CN106503374A - The structure of the compound semiconductor device of labyrinth describes method - Google Patents
The structure of the compound semiconductor device of labyrinth describes method Download PDFInfo
- Publication number
- CN106503374A CN106503374A CN201610966723.6A CN201610966723A CN106503374A CN 106503374 A CN106503374 A CN 106503374A CN 201610966723 A CN201610966723 A CN 201610966723A CN 106503374 A CN106503374 A CN 106503374A
- Authority
- CN
- China
- Prior art keywords
- compound semiconductor
- semiconductor device
- name
- type
- data type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Recrystallisation Techniques (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明公开复杂结构的化合物半导体器件的结构描述方法,包含:分析器件结构的几何特征、物理特征、数值特征参数表现形式生成五种典型数据类型;确定典型数据类型对应的成员赋值语法规则;化合物半导体器件结构分解成五种典型数据类型并写成结构描述文件;生成面向器件结构描述文件的动态指针,依据描述语法规则读取结构描述文件;确定数值计算专属文件的储存排列及数据格式;以实验数据和动态指针储存的器件结构转换成模型参数、位置和维数固定数组表达得数值计算专属文件。本发明使得输入含有多个内部异质结界面、多个内部面掺杂、多个量子限制区域、多个非局域量子隧穿区域的复杂结构化合物半导体器件的结构变得可能与方便。
The invention discloses a method for describing the structure of a compound semiconductor device with a complex structure, including: analyzing the geometric features, physical features, and numerical feature parameters of the device structure to generate five typical data types; determining the member assignment syntax rules corresponding to the typical data types; The semiconductor device structure is decomposed into five typical data types and written into a structure description file; a dynamic pointer oriented to the device structure description file is generated, and the structure description file is read according to the description grammar rules; the storage arrangement and data format of the numerical calculation-specific file are determined; The data and the device structure stored by the dynamic pointer are converted into a numerical calculation-specific file expressed by a fixed array of model parameters, positions, and dimensions. The invention makes it possible and convenient to input the structure of compound semiconductor device with complex structure including multiple internal heterojunction interfaces, multiple internal plane doping, multiple quantum confinement regions and multiple nonlocal quantum tunneling regions.
Description
技术领域technical field
本发明涉及半导体设备制备技术,具体涉及一种复杂结构的化合物半导体器件的结构描述方法。The invention relates to a semiconductor device preparation technology, in particular to a method for describing the structure of a compound semiconductor device with a complex structure.
背景技术Background technique
目前,化合物半导体器件的结构越来越复杂,如多结太阳电池、高电子迁移率晶体管、红外探测器、隧穿共振二极管等,通常含有多个异质结,而且在某几种化合物半导体材料中嵌入非局域量子隧穿二极管,或面掺杂,或量子阱,或内部界面等需要单独处理的物理特性,这些物理特性的个数在模拟程序未运行前的数量和位置以及物理参数是未知的,而且往往这些物理特性需要明确的参数也比较多,以非局域量子隧穿二极管为例,明确其物理特性的参数包括隧穿方向、左/右边隧穿层位置、左/右边电子和空穴有效质量、左/右边简并参数等,另外更加直观的体现是不同化合物半导体材料层中的缺陷个数不同。在数据结构上,对于这种提前不确定数目及物理特性的对象的描述方法通常采用动态指针的方式,但是在数值分析软件中大量的遍历对象指针会降低计算速度,同时也带来内存利用上的弊端,另外一种直接的方法是提前生成固定长度的数组,在计算时依次判断每种物理对象是否存在,如果存在则遍历相应数目的对象数组,这样做既限制了物理对象数目,又将运算时间浪费在这种固定数组的判断上,采用这种方式输入器件结构参数的模拟软件多是一些具有可视化图形界面特征的,如wxAMPS等。另外当前所采用的物理模型参数的输入上要么需要固定格式,如Silvaco、Crosslight等,不允许参数数据类型的变化、结构单元输入位置的随意性以及公式化参数的输入,这样极大的限制了物理对象参数的输入灵活、器件结构文件可扩展性以及可选类型。At present, the structure of compound semiconductor devices is becoming more and more complex, such as multi-junction solar cells, high electron mobility transistors, infrared detectors, tunneling resonance diodes, etc., usually contain multiple heterojunctions, and in some compound semiconductor materials Embedded non-local quantum tunneling diodes, or surface doping, or quantum wells, or internal interfaces, etc., which need to be dealt with separately, the number and position of these physical properties before the simulation program is run, and the physical parameters are Unknown, and often there are many parameters that need to be clarified for these physical properties. Taking the non-localized quantum tunneling diode as an example, the parameters to clarify its physical properties include the tunneling direction, the position of the left/right tunneling layer, and the left/right electrons. And hole effective mass, left/right degeneracy parameters, etc. In addition, the more intuitive reflection is that the number of defects in different compound semiconductor material layers is different. In terms of data structure, dynamic pointers are usually used to describe this kind of objects with uncertain numbers and physical characteristics in advance, but a large number of traversal object pointers in numerical analysis software will reduce the calculation speed and also bring about memory utilization. Another direct method is to generate a fixed-length array in advance, and determine whether each physical object exists in turn during calculation. If it exists, traverse the corresponding number of object arrays. This not only limits the number of physical objects, but also The calculation time is wasted on the judgment of this fixed array, and the simulation software that uses this method to input device structure parameters is mostly some with the feature of visual graphical interface, such as wxAMPS and so on. In addition, the input of physical model parameters currently used either requires a fixed format, such as Silvaco, Crosslight, etc., and does not allow changes in parameter data types, arbitrary input positions of structural units, and input of formulaic parameters, which greatly limits the physical model. Flexible input of object parameters, extensibility of device structure files, and optional types.
发明内容Contents of the invention
本发明提供一种复杂结构的化合物半导体器件的结构描述方法,使得输入含有多个内部异质结界面、多个内部面掺杂、多个量子限制区域、多个非局域量子隧穿区域的复杂结构化合物半导体器件的结构变得可能与方便,大大提高了结构文件读取程序的可维护性。The invention provides a method for describing the structure of a compound semiconductor device with a complex structure, so that the input contains multiple internal heterojunction interfaces, multiple internal plane doping, multiple quantum confinement regions, and multiple nonlocal quantum tunneling regions. The structure of compound semiconductor devices with complex structures becomes possible and convenient, and the maintainability of the structure file reading program is greatly improved.
