, treatment time 8h; hot extrusion or rolling processing deformation temperature is 250 ℃, extrusion ratio is 28:1 or 20% of the rolling amount per pass, water cooling after extrusion or rolling deformation.
实施例2Example 2
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为10%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 10%, and the rest is Zn.
该合金材料的制备方法同实施例1,所不同之处在于:The preparation method of this alloy material is the same as embodiment 1, and difference is:
S2、放入纯锌后升温至430℃待纯锌完全熔化后,将锌熔体升温至600℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至550℃,此时在Ar气的保护下加入纯锂;S2. Put in pure zinc and raise the temperature to 430°C. After the pure zinc is completely melted, raise the temperature of the zinc melt to 600°C. At this time, add LiCl and LiF mixed flux (mass ratio: 1:3), until the above mixed solvent is completely covered After the surface of the zinc melt is removed, the temperature of the zinc melt is lowered to 550°C, and then pure lithium is added under the protection of Ar gas;
s3、精炼温度为540±10℃,六氯乙烷的量为合金熔体总重量的0.2%;精炼完成后在540±10℃静置10min;s3. The refining temperature is 540±10°C, and the amount of hexachloroethane is 0.2% of the total weight of the alloy melt; after refining, stand still at 540±10°C for 10 minutes;
S4、均匀化处理温度为320℃,处理时间10h;热挤压或轧制加工形变温度为190℃,挤压比为50∶1或每道次轧制量30%。S4. The homogenization treatment temperature is 320°C, and the treatment time is 10 hours; the deformation temperature of hot extrusion or rolling is 190°C, and the extrusion ratio is 50:1 or the rolling amount per pass is 30%.
实施例3Example 3
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为4.1%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 4.1%, and the rest is Zn.
该合金材料的制备方法同实施例1,所不同之处在于:The preparation method of this alloy material is the same as embodiment 1, and difference is:
S2、放入纯锌后升温至440℃待纯锌完全熔化后,将锌熔体升温至590℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至560℃,此时在Ar气的保护下加入纯锂;S2. Put in pure zinc and raise the temperature to 440°C. After the pure zinc is completely melted, raise the temperature of the zinc melt to 590°C. At this time, add LiCl and LiF mixed flux (mass ratio: 1:3), until the above mixed solvent is completely covered After the surface of the zinc melt is removed, the temperature of the zinc melt is lowered to 560°C, and then pure lithium is added under the protection of Ar gas;
S3、精炼温度为540±10℃,六氯乙烷的量为合金熔体总重量的0.3%;精炼完成后在540±10℃静置15min;S3. The refining temperature is 540±10°C, and the amount of hexachloroethane is 0.3% of the total weight of the alloy melt; after refining, stand still at 540±10°C for 15 minutes;
S4、均匀化处理温度为380℃,处理时间6h;热挤压或轧制加工形变温度为250℃,挤压比为6∶1或每道次轧制量10%。S4. The homogenization treatment temperature is 380° C., and the treatment time is 6 hours; the deformation temperature of hot extrusion or rolling is 250° C., and the extrusion ratio is 6:1 or the rolling amount per pass is 10%.
实施例4Example 4
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为1.0%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 1.0%, and the rest is Zn.
该合金材料的制备方法同实施例1,所不同之处在于:The preparation method of this alloy material is the same as embodiment 1, and difference is:
S2、放入纯锌后升温至440℃待纯锌完全熔化后,将锌熔体升温至620℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至560℃,此时在Ar气的保护下加入纯锂;S2. Put in pure zinc and raise the temperature to 440°C. After the pure zinc is completely melted, raise the temperature of the zinc melt to 620°C. At this time, add LiCl and LiF mixed flux (mass ratio: 1:3), until the above mixed solvent is completely covered After the surface of the zinc melt is removed, the temperature of the zinc melt is lowered to 560°C, and then pure lithium is added under the protection of Ar gas;
S3、精炼温度为550±10℃,六氯乙烷的量为合金熔体总重量的0.3%;精炼完成后在550±10℃静置15min;S3. The refining temperature is 550±10°C, and the amount of hexachloroethane is 0.3% of the total weight of the alloy melt; after refining, stand still at 550±10°C for 15 minutes;
S4、均匀化处理温度为380℃,处理时间6h;热挤压或轧制加工形变温度为280℃,挤压比为6∶1或每道次轧制量10%。S4. The homogenization treatment temperature is 380° C., and the treatment time is 6 hours; the deformation temperature of hot extrusion or rolling is 280° C., and the extrusion ratio is 6:1 or the rolling amount per pass is 10%.
