CN108321296A - Trans- low-dimensional perovskite solar cell based on photon crystal heterojunction and preparation method thereof - Google Patents
Trans- low-dimensional perovskite solar cell based on photon crystal heterojunction and preparation method thereof Download PDFInfo
- Publication number
- CN108321296A CN108321296A CN201810097797.XA CN201810097797A CN108321296A CN 108321296 A CN108321296 A CN 108321296A CN 201810097797 A CN201810097797 A CN 201810097797A CN 108321296 A CN108321296 A CN 108321296A
- Authority
- CN
- China
- Prior art keywords
- low
- photonic crystal
- dimensional perovskite
- crystal heterojunction
- trans
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000013078 crystal Substances 0.000 title claims description 42
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 129
- 239000004038 photonic crystal Substances 0.000 claims abstract description 90
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 230000005525 hole transport Effects 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 230000000903 blocking effect Effects 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 69
- 239000002243 precursor Substances 0.000 claims description 64
- 239000000377 silicon dioxide Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 41
- 239000004408 titanium dioxide Substances 0.000 claims description 36
- 239000004793 Polystyrene Substances 0.000 claims description 27
- 229920002223 polystyrene Polymers 0.000 claims description 27
- -1 amine ion Chemical class 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 239000011324 bead Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 11
- 239000005751 Copper oxide Substances 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 11
- 229910000431 copper oxide Inorganic materials 0.000 claims description 11
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 11
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical group [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 10
- 239000008188 pellet Substances 0.000 claims description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N isobutyl amine Natural products CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 claims description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- 230000001795 light effect Effects 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 11
- 229910000428 cobalt oxide Inorganic materials 0.000 description 10
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- TVUBDAUPRIFHFN-UHFFFAOYSA-N dioxosilane;oxygen(2-);titanium(4+) Chemical group [O-2].[O-2].[Ti+4].O=[Si]=O TVUBDAUPRIFHFN-UHFFFAOYSA-N 0.000 description 4
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical compound [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- UPHCENSIMPJEIS-UHFFFAOYSA-N 2-phenylethylazanium;iodide Chemical compound [I-].[NH3+]CCC1=CC=CC=C1 UPHCENSIMPJEIS-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- CALQKRVFTWDYDG-UHFFFAOYSA-N butan-1-amine;hydroiodide Chemical compound [I-].CCCC[NH3+] CALQKRVFTWDYDG-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- OHHBFEVZJLBKEH-UHFFFAOYSA-N ethylenediamine dihydrochloride Chemical compound Cl.Cl.NCCN OHHBFEVZJLBKEH-UHFFFAOYSA-N 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- SHWZFQPXYGHRKT-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;nickel Chemical compound [Ni].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O SHWZFQPXYGHRKT-FDGPNNRMSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Natural products NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229910008449 SnF 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- TWZBHHYMSPBSBI-UHFFFAOYSA-N [I-].[NH4+].C(=N)N Chemical compound [I-].[NH4+].C(=N)N TWZBHHYMSPBSBI-UHFFFAOYSA-N 0.000 description 1
- MWOZJZDNRDLJMG-UHFFFAOYSA-N [Si].O=C=O Chemical compound [Si].O=C=O MWOZJZDNRDLJMG-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229940117803 phenethylamine Drugs 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- JTDNNCYXCFHBGG-UHFFFAOYSA-L tin(ii) iodide Chemical compound I[Sn]I JTDNNCYXCFHBGG-UHFFFAOYSA-L 0.000 description 1
- YUOWTJMRMWQJDA-UHFFFAOYSA-J tin(iv) fluoride Chemical compound [F-].[F-].[F-].[F-].[Sn+4] YUOWTJMRMWQJDA-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及太阳能电池技术领域,公开了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池及其制备方法,包括透明导电衬底和依次层叠于该透明导电衬底上的空穴传输层、基于二氧化硅‑二氧化钛光子晶体异质结的低维钙钛矿吸光层、空穴阻挡层和金属电极。与现有技术相比,本发明中基于光子晶体异质结的反式低维钙钛矿太阳能电池的慢光效应较强,对入射光的捕获效率较高,载流子的输运效率较高,稳定性好。
The invention relates to the technical field of solar cells, and discloses a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction and a preparation method thereof, including a transparent conductive substrate and hollow cells sequentially stacked on the transparent conductive substrate. Hole transport layer, low-dimensional perovskite light absorbing layer based on silica-titania photonic crystal heterojunction, hole blocking layer and metal electrode. Compared with the prior art, the trans low-dimensional perovskite solar cell based on photonic crystal heterojunction in the present invention has stronger slow light effect, higher capture efficiency of incident light, and higher carrier transport efficiency. High, good stability.
Description
技术领域technical field
本发明涉及太阳能电池技术领域,特别涉及一种基于光子晶体异质结的反式低维钙钛矿太阳能电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction and a preparation method thereof.
背景技术Background technique
随着全球能源危机日益加剧,太阳能因具有资源丰富、分布广泛、环保等优点,已成为可再生清洁能源领域的研究热点。钙钛矿太阳能电池(PSCs)拥有光电转换效率高、成本低、工艺简单等特点,作为一种最有发展前景的光伏发电技术之一,受到了广泛关注。With the increasing global energy crisis, solar energy has become a research hotspot in the field of renewable clean energy due to its advantages of abundant resources, wide distribution, and environmental protection. Perovskite solar cells (PSCs) have the characteristics of high photoelectric conversion efficiency, low cost, and simple process. As one of the most promising photovoltaic power generation technologies, they have received extensive attention.
通常PSCs拥有三种典型的结构,分别是正式介孔结构(导电玻璃(FTO)/电子传输层/介孔层/钙钛矿光吸收层/空穴传输层/金属电极)、正式平面结构(FTO/电子传输层/钙钛矿光吸收层/空穴传输层/金属电极)及反式平面结构(FTO/空穴传输层/钙钛矿光吸收层/电子传输层/金属电极)。研究人员对器件结构中的各组成部分及其界面都进行了大量深入探究,例如:开发新型无机空穴传输材料、钙钛矿光吸收层材料、电子传输材料及金属电极材料,优化空穴传输层/光吸收层与电子传输层/光吸收层界面。特别是钙钛矿光吸收层作为器件结构中最关键的组成部分,其晶体结构、形貌及光学性能对器件效率均起着至关重要的作用。为了进一步提高器件效率,研究人员采用带隙工程与界面工程探究了钙钛矿光吸收层能带隙及其界面匹配性对器件光电性能的影响,初步阐述了其内在的作用机制。尤其是在反式PSCs中,采用带隙工程有利于获得高度结晶的钙钛矿光吸收层;采用界面工程能够有效优化出光电性能更加优异的电池器件。由此可见,反式平面结构更加有利于构建出器件效率高、迟滞效应小、稳定性好的PSCs。但是传统三维钙钛矿材料也暴露出自身缺陷,尤其是温度、湿度、光热等稳定性,严重阻碍了PSCs规模化应用。同时,低维钙钛矿材料由于具有形成能较高、自掺杂效应较低、离子迁移率较小等特点,而展现出比三维钙钛矿材料更加优异的稳定性。目前,低维钙钛矿太阳能电池的光电转换效率已由4.37%提升至13.7%。然而,如何获得光电性能优异、廉价的低维PSCs仍然是学术与工业界面临的难题。Generally, PSCs have three typical structures, which are formal mesoporous structure (conducting glass (FTO)/electron transport layer/mesoporous layer/perovskite light absorption layer/hole transport layer/metal electrode), formal planar structure ( FTO/electron transport layer/perovskite light absorption layer/hole transport layer/metal electrode) and trans planar structure (FTO/hole transport layer/perovskite light absorption layer/electron transport layer/metal electrode). Researchers have conducted a lot of in-depth research on various components and interfaces in the device structure, such as: developing new inorganic hole transport materials, perovskite light absorbing layer materials, electron transport materials and metal electrode materials, optimizing hole transport layer/light absorbing layer and electron transport layer/light absorbing layer interface. In particular, the perovskite light-absorbing layer is the most critical component in the device structure, and its crystal structure, morphology and optical properties all play a vital role in device efficiency. In order to further improve the device efficiency, the researchers used bandgap engineering and interface engineering to explore the influence of the energy bandgap and interface matching of the perovskite light absorbing layer on the photoelectric performance of the device, and initially explained its internal mechanism. Especially in trans-PSCs, the use of bandgap engineering is beneficial to obtain a highly crystalline perovskite light-absorbing layer; the use of interface engineering can effectively optimize the battery device with better photoelectric performance. It can be seen that the trans planar structure is more conducive to the construction of PSCs with high device efficiency, small hysteresis effect and good stability. However, traditional three-dimensional perovskite materials also expose their own defects, especially the stability of temperature, humidity, and light and heat, which seriously hinders the large-scale application of PSCs. At the same time, low-dimensional perovskite materials exhibit better stability than three-dimensional perovskite materials due to their high formation energy, low self-doping effect, and low ion mobility. At present, the photoelectric conversion efficiency of low-dimensional perovskite solar cells has increased from 4.37% to 13.7%. However, how to obtain low-dimensional PSCs with excellent optoelectronic properties and low cost is still a difficult problem faced by academic and industrial circles.
