CN108321213A - The preparation method and its structure of SiC power diode devices - Google Patents
The preparation method and its structure of SiC power diode devices Download PDFInfo
- Publication number
- CN108321213A CN108321213A CN201711397850.XA CN201711397850A CN108321213A CN 108321213 A CN108321213 A CN 108321213A CN 201711397850 A CN201711397850 A CN 201711397850A CN 108321213 A CN108321213 A CN 108321213A
- Authority
- CN
- China
- Prior art keywords
- layer
- sic
- sic epitaxial
- epitaxial layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 65
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000000956 alloy Substances 0.000 claims abstract description 49
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000010949 copper Substances 0.000 claims abstract description 44
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 30
- 230000004888 barrier function Effects 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims description 88
- 229910052751 metal Inorganic materials 0.000 claims description 88
- 238000002955 isolation Methods 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 42
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 35
- 238000000137 annealing Methods 0.000 claims description 25
- 238000005229 chemical vapour deposition Methods 0.000 claims description 21
- 229910052681 coesite Inorganic materials 0.000 claims description 21
- 229910052906 cristobalite Inorganic materials 0.000 claims description 21
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 235000012239 silicon dioxide Nutrition 0.000 claims description 21
- 229910052682 stishovite Inorganic materials 0.000 claims description 21
- 229910052905 tridymite Inorganic materials 0.000 claims description 21
- 238000005468 ion implantation Methods 0.000 claims description 20
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 20
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 14
- 238000000206 photolithography Methods 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 6
- 239000012300 argon atmosphere Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000005036 potential barrier Methods 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 183
- 229910010271 silicon carbide Inorganic materials 0.000 description 183
- 238000002513 implantation Methods 0.000 description 21
- 238000004140 cleaning Methods 0.000 description 15
- 239000007943 implant Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- -1 nitrogen ion Chemical class 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明涉及一种SiC功率二极管器件的制备方法及其结构,该制备方法包括:在SiC衬底层上生长SiC外延层,在所述SiC外延层内形成P+区域,在形成所述P+区域的所述SiC外延层表面生长TiC合金层形成肖特基接触,在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极,在所述SiC衬底层背面形成器件阴极电极,以完成所述SiC功率二极管器件的制备。本发明的利用TiC材料与SiC之间接触调整势垒高度变化,进而减小肖特基势垒的高度,降低了SiC功率二极管器件的开启电压,达到减小漏电流和能耗、增大反向电压的效果。
The invention relates to a method for preparing a SiC power diode device and its structure. The preparation method comprises: growing a SiC epitaxial layer on a SiC substrate layer, forming a P + region in the SiC epitaxial layer, and forming the P + region A TiC alloy layer is grown on the surface of the SiC epitaxial layer to form a Schottky contact, a first copper graphene layer is grown on the TiC alloy layer to form the anode electrode of the device, and a device cathode electrode is formed on the back side of the SiC substrate layer, so as to The preparation of the SiC power diode device is completed. The invention utilizes the contact between the TiC material and SiC to adjust the height of the potential barrier, thereby reducing the height of the Schottky barrier, reducing the turn-on voltage of the SiC power diode device, reducing the leakage current and energy consumption, and increasing the reaction rate. effect on the voltage.
Description
技术领域technical field
本发明涉及微电子技术领域,特别是涉及一种SiC功率二极管器件的制备方法及其结构。The invention relates to the technical field of microelectronics, in particular to a preparation method and structure of a SiC power diode device.
背景技术Background technique
第三代半导体材料SiC(碳化硅)材料由于具有宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等特点,在高温、高频、大功率、光电子及抗辐射等方面具有巨大的潜力,许多国家相继投入了大量的资金对SiC进行了广泛的研究,并已在SiC晶体生长技术、关键器件工艺、光电器件开发、SiC集成电路制造等方面取得了突破,为军用电子系统和武器装备性能的提高,以及抗恶劣环境的电子设备提供了新型器件。The third-generation semiconductor material SiC (silicon carbide) has the characteristics of wide band gap, high critical breakdown electric field, high thermal conductivity, high carrier saturation drift velocity, etc. Many countries have invested a lot of money to conduct extensive research on SiC, and have made breakthroughs in SiC crystal growth technology, key device technology, optoelectronic device development, and SiC integrated circuit manufacturing. Improvements in the performance of electronic systems and weaponry, as well as electronic equipment resistant to harsh environments provide new devices.
肖特基(Schottky)势垒二极管是利用金属与半导体之间接触势垒进行工作的一种多数载流子器件。肖特基二极管相比PN二极管具有更加简单的结构,在制造工艺上也较为简单,因此成本也较低,肖特基二极管选通的电阻转换存储器相比于PN二极管具有一定的优势,并且肖特基二极管在电流和相应时间上也有不错的表现。A Schottky barrier diode is a majority carrier device that utilizes the contact barrier between a metal and a semiconductor. Compared with PN diodes, Schottky diodes have a simpler structure, and the manufacturing process is simpler, so the cost is also lower. Compared with PN diodes, Schottky diode-gated resistance switching memories have certain advantages, and Xiao Teky diodes also perform well in terms of current and response time.
但是由于SiC的禁带宽度较宽,很难获得低的肖特基势垒高度值,导致SiC与金属接触时,肖特基势垒高度过高,影响半导体功率器件的开启电压,造成能耗过大。However, due to the wide band gap of SiC, it is difficult to obtain a low Schottky barrier height value, which leads to excessively high Schottky barrier height when SiC is in contact with metal, which affects the turn-on voltage of semiconductor power devices and causes energy consumption. is too big.
发明内容Contents of the invention
因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种SiC功率二极管器件的制备方法及其结构。Therefore, in order to solve the technical defects and deficiencies existing in the prior art, the present invention proposes a method for preparing a SiC power diode device and its structure.
具体地,本发明一个实施例提出的一种SiC功率二极管器件的制备方法,包括:Specifically, a method for preparing a SiC power diode device proposed by an embodiment of the present invention includes:
在SiC衬底层上生长SiC外延层;growing a SiC epitaxial layer on the SiC substrate layer;
在所述SiC外延层内形成P+区域;forming a P + region within the SiC epitaxial layer;
在形成所述P+区域的所述SiC外延层表面生长TiC合金层形成肖特基接触;growing a TiC alloy layer on the surface of the SiC epitaxial layer forming the P + region to form a Schottky contact;
在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极;growing a first copper graphene layer on the TiC alloy layer to form an anode electrode of the device;
在所述SiC衬底层背面形成器件阴极电极,以完成所述SiC功率二极管器件的制备。A device cathode electrode is formed on the back side of the SiC substrate layer to complete the preparation of the SiC power diode device.
在本发明的一个实施例中,在所述SiC外延层内形成P+区域之前,还包括:In one embodiment of the present invention, before forming the P + region in the SiC epitaxial layer, it further includes:
在所述SiC外延层上表面制作离子注入阻挡层。An ion implantation blocking layer is fabricated on the upper surface of the SiC epitaxial layer.
在本发明的一个实施例中,在所述SiC外延层上表面制作离子注入阻挡层,包括:In one embodiment of the present invention, an ion implantation barrier layer is formed on the upper surface of the SiC epitaxial layer, including:
在所述SiC外延层上表面进行光刻、显影后,利用光刻胶作阻挡层,并刻蚀形成对准标记;After performing photolithography and development on the upper surface of the SiC epitaxial layer, using photoresist as a barrier layer, and etching to form an alignment mark;
将所述对准标记进行套刻,形成图形区域;Overlaying the alignment mark to form a graphic area;
通过电子束蒸发在带有所述图形区域的所述SiC外延层的上制作Ni/Au层,剥离所述Ni/Au层形成所述离子注入阻挡层。Making a Ni/Au layer on the SiC epitaxial layer with the pattern area by electron beam evaporation, and peeling off the Ni/Au layer to form the ion implantation blocking layer.
在本发明的一个实施例中,在所述SiC外延层内形成P+区域,包括:In one embodiment of the present invention, forming a P + region in the SiC epitaxial layer includes:
对所述SiC外延层进行Al离子注入;performing Al ion implantation on the SiC epitaxial layer;
在所述SiC外延层上表面形成碳膜保护;forming a carbon film protection on the upper surface of the SiC epitaxial layer;
在1700℃~1750℃温度下,氩气氛围中进行离子激活退火,退火时间为20min,形成所述P+区域。Ion activation annealing is performed in an argon atmosphere at a temperature of 1700° C. to 1750° C., and the annealing time is 20 minutes to form the P + region.
