[go: up one dir, main page]

CN108267106B - A fast, stable and simple cylindricity error evaluation method - Google Patents

A fast, stable and simple cylindricity error evaluation method Download PDF

Info

Publication number
CN108267106B
CN108267106B CN201711489035.6A CN201711489035A CN108267106B CN 108267106 B CN108267106 B CN 108267106B CN 201711489035 A CN201711489035 A CN 201711489035A CN 108267106 B CN108267106 B CN 108267106B
Authority
CN
China
Prior art keywords
sequence number
key sequence
matrix
analysis
column vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711489035.6A
Other languages
Chinese (zh)
Other versions
CN108267106A (en
Inventor
唐哲敏
黄美发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201711489035.6A priority Critical patent/CN108267106B/en
Publication of CN108267106A publication Critical patent/CN108267106A/en
Application granted granted Critical
Publication of CN108267106B publication Critical patent/CN108267106B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明属于精密计量与计算机应用领域,具有涉及一种稳定、快速、形式简单的圆柱度误差评定方法,由以下步骤组成:步骤1:获取测点集,并根据测点集建立特征行向量集、边界元素集和状态元素集;步骤2:取状态元素集最小值对应的测点为关键点,并将其测点序号加入到关键点集中;步骤3:根据关键点集建立分析矩阵和分析列向量;步骤4:对分析矩阵及增广分析矩阵进行秩分析,以确定继续寻优、剔除关键点还是终止程序并得到最优值;步骤5:求解分析矩阵和分析列向量得到寻优方向;步骤6:以追及问题求解新的关键点,更新测点状态集,并进入下一次循环;步骤7,终止程序并得到最优值。

Figure 201711489035

The invention belongs to the field of precision measurement and computer application, and relates to a stable, fast and simple-form cylindricity error evaluation method. , boundary element set and state element set; Step 2: Take the measurement point corresponding to the minimum value of the state element set as the key point, and add its measurement point number to the key point set; Step 3: Establish an analysis matrix and analysis based on the key point set Column vector; Step 4: Perform rank analysis on the analysis matrix and the augmented analysis matrix to determine whether to continue the optimization, eliminate key points or terminate the program and obtain the optimal value; Step 5: Solve the analysis matrix and analyze the column vector to obtain the optimization direction ; Step 6: Solve new key points with the tracking problem, update the state set of measuring points, and enter the next cycle; Step 7, terminate the program and obtain the optimal value.

Figure 201711489035

Description

一种快稳简的圆柱度误差评定方法A fast, stable and simple cylindricity error evaluation method

技术领域technical field

本发明属于精密计量与计算机应用领域,具有涉及一种稳定、快速、形式简单的圆柱度误差评定方法,可用于有回转体结构的零部件的圆柱度误差的评定,并为其加工工艺的改进提供指导。The invention belongs to the fields of precision measurement and computer application, and relates to a stable, fast and simple cylindricity error evaluation method, which can be used for the evaluation of the cylindricity error of parts with a structure of revolution, and improves the processing technology thereof. Provide guidance.

背景技术Background technique

尺寸误差、形位误差(形状误差和位置误差的简称)直接影响产品质量、装配及其使用寿命,快速、准确地计算零件误差,具有重要的意义。国家标准和ISO标准中给出了圆柱度误差的定义和判别方法,但并未给出由测量数据计算出圆柱度误差值的方法。目前,圆柱度误差的评定方法是学术界的一个研究热点,主要分为以下五类评定方法。Dimensional error, shape and position error (abbreviation for shape error and position error) directly affect product quality, assembly and its service life, and it is of great significance to calculate part error quickly and accurately. The definition and discrimination method of cylindricity error are given in the national standard and ISO standard, but the method of calculating the cylindricity error value from the measurement data is not given. At present, the evaluation method of cylindricity error is a research hotspot in academia, and it is mainly divided into the following five types of evaluation methods.

第一类,专门的几何评定方法。利用圆柱的几何性质,按照内接圆柱和/或外切圆柱的平移和变形策略,逐步寻找符合国家标准和ISO标准的定义和/或判别条件的圆柱度误差。这类方法速度较快,但数学模型的形式较复杂,不易于推广使用。The first category, specialized geometric evaluation methods. Using the geometric properties of the cylinder, according to the translation and deformation strategy of the inscribed cylinder and/or the circumscribed cylinder, step by step to find the cylindricity error that meets the definition and/or discrimination conditions of the national standard and ISO standard. This kind of method is faster, but the form of the mathematical model is more complicated, and it is not easy to popularize and use.

第二类,凸包或类凸包评定方法。利用凸包的性质构建凸包或类凸包,获取有效测量数据,缩小待评定数据规模,最终通过枚举法取得符合国家标准和ISO标准的定义和/或判别条件的圆柱度误差。这类方法处理中等规模测点数据时有明显的优势。数据规模较大的场合,也仍然可以通过构建凸包来缩小数据规模。但是,这类方法用于直接评定的效率却已经显得不足了。The second category, convex hull or convex hull-like assessment methods. Use the properties of convex hulls to construct convex hulls or convex hulls, obtain effective measurement data, reduce the scale of data to be evaluated, and finally obtain cylindricity errors that meet the definition and/or discrimination conditions of national standards and ISO standards through enumeration methods. This kind of method has obvious advantages when dealing with medium-scale measuring point data. When the data scale is large, the data scale can still be reduced by constructing a convex hull. However, the efficiency of such methods for direct assessment has been insufficient.

第三类,构建线性或非线性的目标优化函数,并采用普通优化方法进行优化求解,目标优化函数的优化值作为圆柱度误差。这类方法简单易懂,在很多软件中实现了标准解法,因此,易于推广。由于没有加入圆柱度误差评定的几何特点,而且没有考虑评定任务中数据规模较大这一情况,这类方法普遍效率不高。The third category is to construct a linear or nonlinear objective optimization function, and use the common optimization method to optimize the solution, and the optimized value of the objective optimization function is used as the cylindricity error. This kind of method is simple and easy to understand, and standard solutions are implemented in many softwares, so it is easy to generalize. Because the geometric characteristics of cylindricity error evaluation are not added, and the large scale of data in the evaluation task is not considered, such methods are generally inefficient.

