CN108305835A - Method for manufacturing fin type transistor device - Google Patents
Method for manufacturing fin type transistor device Download PDFInfo
- Publication number
- CN108305835A CN108305835A CN201810223692.4A CN201810223692A CN108305835A CN 108305835 A CN108305835 A CN 108305835A CN 201810223692 A CN201810223692 A CN 201810223692A CN 108305835 A CN108305835 A CN 108305835A
- Authority
- CN
- China
- Prior art keywords
- epitaxial layer
- fin
- layer
- fins
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明提供一种鳍式晶体管器件的制造方法,在衬底上外延生长第一外延层,而后在第一外延层上外延生长第二外延层,而后,刻蚀第二外延层,形成鳍。由于第一外延层具有与第二外延层不同的材料,使得二者具有刻蚀选择性,在形成鳍的刻蚀过程中,以第一外延层为刻蚀停止层,这样,可以使得形成的鳍都停止在第一外延层上,有效控制刻蚀深度,使得鳍的高度可控,从而,提高鳍的均匀性。
The invention provides a method for manufacturing a fin-type transistor device. A first epitaxial layer is epitaxially grown on a substrate, and then a second epitaxial layer is epitaxially grown on the first epitaxial layer, and then the second epitaxial layer is etched to form a fin. Since the first epitaxial layer has different materials from the second epitaxial layer, the two have etching selectivity. In the etching process of forming the fin, the first epitaxial layer is used as an etching stop layer, so that the formed The fins are all stopped on the first epitaxial layer, and the etching depth is effectively controlled, so that the height of the fins is controllable, thereby improving the uniformity of the fins.
Description
技术领域technical field
本发明涉及半导体器件及其制造领域,特别涉及一种鳍式晶体管器件的制造方法。The invention relates to the field of semiconductor devices and their manufacture, in particular to a method for manufacturing a fin transistor device.
背景技术Background technique
随着集成电路的技术的不断发展,器件的特征尺寸不断减小,集成度不断提高,由于短沟道效应愈发显著,成为影响器件性能的主导因素,传统的平面器件很难再继续减小尺寸。With the continuous development of integrated circuit technology, the feature size of devices continues to decrease and the integration level continues to increase. As the short channel effect becomes more and more significant, it becomes the dominant factor affecting device performance. It is difficult for traditional planar devices to continue to reduce size.
目前,提出了鳍式晶体管器件(FIN-FET)的立体器件结构,Fin-FET是具有鳍型沟道结构的晶体管,它利用薄鳍的几个表面作为沟道,从而可以防止传统晶体管中的短沟道效应,同时可以增大工作电流。At present, the three-dimensional device structure of the fin transistor device (FIN-FET) is proposed. The short channel effect can increase the working current at the same time.
在鳍式晶体管器件的形成工艺中,通过刻蚀衬底来形成鳍,而随着鳍的密度不断增大,使得刻蚀工艺也越来越难控制,导致刻蚀后鳍的高度不易控制,鳍的高度存在不均匀性,使得鳍之间的漏电流不可控。In the formation process of fin-type transistor devices, the fins are formed by etching the substrate, and as the density of the fins increases, the etching process becomes more and more difficult to control, resulting in the difficulty of controlling the height of the fins after etching. There is non-uniformity in the height of the fins, making the leakage current between the fins uncontrollable.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种鳍式晶体管器件的制造方法,有效控制鳍的高度,提高鳍的均匀性。In view of this, the object of the present invention is to provide a method for manufacturing a fin transistor device, which can effectively control the height of the fin and improve the uniformity of the fin.
为实现上述目的,本发明有如下技术方案:To achieve the above object, the present invention has the following technical solutions:
一种鳍式晶体管器件的制造方法,包括:A method of manufacturing a fin transistor device, comprising:
提供半导体衬底;Provide semiconductor substrates;
在所述半导体衬底上外延生长半导体材料的第一外延层;epitaxially growing a first epitaxial layer of semiconductor material on said semiconductor substrate;
在所述第一外延层上外延生长半导体材料的第二外延层,所述第一外延层具有同所述第二外延层不同的材料;epitaxially growing a second epitaxial layer of semiconductor material on the first epitaxial layer, the first epitaxial layer having a different material than the second epitaxial layer;
以所述第一外延层为刻蚀停止层,刻蚀所述第二外延层,以形成鳍;using the first epitaxial layer as an etching stop layer, etching the second epitaxial layer to form fins;
在所述鳍之间形成隔离结构,以及在所述鳍上形成栅极。An isolation structure is formed between the fins, and a gate is formed on the fins.