在本发明的一个实施例中,在所述SiC外延层内形成P+区域之后,还包括:In one embodiment of the present invention, after forming the P + region in the SiC epitaxial layer, it further includes:
利用化学气相沉积工艺在所述SiC外延层104上表面沉积一层SiO2隔离介质;Depositing a layer of SiO2 isolation medium on the upper surface of the SiC epitaxial layer 104 by using a chemical vapor deposition process;
在800℃温度下,在氧气氛围中使所述SiO2隔离介质退火60分钟形成所述SiO2隔离介质层。At a temperature of 800° C., the SiO 2 isolation dielectric was annealed for 60 minutes in an oxygen atmosphere to form the SiO 2 isolation dielectric layer.
在本发明的一个实施例中,在形成所述P+区域的所述SiC外延层表面生长TiC合金层形成肖特基接触,包括:In one embodiment of the present invention, growing a TiC alloy layer on the surface of the SiC epitaxial layer forming the P + region to form a Schottky contact includes:
对所述SiO2隔离介质层进行涂胶、显影,通过光刻刻蚀形成肖特基接触窗口;Coating and developing the SiO2 isolation dielectric layer, and forming a Schottky contact window by photolithography;
利用化学气相沉积工艺在所述SiC外延层上沉积所述TiC合金层;depositing the TiC alloy layer on the SiC epitaxial layer by using a chemical vapor deposition process;
在800℃~900℃温度下,氮气氛围中退火3分钟,形成肖特基接触。Anneal at a temperature of 800° C. to 900° C. for 3 minutes in a nitrogen atmosphere to form a Schottky contact.
在本发明的一个实施例中,在所述TiC合金层上生长第一铜石墨烯层形成器件的阳极电极,包括:In one embodiment of the present invention, growing the first copper graphene layer on the TiC alloy layer forms the anode electrode of the device, comprising:
利用磁控溅射工艺在所述TiC合金层上溅射第一Cu金属层;Sputtering a first Cu metal layer on the TiC alloy layer by using a magnetron sputtering process;
利用化学气相沉积工艺,在所述第一Cu金属层上沉积石墨烯层;Depositing a graphene layer on the first Cu metal layer by using a chemical vapor deposition process;
利用磁控溅射工艺在所述石墨烯层溅射第二Cu金属层;Sputtering a second Cu metal layer on the graphene layer by using a magnetron sputtering process;
在500℃温度下使器件退火30分钟,制备所述第一铜石墨烯层形成器件的阳极电极。The device was annealed at a temperature of 500° C. for 30 minutes to prepare the first copper graphene layer to form an anode electrode of the device.
在本发明的一个实施例中,在所述SiC衬底层背面形成器件的阴极电极之前,包括:In one embodiment of the present invention, before the cathode electrode of the device is formed on the back of the SiC substrate layer, it includes:
在所述SiC衬底层背面生长第一金属层形成欧姆接触。在本发明的一个实施例中,在所述SiC衬底层背面生长第一金属层形成欧姆接触之后,包括:A first metal layer is grown on the back side of the SiC substrate layer to form an ohmic contact. In one embodiment of the present invention, after growing the first metal layer on the back side of the SiC substrate layer to form an ohmic contact, it includes:
利用磁控溅射工艺在所述第一金属层下表面溅射金属Ag;Sputtering metal Ag on the lower surface of the first metal layer by using a magnetron sputtering process;
在氮气氛围中退火处理制备第二金属层形成器件的阴极电极。Annealing in a nitrogen atmosphere prepares the second metal layer to form the cathode electrode of the device.
在本发明的一个实施例中,一种SiC功率二极管器件的结构,包括:依次层叠的第二金属层、第一金属层、SiC衬底层、SiC外延层、SiO2隔离介质层、TiC合金层、第一铜石墨烯层,其中,所述SiC外延层内设置有P+区域,所述SiC功率二极管器件由权利要求1~9任一项所述的方法制备形成。In one embodiment of the present invention, a structure of a SiC power diode device includes: a second metal layer, a first metal layer, a SiC substrate layer, a SiC epitaxial layer, a SiO2 isolation dielectric layer, and a TiC alloy layer stacked in sequence . The first copper graphene layer, wherein a P+ region is provided in the SiC epitaxial layer, and the SiC power diode device is formed by the method described in any one of claims 1-9.
本发明实施例,具备如下优点:Embodiments of the present invention have the following advantages:
1、本发明的利用TiC材料与SiC之间接触调整势垒高度变化,进而减小肖特基势垒的高度,降低SiC功率二极管器件的开启电压,达到减小漏电流和能耗、增大反向电压的效果。1. The present invention uses the contact between TiC material and SiC to adjust the height of the barrier, thereby reducing the height of the Schottky barrier, reducing the turn-on voltage of SiC power diode devices, reducing leakage current and energy consumption, and increasing effect of reverse voltage.
2、本发明利用TiC材料作为肖特基接触金属材料能够提高SiC外延生长温度,并且能够使SiC功率二极管器件在高温条件下得到应用。2. The present invention uses TiC material as the Schottky contact metal material to increase the SiC epitaxial growth temperature, and enables SiC power diode devices to be applied under high temperature conditions.
3、本发明采用铜石墨烯复合材料作为阳极,改善了SiC器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。3. The present invention adopts the copper-graphene composite material as the anode, which improves the high temperature resistance and electrical conductivity of the SiC device, and improves the heat dissipation performance of the SiC power diode device.
4、本发明由于在沉积SiO2隔离介质之前,在O离子气氛下,将SiC表面氧化成SiO2隔离介质,可以有效的形成SiC与SiO2界面,并将C原子氧化成气体排出,彻底解决高温厚氧化层中C原子络合物引起的界面态高,载流子迁移率低的问题。4. The present invention oxidizes the surface of SiC to SiO 2 isolation medium in O ion atmosphere before depositing SiO 2 isolation medium, which can effectively form SiC and SiO 2 interface, and oxidize C atoms into gas to discharge, completely solving the problem of The problem of high interface state and low carrier mobility caused by C atom complex in high temperature thick oxide layer.
5、本发明由于最终的SiO2隔离介质是化学气相沉积和退火形成,在保证SiO2介质层质量的前提下,彻底解决SiC与SiO2界面形成C络合物的问题。5. Since the final SiO 2 isolation medium is formed by chemical vapor deposition and annealing in the present invention, the problem of C complex formation at the interface between SiC and SiO 2 is completely solved on the premise of ensuring the quality of the SiO 2 dielectric layer.
通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。Other aspects and features of the present invention will become apparent from the following detailed description with reference to the accompanying drawings. It should be understood, however, that the drawings are designed for purposes of illustration only and not as a limitation of the scope of the invention since reference should be made to the appended claims. It should also be understood that, unless otherwise indicated, the drawings are not necessarily drawn to scale and are merely intended to conceptually illustrate the structures and processes described herein.
附图说明Description of drawings
下面将结合附图,对本发明的具体实施方式进行详细的说明。The specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1为本发明实施例提供的一种SiC功率二极管器件的制备方法流程图;Fig. 1 is a flow chart of a method for preparing a SiC power diode device provided by an embodiment of the present invention;
图2a~图2i为本发明实施例提供的一种SiC功率二极管器件的制备工艺流程示意图;2a to 2i are schematic diagrams of a fabrication process flow of a SiC power diode device provided by an embodiment of the present invention;
图3为本发明实施例提供的一种SiC功率二极管器件的结构示意图;FIG. 3 is a schematic structural diagram of a SiC power diode device provided by an embodiment of the present invention;
图4为本发明实施例提供的另一种SiC功率二极管器件的结构示意图。FIG. 4 is a schematic structural diagram of another SiC power diode device provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
请参见图1,图1为本发明实施例提供的一种SiC功率二极管器件的制备方法流程图。该制备方法包括如下步骤:Please refer to FIG. 1 , which is a flowchart of a method for fabricating a SiC power diode device provided by an embodiment of the present invention. This preparation method comprises the steps:
步骤a、在SiC衬底层上生长SiC外延层;Step a, growing a SiC epitaxial layer on the SiC substrate layer;
步骤b、在所述SiC外延层内形成P+区域;Step b, forming a P + region in the SiC epitaxial layer;
步骤c、在形成所述P+区域的所述SiC外延层表面生长TiC合金层形成肖特基接触;Step c, growing a TiC alloy layer on the surface of the SiC epitaxial layer forming the P + region to form a Schottky contact;
步骤d、在所述TiC合金层上生长第一铜石墨烯层109形成器件的阳极电极;Step d, growing a first copper graphene layer 109 on the TiC alloy layer to form an anode electrode of the device;
步骤e、在所述SiC衬底层背面形成器件的阴极电极,以完成所述SiC功率二极管器件的制备。Step e, forming a cathode electrode of the device on the back of the SiC substrate layer, so as to complete the preparation of the SiC power diode device.