第四类,人工智能/生物智能算法。这类方法相较于第三类方法的优势在于分析“具有复杂梯度解析式或没有明显解析式的目标函数”和寻找“全局最优值”。这类方法目前也在很多软件中实现了标准解法,因此,也易于推广。虽然目前这类方法比较火热,但用在圆柱度误差评定时不太合适。这是因为圆柱度误差评定的目标函数的梯度是大量简单解析式之和,且目标函数的“局部最优值”就是“全局最优值”。因此,这类方法并没有比第三类方法明显的优势。The fourth category is artificial intelligence/biological intelligence algorithms. The advantage of this type of method over the third type of method is to analyze "objective functions with complex gradient analytic expressions or no obvious analytic expressions" and to find "global optimal values". This type of method is also currently implemented in many software as standard solutions, so it is also easy to generalize. Although this kind of method is relatively popular at present, it is not suitable for evaluating the cylindricity error. This is because the gradient of the objective function evaluated by the cylindricity error is the sum of a large number of simple analytical expressions, and the "local optimum" of the objective function is the "global optimum". Therefore, this type of method does not have a clear advantage over the third type of method.

第五类,有效集法。有效集法是专门处理大规模规划问题的一种方法,其特点在于在寻优过程中尽量减少对“无效约束”的处理。应用于圆柱度评定时,效率与第一类方法相当,算法成熟度和软件集成度与第三类、第四类方法相当,是目前比较快速、简单的圆柱度误差评定方法。但是,这种方法对初始值非常敏感,并不是总能稳定地完成圆柱度误差评定任务。The fifth category is the effective set method. The efficient set method is a method specially dealing with large-scale planning problems, which is characterized by minimizing the processing of "invalid constraints" in the optimization process. When applied to cylindricity evaluation, the efficiency is comparable to the first type of method, and the algorithm maturity and software integration are comparable to those of the third and fourth types of methods. It is a relatively fast and simple cylindricity error evaluation method at present. However, this method is very sensitive to the initial value and does not always perform the cylindricity error assessment task stably.

综上所述,目前仍然缺少一种稳定、快速、形式简单的圆柱度误差评定方法。To sum up, there is still a lack of a stable, fast and simple cylindricity error evaluation method.

发明内容SUMMARY OF THE INVENTION

本发明的目的是:The purpose of this invention is:

本发明针对现有的技术存在的所述问题,提供一种稳定、快速、形式简单的圆柱度误差评定方法,可用于有回转体结构的零部件的圆柱度误差的评定,并为其加工工艺的改进提供指导。Aiming at the problems existing in the prior art, the present invention provides a stable, fast and simple cylindricity error evaluation method, which can be used for the evaluation of the cylindricity error of parts with a structure of revolution, and the processing technology thereof provide guidance for improvement.

本发明采用的方案是:The scheme adopted in the present invention is:

一种快稳简的圆柱度误差评定方法是通过以下步骤实现的:A fast, stable and simple cylindricity error evaluation method is realized by the following steps:

步骤1:获取测点集{p i },并根据{p i }建立特征行向量集{A 𝛼 }、边界元素集{b 𝛼 }和状态元素集{t 𝛼 },其中:Step 1: Obtain the set of measuring points { p i }, and establish the set of characteristic row vectors { A 𝛼 }, the set of boundary elements { b 𝛼 } and the set of state elements { t 𝛼 } according to { p i }, where:

i=1, 2, 3, …, N𝛼=1, 2, 3, …, N, N+1, …,2Ni为测点序号,N为测点总数; i =1, 2, 3, …, N ; 𝛼 =1, 2, 3, …, N , N+1, …,2 N ; i is the measurement point number, N is the total number of measurement points;

p i ={x i , y i , z i }是测点i的平面直角坐标,并且被测圆柱的轴线接近坐标系的z轴,被测圆柱的两个底面的中心平面接近坐标系的XOY平面; p i ={ x i , y i , z i } is the plane Cartesian coordinate of the measuring point i , and the axis of the measured cylinder is close to the z -axis of the coordinate system, and the center plane of the two bottom surfaces of the measured cylinder is close to the XOY of the coordinate system flat;

t i = t i+N =

Figure DEST_PATH_IMAGE001
,所有的状态元素t 𝛼 的集合为状态元素集{t 𝛼 }; t i = t i+N =
Figure DEST_PATH_IMAGE001
, the set of all state elements t 𝛼 is the state element set { t 𝛼 };

A i =- A i+N =([x i /t i , y i /t i , -y i z i /t i , x i z i /t i , 1]),是特征行向量,所有的特征行向量A 𝛼 的集合为特征行向量集{A 𝛼 }; A i =- A i + N =([ x i / t i , y i / t i , - y i z i / t i , x i z i / t i , 1]), is the eigenrow vector, all The set of feature row vectors A 𝛼 is the feature row vector set { A 𝛼 };

b i = b i+N =b,是一个大于0的实数,所有的边界元素b 𝛼 的集合为边界元素集{b 𝛼 }。 b i = b i+N = b , which is a real number greater than 0, and the set of all boundary elements b 𝛼 is the boundary element set { b 𝛼 }.

步骤1结束后进行步骤2。After step 1, go to step 2.

步骤2:取t i 最小值t min,in对应的序号l 1为关键序号,并将l 1加入到关键序号集{l}中;取t i+N 最大值t max,out对应的序号l 2为关键序号,并将l 2加入到关键序号集{l}中。Step 2: Take the serial number l 1 corresponding to the minimum value t min,in of t i as the key serial number, and add l 1 to the key serial number set { l }; take the serial number l corresponding to the maximum value t i + N t max,out 2 is the key sequence number, and l 2 is added to the key sequence number set { l }.

步骤2结束后进行步骤3。After step 2, go to step 3.

步骤3:根据关键序号集{l}建立分析矩阵A和分析列向量b,其中:Step 3: Establish an analysis matrix A and an analysis column vector b according to the key sequence number set { l }, where:

A=[…, A j T, …, A k T, …]T,是个L行5列的矩阵,L为关键序号集{l}中的元素个数,j, k为关键序号集{l}中的元素; A =[…, A j T , …, A k T , …] T , is a matrix with L rows and 5 columns, L is the number of elements in the key sequence number set { l }, j , k are the key sequence number set { l element in };

b=[…, b, …]T,是个L行的列向量。 b =[…, b , …] T , which is a column vector of L rows.

步骤3结束后进行步骤4。After step 3, go to step 4.