发明内容Contents of the invention
发明目的:针对现有技术中存在的问题,本发明提供一种基于光子晶体异质结的反式低维钙钛矿太阳能电池及其制备方法,这种太阳能电池的慢光效应较强,对入射光的捕获效率较高,载流子的输运效率较高,稳定好。Purpose of the invention: Aiming at the problems existing in the prior art, the present invention provides a trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction and its preparation method. The incident light capture efficiency is high, the carrier transport efficiency is high, and the stability is good.
技术方案:本发明提供了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池,其特征在于,包括透明导电衬底和依次层叠于该透明导电衬底上的空穴传输层、基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层、空穴阻挡层和金属电极。Technical solution: The present invention provides a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction, which is characterized in that it includes a transparent conductive substrate and a hole transport layer sequentially stacked on the transparent conductive substrate , Low-dimensional perovskite light-absorbing layers, hole-blocking layers, and metal electrodes based on silica-titania photonic crystal heterojunctions.
进一步地,所述低维钙钛矿吸光层为填充有低维钙钛矿类吸光半导体材料的二氧化硅-二氧化钛光子晶体异质结。该异质结的构筑有利于提高钙钛矿吸光层对入射光的捕获效率,通过调控其界面及厚度,能够优化出高效率的钙钛矿太阳能电池;基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层利用其光子带隙、慢光效应提高器件的量子效率,且利用三维有序大孔结构提高了载流子的传输效率,从而提高器件的光电转换效率。Further, the low-dimensional perovskite light-absorbing layer is a silicon dioxide-titanium dioxide photonic crystal heterojunction filled with low-dimensional perovskite light-absorbing semiconductor materials. The construction of the heterojunction is conducive to improving the capture efficiency of the perovskite light-absorbing layer for incident light, and by adjusting its interface and thickness, a high-efficiency perovskite solar cell can be optimized; based on silica-titania photonic crystal heterogeneity The low-dimensional perovskite light-absorbing layer of the junction uses its photonic band gap and slow light effect to improve the quantum efficiency of the device, and uses the three-dimensional ordered macropore structure to improve the carrier transmission efficiency, thereby improving the photoelectric conversion efficiency of the device.
优选地,所述低维钙钛矿类吸光半导体材料为具有Aʹ2An-1BnX3n+1型晶体结构的半导体材料,其中,所述Aʹ为有机胺离子,所述A为阳离子,所述B为金属阳离子,所述X为卤素阴离子,所述n为低维钙钛矿的层数。Preferably, the low-dimensional perovskite light-absorbing semiconductor material is a semiconductor material with an Aʹ 2 A n-1 B n X 3n+1 type crystal structure, wherein the Aʹ is an organic amine ion, and the A is a cation , the B is a metal cation, the X is a halide anion, and the n is the number of layers of the low-dimensional perovskite.
优选地,所述有机胺离子为以下任意一种:苯乙胺离子(PEA+)、正丁胺离子(n-BA+)、异丁胺离子(iso-BA+)、聚乙烯亚胺离子(PEI+);所述阳离子为以下任意一种或其组合:甲胺阳离子(MA+,CH3NH3 + )、甲脒阳离子 (FA+,CH(NH2)2 +)、铯离子(Cs+);所述金属阳离子为以下任意一种或其组合:Pb2+ 、Sn2+;所述卤素阴离子为以下任意一种或其组合:I-、Br-、Cl-;所述n为大于0小于等于10的自然数。Preferably, the organic amine ion is any one of the following: phenethylamine ion (PEA + ), n-butylamine ion (n-BA + ), isobutylamine ion (iso-BA + ), polyethyleneiminium ion (PEI + ); the cation is any one or combination of the following: methylamine cation (MA + , CH 3 NH 3 + ), formamidine cation (FA + , CH(NH 2 ) 2 + ), cesium ion ( Cs + ); the metal cation is any one or a combination of the following: Pb 2+ , Sn 2+ ; the halogen anion is any one or a combination of the following: I - , Br - , Cl - ; the n It is a natural number greater than 0 and less than or equal to 10.
优选地,所述空穴传输层为氧化镍、氧化铜或氧化钴。Preferably, the hole transport layer is nickel oxide, copper oxide or cobalt oxide.
优选地,所述空穴阻挡层为2,9-二甲基-4,7-联苯-1,10-菲罗啉(BCP)。Preferably, the hole blocking layer is 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP).
优选地,所述金属电极为银电极或金电极。Preferably, the metal electrode is a silver electrode or a gold electrode.
优选地,所述透明导电衬底为氟掺杂氧化锡导电玻璃(FTO)。Preferably, the transparent conductive substrate is fluorine-doped tin oxide conductive glass (FTO).
本发明还提供了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备方法,包含以下步骤:S1:在透明导电衬底上制备空穴传输层;S2:配制二氧化硅前驱体溶液和二氧化钛前驱体溶液;S3:以聚苯乙烯小球为构筑基元,与所述二氧化硅前驱体溶液配置成组装溶液甲,以所述透明导电衬底为基片,采用恒温垂直沉积法在所述空穴传输层上沉积聚苯乙烯-二氧化硅胶体晶体;S4:以聚苯乙烯小球为构筑基元,与所述二氧化钛前驱体溶液配置成组装溶液乙,以所述透明导电衬底为基片,采用恒温垂直沉积法在所述聚苯乙烯-二氧化硅胶体晶体上引入二氧化钛,得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结;S5:去除所述聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结中的聚苯乙烯小球,得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S6:以所述透明导电衬底为基片,采用一步法在所述三维有序大孔二氧化硅-二氧化钛光子晶体异质结内填充低维钙钛矿类吸光半导体材料,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层;S7:在所述低维钙钛矿吸光层上依次真空蒸镀空穴阻挡层和金属电极。The present invention also provides a method for preparing a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction, comprising the following steps: S1: preparing a hole transport layer on a transparent conductive substrate; S2: preparing a carbon dioxide Silicon precursor solution and titanium dioxide precursor solution; S3: Polystyrene pellets are used as building blocks, and the silicon dioxide precursor solution is configured to form an assembly solution A, and the transparent conductive substrate is used as a substrate. The constant temperature vertical deposition method deposits polystyrene-silica colloidal crystals on the hole transport layer; S4: use polystyrene beads as building blocks, and configure the assembly solution B with the titanium dioxide precursor solution, and The transparent conductive substrate is a substrate, and titanium dioxide is introduced on the polystyrene-silica colloidal crystal by a constant temperature vertical deposition method to obtain a polystyrene-silica-titania colloidal crystal heterojunction; S5: remove The polystyrene pellets in the polystyrene-silicon dioxide-titania colloidal crystal heterojunction obtain a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction; S6: use the transparent conductive substrate As a substrate, a low-dimensional perovskite light-absorbing semiconductor material is filled in the three-dimensional ordered macroporous silica-titania photonic crystal heterojunction by a one-step method to obtain a silicon dioxide-titania photonic crystal heterojunction A low-dimensional perovskite light-absorbing layer; S7: sequentially vacuum-evaporating a hole blocking layer and a metal electrode on the low-dimensional perovskite light-absorbing layer.