其中,步骤b之前还包括:Wherein, before step b also includes:
步骤b1、在SiC外延层上表面制作离子注入阻挡层。Step b1, forming an ion implantation barrier layer on the upper surface of the SiC epitaxial layer.
其中,步骤b1包括:Wherein, step b1 includes:
步骤b11、在SiC外延层上表面进行光刻、显影后,利用光刻胶作阻挡层,并刻蚀形成对准标记;Step b11, after performing photolithography and development on the upper surface of the SiC epitaxial layer, using photoresist as a barrier layer, and etching to form an alignment mark;
步骤b12、将对准标记进行套刻,形成图形区域;Step b12, overlaying the alignment mark to form a graphic area;
步骤b13、通过电子束蒸发在带有所述图形区域的所述SiC外延层的上制作Ni/Au层,剥离所述Ni/Au层形成所述离子注入阻挡层。Step b13, forming a Ni/Au layer on the SiC epitaxial layer with the pattern area by electron beam evaporation, and peeling off the Ni/Au layer to form the ion implantation blocking layer.
其中,步骤b包括:Wherein, step b includes:
步骤b2、对SiC外延层进行Al离子注入;Step b2, performing Al ion implantation on the SiC epitaxial layer;
步骤b3、在SiC外延层上表面形成碳膜保护;Step b3, forming a carbon film protection on the upper surface of the SiC epitaxial layer;
步骤b4、在1700℃~1750℃温度下,氩气氛围中进行离子激活退火,退火时间为20min,形成P+区域。Step b4, performing ion activation annealing in an argon atmosphere at a temperature of 1700° C. to 1750° C. for 20 minutes to form a P + region.
其中,步骤b之后还包括:Wherein, after step b also includes:
步骤b5、利用化学气相沉积工艺在SiC外延层上表面沉积一层SiO2隔离介质;Step b5, using a chemical vapor deposition process to deposit a layer of SiO2 isolation medium on the upper surface of the SiC epitaxial layer;
步骤b6、在800℃温度下,在氧气氛围中使SiO2隔离介质退火60分钟形成SiO2隔离介质层。Step b6, annealing the SiO 2 isolation dielectric in an oxygen atmosphere at a temperature of 800° C. for 60 minutes to form a SiO 2 isolation dielectric layer.
其中,步骤c包括:Wherein, step c includes:
步骤c1、对SiO2隔离介质层进行涂胶、显影,通过光刻刻蚀形成肖特基接触窗口;Step c1, coating and developing the SiO2 isolation dielectric layer, and forming a Schottky contact window by photolithography;
步骤c2、利用化学气相沉积工艺在SiC外延层上的肖特基接触窗口沉积TiC合金层;Step c2, using a chemical vapor deposition process to deposit a TiC alloy layer on the Schottky contact window on the SiC epitaxial layer;
步骤c3、在800℃~900℃温度下,,氮气氛围中退火3分钟,形成肖特基接触。Step c3, annealing for 3 minutes in a nitrogen atmosphere at a temperature of 800° C. to 900° C. to form a Schottky contact.
其中,步骤d包括:Wherein, step d includes:
步骤d1、利用磁控溅射工艺在所述TiC合金层上溅射第一Cu金属层;Step d1, using a magnetron sputtering process to sputter a first Cu metal layer on the TiC alloy layer;
步骤d2、利用化学气相沉积工艺,在第一Cu金属层上沉积石墨烯层;Step d2, using a chemical vapor deposition process to deposit a graphene layer on the first Cu metal layer;
步骤d3、利用磁控溅射工艺在石墨烯层溅射第二Cu金属层;Step d3, using a magnetron sputtering process to sputter a second Cu metal layer on the graphene layer;
步骤d4、在500℃温度下使器件退火30分钟,制备所述第一铜石墨烯层形成器件的阳极电极。Step d4, annealing the device at a temperature of 500° C. for 30 minutes to prepare the first copper graphene layer to form an anode electrode of the device.
其中,步骤e之前还包括:Wherein, before step e also includes:
步骤e1、在SiC衬底层背面生长第一金属层形成欧姆接触。其中,步骤e包括:Step e1, growing a first metal layer on the back side of the SiC substrate layer to form an ohmic contact. Wherein, step e includes:
步骤e2、利用磁控溅射工艺在第一金属层下表面溅射金属Ag;Step e2, using a magnetron sputtering process to sputter metal Ag on the lower surface of the first metal layer;
步骤e3、在氮气氛围中退火处理制备第二金属层形成器件的阴极电极。Step e3, annealing in a nitrogen atmosphere to prepare the second metal layer to form the cathode electrode of the device.
优选地,第一铜石墨烯层为铜石墨烯复合材料。Preferably, the first copper graphene layer is a copper graphene composite material.
优选地,该SiC功率二极管器件的结构包括:依次层叠的第二金属层、第一金属层、SiC衬底层、SiC外延层、SiO2隔离介质层、TiC合金层、第一铜石墨烯层,其中,SiC外延层内设置有P+区域。Preferably, the structure of the SiC power diode device includes: the second metal layer, the first metal layer, the SiC substrate layer, the SiC epitaxial layer, the SiO2 isolation dielectric layer, the TiC alloy layer, the first copper graphene layer stacked in sequence, Wherein, a P+ region is arranged in the SiC epitaxial layer.
本实施例的有益效果具体为:The beneficial effects of this embodiment are specifically:
1、本实施例通过在SiC外延层表面生成一层TiC合金材料,形成肖特基接触,通过SiC外延层与TiC合金层之间的肖特基接触减小了肖特基势垒高度,能够降低SiC功率二极管器件的开启电压,从而达到减小漏电流和降低能耗、增大反向电压的效果。1. In this embodiment, a layer of TiC alloy material is formed on the surface of the SiC epitaxial layer to form a Schottky contact, and the Schottky barrier height is reduced through the Schottky contact between the SiC epitaxial layer and the TiC alloy layer, which can Reduce the turn-on voltage of SiC power diode devices, thereby achieving the effects of reducing leakage current and energy consumption, and increasing reverse voltage.
2、本实施例利用TiC合金材料作为肖特基接触金属材料,不仅能够提高SiC外延生长的温度,并且能够使SiC功率二极管器件在高温条件下得到应用。2. In this embodiment, TiC alloy material is used as the Schottky contact metal material, which can not only increase the temperature of SiC epitaxial growth, but also enable SiC power diode devices to be applied under high temperature conditions.
3、本实施例采用铜石墨烯复合材料作为阳极,改善了SiC功率二极管器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。3. In this embodiment, the copper-graphene composite material is used as the anode, which improves the high temperature resistance and electrical conductivity of the SiC power diode device, and improves the heat dissipation performance of the SiC power diode device.
实施例二Embodiment two
请参见图2a~图2h,图2a~图2h为本发明实施例提供的一种SiC功率二极管器件的制备工艺流程示意图。在上述实施例的基础上,本实施例将较为详细地对本发明的工艺流程进行介绍。该制备方法包括:Please refer to FIG. 2a to FIG. 2h , which are schematic diagrams of a manufacturing process flow of a SiC power diode device provided by an embodiment of the present invention. On the basis of the above embodiments, this embodiment will introduce the process flow of the present invention in more detail. The preparation method includes:
S1、衬底选取S1. Substrate selection
选取掺杂浓度为5×1018cm-3的N+型SiC衬底层103为初始材料。The N + -type SiC substrate layer 103 with a doping concentration of 5×10 18 cm −3 is selected as the initial material.
S11、对N+型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。S11 , cleaning the N + -type SiC substrate layer 103 by RCA (wet chemical cleaning method) cleaning standard, so as to remove organic and inorganic chemical pollutants on the surface of the sample.