可选地,在形成鳍之后、形成隔离结构之前,还包括:Optionally, after forming the fins and before forming the isolation structure, further comprising:
去除所述鳍两侧的第一外延层;removing the first epitaxial layer on both sides of the fin;
将所述鳍下的第一外延层氧化为埋氧层。The first epitaxial layer under the fin is oxidized to a buried oxide layer.
可选地,将所述鳍下的第一外延层氧化为埋氧层,包括:Optionally, oxidizing the first epitaxial layer under the fins to a buried oxide layer includes:
在所述鳍的侧壁上形成保护层;forming a protective layer on sidewalls of the fin;
进行氧化工艺,在所述鳍表面以及暴露的衬底表面形成表面氧化层,以及将所述鳍下的第一外延层氧化为埋氧层;performing an oxidation process, forming a surface oxide layer on the surface of the fin and the exposed substrate surface, and oxidizing the first epitaxial layer under the fin into a buried oxide layer;
去除所述表面氧化层以及所述保护层。removing the surface oxide layer and the protection layer.
可选地,所述第一外延层的厚度为2-20纳米。Optionally, the thickness of the first epitaxial layer is 2-20 nanometers.
可选地,所述第二外延层的厚度为50-500纳米。Optionally, the thickness of the second epitaxial layer is 50-500 nanometers.
可选地,所述半导体衬底和所述第二外延层具有相同材料。Optionally, the semiconductor substrate and the second epitaxial layer have the same material.
可选地,所述半导体衬底为硅衬底,所述第二外延层为外延硅,所述第一外延层为锗硅。Optionally, the semiconductor substrate is a silicon substrate, the second epitaxial layer is epitaxial silicon, and the first epitaxial layer is silicon germanium.
可选地,在所述鳍上形成栅极,包括:Optionally, forming a gate on the fin includes:
在所述鳍的中部形成所述鳍上的假栅;forming a dummy gate on the fin in the middle of the fin;
在所述假栅的侧壁上形成侧墙;forming sidewalls on sidewalls of the dummy gate;
在所述假栅两侧的鳍中形成源漏区;forming source and drain regions in the fins on both sides of the dummy gate;
形成覆盖所述假栅两侧鳍的层间介质层;forming an interlayer dielectric layer covering the fins on both sides of the dummy gate;
去除假栅,以形成开口;removing dummy gates to form openings;
在开口中形成替代栅。A replacement gate is formed in the opening.
可选地,所述替代栅包括高k介质材料及其上的金属栅电极。Optionally, the replacement gate includes a high-k dielectric material and a metal gate electrode thereon.
本发明实施例提供的鳍式晶体管器件的制造方法,在衬底上外延生长第一外延层,而后在第一外延层上外延生长第二外延层,而后,刻蚀第二外延层,形成鳍。由于第一外延层具有与第二外延层不同的材料,使得二者具有刻蚀选择性,在形成鳍的刻蚀过程中,以第一外延层为刻蚀停止层,这样,可以使得形成的鳍都停止在第一外延层上,有效控制刻蚀深度,使得鳍的高度可控,从而,提高鳍的均匀性。In the method for manufacturing a fin transistor device provided by an embodiment of the present invention, a first epitaxial layer is epitaxially grown on a substrate, and then a second epitaxial layer is epitaxially grown on the first epitaxial layer, and then, the second epitaxial layer is etched to form a fin . Since the first epitaxial layer has different materials from the second epitaxial layer, the two have etching selectivity. In the etching process of forming the fin, the first epitaxial layer is used as an etching stop layer, so that the formed The fins are all stopped on the first epitaxial layer, and the etching depth is effectively controlled, so that the height of the fins is controllable, thereby improving the uniformity of the fins.