步骤4:对分析矩阵A及增广分析矩阵[A, b]进行秩分析。Step 4: Perform rank analysis on the analysis matrix A and the augmented analysis matrix [ A , b ].

计算r A =rank(A),r Ab =rank([A, b]),并比较r A r Ab ,只有以下两种情况:Calculate r A = rank( A ), r Ab = rank([ A , b ]), and compare r A and r Ab , with only the following two cases:

情况一:如果r A =r Ab ,那么,应当继续寻优,跳到步骤5;Case 1: If r A = r Ab , then the optimization should be continued and skip to step 5;

情况二:如果r A < r Ab ,那么,尝试从分析矩阵A和分析列向量b中删掉关键序号集{l}中的某一个元素l对应的行,得到缩小矩阵A l- 和缩小列向量b l- ,求线性方程A l- v l- = b l- 的解v l- =v l-0 ,然后计算b l- =A l v l-0 ;如果关键序号集{l}中的元素都尝试过了,并且没有得到任何一个b l- >b,那么,应当结束寻优,跳到步骤7;如果在尝试关键序号集{l}中的元素l时,得到b l- >b,那么,将缩小矩阵A l- 和缩小列向量b l- 分别作为A矩阵及分析列向量b,将元素l移出关键序号集{l},并跳到步骤5;其中,v l- =[v l-,1, v l-,2, v l-,3, v l-,4, v l-,5]Tv l-0 =[v l-0,1,v l-0,2, v l-0,3, v l-0,4, v l-0,5]TCase 2: If r A < r Ab , then try to delete the row corresponding to a certain element l in the key sequence number set { l } from the analysis matrix A and the analysis column vector b to obtain the reduced matrix A l- and the reduced column vector b l- , find the solution of the linear equation A l- v l- = b l- v l- = v l-0 , and then calculate b l- = A l v l-0 ; if the key sequence number set { l } have tried all the elements of , and did not get any b l- > b , then you should end the optimization and skip to step 7; if you get b l- > when trying the element l in the key sequence number set { l } b , then, take the reduced matrix A l- and the reduced column vector b l- as the A matrix and the analytical column vector b respectively, move the element l out of the key sequence number set { l }, and skip to step 5; where v l- = [ v l-, 1 , v l-, 2 , v l-, 3 , v l-, 4 , v l-, 5 ] T , v l-0 =[ v l-0, 1 , v l-0 , 2 , v l-0, 3 , v l-0, 4 , v l-0, 5 ] T .

步骤5:求线性方程Av= b的解v=v 0 ,其中,v=[v 1, v 2, v 3, v 4, v 5]Tv 0 =[v 0,1, v 0,2,v 0,3, v 0,4, v 0,5]TStep 5: Find the solution to the linear equation Av = b v = v 0 , where v =[ v 1 , v 2 , v 3 , v 4 , v 5 ] T , v 0 =[ v 0, 1 , v 0, 2 , v 0, 3 , v 0, 4 , v 0, 5 ] T .

步骤5结束后进行步骤6。After step 5, go to step 6.

步骤6:计算v 𝛼 =A 𝛼 v 0 ,然后计算τ i =(t i t min,in)÷(b - v i ),τ i+N =( t max,out t i+N )÷(b - v i+N )。取τ 𝛼 中大于零的那部分中的最小值τ min对应的序号l 3为新的关键序号,并将l 3加入到关键序号集{l}中。Step 6: Calculate v 𝛼 = A 𝛼 v 0 , then calculate τ i =( t i t min,in )÷( b - v i ), τ i + N =( t max,out t i+N ) ÷( b - v i+N ). Take the sequence number l 3 corresponding to the minimum value τ min in the part of τ 𝛼 greater than zero as the new key sequence number, and add l 3 to the key sequence number set { l }.

将所有t i 更新为t i + τ min∙(v i - v 0,5),将所有t i+N 更新为t i+N -τ min∙( v i+N + v 0,5),t min,in更新为t i 的最小值,t max,out更新为t i+N 的最大值。update all ti to ti + τ min ∙( v i - v 0, 5 ), update all ti + N to ti + N - τ min ( v i + N + v 0 , 5 ), t min,in is updated to the minimum value of t i , and t max,out is updated to the maximum value of t i + N.

步骤6结束后完成一次寻优,进行步骤3。After step 6 is completed, an optimization is completed, and step 3 is performed.

步骤7:计算t=t max,out- t min,in 就是所求的圆柱度误差。Step 7: Calculate t = t max,out - t min,in is the desired cylindricity error.

为了方便地获取步骤1中的测点集{p i },可以将一般的测量数据{p i * }通过以下但不限以下方法进行处理,得到轴线接近坐标系的z轴、被测圆柱两底面中心平面接近坐标系XOY平面的测点集{p i }:一、按坐标的平均值进行移动;二、按坐标的极值进行移动;三、按坐标的均方根最小原则进行移动。In order to conveniently obtain the set of measuring points { p i } in step 1, the general measurement data { p i * } can be processed by the following but not limited to the following methods to obtain the z -axis whose axis is close to the coordinate system and the two cylinders under test. The measuring point set { p i } of the bottom center plane close to the XOY plane of the coordinate system: 1. Move according to the average value of the coordinates; 2. Move according to the extreme value of the coordinates; 3. Move according to the minimum principle of the root mean square of the coordinates.

为了得到更精确的解,可以进行如下优化:In order to get a more accurate solution, the following optimizations can be performed:

在步骤6中,如果τ min v i 的单次值或数次迭代的累加值∑τ min v i 大于给定的阈值q,那么,将测点集{p i }更新为p i + τ minvp i +∑τ minv,并按步骤一中的公式更新特征行向量集{A i }、边界元素集{b i }和状态元素集{t i }。In step 6, if the single value of τ minv i or the accumulated value of several iterations ∑ τ minv i is greater than the given threshold q , then the set of measuring points { p i } is updated to p i + τ minv or p i +∑ τ minv , and update the feature row vector set { A i }, the boundary element set { b i }, and the state element set { t i } according to the formula in step 1.

为了便于数值计算,可以令b取一个具体的大于0的数值,可以但不限于1。In order to facilitate numerical calculation, b can be set to take a specific value greater than 0, which can be but not limited to 1.