进一步地,在所述S6中,所述一步法具体包括以下步骤:首先,配制前驱体溶液:称取一定量有机胺离子、阳离子、金属阳离子分散于N,N-二甲基甲酰胺和二甲基亚砜溶剂中,其中,金属阳离子的摩尔浓度为0.6~1.2 mol/L,N,N-二甲基甲酰胺和二甲基亚砜的体积比2:1到4:1;其次,在空气环境下,依次在所述二氧化硅-二氧化钛光子晶体异质结上旋涂所述前驱体溶液:在空气环境下,将二氧化硅-二氧化钛光子晶体异质结基片置于旋涂仪中在75~95℃下进行热处理,随后在其表面上旋涂处于70~80℃温度下的前驱体溶液;最后,经热处理得所述低维钙钛矿吸光层:将附着有DMF的结晶皿盖住基片,在80~110℃温度下持续10~30分钟,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层。Further, in the above S6, the one-step method specifically includes the following steps: First, prepare the precursor solution: weigh a certain amount of organic amine ions, cations, and metal cations and disperse them in N,N-dimethylformamide and di In methyl sulfoxide solvent, wherein, the molar concentration of metal cation is 0.6~1.2 mol/L, the volume ratio of N,N-dimethylformamide and dimethyl sulfoxide is 2:1 to 4:1; secondly, In the air environment, spin-coat the precursor solution on the silicon dioxide-titania photonic crystal heterojunction in turn: in the air environment, place the silicon dioxide-titania photonic crystal heterojunction substrate on the spin coating heat treatment at 75-95°C in the instrument, and then spin-coat the precursor solution at 70-80°C on the surface; finally, the low-dimensional perovskite light-absorbing layer is obtained after heat treatment: the DMF The crystallization dish covers the substrate, and the temperature is kept at 80-110° C. for 10-30 minutes to obtain a low-dimensional perovskite light-absorbing layer based on the heterojunction of silicon dioxide-titania photonic crystal.
有益效果:本发明中的基于光子晶体异质结的反式低维钙钛矿太阳能电池的结构为导电玻璃/空穴传输层/基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层/空穴阻挡层/金属电极,其特点有:Beneficial effects: the structure of the trans low-dimensional perovskite solar cell based on photonic crystal heterojunction in the present invention is conductive glass/hole transport layer/low-dimensional perovskite based on silicon dioxide-titania photonic crystal heterojunction Mineral light absorbing layer/hole blocking layer/metal electrode, its characteristics are:
1) 利用基于二氧化钛光子晶体的低维钙钛矿吸光层的光子带隙提高了器件在长波长600-800nm范围内的量子效率;1) Utilizing the photonic bandgap of the low-dimensional perovskite light-absorbing layer based on titanium dioxide photonic crystals improves the quantum efficiency of the device in the long wavelength range of 600-800nm;
2) 利用基于二氧化硅光子晶体的低维钙钛矿吸光层的光子带隙与钙钛矿材料能带隙的匹配性,增强了慢光效应,提高了器件对入射光的捕获效率;2) Utilizing the match between the photonic bandgap of the low-dimensional perovskite light-absorbing layer based on silica photonic crystals and the energy bandgap of the perovskite material, the slow light effect is enhanced and the device’s capture efficiency of incident light is improved;
3) 基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层具有独特的电学性能:一方面,基于二氧化硅光子晶体的低维钙钛矿吸光层可以将空穴传输层与基于二氧化钛光子晶体的低维钙钛矿吸光层隔开,避免二氧化钛中的电子与空穴传输层中的空穴发生复合;另一方面,电子能够经二氧化钛传输到空穴阻挡层,进而经空穴阻挡层进入金属电极,同时,空穴阻挡层能够阻挡空穴进入金属电极,避免电子和空穴在金属电极处发生复合;可见基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层的上述独特电学性能有助于提高载流子的输运效率;3) The low-dimensional perovskite light-absorbing layer based on silica-titania photonic crystal heterojunction has unique electrical properties: on the one hand, the low-dimensional perovskite light-absorbing layer based on silica photonic crystal can transfer the hole transport layer It is separated from the low-dimensional perovskite light-absorbing layer based on titanium dioxide photonic crystals to avoid the recombination of electrons in titanium dioxide and holes in the hole transport layer; on the other hand, electrons can be transported to the hole blocking layer through titanium dioxide, and then pass through The hole blocking layer enters the metal electrode, and at the same time, the hole blocking layer can block holes from entering the metal electrode, avoiding the recombination of electrons and holes at the metal electrode; it can be seen that the low-dimensional calcium based on silica-titania photonic crystal heterojunction The above-mentioned unique electrical properties of the titanium ore light-absorbing layer help to improve the transport efficiency of carriers;
4) 利用基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层的有序大孔结构能够有效提高载流子的输运效率;4) Using the ordered macroporous structure of the low-dimensional perovskite light-absorbing layer based on the silica-titania photonic crystal heterojunction can effectively improve the carrier transport efficiency;
5) 基于光子晶体异质结的反式低维钙钛矿太阳能电池器件表现出一定的色彩,增强了美观。5) Trans-type low-dimensional perovskite solar cell devices based on photonic crystal heterojunctions exhibit certain colors and enhance the aesthetics.
6) 由本发明中基于光子晶体异质结的反式低维钙钛矿太阳能电池能够有效制备出大面积、性能优异的电池器件,与三维钙钛矿太阳能电池相比,具有迟滞效应小、稳定性好等优势。6) The trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction in the present invention can effectively prepare a battery device with large area and excellent performance. Compared with the three-dimensional perovskite solar cell, it has small hysteresis effect and stable Good sex and other advantages.
附图说明Description of drawings
图1为基于光子晶体异质结的反式低维钙钛矿太阳能电池的结构示意图;Figure 1 is a schematic diagram of the structure of a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction;
图2为基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备流程图;Figure 2 is a flow chart of the preparation of trans-type low-dimensional perovskite solar cells based on photonic crystal heterojunction;
图3为聚苯乙烯-二氧化硅胶体晶体的制备流程图;Fig. 3 is the preparation flowchart of polystyrene-silica colloidal crystal;
图4为三维有序大孔二氧化硅-二氧化钛光子晶体异质结的制备流程图;Fig. 4 is the preparation flowchart of three-dimensional ordered macroporous silica-titania photonic crystal heterojunction;
图5为基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层的制备流程图。Fig. 5 is a flowchart of the preparation of a low-dimensional perovskite light-absorbing layer based on a silica-titania photonic crystal heterojunction.
下面结合附图对本发明进行详细的介绍。The present invention will be described in detail below in conjunction with the accompanying drawings.
实施方式1:Implementation mode 1:
本实施方式提供了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池,结构如图1所示,由FTO以及依次层叠于FTO之上的氧化镍空穴传输层、基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层、BCP空穴阻挡层和银电极组成。其中低维钙钛矿吸光层为填充有(PEA)2(FA)8Sn9I28的三维有序大孔二氧化硅-二氧化钛光子晶体异质结。This embodiment provides a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction. The structure is shown in FIG. Silicon oxide-titania photonic crystal heterojunction low-dimensional perovskite light-absorbing layer, BCP hole blocking layer and silver electrode composition. The low-dimensional perovskite light-absorbing layer is a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction filled with (PEA) 2 (FA) 8 Sn 9 I 28 .