实施例5Example 5
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为2.0%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 2.0%, and the rest is Zn.
该合金材料的制备方法同实施例1,所不同之处在于:The preparation method of this alloy material is the same as embodiment 1, and difference is:
S2、放入纯锌后升温至435℃待纯锌完全熔化后,将锌熔体升温至600℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至560℃,此时在Ar气的保护下加入纯锂;S2. Put in pure zinc and raise the temperature to 435°C. After the pure zinc is completely melted, raise the temperature of the zinc melt to 600°C. At this time, add LiCl and LiF mixed flux (mass ratio: 1:3), until the above mixed solvent is completely covered After the surface of the zinc melt is removed, the temperature of the zinc melt is lowered to 560°C, and then pure lithium is added under the protection of Ar gas;
S3、精炼温度为550±10℃,六氯乙烷的量为合金熔体总重量的0.3%;精炼完成后在550±10℃静置15min;S3. The refining temperature is 550±10°C, and the amount of hexachloroethane is 0.3% of the total weight of the alloy melt; after refining, stand still at 550±10°C for 15 minutes;
S4、均匀化处理温度为380℃,处理时间6h;热挤压或轧制加工形变温度为280℃,挤压比为6∶1或每道次轧制量10%。S4. The homogenization treatment temperature is 380° C., and the treatment time is 6 hours; the deformation temperature of hot extrusion or rolling is 280° C., and the extrusion ratio is 6:1 or the rolling amount per pass is 10%.
实施例6Example 6
本实施例涉及的一种可降解医用Zn-Li合金材料,该合金材料包括如下重量百分含量的合金组分:Li为3%,其余为Zn。This embodiment relates to a degradable medical Zn-Li alloy material, which includes the following alloy components in weight percentage: Li is 3%, and the rest is Zn.
该合金材料的制备方法同实施例1,所不同之处在于:The preparation method of this alloy material is the same as embodiment 1, and difference is:
S2、放入纯锌后升温至420℃待纯锌完全熔化后,将锌熔体升温至610℃,此时加入LiCl和LiF混合熔剂(质量比为1∶3),待上述混合溶剂完全覆盖锌熔体表面后,再将锌熔体温度降至550℃,此时在Ar气的保护下加入纯锂;S2. Put in pure zinc and raise the temperature to 420°C. After the pure zinc is completely melted, raise the temperature of the zinc melt to 610°C. At this time, add LiCl and LiF mixed flux (mass ratio: 1:3), until the above mixed solvent is completely covered After the surface of the zinc melt is removed, the temperature of the zinc melt is lowered to 550°C, and then pure lithium is added under the protection of Ar gas;
S3、精炼温度为540±10℃,六氯乙烷的量为合金熔体总重量的0.2%;精炼完成后在540±10℃静置13min;S3. The refining temperature is 540±10°C, and the amount of hexachloroethane is 0.2% of the total weight of the alloy melt; after refining, stand still at 540±10°C for 13 minutes;
S4、均匀化处理温度为340℃,处理时间7h;热挤压或轧制加工形变温度为220℃,挤压比为15∶1或每道次轧制量15%。S4. The homogenization treatment temperature is 340° C., and the treatment time is 7 hours; the deformation temperature of hot extrusion or rolling is 220° C., and the extrusion ratio is 15:1 or the rolling amount per pass is 15%.
实施例7Example 7
以实施例1~6制得的挤压变形态的Zn-Li合金,进行模拟体液(Hank’s溶液)浸泡实验,测得Zn-Li二元锌合金的腐蚀速率如表1:With the Zn-Li alloy of the extruded deformed shape that embodiment 1~6 makes, carry out simulated body fluid (Hank's solution) immersion test, record the corrosion rate of Zn-Li binary zinc alloy as table 1:
表1Table 1
本实施例依据ASTM-G31-72标准测试方法对Zn-Li二元锌合金的体外降解速率进行了研究,发现在37℃的模拟人体体液环境中,Zn-Li二元锌合金的降解速率缓慢,且可通过调节Li元素的含量来调控。In this example, the in vitro degradation rate of Zn-Li binary zinc alloy was studied according to the ASTM-G31-72 standard test method, and it was found that the degradation rate of Zn-Li binary zinc alloy was slow in a simulated human body fluid environment at 37°C , and can be regulated by adjusting the content of Li element.