为实现上述目的,本发明提供复杂结构的化合物半导体器件的结构描述方法,其特点是,该方法包含:In order to achieve the above object, the present invention provides a method for describing the structure of a compound semiconductor device with a complex structure, which is characterized in that the method includes:
S1、依据化合物半导体器件数值分析所需的器件结构的几何特征、物理特征、数值特征参数表现形式生成五种典型数据类型;S1. Generate five typical data types according to the geometric characteristics, physical characteristics, and numerical characteristic parameters of the device structure required for the numerical analysis of compound semiconductor devices;
S2、确定每种典型数据类型所对应的成员赋值语法规则;S2. Determine the member assignment syntax rules corresponding to each typical data type;
S3、确定结构描述文件的组成规则,将化合物半导体器件结构分解成五种典型数据类型并写成结构描述文件;S3. Determine the composition rules of the structure description file, decompose the structure of the compound semiconductor device into five typical data types and write the structure description file;
S4、生成面向器件结构描述文件的动态指针,依据描述语法规则读取结构描述文件;S4. Generate a dynamic pointer oriented to the device structure description file, and read the structure description file according to the description syntax rules;
S5、依据数值计算过程高效要求,确定数值计算专属文件的储存排列及数据格式;S5. According to the high-efficiency requirements of the numerical calculation process, determine the storage arrangement and data format of the numerical calculation-specific files;
S6、按照S5的要求,将以实验数据和动态指针储存的器件结构转换成以模型参数、位置和维数固定数组表达得数值计算专属文件,供数值计算使用。S6. According to the requirements of S5, convert the device structure stored in the experimental data and dynamic pointer into a numerical calculation exclusive file expressed in a fixed array of model parameters, positions and dimensions, for use in numerical calculation.
上述S1中,所述的五种典型数据类型包含:In the above S1, the five typical data types mentioned include:
单一固定值数据类型;single fixed-value data type;
主导载流子物理特性的偏微分方程组所涉及的几何特征与基础物理对象数据类型;Geometric features and basic physical object data types involved in partial differential equations that dominate the physical properties of carriers;
包含多个基本数据类型的物理现象的复合数据类型;Composite data types that contain physical phenomena of more than one primitive data type;
描述不同物理现象之间空间关联关系的关联数据类型;An associative data type that describes the spatial correlation between different physical phenomena;
描述所模拟仿真分析的化合物半导体器件的工作条件的控制数据类型。A control data type describing the operating conditions of the compound semiconductor device being simulated.
上述S2中,所述的典型数据类型成员赋值语法规则包含:In the above S2, the typical data type member assignment syntax rules include:
基本数据类型中的单一固定值数据类型赋值采取[类型]名字:值;的形式;A single fixed-value data type assignment in a primitive data type takes the form of [type]name:value;
基本数据类型中的基础物理对象数据类型的成员赋值采取[类型]名字(可以缺省):成员1 = ,成员2 = ,…;的形式;The member assignment of the basic physical object data type in the basic data type takes the form of [type] name (can be default): member 1 = , member 2 = , ...;;
复合数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式;A member assignment of a compound data type takes the form {type} name: {[member1] name: ...; [member2] name: ...; ...};
关联数据类型的成员赋值采取[类型]名字:成员1 = ,成员2 = ,…;的形式;Member assignments of associated data types take the form [type]name: member1 = , member2 = , ...;;
控制数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式;A member assignment of a control data type takes the form {type} name: {[member1] name: ...; [member2] name: ...; ...};
通用数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式。Member assignments of generic data types take the form {type} name: {[member1] name: ...; [member2] name: ...; ...}.
上述S3中,将化合物半导体器件结构分解S1中的五种典型数据类型并写成结构描述文件。In the above S3, the compound semiconductor device structure is decomposed into five typical data types in S1 and written into a structure description file.
上述S4中,生成面向器件结构描述文件的动态指针,依据S2描述语法规则读取结构描述文件。In the above S4, a dynamic pointer oriented to the device structure description file is generated, and the structure description file is read according to the syntax rules described in S2.
上述S5中,依据数值计算过程高效要求,确定数值计算专属文件中各种数据的位置、排列及格式。In the above S5, according to the high-efficiency requirements of the numerical calculation process, the position, arrangement and format of various data in the numerical calculation exclusive file are determined.
上述S6中,将以实验数据和动态指针储存的器件结构按照S5转换成以模型参数、位置排列固定和维数固定数组表达的数值计算专属文件,以供数值计算程序使用。In the above S6, the device structure stored by the experimental data and dynamic pointers is converted into a numerical calculation exclusive file expressed by an array of model parameters, fixed positions and fixed dimensions according to S5, for use by the numerical calculation program.
上述构描述方法应用在化合物半导体器件结构的数值模拟与分析中;化合物半导体器件结构包含多结太阳电池、微波器件、光电探测器、激光器。The above-mentioned structure description method is applied in the numerical simulation and analysis of the compound semiconductor device structure; the compound semiconductor device structure includes multi-junction solar cells, microwave devices, photodetectors, and lasers.
本发明一种复杂结构的化合物半导体器件的结构描述方法和现有技术相比,其优点在于,本发明使得输入含有多个内部异质结界面、多个内部面掺杂、多个量子限制区域、多个非局域量子隧穿区域的复杂结构化合物半导体器件的结构变得可能与方便,同时本发明的处理方式大大提高了结构文件读取程序的可维护性;Compared with the prior art, the method for describing the structure of a compound semiconductor device with a complex structure in the present invention has the advantage that the present invention enables the input to contain multiple internal heterojunction interfaces, multiple internal surface doping, and multiple quantum confinement regions 1. The structure of compound semiconductor devices with complex structures in multiple non-localized quantum tunneling regions becomes possible and convenient, and at the same time, the processing method of the present invention greatly improves the maintainability of the structure file reading program;
本发明可以应用在各种化合物半导体器件结构的数值模拟与分析中,诸如多结太阳电池、微波器件、光电探测器、激光器等。The invention can be applied in the numerical simulation and analysis of various compound semiconductor device structures, such as multi-junction solar cells, microwave devices, photodetectors, lasers and the like.
附图说明Description of drawings
图1是本发明复杂结构的化合物半导体器件的结构描述方法的流程图;Fig. 1 is the flow chart of the structure description method of the compound semiconductor device of complex structure of the present invention;
图2是本发明描述器件结构的五种数据类型示意图;Fig. 2 is five kinds of data type schematic diagrams that the present invention describes device structure;
图3是本发明所读取的描述器件结构的五种数据类型的示意图;Fig. 3 is the schematic diagram of five kinds of data types of description device structure that the present invention reads;
图4是本发明数值计算专属文件中不同特性数据描述区域的示意图;Fig. 4 is a schematic diagram of different characteristic data description areas in the numerical calculation exclusive file of the present invention;
图5是本发明复杂结构的化合物半导体器件的结构描述方法的实施例一的示意图;5 is a schematic diagram of Embodiment 1 of the method for describing the structure of a compound semiconductor device with a complex structure in the present invention;
图6是本发明复杂结构的化合物半导体器件的结构描述方法的实施例二的示意图。FIG. 6 is a schematic diagram of Embodiment 2 of the method for describing the structure of a compound semiconductor device with a complex structure according to the present invention.