上述基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备方法如下,制备流程图如图2:The preparation method of the above-mentioned trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction is as follows, and the preparation flow chart is shown in Figure 2:
S1:在FTO上通过旋涂法制备氧化镍空穴传输层;S1: Preparation of nickel oxide hole transport layer on FTO by spin coating method;
具体过程为:以无水乙醇为溶剂配置浓度为0.5 mol/L的乙酰丙酮镍溶液,且加入与镍离子摩尔数相等的二乙醇胺,在70℃下搅拌12小时;待反应结束后,将溶液置于150℃下蒸发30分钟,形成氧化镍前驱体;将清洗干净的FTO导电玻璃置于旋涂仪上,滴入氧化镍前驱体,且在3000 转/秒条件下旋涂30秒;将FTO置于干燥箱中,在60℃下干燥1小时,即可得到氧化镍空穴传输层。The specific process is: use absolute ethanol as a solvent to prepare a nickel acetylacetonate solution with a concentration of 0.5 mol/L, and add diethanolamine equal to the molar number of nickel ions, and stir at 70°C for 12 hours; after the reaction is completed, the solution is Evaporate at 150°C for 30 minutes to form a nickel oxide precursor; place the cleaned FTO conductive glass on a spin coater, drop in the nickel oxide precursor, and spin coat at 3000 rpm for 30 seconds; The FTO is placed in a drying oven and dried at 60° C. for 1 hour to obtain a nickel oxide hole transport layer.
S2:配制二氧化硅前驱体溶液和二氧化钛前驱体溶液;S2: preparing a silicon dioxide precursor solution and a titanium dioxide precursor solution;
配制二氧化硅前驱体溶液具体过程为:首先,在室温下,将1mL正硅酸四乙酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.25mL盐酸和0.2mL去离子水,得二氧化硅前驱体溶液;最后,将配制的二氧化硅前驱体溶液在4℃下保存,备用。The specific process of preparing the silica precursor solution is as follows: firstly, at room temperature, mix and stir 1mL tetraethyl orthosilicate and 1mL absolute ethanol; secondly, slowly add 0.25mL hydrochloric acid and 0.2 mL of deionized water to obtain a silica precursor solution; finally, store the prepared silica precursor solution at 4°C for future use.
配置二氧化钛前驱体溶液具体过程为:首先,在室温下,将1mL钛酸四正丁酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.2mL盐酸和0.4mL去离子水,得二氧化钛前驱体溶液;最后,将配制的二氧化钛前驱体溶液在4℃下保存,备用。The specific process of configuring the titanium dioxide precursor solution is as follows: firstly, at room temperature, mix 1mL tetra-n-butyl titanate and 1mL absolute ethanol and stir evenly; secondly, under stirring conditions, slowly add 0.2mL hydrochloric acid and 0.4mL to ionized water to obtain a titanium dioxide precursor solution; finally, store the prepared titanium dioxide precursor solution at 4°C for future use.
S3:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化硅前驱体溶液配置成组装溶液甲,以S1中制备的旋涂有氧化镍空穴传输层的FTO为基片,采用恒温垂直沉积法在氧化镍上沉积聚苯乙烯-二氧化硅胶体晶体;S3: Polystyrene pellets were used as building blocks, and the silicon dioxide precursor solution prepared in S2 was configured to form assembly solution A. The FTO prepared in S1 and spin-coated with a nickel oxide hole transport layer was used as the substrate. Deposit polystyrene-silica colloidal crystals on nickel oxide by constant temperature vertical deposition method;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化硅前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液甲,并置于温度为25℃的真空干燥箱中;将旋涂有氧化镍的FTO基片插入组装溶液甲中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅胶体晶体;制备流程图如图3。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as the building block, dispersing 0.1 mL of the silica precursor solution in 50 mL of polystyrene beads with a mass fraction of 0.05% in ethanol solution , configured as assembly solution A, and placed in a vacuum drying oven at a temperature of 25°C; insert the FTO substrate spin-coated with nickel oxide into assembly solution A, and after the solvent evaporates, polystyrene- Silica colloidal crystals; the preparation flow chart is shown in Figure 3.
S4:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化钛前驱体溶液配置成组装溶液乙,以在氧化镍上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO为基片,采用恒温垂直沉积法在聚苯乙烯-二氧化硅胶体晶体上引入二氧化钛,得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结;S4: Polystyrene pellets are used as the building block, and the titanium dioxide precursor solution prepared in S2 is configured to form assembly solution B, and FTO with polystyrene-silica colloidal crystals deposited on nickel oxide is used as the substrate. Introduce titanium dioxide on polystyrene-silica colloidal crystals by constant temperature vertical deposition method to obtain polystyrene-silica-titania colloidal crystal heterojunction;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化钛前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液乙,并置于温度为25℃的真空干燥箱中;将在氧化镍上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO基片插入组装溶液乙中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as building blocks, dispersing 0.1 mL of titanium dioxide precursor solution in 50 mL of polystyrene beads ethanol solution with a mass fraction of 0.05%, and configuring Assemble solution B, and place it in a vacuum oven at a temperature of 25°C; insert the FTO substrate with polystyrene-silica colloidal crystals deposited on nickel oxide into assembly solution B, and after the solvent evaporates, The polystyrene-silicon dioxide-titanium dioxide colloidal crystal heterojunction can be prepared.
S5:去除S4中聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结中的聚苯乙烯小球,得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S5: removing the polystyrene balls in the polystyrene-silica-titania colloidal crystal heterojunction in S4 to obtain a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction;
具体过程为:将聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结置于烧结炉中进行热处理,升温速率为每分钟2℃,在500℃下保持1小时,即可获得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S4和S5两步的制备流程图如图4。The specific process is as follows: the polystyrene-silica-titanium dioxide colloidal crystal heterojunction is placed in a sintering furnace for heat treatment, the heating rate is 2°C per minute, and it is kept at 500°C for 1 hour to obtain a three-dimensional ordered large Porous silica-titania photonic crystal heterojunction; the two-step preparation flow chart of S4 and S5 is shown in Figure 4.
S6:以具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO为基片,采用一步法在三维有序大孔二氧化硅-二氧化钛光子晶体异质结内填充(PEA)2(FA)8Sn9I28,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层;S6: Using FTO with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction as a substrate, the three-dimensional ordered macroporous silica-titania photonic crystal heterojunction is filled with (PEA) 2 in one step (FA) 8 Sn 9 I 28 , to obtain a low-dimensional perovskite light-absorbing layer based on silica-titania photonic crystal heterojunction;
首先,配制前驱体溶液。具体过程为:称取0.13mmol的苯乙基碘化胺(PEAI)、0.60mmol的碘化锡(SnI2)、0.53mmol的甲脒碘化胺(FAI)、0.06mmol的氟化锡(SnF2)分散于1mL溶剂中(0.67mL的N,N-二甲基甲酰胺和0.33mL的二甲基亚砜),在70℃条件下搅拌3小时配置成前驱体溶液;First, prepare the precursor solution. The specific process is: weigh 0.13mmol of phenethylammonium iodide (PEAI), 0.60mmol of tin iodide (SnI 2 ), 0.53mmol of formamidine ammonium iodide (FAI), 0.06mmol of tin fluoride (SnF 2 ) Disperse in 1 mL of solvent (0.67 mL of N,N-dimethylformamide and 0.33 mL of dimethyl sulfoxide), stir at 70°C for 3 hours to form a precursor solution;
其次,在空气环境下,依次在所述二氧化硅-二氧化钛光子晶体异质结上旋涂所述前驱体溶液。具体过程为:在空气环境下,将具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO基片置于旋涂仪中并在75℃下进行热处理15分钟,然后在三维有序大孔二氧化硅-二氧化钛光子晶体异质结的表面上旋涂温度为70℃的前驱体溶液,旋涂条件为在5000转/秒条件下旋涂30秒;Secondly, in an air environment, the precursor solution is sequentially spin-coated on the silicon dioxide-titania photonic crystal heterojunction. The specific process is as follows: in the air environment, the FTO substrate with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction is placed in a spin coater and heat-treated at 75 ° C for 15 minutes, and then the three-dimensional organic Spin-coating a precursor solution at a temperature of 70°C on the surface of the sequenced macroporous silica-titania photonic crystal heterojunction, and the spin-coating condition is to spin-coat for 30 seconds under the condition of 5000 revolutions/second;
最后,经热处理得所述低维钙钛矿吸光层。具体过程为:将附着有DMF的结晶皿盖住基片,在80℃温度下持续处理30分钟,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层。制备流程如图5。Finally, the low-dimensional perovskite light-absorbing layer is obtained through heat treatment. The specific process is: cover the substrate with a DMF-attached crystallization dish, and continue the treatment at 80°C for 30 minutes to obtain a low-dimensional perovskite light-absorbing layer based on the heterojunction of silicon dioxide-titanium dioxide photonic crystals. The preparation process is shown in Figure 5.