S2、在SiC衬底层103上外延生长SiC外延层104S2. Epitaxial growth of SiC epitaxial layer 104 on SiC substrate layer 103
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上方外延生长厚度为8μm,氮离子掺杂浓度为1×1015cm-3的N-型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。S21. As shown in FIG. 2a, using a chemical vapor deposition process, epitaxially grow an N - type SiC epitaxial layer 104 with a thickness of 8 μm and a nitrogen ion doping concentration of 1×10 15 cm −3 above the SiC substrate layer 103. The process The conditions are: the epitaxial growth temperature is 1570°C, the pressure is 100mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen.
S3、在SiC外延层104上生长离子注入阻挡层105S3. Growing an ion implantation barrier layer 105 on the SiC epitaxial layer 104
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;S31. After RCA standard cleaning is performed on the SiC epitaxial layer 104, after coating photolithography and development, use photoresist as a barrier layer, and use RE etching for 5 minutes to form an alignment mark, and the depth of the alignment mark is 0.4 μm;
S32、对形成的对准标记进行套刻,形成图形区域;S32. Overlay the formed alignment mark to form a graphic area;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作的Ni/Au层,其中,Ni的厚度为Au的厚度为然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。S33, as shown in Figure 2b, by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with a pattern area Ni/Au layer, where the thickness of Ni is The thickness of Au is Then soak in acetone for ultrasonic treatment to peel off the metal to form the ion implantation blocking layer 105 .
S4、在SiC外延层104内形成P+区域106S4, forming a P + region 106 in the SiC epitaxial layer 104
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×1012cm-2;注入能量为120keV时,注入剂量为6.5×1012cm-2;注入能量为300keV时,注入剂量为1.05×1013cm-2;注入能量为420keV时,注入剂量为1.3×1013cm-2;注入能量为550keV时,注入剂量为1.45×1013cm-2,形成间隔分立排布的P+区域106;S41. As shown in FIG. 2c, five times of Al ion implantation is performed on the SiC epitaxial layer 104 at an ambient temperature of 450° C., the implantation depth is 0.4 μm, and the implantation energies are 30 keV, 120 keV, 300 keV, 420 keV and 550 keV respectively, and the implantation energies are At 30keV, the implant dose is 2.8×10 12 cm -2 ; when the implant energy is 120keV, the implant dose is 6.5×10 12 cm -2 ; when the implant energy is 300keV, the implant dose is 1.05×10 13 cm -2 ; When the implantation energy is 420keV, the implantation dose is 1.3×10 13 cm -2 ; when the implantation energy is 550keV, the implantation dose is 1.45×10 13 cm -2 , forming P + regions 106 arranged at intervals;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护;S42. Clean the surface of the SiC epitaxial layer 104 using the RCA cleaning standard, and dry it at 1000° C. for 20 minutes. After drying, apply glue on the surface of the SiC epitaxial layer 104 three times, and heat at 400° C. for 90 minutes to carbonize the photoresist. After conversion into an amorphous C film to form a carbon film protection;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P+区域106。S43 , performing ion activation annealing in an argon atmosphere at 1700° C.˜1750° C. for 20 minutes to form a P + region 106 .
S5、在SiC外延层104上生长SiO2隔离介质层107S5, growing a SiO 2 isolation dielectric layer 107 on the SiC epitaxial layer 104
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO2隔离介质,再通入硅烷,沉积100nm的SiO2隔离介质。S51. Put the device as a whole into a chemical vapor deposition furnace and heat it to 300°C, and then pass in oxygen for 60 seconds. Under an O ion atmosphere, oxidize the surface of the SiC epitaxial layer 104 into a 1-2nm SiO 2 isolation medium, then pass in silane, and deposit 100nm SiO 2 isolation dielectric.
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO2隔离介质层107。S52 , as shown in FIG. 2 d , anneal the SiC sample at 800° C. for 60 minutes in an oxygen atmosphere to form a SiO 2 isolation dielectric layer 107 .
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108S6, growing a TiC alloy layer 108 on the Schottky contact window on the SiC epitaxial layer 104
S61、对SiO2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;S61, coating and developing the SiO2 isolation dielectric layer 107, and then performing photolithography to form a Schottky contact window;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;S62. As shown in FIG. 2e, a TiC alloy layer 108 is deposited on the Schottky contact window by a chemical vapor deposition process;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。S63 , annealing for 3 minutes in a nitrogen atmosphere at a temperature of 850±50° C. to form a Schottky contact between the SiC epitaxial layer 104 and the TiC alloy layer 108 .
S7、在SiO2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109S7, growing the first copper graphene layer 109 on the SiO 2 isolation dielectric layer 107 and the TiC alloy layer 108
S71、如图2f所示,利用磁控溅射工艺在SiO2隔离介质层107和TiC合金层108上溅射铜石墨烯复合材料,形成第一铜石墨烯层109,其中,第一铜石墨烯层109的厚度为1μm,且为阳极。S71. As shown in FIG. 2f, use magnetron sputtering process to sputter copper-graphene composite material on SiO2 isolation dielectric layer 107 and TiC alloy layer 108 to form a first copper-graphene layer 109, wherein the first copper-graphene layer The vinyl layer 109 has a thickness of 1 μm, and is an anode.
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102)S8, growing a first metal layer (ie Ni metal layer 102) on the lower surface of the SiC substrate layer 103
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;S81, using a magnetron sputtering process to sputter the Ni metal layer 102 on the lower surface of the SiC substrate layer 103;
S82、如图2g所示,在氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。S82, as shown in FIG. 2g, annealing in a nitrogen atmosphere to form an ohmic contact between the SiC substrate layer 103 and the Ni metal layer 102, and the Ni metal layer 102 is a cathode.
S9、在Ni金属层102的下表面生长第二金属层(即Ag金属层101)S9, growing a second metal layer (i.e. Ag metal layer 101) on the lower surface of the Ni metal layer 102
S91、如图2h所示,利用磁控溅射工艺在Ni金属层102的下表面溅射金属Ag;S91, as shown in FIG. 2h, sputter metal Ag on the lower surface of the Ni metal layer 102 by using a magnetron sputtering process;
S92、在900℃温度下的氮气氛围中退火处理形成Ag金属层101,Ag金属层101为阴极。S92 , annealing in a nitrogen atmosphere at a temperature of 900° C. to form an Ag metal layer 101 , and the Ag metal layer 101 is a cathode.
本实施例的有益效果:The beneficial effect of this embodiment:
1、本实施例由于在沉积SiO2隔离介质之前,在O离子气氛下,将SiC表面氧化成SiO2隔离介质,可以有效的形成SiC与SiO2界面,并将C原子氧化成气体排出,彻底解决高温厚氧化层中C原子络合物引起的界面态高,载流子迁移率低的问题。1. In this embodiment, before depositing the SiO2 isolation medium, the SiC surface is oxidized into a SiO2 isolation medium in an O ion atmosphere, which can effectively form the interface between SiC and SiO2 , and oxidize the C atoms into gas to be discharged, completely Solve the problem of high interface state and low carrier mobility caused by C atom complex in high temperature and thick oxide layer.
2、本实施例由于最终的SiO2隔离介质是化学气相沉积和退火形成,在保证SiO2介质层质量的前提下,彻底解决SiC与SiO2界面形成C络合物的问题。2. In this embodiment, since the final SiO 2 isolation medium is formed by chemical vapor deposition and annealing, the problem of C complex formation at the interface between SiC and SiO 2 can be completely solved on the premise of ensuring the quality of the SiO 2 dielectric layer.
实施例三Embodiment three
请再次参见图2a~图2h。在上述实施例的基础上,本实施例将较为详细地对本发明的另一种工艺流程进行介绍。该制备方法包括:Please refer to Fig. 2a-Fig. 2h again. On the basis of the above embodiments, this embodiment will introduce another process flow of the present invention in more detail. The preparation method includes:
S1、衬底选取S1. Substrate selection
选取掺杂浓度为5×1018cm-3的N+型SiC衬底层103为初始材料。The N + -type SiC substrate layer 103 with a doping concentration of 5×10 18 cm −3 is selected as the initial material.
S11、对N+型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。S11 , cleaning the N + -type SiC substrate layer 103 by RCA (wet chemical cleaning method) cleaning standard, so as to remove organic and inorganic chemical pollutants on the surface of the sample.