实施例8Example 8
以实施例1~6制得的挤压形变态的Zn-Li合金,进行拉伸强度试验结果如表2所示。Table 2 shows the tensile strength test results of the extrusion-deformed Zn-Li alloys prepared in Examples 1-6.
表2Table 2
本实施例根据GB/T228.1-2010测试标准,对Zn-Li二元锌合金实施例1~6进行拉伸力学性能测试,结果如表2所示。研究发现,Zn-Li二元合金的屈服强度最高为501MPa,断裂延伸率最高为50%;远高于同等测试条件下Zn-Fe-Li系锌合金(Zn 99.975%、Fe0.01%、Li 0.015%)的屈服强度290MPa、断裂延伸率36%。通过合理添加Li元素的含量(0.55~10wt.%,最优选1.0~3wt.%),可以获得不同强度和塑性的锌合金,满足不同医用可降解材料对锌合金的性能要求。In this example, according to the GB/T228.1-2010 test standard, the tensile mechanical properties of the Zn-Li binary zinc alloy examples 1 to 6 were tested, and the results are shown in Table 2. The study found that the highest yield strength of Zn-Li binary alloy is 501MPa, and the highest elongation at break is 50%, which is much higher than that of Zn-Fe-Li zinc alloy (Zn 99.975%, Fe0.01%, Li 0.015%) yield strength 290MPa, elongation at break 36%. By rationally adding the content of Li element (0.55-10wt.%, most preferably 1.0-3wt.%), zinc alloys with different strengths and plasticity can be obtained to meet the performance requirements of different medical degradable materials for zinc alloys.
实施例7Example 7
以实施例1~6制得的Zn-Li合金,进行体外细胞毒性测试。The in vitro cytotoxicity test was carried out with the Zn-Li alloys prepared in Examples 1-6.
本实施例根据GB/T 16886.5-2003对锌合金进行了体外细胞(L-929成纤维细胞)毒性测试,得到上述锌合金降解产物对细胞活性没有明显影响,细胞毒性为1级,显示出优良的细胞相容性。In this example, according to GB/T 16886.5-2003, the in vitro cell (L-929 fibroblast) toxicity test was carried out on zinc alloy, and the above-mentioned zinc alloy degradation product had no obvious influence on cell activity, and the cytotoxicity was grade 1, showing excellent cell compatibility.
实施例8Example 8
对于上述实施例1-6所述的Zn-Li合金材料,可进一步通过常规铸造工艺把Zn-Li铸锭材料制备成三维联通组织工程支架;通过挤压轧制拉拔组合工艺把Zn-Li形变态材料加工成丝材以及支架用毛细管材。从而可进一步制备成体内可降解的医用植入器械。所述可降解医用植入器械为植入支架、骨内植物、颌面外科及颅脑外科植入器械、手术缝合线、各种手术用补片、吻合器、血管夹或神经修复导管等。其中植入支架包括血管支架、胆管支架、气管支架、尿道支架、食道支架或肠道支架;骨内植物器械包括骨板、骨钉、内固定螺钉、髓内针或骨组织工程支架等;补片包括肠道外科手术用补片以及颅脑外科手术用补片;吻合器包括肠道吻合器、血管吻合器等。For the Zn-Li alloy materials described in the above embodiments 1-6, the Zn-Li ingot material can be further prepared into a three-dimensional Unicom tissue engineering scaffold through a conventional casting process; Deformable materials are processed into wires and capillary tubes for scaffolds. Therefore, it can be further prepared into a biodegradable medical implant device. The degradable medical implant devices include implant brackets, intraosseous implants, implant devices for maxillofacial surgery and craniocerebral surgery, surgical sutures, various surgical patches, staplers, vascular clips, or nerve repair catheters. The implanted stents include vascular stents, bile duct stents, tracheal stents, urethral stents, esophageal stents or intestinal stents; intraosseous plant devices include bone plates, bone nails, internal fixation screws, intramedullary nails or bone tissue engineering stents; The patches include intestinal surgery patches and brain surgery patches; staplers include intestinal staplers, blood vessel staplers, etc.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在不脱离本发明构思的前提下做出各种变形或修改,这并不影响本发明的实质内容,都应当视为属于本发明的保护范围。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various deformations or modifications without departing from the concept of the present invention, which does not affect the essence of the present invention, and should be Be deemed to belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610726974.7A CN106282664A (en) | 2016-08-25 | 2016-08-25 | Biodegradable medical zinc lithium binary alloy material and preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610726974.7A CN106282664A (en) | 2016-08-25 | 2016-08-25 | Biodegradable medical zinc lithium binary alloy material and preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106282664A true CN106282664A (en) | 2017-01-04 |