具体实施方式detailed description
以下结合附图,进一步说明本发明的具体实施例。Specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,为本发明一种复杂结构的化合物半导体器件的结构描述方法的实施例,该方法具体包含以下步骤:As shown in FIG. 1, it is an embodiment of a method for describing the structure of a compound semiconductor device with a complex structure in the present invention. The method specifically includes the following steps:
S1、依据化合物半导体器件数值分析所需的器件结构的几何特征、物理特征、数值特征等参数表现形式生成五种典型数据类型。S1. Five typical data types are generated according to the parameter representations of the geometric features, physical features, and numerical features of the device structure required for the numerical analysis of compound semiconductor devices.
描述化合物半导体器件结构的几何特征包含器件区域(area)数据类型及其网格划分(grid)数据类型,器件区域包括器件几何尺寸、空间分布等特征参数,网格划分包括某一区域上网格类型、网格尺寸、网格数目、网格分布等特征参数;The geometric features describing the compound semiconductor device structure include the data type of the device area (area) and its grid division (grid) data type. The device area includes characteristic parameters such as device geometric size and spatial distribution, and the grid division includes the grid type on a certain area. , grid size, grid number, grid distribution and other characteristic parameters;
描述化合物半导体器件结构的物理特征包含主导载流子物理特性的偏微分方程组所涉及的物理对象与器件工作条件。The physical characteristics describing the structure of compound semiconductor devices include the physical objects and device working conditions involved in the partial differential equations that dominate the physical characteristics of the carriers.
主导载流子物理特性的偏微分方程组所涉及的物理对象包含:The physical objects involved in the system of partial differential equations governing the physical properties of carriers include:
1、反映本征化合物半导体材料电子学特征的材料能带参数;例如:反映能带排列的化合物半导体电子亲和势、导带与价带的带边态密度、静态介电常数、能带带隙、自发辐射复合系数、俄歇复合系数、雪崩系数等。1. Material energy band parameters reflecting the electronic characteristics of intrinsic compound semiconductor materials; for example: compound semiconductor electron affinity reflecting energy band arrangement, band edge state density of conduction band and valence band, static dielectric constant, energy band Gap, spontaneous emission recombination coefficient, Auger recombination coefficient, avalanche coefficient, etc.
2、反映材料电子/空穴迁移率空间分布的参数;例如:电子/空穴的迁移率可能是固定的,也可能在空间随掺杂浓度的分布呈现一定的函数分布。2. Parameters that reflect the spatial distribution of electron/hole mobility in materials; for example, the mobility of electron/hole may be fixed, or may present a certain functional distribution in space with the distribution of doping concentration.
3、体材料中的离散能级缺陷与连续分布能级缺陷;例如:同属于单能级缺陷(SLD)的用以调节材料化学势的掺杂和作为复合中心的深能级、面掺杂(delta)、带尾态(BT)、高斯态(GS)等,这类物理现象多个中的某些单能级缺陷(SLD)和面掺杂(delta)往往具有空间非均匀分布,比如MOCVD(金属有机化学气相沉积)生长中常把掺杂原子浓度设置成的a+b(1-x)n或c+dxm的形式,而扩散原子分布往往服从余误差函数分布、高斯分布等。3. Discrete energy-level defects and continuous-distributed energy-level defects in bulk materials; for example: doping that belongs to single-level defects (SLD) to adjust the chemical potential of materials and deep-level and surface doping as recombination centers (delta), band-tailed state (BT), Gaussian state (GS), etc. Some single-level defects (SLD) and surface doping (delta) in these physical phenomena often have spatially non-uniform distributions, such as In MOCVD (metal organic chemical vapor deposition) growth, the concentration of dopant atoms is often set in the form of a+b(1-x)n or c+dxm, and the distribution of diffuse atoms often obeys the residual error function distribution, Gaussian distribution, etc.
4、表面和界面中的离散能级缺陷和连续能级缺陷;例如:器件结构的外表面(Osurf)、异质结界面(Isurf)等。4. Discrete energy level defects and continuous energy level defects in surfaces and interfaces; for example: outer surface (Osurf) of device structure, heterojunction interface (Isurf), etc.
5、跨越不同材料层的附加属性;例如:体材料中的量子限制(QC)、体材料不同能带间非局域量子隧穿(IBQT)、跨越界面的非局域量子隧穿(HFQT)等。5. Additional properties across different material layers; for example: quantum confinement (QC) in bulk materials, nonlocal quantum tunneling (IBQT) between different energy bands of bulk materials, nonlocal quantum tunneling across interfaces (HFQT) Wait.
6、连接器件结构光学特性与材料属性的物理模型;例如:光学产生速率(OPG)、光学反射与透射率(OR)等。6. The physical model connecting the optical characteristics of the device structure and the material properties; for example: optical generation rate (OPG), optical reflection and transmittance (OR), etc.
化合物半导体器件实际工作条件包含:The actual working conditions of compound semiconductor devices include:
1、温度条件1. Temperature conditions
例如:工作温度范围,低温与高温点,温度步长等控制参数For example: operating temperature range, low temperature and high temperature point, temperature step and other control parameters
2、偏压条件2. Bias conditions
例如:施加偏压范围,偏压开始与结束点,偏压施加方向,偏压施加步长等控制参数For example: applied bias voltage range, bias voltage start and end points, bias voltage application direction, bias voltage application step size and other control parameters
3、光照条件3. Lighting conditions
例如:光照波长范围,起始波长,光强随波长分布等控制参数For example: light wavelength range, starting wavelength, light intensity distribution with wavelength and other control parameters
描述化合物半导体器件结构的数值特征包含求解方法和求解精度等。The numerical characteristics describing the structure of compound semiconductor devices include solution methods and solution accuracy.
数值求解方法涉及离散微分方程组所得到的线性方程组采用直接算法还是迭代求解算法、不同微分方程组之间是耦合求解还是依次求解、线性方程组采用的储存方式等控制参数。所述的求解精度涉及最大迭代次数、迭代收敛判断参数、解的误差、解的错误信息等控制参数。The numerical solution method involves control parameters such as direct algorithm or iterative algorithm for linear equations obtained from discrete differential equations, coupling solution or sequential solution between different differential equations, and storage method for linear equations. The solution accuracy involves control parameters such as maximum number of iterations, parameters for judging convergence of iterations, solution error, and solution error information.
如图2所示,根据器件结构的三种参数特征分解成基本数据类型、复合数据类型、关联数据类型、控制数据类型、通用数据类型等五种典型数据类型:As shown in Figure 2, according to the three parameter characteristics of the device structure, it is decomposed into five typical data types, including basic data types, compound data types, associated data types, control data types, and general data types:
基本数据类型包含单一固定值与主导载流子物理特性的偏微分方程组所涉及的物理对象两种。The basic data types include both single fixed values and physical objects involved in partial differential equations governing the physical properties of the carriers.
1、单一固定值数据类型1. Single fixed value data type
由整数(integer)、实数(real)、布尔变量(logical)、字符串(string)等四种固定值数据组成,用以描述数目、数值、逻辑、名称等。It consists of four fixed-value data such as integer, real, boolean, and string, and is used to describe numbers, values, logic, names, etc.