S2、在SiC衬底层103上外延生长SiC外延层104S2. Epitaxial growth of SiC epitaxial layer 104 on SiC substrate layer 103
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上方外延生长厚度为8μm,氮离子掺杂浓度为1×1015cm-3的N-型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。S21. As shown in FIG. 2a, using a chemical vapor deposition process, epitaxially grow an N - type SiC epitaxial layer 104 with a thickness of 8 μm and a nitrogen ion doping concentration of 1×10 15 cm −3 above the SiC substrate layer 103. The process The conditions are: the epitaxial growth temperature is 1570°C, the pressure is 100mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen.
S3、在SiC外延层104上生长离子注入阻挡层105S3. Growing an ion implantation barrier layer 105 on the SiC epitaxial layer 104
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;S31. After RCA standard cleaning is performed on the SiC epitaxial layer 104, after coating photolithography and development, use photoresist as a barrier layer, and use RE etching for 5 minutes to form an alignment mark, and the depth of the alignment mark is 0.4 μm;
S32、对形成的对准标记进行套刻,形成图形区域;S32. Overlay the formed alignment mark to form a graphic area;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作的Ni/Au层,其中,Ni的厚度为Au的厚度为然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。S33, as shown in Figure 2b, by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with a pattern area Ni/Au layer, where the thickness of Ni is The thickness of Au is Then soak in acetone for ultrasonic treatment to peel off the metal to form the ion implantation blocking layer 105 .
S4、在SiC外延层104内形成P+区域106S4, forming a P + region 106 in the SiC epitaxial layer 104
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×1012cm-2;注入能量为120keV时,注入剂量为6.5×1012cm-2;注入能量为300keV时,注入剂量为1.05×1013cm-2;注入能量为420keV时,注入剂量为1.3×1013cm-2;注入能量为550keV时,注入剂量为1.45×1013cm-2,形成间隔分立排布的P+区域106;S41. As shown in FIG. 2c, five times of Al ion implantation is performed on the SiC epitaxial layer 104 at an ambient temperature of 450° C., the implantation depth is 0.4 μm, and the implantation energies are 30 keV, 120 keV, 300 keV, 420 keV and 550 keV respectively, and the implantation energies are At 30keV, the implant dose is 2.8×10 12 cm -2 ; when the implant energy is 120keV, the implant dose is 6.5×10 12 cm -2 ; when the implant energy is 300keV, the implant dose is 1.05×10 13 cm -2 ; When the implantation energy is 420keV, the implantation dose is 1.3×10 13 cm -2 ; when the implantation energy is 550keV, the implantation dose is 1.45×10 13 cm -2 , forming P + regions 106 arranged at intervals;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护,C膜厚度为0.4μm;S42. Clean the surface of the SiC epitaxial layer 104 using the RCA cleaning standard, and dry it at 1000° C. for 20 minutes. After drying, apply glue on the surface of the SiC epitaxial layer 104 three times, and heat at 400° C. for 90 minutes to carbonize the photoresist. After that, it is converted into an amorphous C film to form a carbon film protection, and the thickness of the C film is 0.4 μm;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P+区域106。S43 , performing ion activation annealing in an argon atmosphere at 1700° C.˜1750° C. for 20 minutes to form a P + region 106 .
S5、在SiC外延层104上生长SiO2隔离介质层107S5, growing a SiO 2 isolation dielectric layer 107 on the SiC epitaxial layer 104
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO2隔离介质,再通入硅烷,沉积100nm的SiO2隔离介质;S51. Put the device as a whole into a chemical vapor deposition furnace and heat it to 300°C, and then pass in oxygen for 60 seconds. Under an O ion atmosphere, oxidize the surface of the SiC epitaxial layer 104 into a 1-2nm SiO 2 isolation medium, then pass in silane, and deposit 100nm SiO2 isolation dielectric;
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO2隔离介质层107。S52 , as shown in FIG. 2 d , anneal the SiC sample at 800° C. for 60 minutes in an oxygen atmosphere to form a SiO 2 isolation dielectric layer 107 .
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108S6, growing a TiC alloy layer 108 on the Schottky contact window on the SiC epitaxial layer 104
S61、对SiO2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;S61, coating and developing the SiO2 isolation dielectric layer 107, and then performing photolithography to form a Schottky contact window;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;S62. As shown in FIG. 2e, a TiC alloy layer 108 is deposited on the Schottky contact window by a chemical vapor deposition process;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。S63 , annealing for 3 minutes in a nitrogen atmosphere at a temperature of 850±50° C. to form a Schottky contact between the SiC epitaxial layer 104 and the TiC alloy layer 108 .
S7、在SiO2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109S7, growing the first copper graphene layer 109 on the SiO 2 isolation dielectric layer 107 and the TiC alloy layer 108
S71、利用磁控溅射工艺在SiO2隔离介质层107和TiC合金层108上溅射第一Cu金属层;S71, utilizing the magnetron sputtering process to sputter the first Cu metal layer on the SiO2 isolation dielectric layer 107 and the TiC alloy layer 108;
S72、利用化学气相沉积工艺,在第一Cu金属层上生长石墨烯层;S72, using a chemical vapor deposition process to grow a graphene layer on the first Cu metal layer;
S73、利用磁控溅射工艺在石墨烯层溅射第二Cu金属层;S73, using a magnetron sputtering process to sputter a second Cu metal layer on the graphene layer;
S74、如图2f所示,在500℃温度下使第一Cu金属层、石墨烯层和第二Cu金属层退火30分钟,形成所述第一铜石墨烯层109。S74 , as shown in FIG. 2f , annealing the first Cu metal layer, the graphene layer and the second Cu metal layer at a temperature of 500° C. for 30 minutes to form the first copper graphene layer 109 .
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102)S8, growing a first metal layer (ie Ni metal layer 102) on the lower surface of the SiC substrate layer 103
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;S81, using a magnetron sputtering process to sputter the Ni metal layer 102 on the lower surface of the SiC substrate layer 103;
S82、如图2g所示,在900℃温度下的氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。S82 , as shown in FIG. 2 g , annealing in a nitrogen atmosphere at a temperature of 900° C. to form an ohmic contact between the SiC substrate layer 103 and the Ni metal layer 102 , and the Ni metal layer 102 is a cathode.
S9、在Ni金属层102的下表面生长第二金属层(即Ag金属层101)S9, growing a second metal layer (i.e. Ag metal layer 101) on the lower surface of the Ni metal layer 102
S91、如图2h所示,利用磁控溅射工艺在Ni金属层102的下表面溅射金属Ag;S91, as shown in FIG. 2h, sputter metal Ag on the lower surface of the Ni metal layer 102 by using a magnetron sputtering process;
S92、在900℃温度下的氮气氛围中退火处理形成Ag金属层101,Ag金属层101为阴极。S92 , annealing in a nitrogen atmosphere at a temperature of 900° C. to form an Ag metal layer 101 , and the Ag metal layer 101 is a cathode.
实施例四Embodiment four
请再次参见图2a~图2g及2i。在上述实施例的基础上,本实施例将较为详细地对本发明的再一种工艺流程进行介绍。该制备方法包括:Please refer to FIGS. 2a-2g and 2i again. On the basis of the above embodiments, this embodiment will introduce another technical process of the present invention in more detail. The preparation method includes:
S1、衬底选取S1. Substrate selection
选取掺杂浓度为5×1018cm-3的N+型SiC衬底层103为初始材料。The N + -type SiC substrate layer 103 with a doping concentration of 5×10 18 cm −3 is selected as the initial material.
S11、对N+型SiC衬底层103采用RCA(湿式化学清洗法)清洗标准进行清洗,以去除样品表面有机和无机化学污染物。S11 , cleaning the N + -type SiC substrate layer 103 by RCA (wet chemical cleaning method) cleaning standard, so as to remove organic and inorganic chemical pollutants on the surface of the sample.