进一步地,可以对第一外延层进行进一步的刻蚀,以便在鳍与衬底之间形成埋氧层,以便于形成全耗尽型的ETSOI的鳍式晶体管器件,提高器件的性能Further, the first epitaxial layer can be further etched to form a buried oxide layer between the fin and the substrate, so as to form a fully depleted ETSOI fin transistor device and improve the performance of the device
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are For some embodiments of the present invention, those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1示出了根据本发明实施例的鳍式晶体管器件的制造方法的流程图;FIG. 1 shows a flowchart of a method for manufacturing a fin transistor device according to an embodiment of the present invention;
图2-8示出了根据本发明实施例的方法形成鳍式晶体管器件过程中的器件结构剖面示意图。2-8 are schematic cross-sectional diagrams illustrating device structures during the process of forming a fin transistor device according to a method according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Secondly, the present invention is described in detail in combination with schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, and it should not be limited here. The protection scope of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
正如背景技术中的描述,在鳍式晶体管器件的形成工艺中,通过刻蚀衬底来形成鳍,而随着鳍的密度不断增大,使得刻蚀工艺也越来越难控制,导致刻蚀后鳍的高度不易控制,鳍的高度存在不均匀性,使得鳍之间的漏电流不可控。As described in the background art, in the formation process of fin-type transistor devices, fins are formed by etching the substrate, and as the density of fins continues to increase, the etching process is becoming more and more difficult to control, resulting in etching The height of the rear fin is not easy to control, and there is non-uniformity in the height of the fins, which makes the leakage current between the fins uncontrollable.
为此,本申请提出了一种鳍式晶体管器件的制造方法,在衬底上外延生长第一外延层,而后在第一外延层上外延生长第二外延层,而后,刻蚀第二外延层,形成鳍。由于第一外延层具有与第二外延层不同的材料,使得二者具有刻蚀选择性,在形成鳍的刻蚀过程中,以第一外延层为刻蚀停止层,这样,可以使得形成的鳍都停止在第一外延层上,有效控制刻蚀深度,使得鳍的高度可控,从而,提高鳍的均匀性。For this reason, the present application proposes a manufacturing method of a fin-type transistor device, in which a first epitaxial layer is epitaxially grown on a substrate, and then a second epitaxial layer is epitaxially grown on the first epitaxial layer, and then, the second epitaxial layer is etched. , forming fins. Since the first epitaxial layer has different materials from the second epitaxial layer, the two have etching selectivity. In the etching process of forming the fin, the first epitaxial layer is used as an etching stop layer, so that the formed The fins are all stopped on the first epitaxial layer, and the etching depth is effectively controlled, so that the height of the fins is controllable, thereby improving the uniformity of the fins.
为了更好地理解本申请的技术方案和技术效果,以下将结合流程图图1和附图2-8对具体的实施例进行详细的描述,其中,附图2-8是各制造过程中器件沿鳍宽度方向的剖面示意图。In order to better understand the technical solutions and technical effects of the present application, the specific embodiments will be described in detail below in conjunction with the flow chart Figure 1 and accompanying drawings 2-8, wherein accompanying drawings 2-8 are devices in each manufacturing process Schematic cross-section along the width of the fin.
参考图1所示,在步骤S01,提供半导体衬底100,参考图2所示。Referring to FIG. 1 , in step S01 , a semiconductor substrate 100 is provided, as shown in FIG. 2 .
在本发明实施例中,半导体衬底100可以为Si衬底、Ge衬底、SiGe衬底、SOI(绝缘体上硅,Silicon On Insulator)或GOI(绝缘体上锗,Germanium On Insulator)等。在其他实施例中,所述半导体衬底还可以为包括其他元素半导体或化合物半导体的衬底,例如GaAs、InP或SiC等,还可以为叠层结构,例如Si/SiGe等,还可以其他外延结构,例如SGOI(绝缘体上锗硅)等。In the embodiment of the present invention, the semiconductor substrate 100 may be a Si substrate, a Ge substrate, a SiGe substrate, SOI (Silicon On Insulator, Silicon On Insulator) or GOI (Germanium On Insulator, Germanium On Insulator) and the like. In other embodiments, the semiconductor substrate may also be a substrate including other elemental semiconductors or compound semiconductors, such as GaAs, InP or SiC, etc., or a stacked structure, such as Si/SiGe, etc., or other epitaxial Structures, such as SGOI (silicon germanium on insulator), etc.