S7:在低维钙钛矿吸光层上依次真空蒸镀空穴阻挡层和金属电极,得基于光子晶体异质结的反式低维钙钛矿太阳能电池。S7: On the low-dimensional perovskite light-absorbing layer, a hole-blocking layer and a metal electrode were sequentially vacuum-evaporated to obtain a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction.
具体过程为:将上述具有低维钙钛矿吸光层的FTO基片放置于高真空镀膜仪中,依次蒸镀BCP和银电极,从而构建出基于光子晶体异质结的反式低维钙钛矿太阳能电池,并通过掩膜板控制器件的面积为0.1cm2。The specific process is as follows: the above-mentioned FTO substrate with a low-dimensional perovskite light-absorbing layer is placed in a high-vacuum coating device, and BCP and silver electrodes are evaporated in sequence to construct a trans low-dimensional perovskite based on a photonic crystal heterojunction. mine solar cell, and control the area of the device to 0.1cm 2 through the mask plate.
实施方式2:Implementation mode 2:
本实施方式提供了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池,结构如图1所示,由FTO以及依次层叠于FTO之上的氧化铜空穴传输层、基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层、BCP空穴阻挡层和金电极组成。其中低维钙钛矿吸光层为填充有(BA)2(MA)3Pb4I13的三维有序大孔二氧化硅-二氧化钛光子晶体异质结,This embodiment provides a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction. The structure is shown in FIG. Silicon oxide-titania photonic crystal heterojunction low-dimensional perovskite light absorbing layer, BCP hole blocking layer and gold electrode composition. The low-dimensional perovskite light-absorbing layer is a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction filled with (BA) 2 (MA) 3 Pb 4 I 13 ,
上述基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备方法如下,制备流程图如图2:The preparation method of the above-mentioned trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction is as follows, and the preparation flow chart is shown in Figure 2:
S1:在FTO上通过旋涂法制备氧化铜空穴传输层;S1: Preparation of copper oxide hole transport layer on FTO by spin coating method;
具体过程为:以乙二醇为溶剂配置浓度为0.5 mol/L的五水合硫酸铜溶液,且加入一定量1,2-乙二胺二盐酸盐(浓度为1.0mol/L);待反应结束即可形成氧化铜前驱体;将清洗干净的FTO导电玻璃置于旋涂仪上,滴入氧化铜前驱体,且在6000 转/秒条件下旋涂50秒;将FTO置于管式炉中,在氩气氛围下300℃下热处理2小时,即可得到氧化铜空穴传输层。The specific process is: use ethylene glycol as a solvent to configure a copper sulfate pentahydrate solution with a concentration of 0.5 mol/L, and add a certain amount of 1,2-ethylenediamine dihydrochloride (with a concentration of 1.0 mol/L); to be reacted After the end, the copper oxide precursor can be formed; put the cleaned FTO conductive glass on the spin coater, drop the copper oxide precursor, and spin coat at 6000 rpm for 50 seconds; put the FTO in the tube furnace In the process, heat treatment at 300° C. for 2 hours under an argon atmosphere can obtain a copper oxide hole transport layer.
S2:配制二氧化硅前驱体溶液和二氧化钛前驱体溶液;S2: preparing a silicon dioxide precursor solution and a titanium dioxide precursor solution;
配制二氧化硅前驱体溶液具体过程为:首先,在室温下,将1mL正硅酸四乙酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.25mL盐酸和0.2mL去离子水,得二氧化硅前驱体溶液;最后,将配制的二氧化硅前驱体溶液在4℃下保存,备用。The specific process of preparing the silica precursor solution is as follows: firstly, at room temperature, mix and stir 1mL tetraethyl orthosilicate and 1mL absolute ethanol; secondly, slowly add 0.25mL hydrochloric acid and 0.2 mL of deionized water to obtain a silica precursor solution; finally, store the prepared silica precursor solution at 4°C for future use.
配置二氧化钛前驱体溶液具体过程为:首先,在室温下,将1mL钛酸四正丁酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.2mL盐酸和0.4mL去离子水,得二氧化钛前驱体溶液;最后,将配制的二氧化钛前驱体溶液在4℃下保存,备用。The specific process of configuring the titanium dioxide precursor solution is as follows: firstly, at room temperature, mix 1mL tetra-n-butyl titanate and 1mL absolute ethanol and stir evenly; secondly, under stirring conditions, slowly add 0.2mL hydrochloric acid and 0.4mL to ionized water to obtain a titanium dioxide precursor solution; finally, store the prepared titanium dioxide precursor solution at 4°C for future use.
S3:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化硅前驱体溶液配置成组装溶液甲,以S1中制备的旋涂有氧化铜空穴传输层的FTO为基片,采用恒温垂直沉积法在氧化铜上沉积聚苯乙烯-二氧化硅胶体晶体;S3: Polystyrene pellets were used as the building block, and the silicon dioxide precursor solution prepared in S2 was configured to form assembly solution A, and the FTO prepared in S1 was spin-coated with a copper oxide hole transport layer as the substrate. Deposit polystyrene-silica colloidal crystals on copper oxide by constant temperature vertical deposition method;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化硅前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液甲,并置于温度为25℃的真空干燥箱中;将旋涂有氧化铜的FTO基片插入组装溶液甲中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅胶体晶体;制备流程图如图3。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as the building block, dispersing 0.1 mL of the silica precursor solution in 50 mL of polystyrene beads with a mass fraction of 0.05% in ethanol solution , configured as assembly solution A, and placed in a vacuum oven at a temperature of 25°C; insert the FTO substrate spin-coated with copper oxide into assembly solution A, and after the solvent evaporates, polystyrene- Silica colloidal crystals; the preparation flow chart is shown in Figure 3.
S4:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化钛前驱体溶液配置成组装溶液乙,以在氧化铜上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO为基片,采用恒温垂直沉积法在聚苯乙烯-二氧化硅胶体晶体上引入二氧化钛,得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结;S4: Polystyrene pellets are used as the building block, and the titanium dioxide precursor solution prepared in S2 is configured to form assembly solution B, and FTO with polystyrene-silica colloidal crystals deposited on copper oxide is used as the substrate. Introduce titanium dioxide on polystyrene-silica colloidal crystals by constant temperature vertical deposition method to obtain polystyrene-silica-titania colloidal crystal heterojunction;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化钛前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液乙,并置于温度为25℃的真空干燥箱中;将在氧化铜上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO基片插入组装溶液乙中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as building blocks, dispersing 0.1 mL of titanium dioxide precursor solution in 50 mL of polystyrene beads ethanol solution with a mass fraction of 0.05%, and configuring Assemble solution B, and place it in a vacuum drying oven at a temperature of 25°C; insert the FTO substrate with polystyrene-silica colloidal crystals deposited on copper oxide into assembly solution B, and after the solvent evaporates, The polystyrene-silicon dioxide-titanium dioxide colloidal crystal heterojunction can be prepared.