S2、在SiC衬底层103上外延生长SiC外延层104S2. Epitaxial growth of SiC epitaxial layer 104 on SiC substrate layer 103
S21、如图2a所示,采用化学气相沉积工艺,在SiC衬底层103上表面外延生长厚度为8μm,氮离子掺杂浓度为1×1015cm-3的N-型SiC外延层104,其工艺条件是:外延生长温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。S3、在SiC外延层104上生长离子注入阻挡层105S21. As shown in FIG. 2a, using a chemical vapor deposition process, epitaxially grow an N - type SiC epitaxial layer 104 on the surface of the SiC substrate layer 103 with a thickness of 8 μm and a nitrogen ion doping concentration of 1×10 15 cm −3 , which The process conditions are as follows: epitaxial growth temperature is 1570°C, pressure is 100mbar, silane and propane are used as reaction gas, pure hydrogen is used as carrier gas, and liquid nitrogen is used as impurity source. S3. Growing an ion implantation barrier layer 105 on the SiC epitaxial layer 104
S31、对SiC外延层104做RCA标准清洗后,进行涂胶光刻、显影后,利用光刻胶作阻挡层,采用RE刻蚀5min后形成对准标记,对准标记深度为0.4μm;S31. After RCA standard cleaning is performed on the SiC epitaxial layer 104, after coating photolithography and development, use photoresist as a barrier layer, and use RE etching for 5 minutes to form an alignment mark, and the depth of the alignment mark is 0.4 μm;
S32、对形成的对准标记进行套刻,形成图形区域;S32. Overlay the formed alignment mark to form a graphic area;
S33、如图2b所示,通过电子束蒸发在带有图形区域的SiC外延层104的上表面制作的Ni/Au层,其中,Ni的厚度为Au的厚度为然后浸泡在丙酮中做超声波处理,剥离金属形成离子注入阻挡层105。S33, as shown in Figure 2b, by electron beam evaporation on the upper surface of the SiC epitaxial layer 104 with a pattern area Ni/Au layer, where the thickness of Ni is The thickness of Au is Then soak in acetone for ultrasonic treatment to peel off the metal to form the ion implantation blocking layer 105 .
S4、在SiC外延层104内形成P+区域106S4, forming a P + region 106 in the SiC epitaxial layer 104
S41、如图2c所示,在450℃的环境温度下对SiC外延层104进行五次Al离子注入,注入深度为0.4μm,注入能量分别为30keV、120keV、300keV、420keV和550keV,注入能量为30keV时,注入剂量为2.8×1012cm-2;注入能量为120keV时,注入剂量为6.5×1012cm-2;注入能量为300keV时,注入剂量为1.05×1013cm-2;注入能量为420keV时,注入剂量为1.3×1013cm-2;注入能量为550keV时,注入剂量为1.45×1013cm-2,形成间隔分立排布的P+区域106;S41. As shown in FIG. 2c, five times of Al ion implantation is performed on the SiC epitaxial layer 104 at an ambient temperature of 450° C., the implantation depth is 0.4 μm, and the implantation energies are 30 keV, 120 keV, 300 keV, 420 keV and 550 keV respectively, and the implantation energies are At 30keV, the implant dose is 2.8×10 12 cm -2 ; when the implant energy is 120keV, the implant dose is 6.5×10 12 cm -2 ; when the implant energy is 300keV, the implant dose is 1.05×10 13 cm -2 ; When the implantation energy is 420keV, the implantation dose is 1.3×10 13 cm -2 ; when the implantation energy is 550keV, the implantation dose is 1.45×10 13 cm -2 , forming P + regions 106 arranged at intervals;
S42、采用RCA清洗标准对SiC外延层104表面进行清洗,在1000℃温度下烘干20min,烘干后在SiC外延层104表面进行三次涂胶,并在400℃下加热90min,光刻胶碳化后转化成无定型C膜形成碳膜保护,C膜厚度为0.4μm;S42. Clean the surface of the SiC epitaxial layer 104 using the RCA cleaning standard, and dry it at 1000° C. for 20 minutes. After drying, apply glue on the surface of the SiC epitaxial layer 104 three times, and heat at 400° C. for 90 minutes to carbonize the photoresist. After that, it is converted into an amorphous C film to form a carbon film protection, and the thickness of the C film is 0.4 μm;
S43、在1700℃~1750℃氩气氛围中进行离子激活退火,退火时间为20min,形成P+区域106。S43 , performing ion activation annealing in an argon atmosphere at 1700° C.˜1750° C. for 20 minutes to form a P + region 106 .
S5、在SiC外延层104上生长SiO2隔离介质层107S5, growing a SiO 2 isolation dielectric layer 107 on the SiC epitaxial layer 104
S51、将器件整体放入化学气相沉积炉中加热到300℃,通入氧气60秒,在O离子气氛下,将SiC外延层104表面氧化成1-2nmSiO2隔离介质,再通入硅烷,沉积100nm的SiO2隔离介质。S51. Put the device as a whole into a chemical vapor deposition furnace and heat it to 300°C, and then pass in oxygen for 60 seconds. Under an O ion atmosphere, oxidize the surface of the SiC epitaxial layer 104 into a 1-2nm SiO 2 isolation medium, then pass in silane, and deposit 100nm SiO 2 isolation dielectric.
S52、如图2d所示,将SiC样品在氧气氛围中,800℃退火60分钟,形成SiO2隔离介质层107。S52 , as shown in FIG. 2 d , anneal the SiC sample at 800° C. for 60 minutes in an oxygen atmosphere to form a SiO 2 isolation dielectric layer 107 .
S6、在SiC外延层104上的肖特基接触窗口生长TiC合金层108S6, growing a TiC alloy layer 108 on the Schottky contact window on the SiC epitaxial layer 104
S61、对SiO2隔离介质层107进行涂胶、显影,之后再进行光刻刻蚀,形成肖特基接触窗口;S61, coating and developing the SiO2 isolation dielectric layer 107, and then performing photolithography to form a Schottky contact window;
S62、如图2e所示,利用化学气相沉积工艺在肖特基接触窗口沉积TiC合金层108;S62. As shown in FIG. 2e, a TiC alloy layer 108 is deposited on the Schottky contact window by a chemical vapor deposition process;
S63、在850±50℃温度下的氮气氛围中退火3分钟使SiC外延层104和TiC合金层108形成肖特基接触。S63 , annealing for 3 minutes in a nitrogen atmosphere at a temperature of 850±50° C. to form a Schottky contact between the SiC epitaxial layer 104 and the TiC alloy layer 108 .
S7、在SiO2隔离介质层107和TiC合金层108上生长第一铜石墨烯层109S7, growing the first copper graphene layer 109 on the SiO 2 isolation dielectric layer 107 and the TiC alloy layer 108
S71、如图2f所示,利用磁控溅射工艺在SiO2隔离介质层107和TiC合金层108上溅射铜石墨烯复合材料,形成第一铜石墨烯层109,其中,第一铜石墨烯层109的厚度为1μm,且为阳极。S71. As shown in FIG. 2f, use magnetron sputtering process to sputter copper-graphene composite material on SiO2 isolation dielectric layer 107 and TiC alloy layer 108 to form a first copper-graphene layer 109, wherein the first copper-graphene layer The vinyl layer 109 has a thickness of 1 μm, and is an anode.
可选地,利用磁控溅射工艺在SiO2隔离介质层107和NiCr合金层108上溅射金属Al,形成Al金属层,作为阳极。Optionally, metal Al is sputtered on the SiO 2 isolation dielectric layer 107 and the NiCr alloy layer 108 by a magnetron sputtering process to form an Al metal layer as an anode.
S8、在SiC衬底层103的下表面生长第一金属层(即Ni金属层102)S8, growing a first metal layer (ie Ni metal layer 102) on the lower surface of the SiC substrate layer 103
S81、利用磁控溅射工艺在SiC衬底层103的下表面溅射Ni金属层102;S81, using a magnetron sputtering process to sputter the Ni metal layer 102 on the lower surface of the SiC substrate layer 103;
S82、如图2g所示,在900℃温度下的氮气氛围中退火处理使SiC衬底层103和Ni金属层102形成欧姆接触,Ni金属层102为阴极。S82 , as shown in FIG. 2 g , annealing in a nitrogen atmosphere at a temperature of 900° C. to form an ohmic contact between the SiC substrate layer 103 and the Ni metal layer 102 , and the Ni metal layer 102 is a cathode.
S9、在Ni金属层102的下表面生长第二铜石墨烯层S9, growing a second copper graphene layer on the lower surface of the Ni metal layer 102
S91、如图2i所示,利用磁控溅射工艺在Ni金属层102的下表面溅射铜石墨烯复合材料形成第二铜石墨烯层,第二铜石墨烯层为阴极。S91. As shown in FIG. 2i, sputter a copper-graphene composite material on the lower surface of the Ni metal layer 102 by magnetron sputtering to form a second copper-graphene layer, and the second copper-graphene layer is a cathode.
