CN108256280A - Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide - Google Patents
Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide Download PDFInfo
- Publication number
- CN108256280A CN108256280A CN201810240617.9A CN201810240617A CN108256280A CN 108256280 A CN108256280 A CN 108256280A CN 201810240617 A CN201810240617 A CN 201810240617A CN 108256280 A CN108256280 A CN 108256280A
- Authority
- CN
- China
- Prior art keywords
- adsorption
- carbon nanotubes
- nickel
- radius
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 110
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 90
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 27
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 title claims description 51
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 21
- 229910052759 nickel Inorganic materials 0.000 title claims description 7
- 238000004088 simulation Methods 0.000 claims abstract description 47
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 21
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 150000002815 nickel Chemical group 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 239000007789 gas Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 24
- 125000004429 atom Chemical group 0.000 description 9
- 125000004430 oxygen atom Chemical group O* 0.000 description 9
- 238000005457 optimization Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021404 metallic carbon Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000005477 standard model Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000006250 one-dimensional material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法,包括以下步骤:以(n,0)SWCNT(n=4,5,6)小半径碳纳米管为表面模型,建立仿真模型并接收输入的气体分子的分子间距,所述仿真模型采用晶格常数为a、b、和c的四方晶格超胞;在所述仿真模型中建立不同的气体分子吸附位置,模拟掺杂前和掺杂后不同吸附位置的吸附情况;对比不同吸附位置吸附前后的能量差,获取吸附能最低的位置对应的预设数据,并计算该吸附能最低的位置的掺杂前和掺杂后的吸附能。本发明提供的验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法通过建立合理优化的仿真验证镍掺杂小半径碳纳米管后对SO2的吸附能力及气敏性影响。
A method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO 2 comprises the following steps: taking (n, 0) SWCNT (n=4,5,6) small-radius carbon nanotubes as a surface model, establishing The simulation model receives the molecular spacing of the input gas molecules, and the simulation model adopts a tetragonal lattice supercell whose lattice constants are a, b, and c; different gas molecule adsorption positions are established in the simulation model, and the simulated doped The adsorption situation of different adsorption positions before and after doping; compare the energy difference before and after adsorption of different adsorption positions, obtain the preset data corresponding to the position with the lowest adsorption energy, and calculate the position of the lowest adsorption energy before doping and doping The subsequent adsorption energy. The method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO2 provided by the present invention verifies the influence of nickel-doped small-radius carbon nanotubes on the adsorption capacity and gas sensitivity of SO2 by establishing a rationally optimized simulation.
Description
技术领域technical field
本发明涉及一种验证二氧化硫的吸附能力及气敏性影响的方法,尤其是一种验证镍掺杂小半径碳纳米管对二氧化硫的吸附能力的方法。The invention relates to a method for verifying the adsorption capacity of sulfur dioxide and the influence of gas sensitivity, in particular to a method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to sulfur dioxide.
背景技术Background technique
碳纳米管是准一维结构的材料,具有较大的表面积,较轻的质量密度,容易和污染物分子发生强相互作用。碳纳米管具有优异的吸附性能,特别是单壁碳纳米管碳原子密度较低,管径和管间的空隙较大,为小分子的吸附提供了大量的嵌入空间,因此可以广泛应用于传感器的制造。Carbon nanotubes are quasi-one-dimensional materials with large surface area and light mass density, and are prone to strong interactions with pollutant molecules. Carbon nanotubes have excellent adsorption properties, especially single-walled carbon nanotubes with low carbon atom density, large tube diameter and gaps between tubes, which provide a large amount of embedded space for the adsorption of small molecules, so they can be widely used in sensors manufacturing.
人们对碳纳米管的气敏特性进行了大量研究,发现碳纳米管对很多气体分子有很好的吸附性能,大量研究表明碳纳米管是制造气相敏感器件的优良材料。Shalabi.et al.等人研究发现Co掺杂碳纳米管对CO分子具有较高的灵敏度(J.Nanopart.Res.,2012(14):1-15);Pd掺杂碳纳米管对NO分子十分敏感(Sensor.Actuat.B-Chem.,2011(159):171-177)。其气敏机理源于碳纳米管与气体分子之间电荷的转移引起电导率的敏感变化,相比传统的电子传感器,碳纳米管传感器具有较强的气体选择性、检测速度快、可常温下工作等优势。People have done a lot of research on the gas-sensing properties of carbon nanotubes, and found that carbon nanotubes have good adsorption properties for many gas molecules. A large number of studies have shown that carbon nanotubes are excellent materials for manufacturing gas-phase sensitive devices. Shalabi.et al. et al. found that Co-doped carbon nanotubes have higher sensitivity to CO molecules (J.Nanopart.Res., 2012(14):1-15); Pd-doped carbon nanotubes have higher sensitivity to NO molecules Very sensitive (Sensor.Actuat.B-Chem., 2011(159):171-177). Its gas sensing mechanism comes from the sensitive change in conductivity caused by the charge transfer between carbon nanotubes and gas molecules. Compared with traditional electronic sensors, carbon nanotube sensors have strong gas selectivity, fast detection speed, and can be used at room temperature. work advantages.