S5:去除S4中聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结中的聚苯乙烯小球,得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S5: removing the polystyrene balls in the polystyrene-silica-titania colloidal crystal heterojunction in S4 to obtain a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction;
具体过程为:将聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结置于烧结炉中进行热处理,升温速率为每分钟2℃,在450℃下保持1小时,即可获得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S4和S5两步的制备流程图如图4。The specific process is as follows: the polystyrene-silica-titania colloidal crystal heterojunction is placed in a sintering furnace for heat treatment, the heating rate is 2°C per minute, and it is kept at 450°C for 1 hour to obtain a three-dimensional ordered large Porous silica-titania photonic crystal heterojunction; the two-step preparation flow chart of S4 and S5 is shown in Figure 4.
S6:以具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO为基片,采用一步法在三维有序大孔二氧化硅-二氧化钛光子晶体异质结内填充(BA)2(MA)3Pb4I13,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层;S6: Using FTO with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction as a substrate, the three-dimensional ordered macroporous silica-titania photonic crystal heterojunction is filled with (BA) 2 in one step (MA) 3 Pb 4 I 13 , to obtain a low-dimensional perovskite light-absorbing layer based on silica-titania photonic crystal heterojunction;
首先,配制前驱体溶液。具体过程为:称取0.45mmol的丁基碘化胺(BAI)、0.675mmol的甲基碘化胺(MAI)、0.90mmol的碘化铅(PbI2)分散于1mL溶剂中(0.75mL的N,N-二甲基甲酰胺和0.25mL的二甲基亚砜),在70℃条件下搅拌3小时配置成前驱体溶液;First, prepare the precursor solution. The specific process is: weigh 0.45 mmol of butyl ammonium iodide (BAI), 0.675 mmol of methyl ammonium iodide (MAI), and 0.90 mmol of lead iodide (PbI 2 ) and disperse them in 1 mL of solvent (0.75 mL of N , N-dimethylformamide and 0.25mL of dimethyl sulfoxide), stirred at 70°C for 3 hours to form a precursor solution;
其次,在空气环境下,依次在上述二氧化硅-二氧化钛光子晶体异质结上旋涂前驱体溶液。具体过程为:在空气环境下,将具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO基片置于旋涂仪中并在85℃下进行热处理15分钟,然后在三维有序大孔二氧化硅-二氧化钛光子晶体异质结的表面上旋涂温度为75℃的前驱体溶液,旋涂条件为在5000 转/秒条件下旋涂20秒;Secondly, in an air environment, the precursor solution is sequentially spin-coated on the above-mentioned silica-titania photonic crystal heterojunction. The specific process is as follows: in the air environment, the FTO substrate with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction is placed in a spin coater and heat-treated at 85°C for 15 minutes, and then the three-dimensional organic Spin-coating a precursor solution at a temperature of 75° C. on the surface of a sequenced macroporous silica-titania photonic crystal heterojunction, and the spin-coating condition is to spin-coat at 5000 rpm for 20 seconds;
最后,经热处理得所述低维钙钛矿吸光层。具体过程为:将附着有DMF的结晶皿盖住基片,在95℃温度下持续处理20分钟,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层。制备流程如图5。Finally, the low-dimensional perovskite light-absorbing layer is obtained through heat treatment. The specific process is as follows: cover the substrate with a DMF-attached crystal dish, and continue the treatment at 95°C for 20 minutes to obtain a low-dimensional perovskite light-absorbing layer based on the heterojunction of silicon dioxide-titanium dioxide photonic crystals. The preparation process is shown in Figure 5.
S7:在低维钙钛矿吸光层上依次真空蒸镀空穴阻挡层和金属电极,得基于光子晶体异质结的反式低维钙钛矿太阳能电池。S7: On the low-dimensional perovskite light-absorbing layer, a hole-blocking layer and a metal electrode were sequentially vacuum-evaporated to obtain a trans-type low-dimensional perovskite solar cell based on a photonic crystal heterojunction.
具体过程为:将上述具有低维钙钛矿吸光层的FTO基片放置于高真空镀膜仪中,依次蒸镀BCP和金电极,从而构建出基于光子晶体异质结的反式低维钙钛矿太阳能电池,并通过掩膜板控制器件的面积为0.1cm2。The specific process is as follows: the above-mentioned FTO substrate with a low-dimensional perovskite light-absorbing layer is placed in a high-vacuum coating device, and BCP and gold electrodes are sequentially evaporated to construct a trans low-dimensional perovskite based on a photonic crystal heterojunction. mine solar cell, and control the area of the device to 0.1cm 2 through the mask plate.
实施方式3:Implementation mode 3:
本实施方式提供了一种基于光子晶体异质结的反式低维钙钛矿太阳能电池,结构如图1所示,由FTO以及依次层叠于FTO之上的氧化钴空穴传输层、基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层、BCP空穴阻挡层和金电极组成。其中低维钙钛矿吸光层为填充有(PEI)2(MA)2Sn3I10的三维有序大孔二氧化硅-二氧化钛光子晶体异质结,This embodiment provides a trans low-dimensional perovskite solar cell based on a photonic crystal heterojunction. The structure is shown in FIG. Silicon oxide-titania photonic crystal heterojunction low-dimensional perovskite light absorbing layer, BCP hole blocking layer and gold electrode composition. The low-dimensional perovskite light-absorbing layer is a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction filled with (PEI) 2 (MA) 2 Sn 3 I 10 ,
上述基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备方法如下,制备流程图如图2:The preparation method of the above-mentioned trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction is as follows, and the preparation flow chart is shown in Figure 2:
S1:在FTO上通过旋涂法制备氧化钴空穴传输层;S1: Preparation of cobalt oxide hole transport layer on FTO by spin coating method;
具体过程为:以乙二醇为溶剂配置浓度为0.5 mol/L的四水合乙酸钴溶液,且加入一定量1,2-乙二胺二盐酸盐(浓度为1.0mol/L);待反应结束即可形成氧化钴前驱体;将清洗干净的FTO导电玻璃置于旋涂仪上,滴入氧化钴前驱体,且在6000 转/秒条件下旋涂50秒;将FTO置于管式炉中,在氩气氛围下300℃下热处理2小时,即可得到氧化钴空穴传输层。The specific process is: use ethylene glycol as a solvent to prepare a cobalt acetate tetrahydrate solution with a concentration of 0.5 mol/L, and add a certain amount of 1,2-ethylenediamine dihydrochloride (with a concentration of 1.0 mol/L); After the end, the cobalt oxide precursor can be formed; put the cleaned FTO conductive glass on the spin coater, drop the cobalt oxide precursor, and spin coat at 6000 rpm for 50 seconds; put the FTO in the tube furnace , heat treatment at 300° C. for 2 hours under an argon atmosphere to obtain a cobalt oxide hole transport layer.
S2:配制二氧化硅前驱体溶液和二氧化钛前驱体溶液;S2: preparing a silicon dioxide precursor solution and a titanium dioxide precursor solution;
配制二氧化硅前驱体溶液具体过程为:首先,在室温下,将1mL正硅酸四乙酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.25mL盐酸和0.2mL去离子水,得二氧化硅前驱体溶液;最后,将配制的二氧化硅前驱体溶液在4℃下保存,备用。The specific process of preparing the silica precursor solution is as follows: firstly, at room temperature, mix and stir 1mL tetraethyl orthosilicate and 1mL absolute ethanol; secondly, slowly add 0.25mL hydrochloric acid and 0.2 mL of deionized water to obtain a silica precursor solution; finally, store the prepared silica precursor solution at 4°C for future use.