实施例五Embodiment five
请再次参见图3,图3为本发明实施例提供的一种SiC功率二极管器件的结构示意图。本实施例提供一种SiC功率二极管器件的结构,该结构,包括:Please refer to FIG. 3 again. FIG. 3 is a schematic structural diagram of a SiC power diode device provided by an embodiment of the present invention. This embodiment provides a structure of a SiC power diode device, which includes:
第二金属层(即Ag金属层101);The second metal layer (i.e. the Ag metal layer 101);
其中,Ag金属层101为阴极,厚度为1μm。Wherein, the Ag metal layer 101 is a cathode with a thickness of 1 μm.
第一金属层(即Ni金属层102),位于Ag金属层101上表面;The first metal layer (i.e. the Ni metal layer 102) is located on the upper surface of the Ag metal layer 101;
其中,Ni金属层102为阴极,厚度为1μm。Wherein, the Ni metal layer 102 is a cathode with a thickness of 1 μm.
SiC衬底层103,位于Ni金属层102的上表面;SiC substrate layer 103, located on the upper surface of Ni metal layer 102;
其中,SiC衬底层103由掺杂浓度为5×1018cm-3的N+型SiC材料构成,厚度为360μm,SiC衬底层103和Ni金属层102形成欧姆接触。Wherein, the SiC substrate layer 103 is made of N + -type SiC material with a doping concentration of 5×10 18 cm −3 and has a thickness of 360 μm. The SiC substrate layer 103 and the Ni metal layer 102 form an ohmic contact.
SiC外延层104,位于SiC衬底层103上表面;SiC epitaxial layer 104, located on the upper surface of SiC substrate layer 103;
其中,SiC外延层104由掺杂浓度为1×1015cm-3的N-型SiC材料构成,厚度为8μm。Wherein, the SiC epitaxial layer 104 is made of N - type SiC material with a doping concentration of 1×10 15 cm −3 , and has a thickness of 8 μm.
P+区域106,位于SiC外延层104内;a P + region 106 within the SiC epitaxial layer 104;
其中,P+区域106的掺杂浓度为3×1018cm-3,深度为0.4μm,P+区域106位于SiC外延层104内侧呈间隔分立排布。Wherein, the doping concentration of the P + region 106 is 3×10 18 cm −3 , the depth is 0.4 μm, and the P + region 106 is located inside the SiC epitaxial layer 104 and arranged at intervals.
SiO2隔离介质层107,位于SiC外延层104上表面;The SiO 2 isolation dielectric layer 107 is located on the upper surface of the SiC epitaxial layer 104;
其中,SiO2隔离介质层107的厚度为100nm。Wherein, the thickness of the SiO 2 isolation dielectric layer 107 is 100 nm.
TiC合金层108,位于SiC外延层104上表面;TiC alloy layer 108, located on the upper surface of SiC epitaxial layer 104;
其中,SiC外延层104和TiC合金层108形成肖特基接触。Wherein, the SiC epitaxial layer 104 and the TiC alloy layer 108 form a Schottky contact.
第一铜石墨烯层109,位于SiO2隔离介质层107和TiC合金层108上表面;The first copper graphene layer 109 is positioned at the SiO2 isolation dielectric layer 107 and the TiC alloy layer 108 upper surface;
其中,第一铜石墨烯层109为复合材料,第一铜石墨烯层109的厚度为1μm,且为阳极。Wherein, the first copper graphene layer 109 is a composite material, the thickness of the first copper graphene layer 109 is 1 μm, and it is an anode.
本实施例的有益效果:The beneficial effect of this embodiment:
1、本实施例通过在SiC外延层表面生成一层TiC合金材料,形成肖特基接触,通过SiC外延层与TiC合金层之间的肖特基接触减小了肖特基势垒高度,能够降低SiC功率二极管器件的开启电压,从而达到减小漏电流和降低能耗、增大反向电压的效果。1. In this embodiment, a layer of TiC alloy material is formed on the surface of the SiC epitaxial layer to form a Schottky contact, and the Schottky barrier height is reduced through the Schottky contact between the SiC epitaxial layer and the TiC alloy layer, which can Reduce the turn-on voltage of SiC power diode devices, thereby achieving the effects of reducing leakage current and energy consumption, and increasing reverse voltage.
2、本实施例利用TiC材料作为肖特基接触金属材料,能够提高SiC外延生长温度,并且能够使SiC功率二极管器件在高温条件下得到应用。2. In this embodiment, TiC material is used as the Schottky contact metal material, which can increase the SiC epitaxial growth temperature and enable SiC power diode devices to be applied under high temperature conditions.
3、本实施例采用铜石墨烯复合材料作为阳极,改善了SiC功率二极管器件的耐高温性能和导电性能,提高了SiC功率二极管器件的散热性能。3. In this embodiment, the copper-graphene composite material is used as the anode, which improves the high temperature resistance and electrical conductivity of the SiC power diode device, and improves the heat dissipation performance of the SiC power diode device.
实施例六Embodiment six
请参见图4,图4为本发明实施例提供的另一种SiC功率二极管器件的结构示意图。本实施例提供另一种SiC功率二极管器件的结构,该结构,包括:Please refer to FIG. 4 , which is a schematic structural diagram of another SiC power diode device provided by an embodiment of the present invention. This embodiment provides another structure of a SiC power diode device, which includes:
第二铜石墨烯层110;second copper graphene layer 110;
其中,第二铜石墨烯层110为铜石墨烯复合材料,且第二铜石墨烯层110为阴极。Wherein, the second copper graphene layer 110 is a copper graphene composite material, and the second copper graphene layer 110 is a cathode.
第一金属层(即Ni金属层102),位于第二铜石墨烯层110上表面;The first metal layer (i.e. the Ni metal layer 102) is located on the second copper graphene layer 110 upper surface;
其中,Ni金属层102为阴极,厚度为1μm。Wherein, the Ni metal layer 102 is a cathode with a thickness of 1 μm.
SiC衬底层103,位于Ni金属层102的上表面;SiC substrate layer 103, located on the upper surface of Ni metal layer 102;
其中,SiC衬底层103由掺杂浓度为5×1018cm-3的N+型SiC材料构成,厚度为360μm,SiC衬底层103和Ni金属层102形成欧姆接触。Wherein, the SiC substrate layer 103 is made of N + -type SiC material with a doping concentration of 5×10 18 cm −3 and has a thickness of 360 μm. The SiC substrate layer 103 and the Ni metal layer 102 form an ohmic contact.
SiC外延层104,位于SiC衬底层103上表面;SiC epitaxial layer 104, located on the upper surface of SiC substrate layer 103;
其中,SiC外延层104由掺杂浓度为1×1015cm-3的N-型SiC材料构成,厚度为8μm。Wherein, the SiC epitaxial layer 104 is made of N - type SiC material with a doping concentration of 1×10 15 cm −3 , and has a thickness of 8 μm.
P+区域106,位于SiC外延层104内;a P + region 106 within the SiC epitaxial layer 104;
其中,P+区域106的掺杂浓度为3×1018cm-3,深度为0.4μm,P+区域106位于SiC外延层104内侧呈间隔分立排布。Wherein, the doping concentration of the P + region 106 is 3×10 18 cm −3 , the depth is 0.4 μm, and the P + region 106 is located inside the SiC epitaxial layer 104 and arranged at intervals.
SiO2隔离介质层107,位于SiC外延层104上表面;The SiO 2 isolation dielectric layer 107 is located on the upper surface of the SiC epitaxial layer 104;
其中,SiO2隔离介质层107的厚度为100nm。Wherein, the thickness of the SiO 2 isolation dielectric layer 107 is 100 nm.
TiC合金层108,位于SiC外延层104上表面;TiC alloy layer 108, located on the upper surface of SiC epitaxial layer 104;
其中,SiC外延层104和TiC合金层108形成肖特基接触。Wherein, the SiC epitaxial layer 104 and the TiC alloy layer 108 form a Schottky contact.
第一铜石墨烯层109,位于SiO2隔离介质层107和TiC合金层108上表面;The first copper graphene layer 109 is positioned at the SiO2 isolation dielectric layer 107 and the TiC alloy layer 108 upper surface;
其中,第一铜石墨烯层109为复合材料,第一铜石墨烯层109的厚度为1μm,且为阳极。Wherein, the first copper graphene layer 109 is a composite material, the thickness of the first copper graphene layer 109 is 1 μm, and it is an anode.