发明内容Contents of the invention
本发明的目的在于提供一种验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法。The purpose of the present invention is to provide a method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO 2 .
为此,本发明提供了一种验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法,包括以下步骤:For this reason, the invention provides a kind of verification nickel-doped small-radius carbon nanotubes to SO The method for the adsorption capacity, comprises the following steps:
仿真模型建立步骤:以(n,0)SWCNT(n=4,5,6)小半径碳纳米管为表面模型,建立仿真模型并接收输入的气体分子的分子间距,所述仿真模型采用晶格常数为a、b、和c的四方晶格超胞;Simulation model building steps: take (n, 0) SWCNT (n=4, 5, 6) small-radius carbon nanotubes as the surface model, build a simulation model and receive the molecular spacing of the input gas molecules, and the simulation model uses lattice Tetragonal lattice supercell with constants a, b, and c;
吸附模拟步骤:在所述仿真模型中建立不同的气体分子吸附位置,模拟掺杂前和掺杂后不同吸附位置的吸附情况;Adsorption simulation step: establishing different adsorption positions of gas molecules in the simulation model, and simulating the adsorption conditions of different adsorption positions before and after doping;
分析步骤:对比不同吸附位置吸附前后的能量差,获取吸附能最低的位置对应的预设数据,并计算该吸附能最低的位置的掺杂前和掺杂后的吸附能。Analysis steps: compare the energy difference before and after adsorption at different adsorption positions, obtain the preset data corresponding to the position with the lowest adsorption energy, and calculate the adsorption energy before and after doping at the position with the lowest adsorption energy.
优选地,所述表面模型包括32、40、48个碳原子的三类表面模型,所述三类表面模型对应的管径分别为 Preferably, the surface models include three types of surface models with 32, 40, and 48 carbon atoms, and the pipe diameters corresponding to the three types of surface models are respectively
优选地,在所述三类表面模型中分别掺杂浓度为2.13%,2.56%,3.23%的镍原子建立仿真模型。Preferably, nickel atoms with doping concentrations of 2.13%, 2.56%, and 3.23% are respectively doped in the three types of surface models to establish a simulation model.
优选地,仿真模型建立步骤还包括:Preferably, the simulation model building step also includes:
采用的格子来消除所述仿真模型的周期性映像的相互作用。use The lattice to remove the interaction of the periodic image of the simulation model.
优选地,在建立所述仿真模型之后,还包括:Preferably, after establishing the simulation model, it also includes:
利用Materials Studio软件的Dmol3模块调整所述晶格超胞的结构,得到镍掺杂小半径碳纳米管对应的仿真模型。Using the Dmol3 module of the Materials Studio software to adjust the structure of the lattice supercell, a simulation model corresponding to nickel-doped small-radius carbon nanotubes is obtained.
优选地,所述吸附模拟步骤还包括:Preferably, the adsorption simulation step also includes:
对不同吸附位置的仿真模型在使用Dmol3模块下使用PBE+GGA算法,在CUSTOM精度下通过结构调整来实现对实物吸附SO2的模拟。For the simulation model of different adsorption positions, the PBE+GGA algorithm is used under the Dmol3 module, and the simulation of the physical adsorption of SO 2 is realized through structural adjustment under CUSTOM precision.
优选地,所述分析步骤中的预设参数包括:结构对称性、能带结构、DOS态密度和电荷密度。Preferably, the preset parameters in the analysis step include: structural symmetry, energy band structure, DOS density of states and charge density.
优选地,所述气体分子为SO2气体分子。Preferably, the gas molecules are SO 2 gas molecules.
优选地,所述小半径碳纳米管为掺杂镍的小半径碳纳米管。Preferably, the small-radius carbon nanotubes are nickel-doped small-radius carbon nanotubes.
优选地,所述分析步骤还包括:Preferably, the analysis step also includes:
根据以下公式计算用于衡量掺杂对所述掺杂镍的小半径碳纳米管带来的对称性破坏因子δ,Calculate the symmetry breaking factor δ used to measure the symmetry breaking brought by doping to the nickel-doped small-radius carbon nanotubes according to the following formula,
其中,Dc-c代表本征碳纳米管碳原子与周围相邻的三个碳原子之间的键长平均值,Dc-Ni代表掺杂镍原子与周围三个碳原子之间的键长平均值。Among them, Dc-c represents the average bond length between the intrinsic carbon nanotube carbon atom and the surrounding three adjacent carbon atoms, and Dc -Ni represents the bond length between the doped nickel atom and the surrounding three carbon atoms average value.