本发明的有益效果是:The beneficial effects of the present invention are:

1、充分考虑圆柱度误差的几何特点,简化评定形式,因此,比第一类评定方法更易于推广。2、充分考虑圆柱度误差的几何特点,每次迭代都通过成熟的线性运算得到一个更优的值,并会最终得到最小的圆柱度误差,因此,本算法比较稳定,不存在第五类方法的初值敏感问题。3、隐含圆柱度误差评定中“大部分测点是无效测点”的事实,这些无效的测点不会加入迭代,因此,本发明的迭代次数较少,与第一类评定方法和第五类评定方法相当。4、在计算寻优方向时,只考虑关键序号集{l}对应的测点,因此,每次迭代的运算量较小,与第五类评定方法相当。5、由于迭代次数较少、每次迭代的运算量较小,因此,总运算速度与第一类评定方法和第五类评定方法相当。1. Fully consider the geometric characteristics of cylindricity error and simplify the evaluation form. Therefore, it is easier to popularize than the first type of evaluation method. 2. Fully considering the geometric characteristics of cylindricity error, each iteration obtains a better value through mature linear operations, and finally obtains the smallest cylindricity error. Therefore, this algorithm is relatively stable, and there is no fifth type of method. initial value-sensitive problem. 3. The fact that "most of the measuring points are invalid measuring points" in the evaluation of implicit cylindricity error, these invalid measuring points will not be added to the iteration, therefore, the number of iterations of the present invention is less, which is different from the first type of evaluation method and the third type of evaluation method. The five evaluation methods are equivalent. 4. When calculating the optimization direction, only the measurement points corresponding to the key sequence number set { l } are considered. Therefore, the calculation amount of each iteration is small, which is equivalent to the fifth type of evaluation method. 5. Because the number of iterations is small and the calculation amount of each iteration is small, the total calculation speed is comparable to that of the first type of evaluation method and the fifth type of evaluation method.

本发明提供了一种圆柱度误差评定方法,该方法稳定、快速、形式简单,可用于有回转体结构的零部件的圆柱度误差的评定,并为其加工工艺的改进提供指导,因此具备工业可能性。The invention provides a cylindricity error evaluation method, which is stable, fast and simple in form, can be used for the evaluation of the cylindricity error of parts with a rotary body structure, and provides guidance for the improvement of its processing technology, so it has the advantages of industrial possibility.

附图说明Description of drawings

图1为本发明的流程图。FIG. 1 is a flow chart of the present invention.

具体实施方式Detailed ways

以下是本发明的具体实施例,参照附图对本发明的方案作进一步的描述,但本发明并不限于这些实施例。The following are specific embodiments of the present invention, and the solution of the present invention will be further described with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

评定测点集{p i }的圆柱度误差。Evaluate the cylindricity error of the set of measuring points { p i }.

步骤1:获取测点集{p i }如下:Step 1: Obtain the set of measuring points { p i } as follows:

<i>i</i><i>i</i> <i>x</i><sub><i>i</i></sub><i>x</i><sub><i>i</i></sub> <i>y</i><sub><i>i</i></sub><i>y</i><sub><i>i</i></sub> z<sub><i>i</i></sub>z<sub><i>i</i></sub> 11 9.52859.5285 3.10183.1018 -44.9417-44.9417 22 5.89505.8950 -8.0895-8.0895 -39.9115-39.9115 33 -5.8697-5.8697 -8.0894-8.0894 -34.9254-34.9254 44 -9.5075-9.5075 3.09303.0930 -29.9394-29.9394 55 0.00510.0051 10.006510.0065 -24.9598-24.9598 66 9.51879.5187 3.09793.0979 -19.9390-19.9390 77 5.88125.8812 -8.0864-8.0864 -14.9905-14.9905 88 -5.8714-5.8714 -8.0748-8.0748 -9.9766-9.9766 99 -9.4958-9.4958 3.10403.1040 -4.9176-4.9176 1010 0.01660.0166 10.005910.0059 0.03090.0309 1111 9.52109.5210 3.09673.0967 5.08325.0832 1212 5.89415.8941 -8.0790-8.0790 10.026310.0263 1313 -5.8642-5.8642 -8.0855-8.0855 15.045615.0456 1414 -9.5029-9.5029 3.10093.1009 20.099220.0992 1515 0.01510.0151 10.019610.0196 25.023525.0235 1616 9.52119.5211 3.09123.0912 30.075730.0757 1717 5.88995.8899 -8.0730-8.0730 35.098835.0988 1818 -5.8593-5.8593 -8.0820-8.0820 40.000040.0000 1919 -9.4997-9.4997 3.09433.0943 45.021945.0219 2020 0.00650.0065 10.001910.0019 50.0748 50.0748

建立状态元素集{t 𝛼 }如下:The set of state elements { t 𝛼 } is established as follows:

<i>𝛼</i><i>𝛼</i> <i>𝛼</i><i>𝛼</i> <i>t</i><sub><i>𝛼</i></sub><i>t</i><sub><i>𝛼</i></sub> 11 21twenty one 10.020710.0207 22 22twenty two 10.009510.0095 33 23twenty three 9.99469.9946 44 24twenty four 9.99809.9980 55 2525 10.006510.0065 66 2626 10.010110.0101 77 2727 9.99899.9989 88 2828 9.98389.9838 99 2929 9.99029.9902 1010 3030 10.005910.0059 1111 3131 10.012010.0120 1212 3232 10.000610.0006 1313 3333 9.98829.9882 1414 3434 9.99609.9960 1515 3535 10.019610.0196 1616 3636 10.010410.0104 1717 3737 9.99339.9933 1818 3838 9.98259.9825 1919 3939 9.99109.9910 2020 4040 10.001910.0019

建立特征行向量集{A 𝛼 },𝛼=i时,{A i }如下:Establish feature row vector set { A 𝛼 }, when 𝛼 = i , { A i } is as follows:

Figure 531277DEST_PATH_IMAGE002
Figure 531277DEST_PATH_IMAGE002

𝛼=i+20时,A i+20=-A i When 𝛼 = i +20, A i+ 20 =- A i .

建立边界元素集{b 𝛼 }如下:The set of boundary elements { b 𝛼 } is established as follows:

{b 𝛼 }=[1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]T{ b 𝛼 }=[1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] T .

步骤1结束后进行步骤2。After step 1, go to step 2.