2、主导载流子物理特性的偏微分方程组所涉及的几何特征与基础物理对象数据类型2. Geometric features and basic physical object data types involved in partial differential equations that dominate the physical characteristics of carriers
由器件区域(area)、网格划分(grid)、单一参数函数分布(fun)、离散能级缺陷电子学参数(dbsld)、离散能级缺陷复合参数(dbsrh)、连续能级缺陷电子学参数(cbsld)、连续能级缺陷复合参数(cbsrh)、界面离散能级缺陷电子学参数(dssld)、界面离散能级缺陷复合参数(dssrh)、界面连续能级缺陷电子学参数(cssld)、界面连续能级缺陷复合参数(cssrh)、带尾态(BT)、高斯态(GS)、光学层属性参数(opl)等组成,用以描述偏微分方程组中的基本物理现象。By device area (area), grid division (grid), single parameter function distribution (fun), discrete energy level defect electronics parameters (dbsld), discrete energy level defect composite parameters (dbsrh), continuous energy level defect electronics parameters (cbsld), continuous level defect composite parameter (cbsrh), interface discrete level defect electronics parameter (dssld), interface discrete level defect composite parameter (dssrh), interface continuous level defect electronics parameter (cssld), interface Continuum level defect composite parameters (cssrh), band tail state (BT), Gaussian state (GS), optical layer property parameters (opl), etc., are used to describe the basic physical phenomena in partial differential equations.
器件区域(area)描述器件结构的空间组成、几何尺寸、包括器件几何尺寸、空间分布等成员,The device area (area) describes the spatial composition and geometric dimensions of the device structure, including members such as device geometric dimensions and spatial distribution,
网格划分(grid)描述了针对某一子区域的空间网格生成,包括某一区域上网格类型、网格尺寸、网格数目、网格分布等成员;Grid division (grid) describes the spatial grid generation for a certain sub-area, including members such as grid type, grid size, grid number, and grid distribution on a certain area;
函数分布(fun)描述由x,1-x组成的多项式、指数函数、高斯函数、余误差函数、洛仑兹函数等分布,包含函数类型type、函数表达式等两个组员。参数个数n、系数数组P[n]、指数数组I[n]等四个组员。Function distribution (fun) describes the distribution of polynomial, exponential function, Gaussian function, residual error function, Lorenz function and other distributions composed of x, 1-x, including two group members such as function type and function expression. The number of parameters n, the coefficient array P[n], and the index array I[n] are four members.
离散能级缺陷电子学参数(dbsld)描述通过仪器测试得到的缺陷物理特征,包含缺陷浓度、能级位置、电子/空穴俘获界面、电子/空穴简并度等六个成员。Discrete-level defect electronics parameters (dbsld) describe the physical characteristics of defects obtained through instrumental testing, including six members including defect concentration, energy level position, electron/hole capture interface, and electron/hole degeneracy.
离散能级缺陷复合模型参数(dbsrh)描述缺陷的Schokley-Read-Hall模型,包含缺陷浓度、电子/空穴本征寿命、缺陷对导带/价带的等效浓度等五个组员。离散能级缺陷复合模型参数是由材料离散能级缺陷电子学参数通过物理关系转换得到,是最终提供给器件结构文件的数据。Discrete-level defect complex model parameters (dbsrh) describe the Schokley-Read-Hall model of defects, including defect concentration, electron/hole intrinsic lifetime, and equivalent concentration of defects to conduction band/valence band. The discrete energy level defect compound model parameters are obtained by converting the material discrete energy level defect electronic parameters through physical relations, and are the data finally provided to the device structure file.
连续能级缺陷电子学参数(cbsld)描述通过仪器测试得到的缺陷物理特征,包含缺陷浓度能量空间分布函数、电子/空穴俘获截面、电子/空穴简并度等五个成员,其中缺陷浓度能量空间分布函数采用参数函数分布(fun)的形式表达。Continuous level defect electronics parameter (cbsld) describes the physical characteristics of defects obtained through instrument testing, including five members including defect concentration energy spatial distribution function, electron/hole capture cross section, electron/hole degeneracy, among which defect concentration The energy spatial distribution function is expressed in the form of a parameter function distribution (fun).
连续能级缺陷复合参数(cbsrh)描述缺陷的Schokley-Read-Hall模型,包含缺陷浓度能量空间分布函数、电子/空穴本征寿命、缺陷对导带/价带的等效浓度等五个组员,其中缺陷浓度能量空间分布函数采用参数函数分布(fun)的形式表达。连续能级缺陷复合模型参数是由材料连续能级缺陷电子学参数通过物理关系转换得到,是最终提供给器件结构文件的数据。Continuous level defect recombination parameter (cbsrh) describes the Schokley-Read-Hall model of defects, including five groups of defect concentration energy spatial distribution function, electron/hole intrinsic lifetime, defect equivalent concentration to conduction band/valence band Members, where the defect concentration energy spatial distribution function is expressed in the form of a parameter function distribution (fun). The continuous energy level defect composite model parameters are obtained by converting the material continuous energy level defect electronic parameters through physical relations, and are the data finally provided to the device structure file.
界面离散能级缺陷电子学参数(dssld)描述通过仪器测试得到的界面缺陷物理特征,包含缺陷浓度、能级位置、电子/空穴俘获界面、电子/空穴简并度等六个成员。Interface Discrete Level Defect Electronics Parameters (dssld) describe the physical characteristics of interface defects obtained through instrumental testing, including six members including defect concentration, energy level position, electron/hole capture interface, and electron/hole degeneracy.
界面离散能级缺陷复合参数(dssrh)描述界面缺陷的Schokley-Read-Hall模型,包含缺陷面密度、电子/空穴本征寿命、缺陷对导带/价带的等效浓度等五个组员。界面离散能级缺陷复合模型参数是由界面离散能级缺陷电子学参数通过物理关系转换得到,是最终提供给器件结构文件的数据。Interface discrete energy level defect composite parameter (dssrh) describes the Schokley-Read-Hall model of interface defects, including five members including defect surface density, electron/hole intrinsic lifetime, and equivalent concentration of defects to conduction band/valence band . The interface discrete energy level defect compound model parameters are obtained by converting the interface discrete energy level defect electronic parameters through physical relations, and are the data finally provided to the device structure file.
界面连续能级缺陷电子学参数(cssld)描述通过仪器测试得到的界面缺陷物理特征,包含缺陷密度能量空间分布函数、电子/空穴俘获截面、电子/空穴简并度等五个成员,其中街面缺陷浓度能量空间分布函数采用参数函数分布(fun)的形式表达。Interface continuous level defect electronics parameters (cssld) describe the physical characteristics of interface defects obtained through instrumental testing, including five members including defect density energy spatial distribution function, electron/hole capture cross section, and electron/hole degeneracy, among which The energy spatial distribution function of the defect concentration on the street surface is expressed in the form of a parameter function distribution (fun).