优选地,所述气体分子的分子间距为S原子和O原子的间距。Preferably, the molecular distance of the gas molecules is the distance between S atoms and O atoms.
与现有技术相比,本发明提供的验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法通过建立合理优化的仿真验证镍掺杂小半径碳纳米管后对SO2的吸附能力及气敏性影响。Compared with the prior art, the method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO2 provided by the present invention is to verify the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO2 by establishing a rationally optimized simulation and gas sensitivity.
附图说明Description of drawings
图1是本发明所述验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法一实施方式的流程图。Fig. 1 is a flow chart of an embodiment of the method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO 2 according to the present invention.
图2a~2f为本发明一种吸附模型中镍掺杂小半径碳纳米管对SO2分子的最佳吸附位置处的主视图和侧视图。2a-2f are the front view and the side view of the optimal adsorption position of nickel-doped small-radius carbon nanotubes for SO2 molecules in an adsorption model of the present invention.
图3a~3f为本发明一种吸附模型中本征及镍掺杂小半径碳纳米管的能带结构图,其中,图3a是(a)(4,0)SWCNT能带结构图,图3b是Ni-(4,0)SWCNT能带结构图;图3c是(5,0)SWCNT能带结构图;图3d是Ni-(5,0)SWCNT能带结构图;图3e是(6,0)SWCNT能带结构图;图3f是Ni-(6,0)SWCNT能带结构图。Fig. 3a~3f is the energy band structure diagram of intrinsic and nickel-doped small-radius carbon nanotube in a kind of adsorption model of the present invention, wherein, Fig. 3 a is (a) (4,0) SWCNT energy band structure diagram, Fig. 3b It is the band structure diagram of Ni-(4,0)SWCNT; Figure 3c is the band structure diagram of (5,0)SWCNT; Figure 3d is the band structure diagram of Ni-(5,0)SWCNT; Figure 3e is the band structure diagram of (6, 0) Band structure diagram of SWCNT; Figure 3f is the band structure diagram of Ni-(6,0)SWCNT.
图4a~4b为本发明一种吸附模型中SO2-本征小半径碳纳米管吸附体系的分波态密度图,其中,图4a没有吸附SO2时碳原子的态密度图,图4b吸附了SO2的结构中对应氧、硫以及碳原子的态密度图。Figures 4a to 4b are partial wave density of states diagrams of SO2-intrinsic small-radius carbon nanotube adsorption system in an adsorption model of the present invention. The density of states diagram corresponding to oxygen, sulfur and carbon atoms in the structure of SO 2 is shown.
图5为本发明一种吸附模型中SO2-镍掺杂小半径碳纳米管吸附体系的分波态密度图;Fig. 5 is a partial wave density of state diagram of an adsorption model of SO 2 -nickel-doped carbon nanotubes with small radius in the present invention;
图6a~6b为本发明一种吸附模型中SO2-碳纳米管吸附体系和SO2-Ni-碳纳米管吸附体系的电子密度轮廓图,其中,图6a为SO2-碳纳米管吸附体系,图6b为SO2-Ni-碳纳米管(b)吸附体系的电子密度轮廓图。Figures 6a to 6b are the electron density profiles of the SO 2 -carbon nanotube adsorption system and the SO 2 -Ni-carbon nanotube adsorption system in an adsorption model of the present invention, wherein Figure 6a is the SO 2 -carbon nanotube adsorption system , Fig. 6b is the electron density profile of the SO 2 -Ni-carbon nanotube (b) adsorption system.
具体实施方式Detailed ways
下面结合附图,对本发明做进一步说明。Below in conjunction with accompanying drawing, the present invention will be further described.
图1是本发明所述验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法一实施方式的流程图。如图1所示,该验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法包括以下步骤S01~S03。本实施方式中,所述小半径碳纳米管为掺杂镍的小半径碳纳米管,所述气体分子为SO2气体分子。Fig. 1 is a flow chart of an embodiment of the method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes to SO 2 according to the present invention. As shown in FIG. 1 , the method for verifying the adsorption capacity of nickel-doped carbon nanotubes with small radius on SO 2 includes the following steps S01-S03. In this embodiment, the small-radius carbon nanotubes are nickel-doped small-radius carbon nanotubes, and the gas molecules are SO 2 gas molecules.