步骤2:取t i 最小值t min,in对应的序号18为关键序号,并将18加入到关键序号集{l}中;取t i+20最大值t max,out对应的序号21为关键序号,并将21加入到关键序号集{l}中,{l}={18,21};。Step 2: Take the serial number 18 corresponding to the minimum value of t i t min,in as the key serial number, and add 18 to the key serial number set { l }; take the serial number 21 corresponding to the maximum value of t i +20 t max,out as the key serial number sequence number, and add 21 to the key sequence number set { l }, { l }={18,21};.

步骤2结束后进行步骤3。After step 2, go to step 3.

步骤3:根据关键序号集{l}建立分析矩阵A和分析列向量b,其中:Step 3: Establish an analysis matrix A and an analysis column vector b according to the key sequence number set { l }, where:

Figure DEST_PATH_IMAGE003
Figure DEST_PATH_IMAGE003

A=是个2行5列的矩阵,关键序号集{l}={18,21}中的元素个数为2,元素为18, 21; A = is a matrix with 2 rows and 5 columns, the number of elements in the key sequence number set { l }={18,21} is 2, and the elements are 18, 21;

b=[1,1]T,是个2行的列向量。 b =[1,1] T , a column vector with 2 rows.

步骤3结束后进行步骤4。After step 3, go to step 4.

步骤4:对分析矩阵A及增广分析矩阵[A, b]进行秩分析。Step 4: Perform rank analysis on the analysis matrix A and the augmented analysis matrix [ A , b ].

计算r A =rank(A) =2,r Ab =rank([A, b])=2,并比较r A r Ab 。因为r A =r Ab ,所以应当继续寻优,跳到步骤5。Calculate r A = rank( A ) = 2, r Ab = rank([ A , b ]) = 2, and compare r A and r Ab . Since r A = r Ab , the optimization should continue and skip to step 5.

步骤5:求线性方程Av= b的解v=v 0 =[0.0000 , 0.0000 , 0.0626 , 0.0438 ,0.0000]TStep 5: Find the solution of the linear equation Av = b v = v 0 =[0.0000 , 0.0000 , 0.0626 , 0.0438 ,0.0000] T .

步骤5结束后进行步骤6。After step 5, go to step 6.

步骤6:计算v 𝛼 =A 𝛼 v 0 𝛼=i时,结果如下:Step 6: When v 𝛼 = A 𝛼 v 0 , 𝛼 = i , the result is as follows:

<i>i</i><i>i</i> <i>v</i><sub><i>i</i></sub><i>v</i><sub><i>i</i></sub> 11 -1.0000-1.0000 22 -3.0491-3.0491 33 -0.8721-0.8721 44 1.82661.8266 55 1.56251.5625 66 -0.4438-0.4438 77 -1.1453-1.1453 88 -0.2484-0.2484 99 0.30030.3003 1010 -0.0019-0.0019 1111 0.11320.1132 1212 0.76600.7660 1313 0.37590.3759 1414 -1.2271-1.2271 1515 -1.5654-1.5654 1616 0.67090.6709 1717 2.68142.6814 1818 1.00001.0000 1919 -2.7476-2.7476 2020 -3.1344 -3.1344

𝛼=i+20时,v i+20=-v i When 𝛼 = i +20, v i+ 20 =- v i .

然后计算τ i =(t i t min,in)÷(b - v i ),τ i+10 =( t max,out t i+10)÷(b - v i+10)。取τ 𝛼 中大于零的那部分结果如下:Then calculate τ i =( t i - t min,in )÷( b - v i ), τ i +10 =( t max,out - t i +10 )÷( b - v i +10 ). Taking the part of τ 𝛼 greater than zero results as follows:

<i>𝛼</i><i>𝛼</i> <i>τ</i><sub><i>𝛼</i></sub><i>τ</i><sub><i>𝛼</i></sub> 11 0.01910.0191 22 0.00670.0067 33 0.00650.0065 66 0.01920.0192 77 0.00770.0077 88 0.00100.0010 99 0.01110.0111 1010 0.02340.0234 1111 0.03330.0333 1212 0.07730.0773 1313 0.00920.0092 1414 0.00610.0061 1515 0.01450.0145 1616 0.08480.0848 1919 0.00230.0023 2020 0.00470.0047 23twenty three 0.20340.2034 24twenty four 0.00800.0080 2525 0.00550.0055 2626 0.01890.0189 2828 0.04910.0491 2929 0.02340.0234 3030 0.01480.0148 3131 0.00780.0078 3232 0.01140.0114 3333 0.02360.0236 3636 0.00610.0061 3737 0.00740.0074 3838 0.0191 0.0191

其中的最小值τ min对应的序号8为新的关键序号,并将8加入到关键序号集{l}中。此时,{l}={18,21,8}。The sequence number 8 corresponding to the minimum value τ min is a new key sequence number, and 8 is added to the key sequence number set { l }. At this point, { l }={18,21,8}.

将所有t i 更新为t i + τ min∙(v i - v 0,5)= t i + τ min∙(v i -0),将所有t i+20更新为t i+20-τ min∙( v i+20+ v 0,5)= t i+20-τ min∙( v i+20+0),t min,in更新为t i 的最小值,t max,out更新为t i+20的最大值。Update all t i to t i + τ min ∙( v i - v 0, 5 ) = t i + τ min ∙( v i -0), update all t i +20 to t i +20 - τ min ∙( v i +20 + v 0, 5 )= t i +20 - τ min ∙( v i +20 +0), t min,in is updated to the minimum value of t i , and t max,out is updated to t i +20 max.

步骤6结束后完成一次寻优,进行步骤3。After step 6 is completed, an optimization is completed, and step 3 is performed.

以此类推,进行第六次寻优后,关键序号集{l} ={18,19,35,20,22,23}。By analogy, after the sixth optimization, the key sequence number set { l } ={18,19,35,20,22,23}.

此时,先进行步骤3:根据关键序号集{l} ={18,19,35,20,22,23}建立分析矩阵A和分析列向量b,其中:At this time, proceed to step 3: establish an analysis matrix A and an analysis column vector b according to the key sequence number set { l } ={18,19,35,20,22,23}, where:

b=[1,1,1,1,1,1]T b =[1,1,1,1,1,1] T .

步骤3结束后进行步骤4。After step 3, go to step 4.

步骤4:对分析矩阵A及增广分析矩阵[A, b]进行秩分析。Step 4: Perform rank analysis on the analysis matrix A and the augmented analysis matrix [ A , b ].