界面连续能级缺陷复合参数(cssrh)描述界面缺陷的Schokley-Read-Hall模型,包含界面缺陷浓度能量空间分布函数、电子/空穴本征复合速率、缺陷对导带/价带的等效浓度等五个组员,其中界面缺陷浓度能量空间分布函数采用参数函数分布(fun)的形式表达。连续能级缺陷复合模型参数是由材料连续能级缺陷电子学参数通过物理关系转换得到,是最终提供给器件结构文件的数据。The interface continuous level defect recombination parameter (cssrh) describes the Schokley-Read-Hall model of the interface defect, including the interface defect concentration energy spatial distribution function, the electron/hole intrinsic recombination rate, and the equivalent concentration of the defect to the conduction band/valence band and other five team members, in which the energy spatial distribution function of the interface defect concentration is expressed in the form of a parameter function distribution (fun). The continuous energy level defect composite model parameters are obtained by converting the material continuous energy level defect electronic parameters through physical relations, and are the data finally provided to the device structure file.
带尾态(BT)描述导带/价带脱尾缺陷态的物理特征,包含带尾态密度、指数分布衰减因子、电子/空穴俘获截面、电子/空穴简并度等六个成员。带尾态参数通过物理关系转换后最终提供给器件结构文件的为带尾态密度、指数分布衰减因子、电子/空穴本征寿命等四个成员。Band tail state (BT) describes the physical characteristics of conduction band/valence band tailing defect states, including six members including band tail state density, exponential distribution decay factor, electron/hole capture cross section, and electron/hole degeneracy. After the tail state parameters are transformed through the physical relationship, the four members finally provided to the device structure file are the band tail state density, the exponential distribution decay factor, and the electron/hole intrinsic lifetime.
高斯态(GS)描述材料带隙中具有态密度呈现高斯分布的缺陷态,包含浓度、展宽因子、能级位置、电子/空穴俘获截面、电子/空穴简并度等七个成员。高斯态参数通过物理关系转换后最终提供给器件结构文件的为浓度、展宽因子、能级位置、电子/空穴本征寿命等五个成员。Gaussian state (GS) describes the defect state with a Gaussian distribution of state density in the material band gap, including seven members such as concentration, broadening factor, energy level position, electron/hole capture cross section, and electron/hole degeneracy. The Gaussian state parameters are finally provided to the device structure file after the physical relationship conversion, including five members: concentration, broadening factor, energy level position, and electron/hole intrinsic lifetime.
光学层属性参数描述了材料层的光学特性,包含材料名称、材料厚度、光学参数模型与光学参数文件名称等三个成员。Optical layer attribute parameters describe the optical properties of the material layer, including three members: material name, material thickness, optical parameter model and optical parameter file name.
3、所述的复合数据类型是指那些包含多个基本数据类型的物理现象,化合物器件结构中主要涉及到如下几种:3. The compound data type mentioned refers to those physical phenomena that contain multiple basic data types. The compound device structure mainly involves the following types:
材料的内部缺陷(BSLD)、界面/表面缺陷(SSLD):包含缺陷名称(单一固定值数据类型)、属性逻辑特征(单一固定值数据类型)、坐标空间分布(函数分布)、电子学参数、复合模型参数等几种基本数据类型。Material internal defect (BSLD), interface/surface defect (SSLD): including defect name (single fixed value data type), attribute logic feature (single fixed value data type), coordinate space distribution (function distribution), electronic parameters, Composite model parameters and several other basic data types.
材料生长层(gl)描述材料生长过程中材料组分固定而其它条件变化的复合数据类型:包含迁移率函数、材料内部缺陷、界面/表面缺陷(复合数据类型)等基本与复合数据类型。The material growth layer (gl) describes the compound data type in which the material components are fixed and other conditions change during the material growth process: including basic and compound data types such as mobility function, material internal defects, and interface/surface defects (composite data types).
异质材料层(ml)描述材料组成或组分不同的数据类型,可能包含几个材料生长层:包含材料能带参数(单一固定值数据类型)、材料生长层等基本与复合数据类型。The heterogeneous material layer (ml) describes data types with different material compositions or components, and may contain several material growth layers: basic and composite data types including material energy band parameters (single fixed value data type), material growth layers, etc.
4、所述的关联数据类型描述异质材料层与异质结界面/表面的位置关联关系(gl_to_surface)、光学层与异质材料层的位置关联关系(opl_to_hl)、异质结界面非局域量子隧穿(HFQT)、带间非局域量子隧穿(IBQT)、量子限制(QC)等五种关联数据类型。4. The associated data type describes the positional relationship between the heterogeneous material layer and the heterojunction interface/surface (gl_to_surface), the positional relationship between the optical layer and the heterogeneous material layer (opl_to_hl), and the nonlocality of the heterojunction interface Five associated data types including quantum tunneling (HFQT), interband nonlocal quantum tunneling (IBQT), and quantum confinement (QC).
其中,异质材料层与异质结界面/表面的位置关联关系包含材料本身名字与异质结界面/表面名字两个组员,光学层与异质材料层的位置关联关系包含光学层名字与异质材料层名字两个组员,异质结界面非局域量子隧穿包含异质结能带排列方式、隧穿所涉及的两边异质材料层名称、生长层名称等五个组员,带间非局域量子隧穿包含类型、隧穿所涉及的两边材料生长层名称、两边电子/空穴有效质量、两边简并度等九个组员,量子限制包含类型、异质结能带排列方式、隧穿所涉及的两边异质材料层名称、生长层名称、波函数两边扩展异质材料层名称、生长层名称等十个组员Among them, the positional relationship between the heterogeneous material layer and the heterojunction interface/surface includes two members: the name of the material itself and the name of the heterojunction interface/surface, and the positional relationship between the optical layer and the heterogeneous material layer includes the name of the optical layer and the name of the heterojunction interface/surface. The name of the heterogeneous material layer has two members, and the nonlocal quantum tunneling at the heterojunction interface includes five members including the arrangement of the energy bands of the heterojunction, the names of the heterogeneous material layers on both sides involved in the tunneling, and the name of the growth layer. Nonlocal quantum tunneling between bands includes nine members including the type, the name of the material growth layer on both sides involved in the tunneling, the effective mass of electrons/holes on both sides, and the degeneracy of both sides, and the quantum confinement includes the type and energy band of the heterojunction Arrangement, name of heterogeneous material layer on both sides involved in tunneling, name of growth layer, name of extended heterogeneous material layer on both sides of wave function, name of growth layer and other ten members
5、所述的控制数据类型描述所模拟仿真分析的化合物半导体器件的工作 条件,包含外加偏压、外加光照、瞬态特征、环境温度、数值精度等五种控制数据类型。5. The control data type describes the working conditions of the simulated and analyzed compound semiconductor device, including five control data types such as applied bias voltage, applied light, transient characteristics, ambient temperature, and numerical accuracy.