步骤S01(仿真模型建立步骤):以(n,0)SWCNT(n=4,5,6)小半径碳纳米管为表面模型。其中(n,0)SWCNT(n=4,5,6)体系分别包含32、40、48个碳原子,管径分别为 然后,在三类表面模型中分别掺杂浓度为2.13%,2.56%,3.23%的镍原子,掺杂后,Ni-(n,0)SWCNT(n=4,5,6)体系分别包含31、39、47个碳原子和一个镍原子,建立仿真模型。仿真模型优选计算采用晶格常数为a、b、和c的四方晶格超胞,a和b的选择要保证周期性映像的纳米管中最近原子的距离不小于因此本实施方式选用的格子来消除周期性映像的相互作用。Step S01 (simulation model building step): take (n,0)SWCNT (n=4,5,6) small-radius carbon nanotubes as the surface model. Among them, the (n,0)SWCNT (n=4,5,6) system contains 32, 40, and 48 carbon atoms, respectively, and the tube diameters are Then, nickel atoms were doped with concentrations of 2.13%, 2.56%, and 3.23% in the three types of surface models. After doping, the Ni-(n,0)SWCNT (n=4,5,6) system contained 31 , 39, 47 carbon atoms and a nickel atom to establish a simulation model. The optimal calculation of the simulation model uses a tetragonal lattice supercell with lattice constants a, b, and c. The selection of a and b should ensure that the distance between the nearest atoms in the nanotubes of the periodic image is not less than Therefore, this embodiment chooses grid to remove periodic image interactions.
在本步骤中,还需要确定掺杂后的仿真模型的各种参数。利用Materials Studio软件的Dmol3模块对晶格超胞进行结构优化,确定相应的结构优化参数,使仿真模拟的误差控制在2%以内,符合验证要求,从而得到优化后的镍掺杂小半径碳纳米管模型。In this step, various parameters of the doped simulation model also need to be determined. Use the Dmol3 module of the Materials Studio software to optimize the structure of the lattice supercell, determine the corresponding structural optimization parameters, and control the error of the simulation simulation within 2%, which meets the verification requirements, thereby obtaining the optimized nickel-doped small-radius carbon nanometer Tube model.
本申请所述的结构优化是指利用Materials Studio软件的标准数据库建模后,基于软件计算体系的最小能量,结构优化也是计算出体系最小能量的过程。在这个过程中,仿真模型的原子间距会发生改变,原子之间的电子也会发生转移,所以,结构优化后的模型参数会相比标准模型参数有变化,在参数误差小于2%情况下得到的仿真结果是可信的。结构优化后的模型就是模拟的真实模型,如果是结构优化带有气体的模型,那么结构优化就是模拟吸附的过程,得到模型就是吸附后的模型,可以进行相关吸附能量吸附情况计算,优化前的模型只是一个建模,不是吸附后的模型。The structural optimization mentioned in this application refers to the calculation of the minimum energy of the system based on the software after the standard database modeling of the Materials Studio software is used, and the structural optimization is also the process of calculating the minimum energy of the system. In this process, the interatomic distance of the simulation model will change, and the electrons between atoms will also be transferred. Therefore, the model parameters after structure optimization will be changed compared with the standard model parameters, and the parameter error is less than 2%. The simulation results are reliable. The model after structure optimization is the real model for simulation. If it is a model with gas in structure optimization, then structure optimization is the process of simulating adsorption. The obtained model is the model after adsorption, and the relevant adsorption energy can be calculated. The model is just a modeling, not an adsorbed model.
其中,气体分子的标准模型参数是手动输入的,然后进行结构优化,优化后的参数就是实际建模使用的参数,参数具体指分子的间距,即S原子和O原子的间距。气体分子、原子间的间距即之前测得的间距。在优化模型后确定气体分子的相应参数,完成仿真模型的建立。Among them, the standard model parameters of gas molecules are manually input, and then the structure is optimized. The optimized parameters are the parameters used in the actual modeling. The parameters specifically refer to the distance between molecules, that is, the distance between S atoms and O atoms. The distance between gas molecules and atoms is the distance measured before. After optimizing the model, the corresponding parameters of gas molecules are determined to complete the establishment of the simulation model.
步骤S02(吸附模拟步骤):在所述仿真模型中建立不同的气体分子吸附位置,模拟掺杂前和掺杂后不同吸附位置的吸附情况。对不同吸附位置的仿真模型在使用Dmol3模块下使用PBE+GGA算法,在CUSTOM精度下通过结构调整来实现对实物吸附SO2的模拟。Step S02 (adsorption simulation step): establishing different adsorption positions of gas molecules in the simulation model, and simulating the adsorption conditions of different adsorption positions before and after doping. For the simulation model of different adsorption positions, the PBE+GGA algorithm is used under the Dmol3 module, and the simulation of the physical adsorption of SO 2 is realized through structural adjustment under CUSTOM precision.
步骤S03(分析步骤):对比不同吸附位置吸附前后的能量差,吸附能最大表示这个位置是实物最有可能吸附气体的位置,获取吸附能最低的位置对应的预设数据,并计算该吸附能最低的位置的掺杂前和掺杂后的各项数据以比较吸附能。所述分析步骤中的预设参数包括:结构对称性、能带结构、DOS态密度和电荷密度。Step S03 (analysis step): Comparing the energy difference before and after adsorption at different adsorption positions, the maximum adsorption energy indicates that this position is the most likely position for the object to adsorb gas, obtain the preset data corresponding to the position with the lowest adsorption energy, and calculate the adsorption energy The lowest position of the data before and after doping to compare the adsorption energy. The preset parameters in the analysis step include: structural symmetry, energy band structure, DOS density of states and charge density.