在本实施例中,所述半导体衬底100为体硅衬底,如图2所示。In this embodiment, the semiconductor substrate 100 is a bulk silicon substrate, as shown in FIG. 2 .
在步骤S02,在所述半导体衬底100上外延生长半导体材料的第一外延层110,参考图3所示。In step S02 , a first epitaxial layer 110 of semiconductor material is epitaxially grown on the semiconductor substrate 100 , as shown in FIG. 3 .
在步骤S03,在所述第一外延层110上外延生长半导体材料的第二外延层120,所述第一外延层110具有同所述第二外延层120不同的材料,参考图3所示。In step S03 , a second epitaxial layer 120 of semiconductor material is epitaxially grown on the first epitaxial layer 110 , and the first epitaxial layer 110 has a material different from that of the second epitaxial layer 120 , as shown in FIG. 3 .
在本发明实施例中,第二外延层用于形成鳍,第一外延层为刻蚀第二外延层形成鳍时的刻蚀停止层,第一外延层和第二外延层都可以通过外延生长工艺(EPI)来形成,确保形成的第二外延层具有较好的晶向,可以形成高质量的鳍。第一外延层110和第二外延层120为不同的半导体材料,以使得二者之间具有刻蚀选择性。In the embodiment of the present invention, the second epitaxial layer is used to form fins, and the first epitaxial layer is an etching stop layer when etching the second epitaxial layer to form fins, and both the first epitaxial layer and the second epitaxial layer can be grown by epitaxy process (EPI) to ensure that the formed second epitaxial layer has a better crystal orientation and can form high-quality fins. The first epitaxial layer 110 and the second epitaxial layer 120 are made of different semiconductor materials, so that there is etching selectivity between them.
在具体应用中,可以根据不同的衬底材料,选择生长合适材料的第一和第二外延层,以使得第二外延层能作为鳍的形成,以及第一外延层能作为刻蚀停止层。可以根据具体的需要设置他们的厚度,在一些应用中,第一外延层的厚度范围可以为大约2-20纳米,第二外延层的厚度范围可以为大约50-500纳米。In a specific application, according to different substrate materials, the first and second epitaxial layers of suitable materials can be selected and grown, so that the second epitaxial layer can be used as a fin formation, and the first epitaxial layer can be used as an etching stop layer. Their thicknesses can be set according to specific needs. In some applications, the thickness of the first epitaxial layer can be in the range of about 2-20 nm, and the thickness of the second epitaxial layer can be in the range of about 50-500 nm.
在本实施例中,所述第一外延层110为外延锗硅(GxS1-x,0<x<1),所述第二外延层120为外延硅,锗硅与硅具有接近的晶向,便于形成较好质量的外延硅,以用于鳍的形成,且与硅具有较好的刻蚀选择性。In this embodiment, the first epitaxial layer 110 is epitaxial silicon germanium (G x S 1-x , 0<x<1), the second epitaxial layer 120 is epitaxial silicon, and silicon germanium and silicon have close The crystal orientation facilitates the formation of better-quality epitaxial silicon for the formation of fins, and has better etching selectivity with silicon.
在步骤S04,以所述第一外延层110为刻蚀停止层,刻蚀所述第二外延层120,以形成鳍122,参考图4所示。In step S04 , using the first epitaxial layer 110 as an etching stop layer, the second epitaxial layer 120 is etched to form fins 122 , as shown in FIG. 4 .
在刻蚀第二外延层120的过程中,以第一外延层为刻蚀停止层,也就是说,第二外延层的刻蚀停止在第一外延层上,这样,形成的鳍的高度都基本为第二外延层的厚度,有效地控制了刻蚀深度,使得鳍的高度可控,从而,提高鳍的均匀性。In the process of etching the second epitaxial layer 120, the first epitaxial layer is used as an etching stop layer, that is, the etching of the second epitaxial layer stops on the first epitaxial layer, so that the height of the formed fin The thickness of the second epitaxial layer is basically the thickness of the second epitaxial layer, which effectively controls the etching depth, so that the height of the fin can be controlled, thereby improving the uniformity of the fin.