配置二氧化钛前驱体溶液具体过程为:首先,在室温下,将1mL钛酸四正丁酯与1mL无水乙醇混合搅拌均匀;其次,在搅拌条件下,依次缓慢滴加0.2mL盐酸和0.4mL去离子水,得二氧化钛前驱体溶液;最后,将配制的二氧化钛前驱体溶液在4℃下保存,备用。The specific process of configuring the titanium dioxide precursor solution is as follows: firstly, at room temperature, mix 1mL tetra-n-butyl titanate and 1mL absolute ethanol and stir evenly; secondly, under stirring conditions, slowly add 0.2mL hydrochloric acid and 0.4mL to ionized water to obtain a titanium dioxide precursor solution; finally, store the prepared titanium dioxide precursor solution at 4°C for future use.
S3:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化硅前驱体溶液配置成组装溶液甲,以S1中制备的旋涂有氧化钴空穴传输层的FTO为基片,采用恒温垂直沉积法在氧化钴上沉积聚苯乙烯-二氧化硅胶体晶体;S3: Polystyrene pellets were used as building blocks, and the silicon dioxide precursor solution prepared in S2 was configured to form assembly solution A, and the FTO prepared in S1 with a spin-coated cobalt oxide hole transport layer was used as a substrate. Deposit polystyrene-silica colloidal crystals on cobalt oxide by constant temperature vertical deposition method;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化硅前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液甲,并置于温度为25℃的真空干燥箱中;将旋涂有氧化钴的FTO基片插入组装溶液甲中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅胶体晶体;制备流程图如图3。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as the building block, dispersing 0.1 mL of the silica precursor solution in 50 mL of polystyrene beads with a mass fraction of 0.05% in ethanol solution , configured as assembly solution A, and placed in a vacuum oven at a temperature of 25°C; insert the FTO substrate spin-coated with cobalt oxide into assembly solution A, and after the solvent evaporates, polystyrene- Silica colloidal crystals; the preparation flow chart is shown in Figure 3.
S4:以聚苯乙烯小球为构筑基元,与S2中制备的二氧化钛前驱体溶液配置成组装溶液乙,以在氧化钴上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO为基片,采用恒温垂直沉积法在聚苯乙烯-二氧化硅胶体晶体上引入二氧化钛,得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结;S4: Polystyrene pellets are used as the building block, and the titanium dioxide precursor solution prepared in S2 is configured to form assembly solution B, and FTO with polystyrene-silica colloidal crystals deposited on cobalt oxide is used as the substrate. Introduce titanium dioxide on polystyrene-silica colloidal crystals by constant temperature vertical deposition method to obtain polystyrene-silica-titania colloidal crystal heterojunction;
具体过程为:采用无皂乳液聚合法制备的单分散聚苯乙烯小球作为构筑基元,将0.1mL二氧化钛前驱体溶液分散于50mL质量分数为0.05%的聚苯乙烯小球乙醇溶液中,配置成组装溶液乙,并置于温度为25℃的真空干燥箱中;将在氧化钴上沉积有聚苯乙烯-二氧化硅胶体晶体的FTO基片插入组装溶液乙中,待溶剂挥发完以后,即可制得聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结。The specific process is: using monodisperse polystyrene beads prepared by soap-free emulsion polymerization as building blocks, dispersing 0.1 mL of titanium dioxide precursor solution in 50 mL of polystyrene beads ethanol solution with a mass fraction of 0.05%, and configuring Assemble solution B, and place it in a vacuum drying oven at a temperature of 25°C; insert the FTO substrate with polystyrene-silica colloidal crystals deposited on cobalt oxide into assembly solution B, and after the solvent evaporates, The polystyrene-silicon dioxide-titanium dioxide colloidal crystal heterojunction can be prepared.
S5:去除S4中聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结中的聚苯乙烯小球,得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S5: removing the polystyrene balls in the polystyrene-silica-titania colloidal crystal heterojunction in S4 to obtain a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction;
具体过程为:将聚苯乙烯-二氧化硅-二氧化钛胶体晶体异质结置于烧结炉中进行热处理,升温速率为每分钟2℃,在450℃下保持1小时,即可获得三维有序大孔二氧化硅-二氧化钛光子晶体异质结;S4和S5两步的制备流程图如图4。The specific process is as follows: the polystyrene-silica-titania colloidal crystal heterojunction is placed in a sintering furnace for heat treatment, the heating rate is 2°C per minute, and it is kept at 450°C for 1 hour to obtain a three-dimensional ordered large Porous silica-titania photonic crystal heterojunction; the two-step preparation flow chart of S4 and S5 is shown in Figure 4.
S6:以具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO为基片,采用两步法在三维有序大孔二氧化硅-二氧化钛光子晶体异质结内填充(PEI)2(MA)2Pb3I10,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层;S6: Using FTO with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction as a substrate, a two-step method is used to fill (PEI) the three-dimensional ordered macroporous silica-titania photonic crystal heterojunction 2 (MA) 2 Pb 3 I 10 , to obtain a low-dimensional perovskite light-absorbing layer based on silica-titania photonic crystal heterojunction;
首先,配制前驱体溶液。具体过程为:称取0.80mmol的聚乙烯亚胺氢碘酸盐(PEI·HI)、0.80mmol的甲基碘化胺(MAI)、1.20mmol的碘化铅(PbI2)分散于1mL溶剂中(0.8mL的N,N-二甲基甲酰胺和0.2mL的二甲基亚砜),在70℃条件下搅拌3小时配置成前驱体溶液;First, prepare the precursor solution. The specific process is: weigh 0.80 mmol of polyethyleneimine hydroiodide (PEI HI), 0.80 mmol of methylamine iodide (MAI), and 1.20 mmol of lead iodide (PbI 2 ) and disperse them in 1 mL of solvent (0.8mL of N,N-dimethylformamide and 0.2mL of dimethyl sulfoxide), stirred at 70°C for 3 hours to form a precursor solution;
其次,在空气环境下,依次在上述二氧化硅-二氧化钛光子晶体异质结上旋涂前驱体溶液。具体过程为:在空气环境下,将具有三维有序大孔二氧化硅-二氧化钛光子晶体异质结的FTO基片置于旋涂仪中并在95℃下进行热处理15分钟,然后在三维有序大孔二氧化硅-二氧化钛光子晶体异质结的表面上旋涂温度为80℃的前驱体溶液,旋涂条件为在3000 转/秒条件下旋涂30秒;Secondly, in an air environment, the precursor solution is sequentially spin-coated on the above-mentioned silica-titania photonic crystal heterojunction. The specific process is as follows: in the air environment, the FTO substrate with a three-dimensional ordered macroporous silica-titania photonic crystal heterojunction is placed in a spin coater and heat-treated at 95 ° C for 15 minutes, and then the three-dimensional organic Spin-coating a precursor solution at a temperature of 80° C. on the surface of a sequenced macroporous silica-titania photonic crystal heterojunction, and the spin-coating condition is 30 seconds at 3000 rpm;
最后,经热处理得所述低维钙钛矿吸光层。具体过程为:将附着有DMF的结晶皿盖住基片,在110℃温度下持续处理10分钟,得基于二氧化硅-二氧化钛光子晶体异质结的低维钙钛矿吸光层。制备流程如图5。Finally, the low-dimensional perovskite light-absorbing layer is obtained through heat treatment. The specific process is: cover the substrate with a DMF-attached crystal dish, and continue the treatment at 110°C for 10 minutes to obtain a low-dimensional perovskite light-absorbing layer based on the heterojunction of silicon dioxide-titanium dioxide photonic crystals. The preparation process is shown in Figure 5.
S7:在三维钙钛矿吸光层上依次真空蒸镀空穴阻挡层和金属电极,得基于光子晶体异质结的反式三维钙钛矿太阳能电池。S7: On the three-dimensional perovskite light-absorbing layer, a hole-blocking layer and a metal electrode were sequentially vacuum-evaporated to obtain a reverse three-dimensional perovskite solar cell based on a photonic crystal heterojunction.