通过对未添加气体分子的仿真模型进行结构优化,然后得到体系的总能量,对添加了气体分子的模型进行结构优化,得到体系的总能量。By optimizing the structure of the simulation model without adding gas molecules, the total energy of the system is obtained, and the structure of the model with added gas molecules is optimized to obtain the total energy of the system.
其中,吸附能=添加气体分子的总能量-气体分子的能量-未添加气体分子模型的能量。Among them, adsorption energy = total energy of added gas molecules - energy of gas molecules - energy of model without added gas molecules.
根据上述的吸附能计算公式,可以进行如下分析:According to the above calculation formula of adsorption energy, the following analysis can be carried out:
1)通过吸附能公式,可以对比掺杂前和掺杂后的吸附能变化。结果表明SO2分子沿平行于碳纳米管管轴方向以两个O原子以相同的角度和距离靠近掺杂元素Ni原子而S原子远离Ni原子的方式吸附在碳纳米管表面时表现出了最佳吸附,具体情形如图2a~2f所示。1) Through the adsorption energy formula, the change of adsorption energy before and after doping can be compared. The results show that the SO2 molecule exhibits the best performance when adsorbed on the surface of carbon nanotubes parallel to the axis of the carbon nanotubes in such a way that two O atoms are close to the Ni atoms of the dopant element at the same angle and distance, and the S atoms are far away from the Ni atoms. Good adsorption, the specific situation is shown in Fig. 2a-2f.
2)吸附能越小意味着该吸附体系能量越低,结构越稳定。本(n,0)SWCNT(n=4,5,6)体系吸附SO2分子模型的吸附能分别为-0.016eV、-0.019eV、-0.061eV,而Ni-(n,0)SWCNT(n=4,5,6)体系对SO2分子的吸附能分别显著减小为-0.911eV、-1.090eV、-1.182eV,也就是说镍掺杂后的碳纳米管更容易吸附SO2分子。2) The smaller the adsorption energy, the lower the energy of the adsorption system and the more stable the structure. The adsorption energies of the (n,0)SWCNT (n=4,5,6) system for adsorbing SO 2 molecules are -0.016eV, -0.019eV, -0.061eV, respectively, while Ni-(n,0)SWCNT(n =4,5,6) The adsorption energies of the system for SO 2 molecules are significantly reduced to -0.911eV, -1.090eV, -1.182eV respectively, which means that the carbon nanotubes doped with nickel are more likely to adsorb SO 2 molecules.
本步骤中,当体系结构对称性发生改变时晶体的物理性质会随之改变,这一改变也会引起化学性质的改变。定义了一个新的参数“对称性破坏因子δ”,用它来衡量掺杂对体系结构带来的影响。根据以下公式计算用于衡量掺杂对所述掺杂镍的小半径碳纳米管带来的对称性破坏因子δ,In this step, when the symmetry of the system structure changes, the physical properties of the crystal will change accordingly, and this change will also cause changes in the chemical properties. A new parameter "symmetry breaking factor δ" is defined to measure the effect of doping on the architecture. Calculate the symmetry breaking factor δ used to measure the symmetry breaking brought by doping to the nickel-doped small-radius carbon nanotubes according to the following formula,
其中,Dc-c代表本征碳纳米管碳原子与周围相邻的三个碳原子之间的键长平均值,Dc-Ni代表掺杂镍原子与周围三个碳原子之间的键长平均值。Among them, Dc-c represents the average bond length between the intrinsic carbon nanotube carbon atom and the surrounding three adjacent carbon atoms, and Dc -Ni represents the bond length between the doped nickel atom and the surrounding three carbon atoms average value.
从上述公式可知对称性破坏因子δ越大代表掺杂后碳纳米管的结构变化越大,对碳纳米管的电子性能和吸附性能的影响越大。随着管径的增加,对称性破坏因子逐渐减小,碳管的吸附能力逐渐增强。It can be known from the above formula that the larger the symmetry breaking factor δ, the greater the structural change of the carbon nanotube after doping, and the greater the impact on the electronic performance and adsorption performance of the carbon nanotube. With the increase of tube diameter, the symmetry breaking factor decreases gradually, and the adsorption capacity of carbon tubes increases gradually.