在具体的应用中,可以先在第二外延层120上形成掩膜层(图未示出),采用各项异性刻蚀,例如可以采用RIE(反应离子刻蚀)的方法,进行第二外延层120的刻蚀,当刻蚀到第一外延层时,停止刻蚀。In a specific application, a mask layer (not shown) can be formed on the second epitaxial layer 120 first, and anisotropic etching, for example, RIE (reactive ion etching) can be used to perform the second epitaxial layer 120. The etching of layer 120 stops when the first epitaxial layer is etched.
在更优的实施例中,还可以对第二外延层120进行进一步的刻蚀,以便在鳍与衬底之间形成氧化物层,从而,形成埋氧层,以便于形成全耗尽型的ETSOI(eltra thin Siliconon insulator)的鳍式晶体管器件,提高器件的性能。In a more preferred embodiment, the second epitaxial layer 120 can also be further etched to form an oxide layer between the fin and the substrate, thereby forming a buried oxide layer so as to form a fully depleted epitaxial layer. ETSOI (eltra thin Siliconon insulator) fin transistor device improves device performance.
在该优选的实施例中,第一外延层110的厚度可以在2-20nm,更优地,可以为2-5nm,形成埋氧层的步骤可以包括:In this preferred embodiment, the thickness of the first epitaxial layer 110 can be 2-20 nm, more preferably, it can be 2-5 nm, and the step of forming the buried oxide layer can include:
首先,去除所述鳍122两侧的第一外延层120参考图5所示。First, remove the first epitaxial layer 120 on both sides of the fin 122 as shown in FIG. 5 .
可以采用干法或湿法刻蚀去除鳍122两侧的第一外延层120,仅保留鳍120下的第一外延层112。The first epitaxial layer 120 on both sides of the fin 122 may be removed by dry or wet etching, leaving only the first epitaxial layer 112 under the fin 120 .
本实施例中,可以采用醋酸混合溶液去除鳍122两侧锗硅的第一外延层120。In this embodiment, the first epitaxial layer 120 of SiGe on both sides of the fin 122 may be removed by using an acetic acid mixed solution.
而后,将所述鳍122下的第一外延层112氧化为埋氧层114,参考图6所示。Then, the first epitaxial layer 112 under the fin 122 is oxidized into the buried oxide layer 114 , as shown in FIG. 6 .
可以先进行氧化工艺,氧化之后,将所述鳍下的第一外延层完全氧化,从而形成埋氧层,同时,鳍表面以及暴露的衬底表面也会被氧化,形成表面氧化层。之后,可以通过酸液进行漂洗,例如氢氟酸,去除表面氧化层,从而,在鳍122与衬底100之间形成埋氧层112。通过控制第一外延层的厚度以及氧化时间,可以形成足够薄的埋氧层122,以便于形成全耗尽型的ETSOI(eltra thin Silicon on insulator)的鳍式晶体管器件,提高器件的性能。An oxidation process may be performed first, and after the oxidation, the first epitaxial layer under the fin is completely oxidized to form a buried oxide layer, and at the same time, the surface of the fin and the exposed substrate surface are also oxidized to form a surface oxide layer. Afterwards, the surface oxide layer may be removed by rinsing with an acid solution, such as hydrofluoric acid, thereby forming the buried oxide layer 112 between the fin 122 and the substrate 100 . By controlling the thickness of the first epitaxial layer and the oxidation time, a sufficiently thin buried oxide layer 122 can be formed to facilitate the formation of a fully depleted ETSOI (eltra thin Silicon on insulator) fin transistor device and improve device performance.
更优地,在进行氧化工艺之前,可以在鳍的侧壁上形成保护层,本实施例中可以采用CVD的方式沉积一层氮化硅的保护层,然后进行干法蚀刻,将顶部与底部暴露出来,从而仅在鳍的侧壁上形成氮化硅的保护层,这样后续的氧化工艺就可以不消耗鳍的侧壁,氧化工艺之后,可以用热磷酸去除保护层。More preferably, before performing the oxidation process, a protective layer can be formed on the sidewall of the fin. In this embodiment, a protective layer of silicon nitride can be deposited by CVD, and then dry-etched to separate the top and bottom The silicon nitride protective layer is only formed on the sidewall of the fin, so that the subsequent oxidation process does not consume the sidewall of the fin. After the oxidation process, the protective layer can be removed with hot phosphoric acid.