计算r A =rank(A) =5,r Ab =rank([A, b])=6, r A < r Ab 。首先,尝试从分析矩阵A和分析列向量b中删掉关键序号集{l}={18,19,35,20,22,23}中的第一个元素18对应的行,得到缩减矩阵A 18- Calculate r A = rank( A ) = 5, r Ab = rank([ A , b ]) = 6, r A < r Ab . First, try to delete the row corresponding to the first element 18 in the key sequence number set { l }={18,19,35,20,22,23} from the analysis matrix A and the analysis column vector b , and get the reduced matrix A 18 - :

b 18- 列向量b 18- =[1,1,1,1,1]Tand b 18 - column vector b 18 - =[1,1,1,1,1] T .

求得线性方程A 18- v 18- = b 18- 的解v 18- =v 18-0 =[-1.6091 , 0.2620 , -0.0798 , -0.0358 , -3.2544]T,然后计算b 18- =A 18 v 18-0 = -4.2658 <1=bb 19- = 10.3093 >1=bFind the solution of the linear equation A 18 - v 18 - = b 18 - v 18 - = v 18 -0 =[-1.6091 , 0.2620 , -0.0798 , -0.0358 , -3.2544] T , then calculate b 18 - = A 18 v 18 -0 = -4.2658 <1= b ; b 19 - = 10.3093 >1= b .

A 19- 矩阵和b 19- 矩阵分别作为A矩阵及b矩阵,将元素19移出关键序号集{l},使得{l}={18, 35,20,22,23},并跳到步骤5。Take A 19 -matrix and b 19 -matrix as A matrix and b matrix respectively, move element 19 out of the key sequence number set { l }, so that { l }={18, 35, 20, 22, 23}, and skip to step 5.

以此类推,完成第七次寻优后,关键序号集{l} ={18, 35, 20, 22, 23, 17}。By analogy, after completing the seventh optimization, the key sequence number set { l } ={18, 35, 20, 22, 23, 17}.

此时,先进行步骤3:根据关键序号集{l} ={18, 35, 20, 22, 23, 17}建立分析矩阵A和分析列向量bAt this time, proceed to step 3 first: establish an analysis matrix A and an analysis column vector b according to the key sequence number set { l } ={18, 35, 20, 22, 23, 17}.

步骤3结束后进行步骤4。After step 3, go to step 4.

步骤4:对分析矩阵A及增广分析矩阵[A, b]进行秩分析。Step 4: Perform rank analysis on the analysis matrix A and the augmented analysis matrix [ A , b ].

计算r A =rank(A) =5,r Ab =rank([A, b])=6, r A < r Ab Calculate r A = rank( A ) = 5, r Ab = rank([ A , b ]) = 6, r A < r Ab .

对应{l} ={18, 35, 20, 22, 23, 17},分别求得b 18- = -12.6721 <1=bb 35- =-1.8263<1=bb 20- = -1.8264 <1=bb 22- = -12.7279 <1=bb 23- =-12.6335 <1=bb 17- = -12.6883<1=b。跳到步骤7。Corresponding to { l } ={18, 35, 20, 22, 23, 17}, respectively obtain b 18 - = -12.6721 <1= b , b 35 - =-1.8263<1= b , b 20 - = -1.8264 <1= b , b 22 - = -12.7279 <1= b , b 23 - =-12.6335 <1= b , b 17 - = -12.6883<1= b . Skip to step 7.

步骤7:计算t=t max,out- t min,in = 0.0334就是所求的圆柱度误差。Step 7: Calculate t = t max, out - t min, in = 0.0334 is the desired cylindricity error.

在上述说明中,通过特定实施例说明了本发明,但本领域的技术人员应理解在不脱离权利要求范围内发明的思想及领域内可进行各种改造及变形。In the above description, the present invention has been described with reference to specific embodiments, but it should be understood by those skilled in the art that various modifications and changes can be made within the spirit and field of the invention without departing from the scope of the claims.

Claims (5)