图3a~3f为本发明一种吸附模型中本征及镍掺杂小半径碳纳米管的能带结构图,其中,图3a是(a)(4,0)SWCNT能带结构图,图3b是Ni-(4,0)SWCNT能带结构图;图3c是(5,0)SWCNT能带结构图;图3d是Ni-(5,0)SWCNT能带结构图;图3e是(6,0)SWCNT能带结构图;图3f是Ni-(6,0)SWCNT能带结构图。如图3a~3f所示,本征碳纳米管(4,0)、(5,0)、(6,0)均为金属型碳纳米管,带隙为0;掺杂镍原子后碳管展现一定的半导体性质,其带隙大小分别为0.327eV、0.260eV、0.390eV。这说明镍掺杂可以使小半径碳纳米管实现从金属性到半导体性的转化,对碳纳米管的导电性影响非常强烈。Fig. 3a~3f is the energy band structure diagram of intrinsic and nickel-doped small-radius carbon nanotube in a kind of adsorption model of the present invention, wherein, Fig. 3 a is (a) (4,0) SWCNT energy band structure diagram, Fig. 3b It is the band structure diagram of Ni-(4,0)SWCNT; Figure 3c is the band structure diagram of (5,0)SWCNT; Figure 3d is the band structure diagram of Ni-(5,0)SWCNT; Figure 3e is the band structure diagram of (6, 0) Band structure diagram of SWCNT; Figure 3f is the band structure diagram of Ni-(6,0)SWCNT. As shown in Figures 3a-3f, the intrinsic carbon nanotubes (4,0), (5,0), and (6,0) are all metallic carbon nanotubes with a band gap of 0; the carbon nanotubes doped with nickel atoms It exhibits certain semiconductor properties, and its band gaps are 0.327eV, 0.260eV, and 0.390eV, respectively. This shows that nickel doping can transform small-radius carbon nanotubes from metallic to semiconducting properties, and has a strong influence on the conductivity of carbon nanotubes.
图4a~4b为本发明一种吸附模型中SO2-本征小半径碳纳米管吸附体系的分波态密度图,其中,图4a没有吸附SO2时碳原子的态密度图,图4b吸附了SO2的结构中对应氧、硫以及碳原子的态密度图,图5为本发明一种吸附模型中SO2-镍掺杂小半径碳纳米管吸附体系的分波态密度图。由图4a~4b,以及图5可知,镍掺杂碳纳米管吸附SO2分子后体系结构转变为金属性碳管,导带处增加了S和O原子的态密度峰。O原子的p轨道和Ni原子的d轨道在费米能级附近发生有效交叠,这一现象表明SO2分子和碳纳米管中的Ni原子发生了强烈的相互作用。Figures 4a to 4b are partial wave density of states diagrams of SO2 -intrinsic small-radius carbon nanotube adsorption system in an adsorption model of the present invention, wherein Figure 4a does not have a density of state diagram of carbon atoms when SO2 is adsorbed, and Figure 4b has adsorbed The density of state diagram corresponding to oxygen, sulfur and carbon atoms in the structure of SO 2 , Fig. 5 is a partial wave density of state diagram of the SO 2 -nickel-doped small-radius carbon nanotube adsorption system in an adsorption model of the present invention. From Figures 4a to 4b, and Figure 5, it can be seen that the structure of nickel-doped carbon nanotubes is transformed into metallic carbon tubes after adsorbing SO2 molecules, and the peaks of the density of states of S and O atoms are added to the conduction band. The p-orbitals of O atoms and the d-orbitals of Ni atoms effectively overlap near the Fermi level, which indicates a strong interaction between SO2 molecules and Ni atoms in the carbon nanotubes.
图6a~6b为本发明一种吸附模型中SO2-碳纳米管吸附体系和SO2-Ni-碳纳米管吸附体系的电子密度轮廓图,其中,图6a为SO2-碳纳米管吸附体系,图6b为SO2-Ni-碳纳米管(b)吸附体系的电子密度轮廓图。如图6a~6b所示,本征碳纳米管吸附SO2分子过程中,SO2分子中的O原子和碳纳米管中的C原子之间的电子密度值分布在0.0-0.1之间,几乎没有重叠区域,说明SO2分子和本征碳纳米管之间几乎没有发生电荷转移,即被吸附的SO2分子对本征碳纳米管的电荷分布几乎没有影响。相比之下,Ni掺杂碳纳米管吸附SO2分子后,O原子和Ni原子间的电子密度值在0.2左右,表在电子密度轮廓图中即两者之间有较大范围的明亮的重叠区域,这是Ni原子的3d电子与O原子的2p电子耦合的结果,有大量的来自SO2分子的电子转移到了镍掺杂碳纳米管,这也进一步表明SO2分子中的O原子和镍掺杂碳纳米管中的镍原子之间形成了化学键,即Ni掺杂碳纳米管与SO2分子之间存在强化学吸附作用。Figures 6a to 6b are the electron density profiles of the SO 2 -carbon nanotube adsorption system and the SO 2 -Ni-carbon nanotube adsorption system in an adsorption model of the present invention, wherein Figure 6a is the SO 2 -carbon nanotube adsorption system , Fig. 6b is the electron density profile of the SO 2 -Ni-carbon nanotube (b) adsorption system. As shown in Figures 6a-6b, during the process of intrinsic carbon nanotubes adsorbing SO 2 molecules, the electron density values between the O atoms in the SO 2 molecules and the C atoms in the carbon nanotubes are distributed between 0.0 and 0.1, almost There is no overlapping area, indicating that there is almost no charge transfer between SO2 molecules and intrinsic carbon nanotubes, that is, the adsorbed SO2 molecules have little effect on the charge distribution of intrinsic carbon nanotubes. In contrast, after Ni-doped carbon nanotubes adsorb SO2 molecules, the electron density value between O atoms and Ni atoms is about 0.2, which is shown in the electron density profile diagram, that is, there is a large range of bright The overlapping region, which is the result of the coupling of 3d electrons of Ni atoms and 2p electrons of O atoms, has a large number of electrons from SO 2 molecules transferred to Ni-doped carbon nanotubes, which further indicates that O atoms and A chemical bond is formed between nickel atoms in nickel-doped carbon nanotubes, that is, there is a strong chemisorption between Ni-doped carbon nanotubes and SO2 molecules.