其中外加偏压包含偏压方向、起/止偏压、偏压步长等四个组员,外压光照包含起/止波长,光照强度函数等三个组员,瞬态特征包含起/止时间、时间步长分布函数等三个组员,环境温度包含起/止温度、温度步长分布函数等三个组员。通过上述控制数据类型的复合可以产生很多实际测试条件,如外加偏压与外加光照组合,可以产生光照I/V曲线,外加偏压与瞬态特征组合,可以模拟时间分辨特性,外压偏压与瞬态、温度组合可以模拟深能级谱特性。Among them, the applied bias voltage includes four members such as bias direction, start/stop bias voltage, and bias voltage step size. The external pressure light includes three members such as start/stop wavelength and light intensity function. The transient characteristics include start/stop There are three group members including time and time step distribution function, and the ambient temperature includes three group members including start/stop temperature and temperature step distribution function. Through the combination of the above control data types, many actual test conditions can be generated, such as the combination of external bias voltage and external light can generate light I/V curves, the combination of external bias voltage and transient characteristics can simulate time-resolved characteristics, external voltage bias Combined with transient and temperature, it can simulate the characteristics of deep level spectrum.
通用数据类型描述了器件的通用物理空间与典型特征,包含时间尺度、空间尺度、器件结构文件说明等组员。The general data type describes the general physical space and typical characteristics of the device, including members such as time scale, space scale, and device structure file description.
S2、确定每种典型数据类型所对应的成员赋值语法规则。S2. Determine the member assignment syntax rules corresponding to each typical data type.
S2.1、基本数据类型中的单一固定值数据类型赋值采取[类型]名字:值的形式S2.1. The single fixed-value data type assignment in the basic data type takes the form of [type] name: value
例如,定义掺杂D1的浓度为1E18cm-3的表达形式为:For example, the expression that defines the concentration of doping D1 as 1E18cm-3 is:
[real] D1:1.0d+18;[real] D1: 1.0d+18;
S2.2、基本数据类型中的基础物理对象数据类型的成员赋值采取[类型]名字(可以缺省):成员1 = ,成员2 = ,…;的形式。S2.2. The member assignment of the basic physical object data type in the basic data type takes the form of [type] name (can be default): member 1 = , member 2 = , ...;.
例如,定义价带上0.8eV,浓度为1E16cm-3,电子/空穴俘获截面为1E-15cm2,电子/空穴简并度为2的深能级点缺陷D2为:For example, define a deep level point defect D2 at 0.8eV on the valence band, with a concentration of 1E16cm-3, an electron/hole capture cross section of 1E-15cm2, and an electron/hole degeneracy of 2 as:
[dbsld] D1 :edc = 0.8,den = 1.0d+16;sgn = 1e-15,sgp = 1e-15,g = 2.0;[dbsld] D1: edc = 0.8, den = 1.0d+16; sgn = 1e-15, sgp = 1e-15, g = 2.0;
例如,定义一指数函数为:For example, define an exponential function as:
[fun]f:type = 2;p = 50 + e^(10.*x^5) – e^(7.16*(1-x)^3);[fun] f: type = 2; p = 50 + e^(10.*x^5) – e^(7.16*(1-x)^3);
S2.3、复合数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式S2.3. The member assignment of a compound data type takes the form of {type} name: {[member 1] name: ...; [member 2] name: ...; ...}
例如,定义点缺陷深能级D1为For example, the point defect deep energy level D1 is defined as
{bsld}D1:{bsld}D1:
{{
[logical] ionized : false;[logical] ionized : false;
[fun]空间分布:…;[fun] spatial distribution: ...;
[dbsld]能级:…;[dbsld] energy level: ...;
[dbsrh]复合:…;[dbsrh] composite: ...;
……
}}
由于复合数据类型与基本数据类型一致,因此各成员的赋值方式与2中相同。Since the composite data type is consistent with the basic data type, the assignment method of each member is the same as in 2.
S2.4、关联数据类型的成员赋值采取[类型]名字(可以缺省):成员1 = ,成员2 =,…;的形式:S2.4. The member assignment of the associated data type takes the form of [type] name (can be default): member 1 = , member 2 =, ...;
定义1D材料层GaInP的左边与右边关联界面为:Define the left and right associated interfaces of the 1D material layer GaInP as:
[gl_to_surface]GaInP:left_surface_type = ,left_surface_name = ,right_surface_type = ,right_surface_name = ;[gl_to_surface] GaInP: left_surface_type = , left_surface_name = , right_surface_type = , right_surface_name = ;
定义发生在材料生长层d1与d2之间的带间非局域量子隧穿为:Define the interband nonlocal quantum tunneling that occurs between the material growth layers d1 and d2 as:
[IBQT] QT1:type = ,left_gl_name = ,right_gl_name = ,mel = , mer = ,mhl =,mhr = , lg = , rg = ;[IBQT] QT1: type = , left_gl_name = , right_gl_name = , mel = , mer = , mhl =, mhr = , lg = , rg = ;
S2.5、控制数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式;S2.5. The member assignment of the control data type takes the form of {type} name: {[member 1] name: ...; [member 2] name: ...; ...};
例如,定义一外加偏压为:For example, define an applied bias voltage as:
{bias}B1 :{bias}B1 :
{{
[logical]direction :;[logical]direction:;
[real] Vstart:;[real] Vstart:;
[real]Vstop:;[real] Vstop:;
[fun]Vstep:type = ,P = ;[fun] Vstep: type = , P = ;
}}
S2.6、通用数据类型的成员赋值采取{类型}名字:{[成员1]名字: … ;[成员2 ]名字:…;…}的形式;S2.6. The member assignment of a general data type takes the form of {type} name: {[member 1] name: ...; [member 2] name: ...; ...};
类如,定义器件结构通用说明为:For example, define the general description of the device structure as:
{general}sample2:{general}sample2:
{{
[string]tscale:ns;[string]tscale:ns;
[string]xspace:nm;[string]xspace:nm;
[string]date:2016-8-31[string] date: 2016-8-31
}}
S3、确定结构描述文件的组成规则,将化合物半导体器件结构分解成五种典型数据类型并写成结构描述文件。S3. Determine the composition rules of the structure description file, decompose the structure of the compound semiconductor device into five typical data types, and write the structure description file.
根据化合物半导体器件的结构特征以及数值仿真分析所需数据特征,将器件结构文件主要分成如下四部分:According to the structural characteristics of compound semiconductor devices and the data characteristics required for numerical simulation analysis, the device structure file is mainly divided into the following four parts:
1、通用特性描述,采用通用数据类型;1. General feature description, using general data types;
2、各材料层、界面/表面、光学层、网格产生等物理对象描述,采用基本数据类型、复合数据类型;2. The description of physical objects such as material layers, interfaces/surfaces, optical layers, and mesh generation adopts basic data types and composite data types;
3、各材料层、界面/表面、光学层之间关联关系描述,采用关联数据类型;3. The description of the relationship between each material layer, interface/surface, and optical layer adopts the associated data type;
4、器件控制特性描述,包括工作条件与数值特性,采用控制数据类型。4. Description of device control characteristics, including working conditions and numerical characteristics, using control data types.