1.一种快稳简的圆柱度误差评定方法,其特征在于,由以下步骤组成:1. a fast, stable and simple cylindricity error assessment method, is characterized in that, is made up of the following steps: 步骤1:获取测点集{p i },并根据{p i }建立特征行向量集{A 𝛼 }、边界元素集{b 𝛼 }和状态元素集{t 𝛼 },其中:Step 1: Obtain the set of measuring points { p i }, and establish the set of characteristic row vectors { A 𝛼 }, the set of boundary elements { b 𝛼 } and the set of state elements { t 𝛼 } according to { p i }, where: i=1, 2, 3, …, N𝛼=1, 2, 3, …, N, N+1, …,2Ni为测点序号,N为测点总数; i =1, 2, 3, …, N ; 𝛼 =1, 2, 3, …, N , N+1, …,2 N ; i is the measurement point number, N is the total number of measurement points; p i ={x i , y i , z i }是测点i的平面直角坐标,并且被测圆柱的轴线接近坐标系的z轴,被测圆柱的两个底面的中心平面接近坐标系的XOY平面; p i ={ x i , y i , z i } is the plane Cartesian coordinate of the measuring point i , and the axis of the measured cylinder is close to the z -axis of the coordinate system, and the center plane of the two bottom surfaces of the measured cylinder is close to the XOY of the coordinate system flat; t i = t i+N =
Figure 374397DEST_PATH_IMAGE002
,所有的状态元素t 𝛼 的集合为状态元素集{t 𝛼 };
t i = t i+N =
Figure 374397DEST_PATH_IMAGE002
, the set of all state elements t 𝛼 is the state element set { t 𝛼 };
A i =- A i+N =([x i /t i , y i /t i , -y i z i /t i , x i z i /t i , 1]),是特征行向量,所有的特征行向量A 𝛼 的集合为特征行向量集{A 𝛼 }; A i =- A i + N =([ x i / t i , y i / t i , - y i z i / t i , x i z i / t i , 1]), is the eigenrow vector, all The set of feature row vectors A 𝛼 is the feature row vector set { A 𝛼 }; b i = b i+N =b,是一个大于0的实数,所有的边界元素b 𝛼 的集合为边界元素集{b 𝛼 }; b i = b i+N = b , is a real number greater than 0, and the set of all boundary elements b 𝛼 is the boundary element set { b 𝛼 }; 步骤1结束后进行步骤2;After step 1, go to step 2; 步骤2:取t i 最小值t min,in对应的序号l 1为关键序号,并将l 1加入到关键序号集{l}中;取t i+N 最大值t max,out对应的序号l 2为关键序号,并将l 2加入到关键序号集{l}中;Step 2: Take the serial number l 1 corresponding to the minimum value t min,in of t i as the key serial number, and add l 1 to the key serial number set { l }; take the serial number l corresponding to the maximum value t i + N t max,out 2 is the key sequence number, and l 2 is added to the key sequence number set { l }; 步骤2结束后进行步骤3;After step 2, go to step 3; 步骤3:根据关键序号集{l}建立分析矩阵A和分析列向量b,其中:Step 3: Establish an analysis matrix A and an analysis column vector b according to the key sequence number set { l }, where: A=[…, A j T, …, A k T, …]T,是个L行5列的矩阵,L为关键序号集{l}中的元素个数,j,k为关键序号集{l}中的元素; A =[…, A j T , …, A k T , …] T , is a matrix with L rows and 5 columns, L is the number of elements in the key sequence number set { l }, j , k are the key sequence number set { l element in }; b=[…, b, …]T,是个L行的列向量; b =[…, b , …] T , is a column vector of L rows; 步骤3结束后进行步骤4;After step 3, go to step 4; 步骤4:对分析矩阵A及增广分析矩阵[A, b]进行秩分析;Step 4: Perform rank analysis on the analysis matrix A and the augmented analysis matrix [ A , b ]; 计算r A =rank(A),r Ab =rank([A, b]),并比较r A r Ab ,只有以下两种情况:Calculate r A = rank( A ), r Ab = rank([ A , b ]), and compare r A and r Ab , with only the following two cases: 情况一:如果r A =r Ab ,那么,应当继续寻优,跳到步骤5;Case 1: If r A = r Ab , then the optimization should be continued and skip to step 5; 情况二:如果r A < r Ab ,那么,尝试从分析矩阵A和分析列向量b中删掉关键序号集{l}中的某一个元素l对应的行,得到缩小矩阵A l- 和缩小列向量b l- ,求线性方程A l- v l- = b l- 的解v l- =v l-0 ,然后计算b l- =A l v l-0 ;如果关键序号集{l}中的元素都尝试过了,并且没有得到任何一个b l- >b,那么,应当结束寻优,跳到步骤7;如果在尝试关键序号集{l}中的元素l时,得到b l- >b,那么,将缩小矩阵A l- 和缩小列向量b l- 分别作为A矩阵及分析列向量b,将元素l移出关键序号集{l},并跳到步骤5;其中,v l- =[v l-,1, v l-,2, v l-,3, v l-,4, v l-,5]Tv l-0 =[v l-0,1, v l-0,2,v l-0,3, v l-0,4, v l-0,5]TCase 2: If r A < r Ab , then try to delete the row corresponding to a certain element l in the key sequence number set { l } from the analysis matrix A and the analysis column vector b to obtain the reduced matrix A l- and the reduced column vector b l- , find the solution of the linear equation A l- v l- = b l- v l- = v l-0 , and then calculate b l- = A l v l-0 ; if the key sequence number set { l } have tried all the elements of , and did not get any b l- > b , then you should end the optimization and skip to step 7; if you get b l- > when trying the element l in the key sequence number set { l } b , then, take the reduced matrix A l- and the reduced column vector b l- as the A matrix and the analytical column vector b respectively, move the element l out of the key sequence number set { l }, and skip to step 5; where v l- = [ v l-, 1 , v l-, 2 , v l-, 3 , v l-, 4 , v l-, 5 ] T , v l-0 =[ v l-0, 1 , v l-0 , 2 , v l-0, 3 , v l-0, 4 , v l-0, 5 ] T ; 步骤5:求线性方程Av= b的解v=v 0 ,其中,v=[v 1, v 2, v 3, v 4, v 5]Tv 0 =[v 0,1, v 0,2,v 0,3, v 0,4, v 0,5]TStep 5: Find the solution to the linear equation Av = b v = v 0 , where v =[ v 1 , v 2 , v 3 , v 4 , v 5 ] T , v 0 =[ v 0, 1 , v 0, 2 , v 0, 3 , v 0, 4 , v 0, 5 ] T ; 步骤5结束后进行步骤6;After step 5, go to step 6; 步骤6:计算v 𝛼 =A 𝛼 v 0 ,然后计算τ i =(t i t min,in)÷(b - v i ),τ i+N =( t max,out t i+N )÷(b - v i+N );取τ 𝛼 中大于零的那部分中的最小值τ min对应的序号l 3为新的关键序号,并将l 3加入到关键序号集{l}中;Step 6: Calculatev 𝛼 =A 𝛼 v 0 , and then calculateτ i =(t i t min,in)÷(b-v i ),τ i + N =(t max,out t i+N )÷(b- v i+N );Pickτ 𝛼 the smallest value in the portion greater than zeroτ mincorresponding serial numberl 3is the new key sequence number and willl 3add to key sequence number set {l}middle; 将所有t i 更新为t i + τ min∙(v i - v 0,5),将所有t i+N 更新为t i+N -τ min∙( v i+N + v 0,5),t min,in更新为t i 的最小值,t max,out更新为t i+N 的最大值;update all ti to t i + τ min ∙( v i - v 0, 5 ), update all ti + N to t i + N - τ min ∙( v i+N + v 0, 5 ), t min,in is updated to the minimum value of t i , and t max,out is updated to the maximum value of t i + N ; 步骤6结束后完成一次寻优,进行步骤3;After step 6, complete an optimization, and go to step 3; 步骤7:计算t=t max,out- t min,in 就是所求的圆柱度误差。Step 7: Calculate t = t max,out - t min,in is the desired cylindricity error.
2.如权利要求1所述的一种快稳简的圆柱度误差评定方法,其特征在于,将一般的测量数据{p i * }通过常规坐标变换,得到轴线接近坐标系的z轴、被测圆柱两底面中心平面接近坐标系XOY平面的测点集{p i }。2. a kind of fast, stable and simple cylindricity error evaluation method as claimed in claim 1, is characterized in that, general measurement data { p i * } is transformed through conventional coordinate, obtains the z -axis of the axis close to the coordinate system, the The measuring point set { p i } where the center planes of the two bottom surfaces of the measuring cylinder are close to the XOY plane of the coordinate system. 3.如权利要求2所述的一种快稳简的圆柱度误差评定方法,其特征在于,所述常规坐标变换,为一、按坐标的平均值进行移动,或二、按坐标的极值进行移动,或三、按坐标的均方根最小原则进行移动。3. a kind of fast, stable and simple cylindricity error evaluation method as claimed in claim 2 is characterized in that, described conventional coordinate transformation, is one, moves according to the average value of coordinates, or two, according to the extreme value of coordinates Move, or three, move according to the minimum principle of the root mean square of the coordinates. 4.如权利要求1所述的一种快稳简的圆柱度误差评定方法,其特征在于,在步骤6中,如果τ min v i 的单次值或数次迭代的累加值∑τ min v i 大于给定的阈值q,那么,将测点集{p i }更新为p i + τ minvp i +∑τ minv,并按步骤一中的公式更新特征行向量集{A i }、边界元素集{b i }和状态元素集{t i }。4. A fast, stable and simple cylindricity error assessment method as claimed in claim 1, characterized in that, in step 6, if the single value of τ minv i or the accumulated value of several iterations ∑ τ minv i is greater than the given threshold q , then, update the measuring point set { p i } to p i + τ minv or p i +∑ τ minv , and update the feature row vector according to the formula in step 1 set { A i }, set of boundary elements { b i } and set of state elements { t i }. 5.如权利要求1所述的一种快稳简的圆柱度误差评定方法,其特征在于,b=1。5. A fast, stable and simple cylindricity error evaluation method as claimed in claim 1, characterized in that, b =1.
CN201711489035.6A 2017-12-30 2017-12-30 A fast, stable and simple cylindricity error evaluation method Expired - Fee Related CN108267106B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711489035.6A CN108267106B (en) 2017-12-30 2017-12-30 A fast, stable and simple cylindricity error evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711489035.6A CN108267106B (en) 2017-12-30 2017-12-30 A fast, stable and simple cylindricity error evaluation method