3)镍原子的掺杂使得小半径碳纳米管对SO2分子的吸附变得容易,半径越大,吸附能力越强。而且,相对于没有掺杂的体系,掺杂镍后的体系表现出半导体特性,但在吸附SO2后,能隙降为0,电阻显著减小,使Ni-碳纳米管体系对SO2的气敏性增加了数倍,从而证明了Pd掺杂小半径碳纳米管能够显著提升小半径碳纳米管对SO2的吸附能力和气敏性。3) The doping of nickel atoms makes the adsorption of SO2 molecules by small-radius carbon nanotubes easier, and the larger the radius, the stronger the adsorption capacity. Moreover, compared with the undoped system, the Ni-doped system exhibits semiconducting properties, but after adsorbing SO 2 , the energy gap drops to 0, and the resistance decreases significantly, making the Ni-carbon nanotube system resistant to SO 2 The gas sensitivity is increased several times, which proves that Pd-doped small-radius carbon nanotubes can significantly improve the adsorption capacity and gas sensitivity of small-radius carbon nanotubes to SO 2 .
本实施方式提供的验证镍掺杂小半径碳纳米管对SO2的吸附能力的方法通过建立合理优化的仿真验证镍掺杂小半径碳纳米管后对SO2的吸附能力及气敏性影响。The method for verifying the adsorption capacity of nickel-doped small-radius carbon nanotubes on SO 2 provided in this embodiment verifies the influence of nickel-doped small-radius carbon nanotubes on the adsorption capacity and gas sensitivity of SO 2 by establishing a rationally optimized simulation.
应该理解,本发明并不局限于上述实施方式,凡是对本发明的各种改动或变型不脱离本发明的精神和范围,倘若这些改动和变型属于本发明的权利要求和等同技术范围之内,则本发明也意味着包含这些改动和变型。It should be understood that the present invention is not limited to the above-mentioned embodiments, and any changes or modifications to the present invention do not depart from the spirit and scope of the present invention, provided that these changes and modifications belong to the claims and equivalent technical scope of the present invention, then The present invention is also meant to include such changes and modifications.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810240617.9A CN108256280A (en) | 2018-03-22 | 2018-03-22 | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810240617.9A CN108256280A (en) | 2018-03-22 | 2018-03-22 | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108256280A true CN108256280A (en) | 2018-07-06 |
Family
ID=62747358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810240617.9A Pending CN108256280A (en) | 2018-03-22 | 2018-03-22 | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108256280A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109785911A (en) * | 2019-01-03 | 2019-05-21 | 广州供电局有限公司 | The determination method and apparatus of gas and metal material surface adsorpting type |
CN110880357A (en) * | 2019-11-21 | 2020-03-13 | 国网重庆市电力公司电力科学研究院 | Simulation analysis method for SF6 decomposition components based on carbon nano tube and readable storage medium |
CN113299356A (en) * | 2021-05-31 | 2021-08-24 | 国网山东省电力公司电力科学研究院 | Carbon-doped boron nitride nanotube pairs SF6/N2Calculation method and system for adsorption of decomposition products |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130116997A1 (en) * | 2011-11-09 | 2013-05-09 | Chenghai Sun | Computer simulation of physical processes |
CN103407985A (en) * | 2013-07-16 | 2013-11-27 | 清华大学 | Heteratom doped carbon nano-tube-graphene complex and preparation method thereof |
CN105797763A (en) * | 2016-04-22 | 2016-07-27 | 华南师范大学 | Method for preparing carbon and nitrogen-doped titanium dioxide |
CN106446579A (en) * | 2016-10-14 | 2017-02-22 | 电子科技大学 | Method for establishing simulation model to verify influence of doping palladium into zinc oxide on gas sensitivity |
CN106503374A (en) * | 2016-10-28 | 2017-03-15 | 上海空间电源研究所 | The structure of the compound semiconductor device of labyrinth describes method |
CN107133449A (en) * | 2017-04-12 | 2017-09-05 | 武汉理工大学 | A kind of N, P element doping vario-property VO2The Forecasting Methodology of material phase transformation temperature |
CN107474605A (en) * | 2017-08-18 | 2017-12-15 | 华南师范大学 | A kind of optical fiber doping coating layer material and preparation method thereof |
-
2018
- 2018-03-22 CN CN201810240617.9A patent/CN108256280A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130116997A1 (en) * | 2011-11-09 | 2013-05-09 | Chenghai Sun | Computer simulation of physical processes |
CN103407985A (en) * | 2013-07-16 | 2013-11-27 | 清华大学 | Heteratom doped carbon nano-tube-graphene complex and preparation method thereof |