S4、生成面向器件结构描述文件的动态指针,依据描述语法规则读取结构描述文件;S4. Generate a dynamic pointer oriented to the device structure description file, and read the structure description file according to the description syntax rules;
为了便于化合物半导体器件组成组员的增减及器件结构文件的可维护性与可扩展性,在读取具体文件前,先生成指向上述四部分特性的指针,依次以链表的数据结构表示在文件中所遇到的各特性对象,链表中各对象的读取依照S2中语法规则读取。In order to facilitate the increase and decrease of compound semiconductor device members and the maintainability and scalability of the device structure file, before reading the specific file, first generate pointers to the characteristics of the above four parts, which are sequentially represented in the file by the data structure of the linked list For each characteristic object encountered in , each object in the linked list is read according to the syntax rules in S2.
由于文件的读取采用指针动态分配空间,文件的四部分可以相互交叉,位置也不一定固定,读取程序会根据数据类型自动在已经读取的该种数据类型后面分配空间,并依据一般物理原则初步判断数据的合理性。Since the reading of the file adopts the pointer to dynamically allocate space, the four parts of the file can intersect with each other, and the position is not necessarily fixed. The reading program will automatically allocate space after the data type that has been read according to the data type, and according to the general physical The principle is to preliminarily judge the rationality of the data.
如图3所示,为最终器件结构的储存方式。包含通信连接的材料生长层311、312;异质结界面321、322;材料层表面331、332;关联数据341、342;控制数据351、352。As shown in Figure 3, it is the storage method of the final device structure. Material growth layers 311 , 312 comprising communication connections; heterojunction interfaces 321 , 322 ; material layer surfaces 331 , 332 ; associated data 341 , 342 ; control data 351 , 352 .
S5、依据数值计算过程高效要求,确定数值计算专属文件中各种数据的位置、排列及格式。S5. According to the high-efficiency requirements of the numerical calculation process, determine the position, arrangement and format of various data in the numerical calculation exclusive file.
为了尽可能提高计算效率,需要做到三点:1)各种数据在文件储存的位置固定,数值计算软件会顺序读取相关数据;2)链表数据格式转换成固定维数数组格式;3)将实验数据转换成偏微分方程组中的物理模型参数。具体如下:In order to improve the calculation efficiency as much as possible, three points need to be done: 1) Various data are stored in a fixed location in the file, and the numerical calculation software will read the relevant data sequentially; 2) The data format of the linked list is converted into a fixed-dimensional array format; 3) Transform experimental data into physical model parameters in a system of partial differential equations. details as follows:
1、各种依照计算模拟软件的要求,确定数值计算专属文件的各种数据的排列位置。1. According to the requirements of the calculation simulation software, determine the arrangement position of various data in the numerical calculation exclusive file.
本发明方法采取如下位置排列:The inventive method takes following position arrangement:
1)通用特性描述所涉及的数据;1) The data involved in the description of general characteristics;
2)各材料层、界面/表面、光学层、网格产生等物理对象描述所涉及的数据;2) The data involved in the description of physical objects such as material layers, interfaces/surfaces, optical layers, and grid generation;
3)各材料层、界面/表面、光学层之间关联关系描述所涉及的数据;3) The data involved in the description of the relationship between each material layer, interface/surface, and optical layer;
4)器件控制特性描述所涉及的数据。4) The data involved in the description of device control characteristics.
2、各物理对象以数组的形式存在2. Each physical object exists in the form of an array
读取器件结构时以链表储存的异质材料层、生长材料层、材料层中各种缺陷、关联特性、控制特性,均转换成固定数组形式。如异质材料层的表达方式如下:When reading the device structure, the heterogeneous material layer, growth material layer, various defects in the material layer, associated characteristics, and control characteristics stored in the linked list are all converted into a fixed array form. For example, the expression of the heterogeneous material layer is as follows:
异质材料层本征参数Intrinsic parameters of heterogeneous material layers
……
生长材料层数目Growth material layer number
生长材料层1本征参数Intrinsic parameters of growth material layer 1
……
缺陷类型数目number of defect types
缺陷类型参数Defect Type Parameters
缺陷类型参数Defect Type Parameters
……
生长材料层2本征参数Intrinsic parameters of growth material layer 2
……
缺陷类型数目number of defect types
缺陷类型参数Defect Type Parameters
缺陷类型参数Defect Type Parameters
……
3、缺陷参数统一成复合模型3. Defect parameters are unified into a composite model
如果材料/界面/表面缺陷描述采取电子学参数的形式,采用物理关系转换成复合模型。If the material/interface/surface defect description is in the form of electronic parameters, use physical relationships to convert to composite models.
4、各关联数组以对象数组编号做索引4. Each associative array is indexed by the object array number
读取器件结构时以名字为索引的各物理对象,由于已经采用固定维数数组储存,因此各关联数组的名字索引转换成对象数组编号。When reading the device structure, each physical object indexed by name has been stored in a fixed-dimensional array, so the name index of each associated array is converted into an object array number.
如图4所示,为整个数值计算专属文件中的化合物半导体器件不同特性描述排列。As shown in Fig. 4, the different characteristic descriptions for the compound semiconductor device permutations in the entire numerical calculation-specific file.
S6、按照S5的要求,将以实验数据和动态指针储存的器件结构转换成以模型参数、位置排列固定和维数固定数组表达的数值计算专属文件,以供数值计算程序使用。S6. According to the requirements of S5, convert the device structure stored by the experimental data and dynamic pointers into a numerical calculation exclusive file expressed by an array of model parameters, fixed position arrangement and fixed dimension, for use by the numerical calculation program.