至此,就形成了本发明实施例的鳍,通过该方法形成的鳍的高度可控,鳍的均匀性好,进一步还可以形成超薄的埋氧层,之后,可以根据需要,选择合适的工艺在鳍上形成其他器件结构。So far, the fin of the embodiment of the present invention has been formed. The height of the fin formed by this method is controllable, the uniformity of the fin is good, and an ultra-thin buried oxide layer can be formed. After that, an appropriate process can be selected according to the needs Other device structures are formed on the fins.
在步骤S05,在所述鳍122之间形成隔离结构130,以及在所述鳍122上形成栅极140、142,参考图8所示。In step S05 , an isolation structure 130 is formed between the fins 122 , and gates 140 and 142 are formed on the fins 122 , as shown in FIG. 8 .
隔离结构130位分隔开鳍勾到的隔离材料,本实施例中,可以为氧化硅。The isolation structure 130 separates the isolation material from the fin hook, which may be silicon oxide in this embodiment.
栅极包括栅介质层140和栅电极142,该栅介质层140可以为氧化硅或高k栅介质材料(例如,和氧化硅相比,具有高介电常数的材料)或其他合适的介质材料,高k介质材料例如铪基氧化物,HFO2、HfSiO、HfSiON、HfTaO、HfTiO等。栅电极142可以金属栅电极,可以为一层或多层结构,可以包括金属材料或多晶硅或他们的组合,金属材料例如Ti、TiAlx、TiN、TaNx、HfN、TiCx、TaCx等等。The gate includes a gate dielectric layer 140 and a gate electrode 142, and the gate dielectric layer 140 can be silicon oxide or a high-k gate dielectric material (for example, a material with a high dielectric constant compared with silicon oxide) or other suitable dielectric materials , High-k dielectric materials such as hafnium-based oxides, HFO2, HfSiO, HfSiON, HfTaO, HfTiO, etc. The gate electrode 142 can be a metal gate electrode, can be a one-layer or multi-layer structure, can include metal materials or polysilicon or their combination, metal materials such as Ti, TiAl x , TiN, TaN x , HfN, TiC x , TaC x , etc. .
在本实施例中,可以通过填充二氧化硅的隔离材料(图未示出),并进行化学机械平坦化;而后,可以使用氢氟酸腐蚀去除一定厚度的隔离材料,保留部分的隔离材料在鳍之间,从而形成了隔离结构130,如图7所示。In this embodiment, a silicon dioxide-filled isolation material (not shown in the figure) can be used to perform chemical mechanical planarization; then, a certain thickness of the isolation material can be removed by hydrofluoric acid etching, and a part of the isolation material remains in the Between the fins, an isolation structure 130 is formed, as shown in FIG. 7 .
本实施例中,可以采用后栅工艺形成栅极,具体的,包括以下步骤。In this embodiment, the gate may be formed by a gate-last process, specifically, the following steps are included.
首先,在所述鳍的中部形成所述鳍上的假栅。First, a dummy gate on the fin is formed in the middle of the fin.
假栅可以包括伪介质层及伪栅极,该假栅所在区域为最终器件的栅极区。可以通过依次沉积伪介质层及伪栅极,伪介质层例如可以为氧化硅,伪栅极例如可以为多晶硅,而后,采用刻蚀技术,进行图案化,来形成假栅。The dummy gate may include a dummy dielectric layer and a dummy gate, and the region where the dummy gate is located is the gate region of the final device. The dummy gate can be formed by sequentially depositing a dummy dielectric layer and a dummy gate. The dummy dielectric layer can be, for example, silicon oxide, and the dummy gate can be, for example, polysilicon, and then patterned by using an etching technique.
而后,在所述假栅的侧壁上形成侧墙。Then, sidewalls are formed on the sidewalls of the dummy gates.
侧墙可以为单层或多层结构,可以由氮化硅、氧化硅、氮氧化硅、碳化硅、氟化物掺杂硅玻璃、低k电介质材料及其组合,和/或其他合适的材料形成。可以通过淀积侧墙材料,而后通过各向异性刻蚀工艺,形成侧墙。The sidewall can be a single-layer or multi-layer structure, and can be formed of silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, fluoride-doped silicon glass, low-k dielectric materials and combinations thereof, and/or other suitable materials . The sidewall can be formed by depositing the sidewall material and then performing an anisotropic etching process.