可选地,Al金属层位于SiO2隔离介质层和NiCr合金层上表面,且Al金属层为阳极。Optionally, the Al metal layer is located on the upper surface of the SiO 2 isolation dielectric layer and the NiCr alloy layer, and the Al metal layer is an anode.
本实施例采用铜石墨烯复合材料制备SiC功率二极管器件的阳极和阴极,能够改善SiC器件的耐高温性能和导电性能,提高SiC功率二极管器件的散热性能。In this embodiment, the copper-graphene composite material is used to prepare the anode and cathode of the SiC power diode device, which can improve the high temperature resistance and electrical conductivity of the SiC device, and improve the heat dissipation performance of the SiC power diode device.
综上所述,本文中应用了具体个例对本发明实施例提供的一种SiC功率二极管器件的制备方法及其结构的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。To sum up, this paper uses specific examples to illustrate a method for preparing a SiC power diode device provided by the embodiment of the present invention, its structure, principle and implementation. The description of the above embodiment is only used to help understand the present invention The method of the invention and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, the content of this specification should not be understood In order to limit the present invention, the scope of protection of the present invention should be based on the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711397850.XA CN108321213A (en) | 2017-12-21 | 2017-12-21 | The preparation method and its structure of SiC power diode devices |
PCT/CN2018/111392 WO2019119958A1 (en) | 2017-12-21 | 2018-10-23 | Preparation method for sic power diode device and structure of sic power diode device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711397850.XA CN108321213A (en) | 2017-12-21 | 2017-12-21 | The preparation method and its structure of SiC power diode devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108321213A true CN108321213A (en) | 2018-07-24 |
Family
ID=62893173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711397850.XA Pending CN108321213A (en) | 2017-12-21 | 2017-12-21 | The preparation method and its structure of SiC power diode devices |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108321213A (en) |
WO (1) | WO2019119958A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449085A (en) * | 2018-09-12 | 2019-03-08 | 秦皇岛京河科学技术研究院有限公司 | A kind of 4H-SiC Schottky diode and preparation method thereof that Surge handling capability is enhanced |
CN112164726A (en) * | 2020-09-15 | 2021-01-01 | 五邑大学 | A kind of Schottky barrier diode and preparation method thereof |
CN113555497A (en) * | 2021-06-09 | 2021-10-26 | 浙江芯国半导体有限公司 | High-mobility SiC-based graphene device and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112117336B (en) * | 2020-09-22 | 2022-04-12 | 厦门大学 | 4H-SiC ultraviolet photodetector array with back-illuminated structure and its preparation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110037139A1 (en) * | 2008-03-21 | 2011-02-17 | Microsemi Corporation | Schottky barrier diode (sbd) and its off-shoot merged pn/schottky diode or junction barrier schottky (jbs) diode |
CN102881841A (en) * | 2012-10-16 | 2013-01-16 | 北京大学 | Semiconductor photoelectric device using copper/graphene composite electrode as anode |
CN104335328A (en) * | 2012-03-30 | 2015-02-04 | 富士电机株式会社 | Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device manufactured by same |
CN105977289A (en) * | 2015-03-10 | 2016-09-28 | Abb 技术有限公司 | Power semiconductor rectifier with controllable on-state voltage |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5492752A (en) * | 1992-12-07 | 1996-02-20 | Oregon Graduate Institute Of Science And Technology | Substrates for the growth of 3C-silicon carbide |
JP2002016017A (en) * | 2000-06-27 | 2002-01-18 | Nissan Motor Co Ltd | Silicon carbide semiconductor device and method of manufacturing the same |
JP5966556B2 (en) * | 2012-04-18 | 2016-08-10 | 富士電機株式会社 | Manufacturing method of semiconductor device |
CN103956354A (en) * | 2014-05-09 | 2014-07-30 | 浙江大学 | Interconnecting wire with graphene serving as metallization layer and diffusion barrier layer and manufacturing method of interconnecting wire |
-
2017
- 2017-12-21 CN CN201711397850.XA patent/CN108321213A/en active Pending
-
2018
- 2018-10-23 WO PCT/CN2018/111392 patent/WO2019119958A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110037139A1 (en) * | 2008-03-21 | 2011-02-17 | Microsemi Corporation | Schottky barrier diode (sbd) and its off-shoot merged pn/schottky diode or junction barrier schottky (jbs) diode |
CN104335328A (en) * | 2012-03-30 | 2015-02-04 | 富士电机株式会社 | Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device manufactured by same |
CN102881841A (en) * | 2012-10-16 | 2013-01-16 | 北京大学 | Semiconductor photoelectric device using copper/graphene composite electrode as anode |
CN105977289A (en) * | 2015-03-10 | 2016-09-28 | Abb 技术有限公司 | Power semiconductor rectifier with controllable on-state voltage |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449085A (en) * | 2018-09-12 | 2019-03-08 | 秦皇岛京河科学技术研究院有限公司 | A kind of 4H-SiC Schottky diode and preparation method thereof that Surge handling capability is enhanced |
CN112164726A (en) * | 2020-09-15 | 2021-01-01 | 五邑大学 | A kind of Schottky barrier diode and preparation method thereof |
CN113555497A (en) * | 2021-06-09 | 2021-10-26 | 浙江芯国半导体有限公司 | High-mobility SiC-based graphene device and preparation method thereof |
CN113555497B (en) * | 2021-06-09 | 2023-12-29 | 浙江芯科半导体有限公司 | SiC-based graphene device with high mobility and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2019119958A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110265486B (en) | Gallium oxide SBD terminal structure and preparation method | |
CN103325840B (en) | Thin film transistor (TFT) and preparation method thereof | |
CN108321212A (en) | The preparation method and its structure of SiC Schottky diode | |
CN102227000B (en) | Silicon carbide MOSFET device based on super junction and preparation method | |
CN102945860B (en) | AlGaN/GaN heterojunction enhancement-mode device with in-situ SiN cap layer and production method thereof | |
CN108321213A (en) | The preparation method and its structure of SiC power diode devices | |
CN105810722A (en) | SiC metal-oxide-semiconductor field-effect transistor (MOSFET) device and fabrication method thereof | |
JP2012160485A (en) | Semiconductor device and manufacturing method of the same | |
CN106684157A (en) | Three-stage field plate terminal-based 4H-SiC schottky diode and manufacturing method | |
CN107785250B (en) | Silicon carbide-based Schottky contact fabrication method and Schottky diode fabrication method | |
CN106876256A (en) | SiC double flute UMOSFET devices and preparation method thereof | |
CN115312604A (en) | Fin-type gallium oxide PN diode with high voltage resistance and low on-resistance and preparation method | |
CN103928524B (en) | Carborundum UMOSFET devices and preparation method with N-type drift layer table top | |
CN103928345B (en) | Ion implanting forms the UMOSFET preparation method of N-type heavy doping drift layer table top | |
CN108257856A (en) | The preparation method and its structure of the SiC MOSFET power devices of high temperature resistant low-power consumption | |
CN107919390A (en) | Based on WO3The diamond field effect transistor and production method of gate medium | |
CN107464851A (en) | A kind of gallium nitride film transistor and its manufacture method | |
CN106876471B (en) | Dual Slot UMOSFET Devices | |
CN106684132A (en) | Silicon carbide bipolar transistor based on active region trench structure and manufacturing method thereof | |
CN107359127B (en) | Fe-doped spin field effect transistor of sapphire substrate and manufacturing method thereof | |
CN105261641A (en) | Heterojunction high-electronic-mobility spin field effect transistor and fabrication method thereof | |
CN104900701B (en) | Silicon carbide UMOSFET devices and production method with two-region floating junction | |
CN103928346B (en) | It is epitaxially-formed the UMOSFET device preparation method of N-type heavy doping drift layer table top | |
CN107731909A (en) | Based on MoO3/Al2O3The diamond field effect transistor and preparation method of double layer gate dielectric | |
CN112038394A (en) | Preparation method of MOSFET (Metal-oxide-semiconductor field Effect transistor) capable of improving stability of threshold voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Hou Tongxiao Inventor after: Shao Jinwen Inventor after: Jia Renxu Inventor after: Yuan Lei Inventor after: Tang Xiaoyan Inventor before: Jia Renxu Inventor before: Shao Jinwen Inventor before: Hou Tongxiao Inventor before: Yuan Lei Inventor before: Tang Xiaoyan |
|
CB03 | Change of inventor or designer information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180724 |
|
RJ01 | Rejection of invention patent application after publication |