具体过程为:将上述具有三维钙钛矿吸光层的FTO基片放置于高真空镀膜仪中,依次蒸镀BCP和金电极,从而构建出基于光子晶体异质结的反式三维钙钛矿太阳能电池,并通过掩膜板控制器件的面积为0.1cm2。The specific process is as follows: the above-mentioned FTO substrate with a three-dimensional perovskite light-absorbing layer is placed in a high-vacuum coating device, and BCP and gold electrodes are evaporated in sequence to construct a trans-three-dimensional perovskite solar energy based on a photonic crystal heterojunction. battery, and control the area of the device to 0.1cm 2 through the mask plate.
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only for illustrating the technical concept and characteristics of the present invention, and its purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the scope of protection of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810097797.XA CN108321296B (en) | 2018-01-31 | 2018-01-31 | Preparation method of trans-form low-dimensional perovskite solar cell based on photonic crystal heterojunction |
CN202110056708.9A CN112670415B (en) | 2018-01-31 | 2018-01-31 | Trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810097797.XA CN108321296B (en) | 2018-01-31 | 2018-01-31 | Preparation method of trans-form low-dimensional perovskite solar cell based on photonic crystal heterojunction |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110056708.9A Division CN112670415B (en) | 2018-01-31 | 2018-01-31 | Trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108321296A true CN108321296A (en) | 2018-07-24 |
CN108321296B CN108321296B (en) | 2021-05-25 |
Family
ID=62890382
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810097797.XA Active CN108321296B (en) | 2018-01-31 | 2018-01-31 | Preparation method of trans-form low-dimensional perovskite solar cell based on photonic crystal heterojunction |
CN202110056708.9A Active CN112670415B (en) | 2018-01-31 | 2018-01-31 | Trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110056708.9A Active CN112670415B (en) | 2018-01-31 | 2018-01-31 | Trans-type low-dimensional perovskite solar cell based on photonic crystal heterojunction |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108321296B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109860428A (en) * | 2018-12-17 | 2019-06-07 | 西安交通大学 | A kind of preparation method of high stability red light two-dimensional perovskite thin film |
CN109920917A (en) * | 2019-03-20 | 2019-06-21 | 陕西师范大学 | A perovskite solar cell incorporating organic ligands and preparation method thereof |
CN110335949A (en) * | 2019-07-11 | 2019-10-15 | 南京邮电大学 | A kind of preparation method of lead-free perovskite solar cell by adding organic amine to induce crystal orientation of perovskite light absorbing layer |
CN113285048A (en) * | 2021-04-12 | 2021-08-20 | 东南大学 | Quasi-two-dimensional perovskite integrated photoelectric transmission device and preparation method thereof |
WO2022183784A1 (en) * | 2021-03-03 | 2022-09-09 | 隆基绿能科技股份有限公司 | Solar cell and photovoltaic module |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105118919A (en) * | 2015-07-23 | 2015-12-02 | 苏州大学 | Perovskite solar cell composed of orderly-arranged small titanium dioxide balls and preparation method thereof |
EP3051600A1 (en) * | 2015-01-30 | 2016-08-03 | Consejo Superior De Investigaciones Científicas | Heterojunction device |
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
-
2018
- 2018-01-31 CN CN201810097797.XA patent/CN108321296B/en active Active
- 2018-01-31 CN CN202110056708.9A patent/CN112670415B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3051600A1 (en) * | 2015-01-30 | 2016-08-03 | Consejo Superior De Investigaciones Científicas | Heterojunction device |
CN105118919A (en) * | 2015-07-23 | 2015-12-02 | 苏州大学 | Perovskite solar cell composed of orderly-arranged small titanium dioxide balls and preparation method thereof |
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109860428A (en) * | 2018-12-17 | 2019-06-07 | 西安交通大学 | A kind of preparation method of high stability red light two-dimensional perovskite thin film |
CN109860428B (en) * | 2018-12-17 | 2021-05-28 | 西安交通大学 | A kind of preparation method of high stability red light two-dimensional perovskite thin film |
CN109920917A (en) * | 2019-03-20 | 2019-06-21 | 陕西师范大学 | A perovskite solar cell incorporating organic ligands and preparation method thereof |
CN110335949A (en) * | 2019-07-11 | 2019-10-15 | 南京邮电大学 | A kind of preparation method of lead-free perovskite solar cell by adding organic amine to induce crystal orientation of perovskite light absorbing layer |
WO2022183784A1 (en) * | 2021-03-03 | 2022-09-09 | 隆基绿能科技股份有限公司 | Solar cell and photovoltaic module |
CN115101602A (en) * | 2021-03-03 | 2022-09-23 | 隆基绿能科技股份有限公司 | A solar cell and photovoltaic module |
CN115101602B (en) * | 2021-03-03 | 2023-09-01 | 隆基绿能科技股份有限公司 | A kind of solar cell and photovoltaic assembly |
US12185556B2 (en) | 2021-03-03 | 2024-12-31 | Longi Green Energy Technology Co., Ltd. | Solar cell and photovoltaic module |
CN113285048A (en) * | 2021-04-12 | 2021-08-20 | 东南大学 | Quasi-two-dimensional perovskite integrated photoelectric transmission device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112670415B (en) | 2024-03-29 |
CN112670415A (en) | 2021-04-16 |
CN108321296B (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103346018B (en) | Be there is the iodide solaode of perovskite structure by solid-liquid reaction preparation | |
CN108321296A (en) | Trans- low-dimensional perovskite solar cell based on photon crystal heterojunction and preparation method thereof | |
CN106910798B (en) | A kind of inorganic perovskite solar cell and preparation method thereof | |
CN107482122B (en) | perovskite solar cell and preparation method | |
CN110867516A (en) | Novel tandem solar cells based on perovskite and crystalline silicon back passivation and their fabrication methods | |
CN109728169B (en) | Perovskite solar cell doped with functional additive and preparation method thereof | |
CN106299136B (en) | A kind of method that room-temperature dissolution lead iodide prepares adulterated with Ca and Ti ore hull cell | |
CN104183704B (en) | A kind of preparation method of quantum dot sensitization type perovskite solaode altogether | |
CN111987222A (en) | Solar cells based on double perovskite materials and preparation methods | |
CN108922971B (en) | Process for rapidly improving performance of perovskite solar cell based on organic hole transport layer | |
CN111261745B (en) | Perovskite battery and preparation method thereof | |
CN114678472B (en) | A FAPbI3 perovskite film and a method for preparing an efficient perovskite solar cell | |
CN103943368A (en) | Novel germanium-containing perovskite material and solar cell comprising same | |
CN113540361A (en) | Preparation method of doped material modified perovskite solar cell and product | |
CN110844936A (en) | Preparation method of antimony trisulfide nanorod array and solar cell based on antimony trisulfide nanorod array | |
CN117119860A (en) | Method for preparing perovskite film by ternary co-evaporation and laminated solar cell | |
CN204905304U (en) | A novel lead-free organometal halide perovskite battery | |
CN113421969B (en) | Perovskite solar cell with HF modified tin dioxide as electron transport layer and preparation method thereof | |
CN113394343B (en) | Back-incident p-i-n structure perovskite solar cell and preparation method thereof | |
CN108281551B (en) | Preparation method of trans-form three-dimensional perovskite solar cell based on photonic crystal heterojunction | |
CN114824103A (en) | A kind of perovskite solar cell and its production method | |
CN106057973A (en) | Method for preparing solar cell absorbing layer CTS film through oxide nanometer particles | |
CN116761483A (en) | A method for preparing perovskite film and stacked solar cell | |
CN113192843B (en) | Preparation method and application of novel non-lead-based perovskite film | |
Zhang et al. | Hole transport free carbon-based high thermal stability CsPbI 1.2 Br 1.8 solar cells with an amorphous InGaZnO 4 electron transport layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180724 Assignee: Shanghai Houfei Energy Technology Co.,Ltd. Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY Contract record no.: X2021980014318 Denomination of invention: Preparation method of trans low dimensional perovskite solar cell based on photonic crystal heterojunction Granted publication date: 20210525 License type: Common License Record date: 20211213 |
|
EE01 | Entry into force of recordation of patent licensing contract |