CN105797763A (en) * | 2016-04-22 | 2016-07-27 | 华南师范大学 | Method for preparing carbon and nitrogen-doped titanium dioxide |
CN106446579A (en) * | 2016-10-14 | 2017-02-22 | 电子科技大学 | Method for establishing simulation model to verify influence of doping palladium into zinc oxide on gas sensitivity |
CN106503374A (en) * | 2016-10-28 | 2017-03-15 | 上海空间电源研究所 | The structure of the compound semiconductor device of labyrinth describes method |
CN107133449A (en) * | 2017-04-12 | 2017-09-05 | 武汉理工大学 | A kind of N, P element doping vario-property VO2The Forecasting Methodology of material phase transformation temperature |
CN107474605A (en) * | 2017-08-18 | 2017-12-15 | 华南师范大学 | A kind of optical fiber doping coating layer material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
WEI LI ET AL.: "First-principles study of the adsorption sensitivity of Ni-doped single-walled zigzag (n,0)CNTs (n = 4,5,6) toward SO2 molecules", 《APPLIED SURFACE SCIENCE》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109785911A (en) * | 2019-01-03 | 2019-05-21 | 广州供电局有限公司 | The determination method and apparatus of gas and metal material surface adsorpting type |
CN110880357A (en) * | 2019-11-21 | 2020-03-13 | 国网重庆市电力公司电力科学研究院 | Simulation analysis method for SF6 decomposition components based on carbon nano tube and readable storage medium |
CN113299356A (en) * | 2021-05-31 | 2021-08-24 | 国网山东省电力公司电力科学研究院 | Carbon-doped boron nitride nanotube pairs SF6/N2Calculation method and system for adsorption of decomposition products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Recent development in nanocarbon materials for gas sensor applications | |
Duan et al. | Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor | |
Drmosh et al. | Zinc oxide‐based acetone gas sensors for breath analysis: a review | |
Yin et al. | A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection | |
CN108256280A (en) | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide | |
Forró et al. | Predictive model for the electrical transport within nanowire networks | |
Kim et al. | Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation | |
Van Hieu et al. | Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite | |
Vessally et al. | Carbon nanocone as an electronic sensor for HCl gas: quantum chemical analysis | |
Lim et al. | Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography | |
Hosseinian et al. | The interaction of phosgene gas with different BN nanocones: DFT studies | |
CN106096223A (en) | A kind of five-hole probe data processing method | |
CN109472114B (en) | Optimal design method and device for magnetic nanoparticle simulation test platform | |
CN106446579A (en) | Method for establishing simulation model to verify influence of doping palladium into zinc oxide on gas sensitivity | |
CN100595576C (en) | Surface-sensitive capacitive gas sensor and manufacturing method thereof | |
Singh et al. | Highly sensitive nitric oxide gas sensor based on ZnO-nanorods vertical resistor operated at room temperature | |
CN112014439B (en) | Graphene quantum dot functionalization-based composite nano film material and gas-sensitive sensing element | |
Selvaraj et al. | Analytical expression for concentration and sensitivity of a thin film semiconductor gas sensor | |
Arefi et al. | Transport properties of Na-decorated borophene under CO/CO2 adsorption | |
Lee et al. | Highly selective ppb-level detection of NH3 and NO2 gas using patterned porous channels of ITO nanoparticles | |
CN104866660B (en) | A kind of method of prediction MgO nanoclusters surface gaseous deposit transition metal Au, Pt CO absorption Molecular Adsorption property | |
Liu et al. | Ultra-large Sn3O4 nanosheets with Sn2+ defect for highly efficient hydrogen sensing | |
KR102125278B1 (en) | GAS SENSOR and Method for Manufacturing GAS SENSOR | |
Ali et al. | Highly Sensitive and Fast Responding Flexible Force Sensors Using ZnO/ZnMgO Coaxial Nanotubes on Graphene Layers for Breath Sensing | |
Qiu et al. | High performance H2S sensor based on ordered Fe2O3/Ti3C2 nanostructure at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180706 |