Family
ID=57676471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610726974.7A Pending CN106282664A (en) | 2016-08-25 | 2016-08-25 | Biodegradable medical zinc lithium binary alloy material and preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106282664A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108396176A (en) * | 2018-01-24 | 2018-08-14 | 烟台南山学院 | A kind of medical degradable zinc alloy flakes of Guided Bone Regeneration and preparation method thereof |
CN110512117A (en) * | 2019-09-27 | 2019-11-29 | 石家庄新日锌业有限公司 | Medical zinc alloy material and preparation method thereof |
CN110585475A (en) * | 2019-09-18 | 2019-12-20 | 西南大学 | Light-operated antibacterial degradable zinc alloy suture material and preparation method thereof |
CN110878395A (en) * | 2019-12-11 | 2020-03-13 | 浙江工贸职业技术学院 | High-plasticity biodegradable Zn-2Li alloy under high-pressure action of GPa grade and preparation method thereof |
CN113005330A (en) * | 2021-03-17 | 2021-06-22 | 昆明理工大学 | Biodegradable superfine crystal Zn-Li alloy material and preparation method and application thereof |
CN113633831A (en) * | 2021-08-25 | 2021-11-12 | 天津理工大学 | A kind of porous zinc alloy bone tissue engineering scaffold coated with bioactive coating and preparation method thereof |
CN113637861A (en) * | 2021-08-13 | 2021-11-12 | 湘潭大学 | A kind of Zn-Se alloy and its preparation method and application |
CN114075634A (en) * | 2020-08-18 | 2022-02-22 | 上海交通大学 | Medical degradable Zn-Cu-Li ternary alloy and preparation and application thereof |
CN116036076A (en) * | 2022-12-13 | 2023-05-02 | 安域生物科技(杭州)有限公司 | Application of lithium amino acid in preparation of medicine for treating manic mental diseases |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101748313A (en) * | 2008-12-19 | 2010-06-23 | 北京有色金属与稀土应用研究所 | Zinc-lithium alloy material and preparation method thereof |
CN104195368A (en) * | 2014-08-21 | 2014-12-10 | 北京大学 | Zn-Sr series zinc alloy as well as preparation method and application of Zn-Sr series zinc alloy |
CN107460371A (en) * | 2016-06-02 | 2017-12-12 | 北京大学 | A kind of Zn-Li systems kirsite and preparation method and application |
-
2016
- 2016-08-25 CN CN201610726974.7A patent/CN106282664A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101748313A (en) * | 2008-12-19 | 2010-06-23 | 北京有色金属与稀土应用研究所 | Zinc-lithium alloy material and preparation method thereof |
CN104195368A (en) * | 2014-08-21 | 2014-12-10 | 北京大学 | Zn-Sr series zinc alloy as well as preparation method and application of Zn-Sr series zinc alloy |
CN107460371A (en) * | 2016-06-02 | 2017-12-12 | 北京大学 | A kind of Zn-Li systems kirsite and preparation method and application |
Non-Patent Citations (1)
Title |
---|
MARCELA TRYBULA等: "Bulk and Surface Properties of Liquid Al-Li and Li-Zn Alloys", 《METALLURGICAL AND MATERIALS TRANSACTIONS A》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108396176A (en) * | 2018-01-24 | 2018-08-14 | 烟台南山学院 | A kind of medical degradable zinc alloy flakes of Guided Bone Regeneration and preparation method thereof |
CN110585475A (en) * | 2019-09-18 | 2019-12-20 | 西南大学 | Light-operated antibacterial degradable zinc alloy suture material and preparation method thereof |
CN110512117A (en) * | 2019-09-27 | 2019-11-29 | 石家庄新日锌业有限公司 | Medical zinc alloy material and preparation method thereof |
CN110512117B (en) * | 2019-09-27 | 2022-05-13 | 石家庄新日锌业有限公司 | Medical zinc alloy material and preparation method thereof |
CN110878395A (en) * | 2019-12-11 | 2020-03-13 | 浙江工贸职业技术学院 | High-plasticity biodegradable Zn-2Li alloy under high-pressure action of GPa grade and preparation method thereof |