接着,在假栅两侧的鳍中形成源漏区。Next, source and drain regions are formed in the fins on both sides of the dummy gate.
可以采用离子注入或其他合适的方式形成源漏区,为了提高器件沟道区的载流子迁移率,采用外延生长具有应力的源漏区。The source and drain regions can be formed by ion implantation or other suitable methods. In order to improve the mobility of carriers in the channel region of the device, epitaxy is used to grow the source and drain regions with stress.
形成具有应力的源漏区时,具体的,首先,可以通过刻蚀工艺,例如干法刻蚀工艺,在所述假栅两侧的鳍上形成凹陷区。而后,通过选择性外延生长工艺,在所述凹陷区形成具有应力的源漏区,其中,对于PMOS器件,所述源漏区的材料提供压应力,对于NMOS器件所述源漏区的材料提供张应力。在本实施例中,鳍为外延硅材料,对于NMOS器件,源漏区可以为SiC;对于PMOS器件,源漏区可以为SiGe、Ge、GeSn或三五族材料。When forming the source and drain regions with stress, specifically, firstly, an etching process, such as a dry etching process, may be used to form recessed regions on the fins on both sides of the dummy gate. Then, through a selective epitaxial growth process, a source and drain region with stress is formed in the recessed region, wherein, for a PMOS device, the material of the source and drain region provides compressive stress, and for an NMOS device, the material of the source and drain region provides Tensile stress. In this embodiment, the fin is made of epitaxial silicon material. For NMOS devices, the source and drain regions can be SiC; for PMOS devices, the source and drain regions can be SiGe, Ge, GeSn or III-V materials.
而后,形成覆盖所述假栅两侧鳍的层间介质层。Then, an interlayer dielectric layer covering the fins on both sides of the dummy gate is formed.
可以通过合适的淀积方法淀积介质材料,例如未掺杂的氧化硅(SiO2)、掺杂的氧化硅(如硼硅玻璃、硼磷硅玻璃等)、氮化硅(Si3N4)或其他低k介质材料,而后进行平坦化,例如CMP(化学机械抛光),来形成层间介质层。Dielectric materials can be deposited by suitable deposition methods, such as undoped silicon oxide (SiO 2 ), doped silicon oxide (such as borosilicate glass, borophosphosilicate glass, etc.), silicon nitride (Si 3 N 4 ) or other low-k dielectric materials, and then planarized, such as CMP (Chemical Mechanical Polishing), to form an interlayer dielectric layer.
而后,去除假栅,以形成开口。Then, the dummy gate is removed to form an opening.
可以使用湿蚀刻和/或干蚀刻除去假栅,从而,在原假栅区域,形成暴露出鳍的开口The dummy gate can be removed using wet etch and/or dry etch, thereby forming an opening exposing the fin in the area of the original dummy gate
最后,在开口中形成替代栅。Finally, a replacement gate is formed in the opening.
可以采用合适的沉积技术形成高k介质材料的栅介质层,而后,在开口中进行填充,以形成一层或多层结构的金属栅电极。A gate dielectric layer of a high-k dielectric material can be formed by using a suitable deposition technique, and then the opening is filled to form a metal gate electrode with a one-layer or multi-layer structure.
至此,形成了本发明实施例的鳍式晶体管器件。So far, the fin transistor device of the embodiment of the present invention is formed.