Publications (2)

Publication Number Publication Date
CN108267106A CN108267106A (en) 2018-07-10
CN108267106B true CN108267106B (en) 2020-11-27

Family

ID=62772905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711489035.6A Expired - Fee Related CN108267106B (en) 2017-12-30 2017-12-30 A fast, stable and simple cylindricity error evaluation method

Country Status (1)

Country Link
CN (1) CN108267106B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285781B (en) * 2019-07-10 2023-09-29 桂林电子科技大学 Rapid assessment method for plane parallelism relative to reference plane

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161156A (en) * 1987-12-17 1989-06-23 Mitsubishi Heavy Ind Ltd Measuring method for rotary motion accuracy
CN102982240B (en) * 2012-11-19 2016-01-06 华侨大学 Based on the Circularity error evaluation method of mutative scale Chaos-Annealing
CN103256916B (en) * 2013-06-10 2015-07-08 陈磊磊 Evaluation method of part flatness error based on minimum area
CN103278126B (en) * 2013-06-11 2015-09-30 陈磊磊 A kind of sphericity error assessment method for part based on Minimum Area
CN103292773B (en) * 2013-06-18 2015-11-25 桂林电子科技大学 A kind of symmetry error evaluation method based on Minimum Area
CN103292769B (en) * 2013-06-19 2015-11-25 桂林电子科技大学 A kind of plane inclination error detection method based on Minimum Area
CN104482911B (en) * 2014-12-12 2017-08-11 燕山大学 Sphericity error assessment method based on error ball
CN105157655A (en) * 2015-05-11 2015-12-16 王灿 Roundness error quick evaluation method based on regional search
CN105841640B (en) * 2016-04-29 2018-09-18 北京航空航天大学 flatness error evaluation method and device
CN106971087A (en) * 2017-05-26 2017-07-21 上海大学 A kind of Flatness error evaluation method based on secondary learning aid algorithm of climbing the mountain

Also Published As

Publication number Publication date
CN108267106A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
CN101944141A (en) High-efficiency global optimization method using adaptive radial basis function based on fuzzy clustering
CN110285781B (en) Rapid assessment method for plane parallelism relative to reference plane
CN102693452A (en) Multiple-model soft-measuring method based on semi-supervised regression learning
CN108319764A (en) Evaluation method for spatial straightness errors method based on longicorn palpus searching algorithm
CN112433507B (en) Comprehensive modeling method of thermal error of five-axis CNC machine tool based on LSO-LSSVM
CN108459993B (en) An optimization method for complex high-dimensional systems based on fast peak-chasing sampling
CN109931903A (en) A Cylindricity Evaluation Method Based on Improved Whale Optimization Algorithm
CN111488498A (en) &#34;Node-Graph&#34; Cross-layer Graph Matching Method and System Based on Graph Neural Network
CN117669084A (en) Milling force prediction method optimized by BP neural network based on improved whale algorithm
CN110210072A (en) The method for solving high-dimensional optimization based on approximate model and differential evolution algorithm
CN108267106B (en) A fast, stable and simple cylindricity error evaluation method
CN114997366B (en) Protein structure model quality assessment method based on graph neural network
CN112001432A (en) Image matching method based on robust feature matching of advanced neighborhood topology consistency
CN108446452B (en) A kind of mixed-flow pump impeller Robust Optimal Design
CN104063594A (en) Complexity reliability calculation method based on optimized learning machine
CN108286957A (en) A kind of Flatness error evaluation method of fast steady letter
CN114880792A (en) An omnidirectional and multi-angle optimization method based on deformation prediction
CN105608267A (en) Multivariable global optimization algorithm
CN116957146A (en) Workshop open equipment layout optimization method based on improved simulated annealing algorithm
CN115511929A (en) Method and system for evaluating point cloud registration results based on distribution characteristics
CN108287949A (en) A kind of square key interaction in vitro width assessment method of fast steady letter
CN108121876A (en) A kind of square groove interaction in vitro width assessment method of fast steady letter
CN108562258A (en) A kind of maximum inscribed circle column diameter assessment method of fast steady letter
CN113837882A (en) Stock closing price prediction method
CN108253917A (en) A kind of minimum circumscribed cylinder diameter assessment method of fast steady letter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201116

Address after: 541004 the Guangxi Zhuang Autonomous Region golden Guilin Qixing District Road No. 1

Applicant after: GUILIN University OF ELECTRONIC TECHNOLOGY

Address before: 541001 2 11-1, Longshan lane, Lingui District, Guilin, the Guangxi Zhuang Autonomous Region

Applicant before: Tang Zhemin

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201127

Termination date: 20211230