CN114075634A (en) * | 2020-08-18 | 2022-02-22 | 上海交通大学 | Medical degradable Zn-Cu-Li ternary alloy and preparation and application thereof |
CN114075634B (en) * | 2020-08-18 | 2022-08-12 | 上海交通大学 | Medical degradable Zn-Cu-Li ternary alloy and its preparation and application |
CN113005330A (en) * | 2021-03-17 | 2021-06-22 | 昆明理工大学 | Biodegradable superfine crystal Zn-Li alloy material and preparation method and application thereof |
CN113637861A (en) * | 2021-08-13 | 2021-11-12 | 湘潭大学 | A kind of Zn-Se alloy and its preparation method and application |
CN113633831A (en) * | 2021-08-25 | 2021-11-12 | 天津理工大学 | A kind of porous zinc alloy bone tissue engineering scaffold coated with bioactive coating and preparation method thereof |
CN116036076A (en) * | 2022-12-13 | 2023-05-02 | 安域生物科技(杭州)有限公司 | Application of lithium amino acid in preparation of medicine for treating manic mental diseases |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106319287A (en) | Biodegradable medical Zn-Li-X series alloy material and preparation method and application | |
CN106282664A (en) | Biodegradable medical zinc lithium binary alloy material and preparation method and application | |
CN106467942B (en) | Biodegradable medical pltine and its preparation method and application | |
CN109972007B (en) | An in vivo degradable Mg-Zn-Ca-M staple material and preparation method thereof | |
WO2017084363A1 (en) | Medical degradable zn-cu-x alloy material and preparation method thereof | |
JP6786214B2 (en) | Magnesium alloy, its manufacturing method and its use | |
ES2797499T3 (en) | This patent application refers to an implant made of a magnesium alloy and to a method for the production thereof. | |
CN101015711B (en) | A kind of body fluid degradable medical implant and its preparation method | |
WO2017152878A1 (en) | Degradable zinc base alloy implant material and preparation method and use thereof | |
CN103184379B (en) | Biodegradable Mg-Gd-Zn-Ag-Zr series magnesium alloy and preparation method thereof | |
CN103526091B (en) | A kind of degradable biological medical magnesium alloy and preparation method thereof | |
CN105986146B (en) | A kind of degradable medical is metal material embedded and preparation method thereof | |
CN109602960B (en) | Preparation method of medical zinc alloy bar with superplasticity | |
CN107190191B (en) | A kind of biological medical magnesium alloy and preparation method thereof | |
CN105401033B (en) | High strength and toughness anti-corrosion biomedical magnesium alloy | |
WO2020042745A1 (en) | Mg-zn-sn series magnesium alloy with controllable degradation rate, preparation method and application thereof | |
CN103184380B (en) | Biodegradable Mg-Gd-Zn-Sr-Zr series magnesium alloy and preparation method thereof | |
CN108165782B (en) | A kind of medical zinc-based alloy strip and preparation method thereof | |
US20220031916A1 (en) | Zn-ga series alloy and its preparation method and application | |
CN107198796B (en) | A kind of biomedical Zn-Mn-Cu series zinc alloy and preparation method thereof | |
CN111809090A (en) | A kind of medical degradable Mg-Pr series magnesium alloy and its preparation method and application | |
Mardina et al. | The influence of strain rate and annealing heat treatments on the corrosion and mechanical properties of WE43 and Zn7Ag biodegradable wires for application in soft tissue reconstructions | |
CN108330367B (en) | Absorbable orthopedic implant magnesium alloy and preparation method thereof | |
CN107304466A (en) | The absorbable high-strength anticorrosion magnesium alloy material of biodegradation and its preparation and use | |
CN106377795A (en) | Degradable medical Zn-Li-Fe ternary alloy material, preparation and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170104 |