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred implementations of the present invention. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent of equivalent change Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810223692.4A CN108305835A (en) | 2018-03-19 | 2018-03-19 | Method for manufacturing fin type transistor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810223692.4A CN108305835A (en) | 2018-03-19 | 2018-03-19 | Method for manufacturing fin type transistor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108305835A true CN108305835A (en) | 2018-07-20 |
Family
ID=62850121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810223692.4A Pending CN108305835A (en) | 2018-03-19 | 2018-03-19 | Method for manufacturing fin type transistor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108305835A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200049468A (en) * | 2018-10-26 | 2020-05-08 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Buried power rail and method forming same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653608A (en) * | 2002-06-03 | 2005-08-10 | 国际商业机器公司 | Bulk semiconductor fin FET device and method of forming the same |
US7871873B2 (en) * | 2009-03-27 | 2011-01-18 | Global Foundries Inc. | Method of forming fin structures using a sacrificial etch stop layer on bulk semiconductor material |
CN102956498A (en) * | 2011-08-31 | 2013-03-06 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN103390637A (en) * | 2012-05-09 | 2013-11-13 | 中国科学院微电子研究所 | Finfet and manufacturing method thereof |
CN103515215A (en) * | 2012-06-28 | 2014-01-15 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing fin field effect tube |
CN103650146A (en) * | 2011-07-05 | 2014-03-19 | 国际商业机器公司 | Bulk finfet with uniform height and bottom isolation |
CN107452679A (en) * | 2016-06-01 | 2017-12-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its manufacture method |
-
2018
- 2018-03-19 CN CN201810223692.4A patent/CN108305835A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653608A (en) * | 2002-06-03 | 2005-08-10 | 国际商业机器公司 | Bulk semiconductor fin FET device and method of forming the same |
US7871873B2 (en) * | 2009-03-27 | 2011-01-18 | Global Foundries Inc. | Method of forming fin structures using a sacrificial etch stop layer on bulk semiconductor material |
CN103650146A (en) * | 2011-07-05 | 2014-03-19 | 国际商业机器公司 | Bulk finfet with uniform height and bottom isolation |
CN102956498A (en) * | 2011-08-31 | 2013-03-06 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
CN103390637A (en) * | 2012-05-09 | 2013-11-13 | 中国科学院微电子研究所 | Finfet and manufacturing method thereof |
CN103515215A (en) * | 2012-06-28 | 2014-01-15 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing fin field effect tube |
CN107452679A (en) * | 2016-06-01 | 2017-12-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its manufacture method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200049468A (en) * | 2018-10-26 | 2020-05-08 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Buried power rail and method forming same |
US10872818B2 (en) | 2018-10-26 | 2020-12-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Buried power rail and method forming same |
KR102209956B1 (en) * | 2018-10-26 | 2021-02-02 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Buried power rail and method forming same |
DE102019106763B4 (en) | 2018-10-26 | 2023-10-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | METHOD FOR FORMING AN INTEGRATED CIRCUIT STRUCTURE AND INTEGRATED CIRCUIT STRUCTURE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103915345B (en) | Semiconductor device and its manufacture method | |
CN102810476B (en) | Method for manufacturing fin field effect transistor | |
CN106206314B (en) | Methods of trimming fin structures | |
CN105990346A (en) | Integrated circuit structure with substrate isolation and non-doped channel | |
JP6173083B2 (en) | Method for manufacturing a field effect semiconductor device | |
CN109103108A (en) | Method for forming semiconductor device | |
CN104167393B (en) | Semiconductor device manufacturing method | |
CN105336624B (en) | Fin field effect transistor and manufacturing method of dummy gate thereof | |
CN105575804B (en) | Fin field effect transistor and manufacturing method thereof | |
CN105575807A (en) | Fin field effect transistor and manufacturing method thereof | |
CN104217948B (en) | Semiconductor manufacturing method | |
CN108305835A (en) | Method for manufacturing fin type transistor device | |
CN107785262A (en) | The manufacture method of semiconductor structure | |
CN105702680B (en) | Semiconductor device and manufacturing method thereof | |
CN106601793B (en) | A kind of semiconductor device and its manufacturing method | |
CN106653608A (en) | Method for manufacturing silicon-on-insulator (SOI) FinFET (Fin field Effect transistor) based on bulk silicon | |
CN105702618A (en) | Semiconductor device and manufacturing method thereof | |
US10199501B2 (en) | Method for forming semiconductor structure | |
CN105575806A (en) | Fin field effect transistor and manufacturing method thereof | |
CN103928521A (en) | Fin-type semiconductor structure and forming method thereof | |
CN105489647B (en) | Semiconductor device and manufacturing method thereof | |
CN112864239B (en) | Field effect transistor and method of making the same | |
CN104217947A (en) | Semiconductor manufacturing method | |
CN108470685A (en) | Nanowire structure and manufacturing method thereof | |
CN111383917B (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180720 |
|
RJ01 | Rejection of invention patent application after publication |