如图5所示,为本发明复杂结构的化合物半导体器件的结构描述方法的实施例一,以晶格大失配GaInP/GaAs/InGaAs三结太阳电池为例,其包括p-InGaAs接触层51,InAlGaAs背场52,InGaAs有源层53,GaInP窗口层54,InAlGaAs n++掺杂层55,InAlGaAs p++掺杂层56,p-InAlGaAs缓冲层57,AlGaAs背场58,GaAs有源层59,AlInP窗口层510,GaInP n++掺杂层511,AlGaAs p++掺杂层512, AlGaInP背场513,AlGaInP有源层514,AlGaInP窗口层515,GaAs帽子层516。该结构采用低压金属有机物化学气相沉积设备在n型GaAs衬底上生长。该结构含有两个带间非局域量子隧穿,分别发生在InAlGaAs n++掺杂层55与InAlGaAs p++掺杂层56之间及GaInP n++掺杂层511与AlGaAs p++掺杂层512之间,含有6个跨越异质结界面的非局域量子隧穿,分别存在于InAlGaAs背场52与InGaAs有源层53,InGaAs有源层53与GaInP窗口层54,AlGaAs背场58与GaAs有源层59,GaAs有源层59与AlInP窗口层510,AlGaInP背场513与AlGaInP有源层514,有源层514与AlInP窗口层515等之间。根据本发明方法,分别生成了含有两个表头的带间非局域量子隧穿关联数据链表与含有6个表头的跨越异质结非局域量子隧穿关联数据链表,使用本发明方法由于不再关心各种物理特性说明位置,并且可以随意增减各种数据,大大减化了器件结构描述文件的复杂性,提高了可读性和可维护性。As shown in FIG. 5 , it is Embodiment 1 of the structure description method of a compound semiconductor device with a complex structure in the present invention. Taking a GaInP/GaAs/InGaAs triple-junction solar cell with a large lattice mismatch as an example, it includes a p-InGaAs contact layer 51 , InAlGaAs back field 52, InGaAs active layer 53, GaInP window layer 54, InAlGaAs n++ doped layer 55, InAlGaAs p++ doped layer 56, p-InAlGaAs buffer layer 57, AlGaAs back field 58, GaAs active layer 59, AlInP A window layer 510 , a GaInP n++ doped layer 511 , an AlGaAs p++ doped layer 512 , an AlGaInP back field 513 , an AlGaInP active layer 514 , an AlGaInP window layer 515 , and a GaAs cap layer 516 . The structure is grown on an n-type GaAs substrate using low-pressure metal-organic chemical vapor deposition equipment. The structure contains two interband nonlocal quantum tunnels, which respectively occur between the InAlGaAs n++ doped layer 55 and the InAlGaAs p++ doped layer 56 and between the GaInP n++ doped layer 511 and the AlGaAs p++ doped layer 512, containing Six non-localized quantum tunnels spanning the heterojunction interface, respectively existing in the InAlGaAs back field 52 and the InGaAs active layer 53, the InGaAs active layer 53 and the GaInP window layer 54, and the AlGaAs back field 58 and the GaAs active layer 59 , between the GaAs active layer 59 and the AlInP window layer 510, between the AlGaInP back field 513 and the AlGaInP active layer 514, between the active layer 514 and the AlInP window layer 515, and so on. According to the method of the present invention, the inter-band non-local quantum tunneling associated data linked list containing two headers and the cross-heterojunction non-local quantum tunneling associated data linked list containing 6 headers are respectively generated, using the method of the present invention Because it no longer cares about the description positions of various physical characteristics, and various data can be added or subtracted at will, the complexity of the device structure description file is greatly reduced, and the readability and maintainability are improved.
如图6所示,为本发明复杂结构的化合物半导体器件的结构描述方法的实施例二,以2D电子迁移率晶体管为例,其包括源电极61,栅电极62,漏电极63,上垒层64,沟道层65,下垒层66以及衬底层67。该结构采用低压金属有机物化学气相沉积设备在半绝缘型GaAs衬底上生长。其中源电极61和漏电极63的金属半导体接触类型为欧姆型,而栅电极62的金属半导体接触类型为肖特基型,上垒层64中含有面掺杂,该结构含有跨越Schottky结界面的非局域量子隧穿,发生在栅电极62与外界负载之间,含有两个跨越异质结界面的非局域量子隧穿,分别发生在上垒层64与沟道层65,沟道层65与下垒层66之间,含有一个量子限制区域,阱区在沟道层65,垒层为上垒层64与下垒层66。本发明方法除了生成各种物理对象数组位,还生成了含有一个跨越Schottky结界面的非局域量子隧穿与两个跨越异质结界面的非局域量子隧穿的链表关联数据类型,生成了含有一个量子限制区域的链表关联数据类型,极大提升了应对不同种类关联物理对象的能力。As shown in FIG. 6, it is the second embodiment of the method for describing the structure of a compound semiconductor device with a complex structure in the present invention. Taking a 2D electron mobility transistor as an example, it includes a source electrode 61, a gate electrode 62, a drain electrode 63, and an upper barrier layer. 64, a channel layer 65, a lower barrier layer 66 and a substrate layer 67. The structure is grown on a semi-insulating GaAs substrate using low-pressure metal-organic chemical vapor deposition equipment. Wherein the metal-semiconductor contact type of the source electrode 61 and the drain electrode 63 is an ohmic type, and the metal-semiconductor contact type of the gate electrode 62 is a Schottky type, and the upper barrier layer 64 contains plane doping. Nonlocal quantum tunneling occurs between the gate electrode 62 and the external load, including two nonlocal quantum tunneling across the heterojunction interface, which occur respectively in the upper barrier layer 64 and the channel layer 65, and the channel layer Between 65 and the lower barrier layer 66, there is a quantum confinement region, the well region is in the channel layer 65, and the barrier layers are the upper barrier layer 64 and the lower barrier layer 66. In addition to generating various physical object array bits, the method of the present invention also generates linked list associated data types containing one nonlocal quantum tunneling across the Schottky junction interface and two nonlocal quantum tunneling across the heterojunction interface, generating A linked list associated data type with a quantum-limited area is introduced, which greatly improves the ability to deal with different types of associated physical objects.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610966723.6A CN106503374B (en) | 2016-10-28 | 2016-10-28 | The structure of the compound semiconductor device of labyrinth describes method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610966723.6A CN106503374B (en) | 2016-10-28 | 2016-10-28 | The structure of the compound semiconductor device of labyrinth describes method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106503374A true CN106503374A (en) | 2017-03-15 |
CN106503374B CN106503374B (en) | 2018-06-29 |
Family
ID=58321657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610966723.6A Active CN106503374B (en) | 2016-10-28 | 2016-10-28 | The structure of the compound semiconductor device of labyrinth describes method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106503374B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256280A (en) * | 2018-03-22 | 2018-07-06 | 华南师范大学 | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide |
CN110990409A (en) * | 2019-12-02 | 2020-04-10 | 南京九芯电子科技有限公司 | Structured processing method for semiconductor device measurement data |
CN115100357A (en) * | 2022-07-08 | 2022-09-23 | 中国航空发动机研究院 | Geometric feature description data file generation method and geometric feature format conversion method |
CN116306446A (en) * | 2023-05-22 | 2023-06-23 | 粤芯半导体技术股份有限公司 | Method and device for processing measurement data of mismatch model of semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101739469A (en) * | 2008-11-06 | 2010-06-16 | 上海华虹Nec电子有限公司 | Method for extracting parameters of stress effect model of MOS transistors |
CN102176215A (en) * | 2011-03-24 | 2011-09-07 | 中国科学院上海微系统与信息技术研究所 | Modeling method for SPICE model series of SOI (Silicon on Insulator) field effect transistor |
CN102956620A (en) * | 2012-12-03 | 2013-03-06 | 上海集成电路研发中心有限公司 | Testing structure and characterization method for junction capacitance of MOS (metal oxide semiconductor) transistor |
CN102955883A (en) * | 2012-11-12 | 2013-03-06 | 清华大学 | Field effect transistor model parameter correction method taking shallow trench isolation into account |
CN103116663A (en) * | 2011-11-17 | 2013-05-22 | 中国科学院微电子研究所 | Method for filling redundant metal and method for establishing redundant metal filling mode lookup table |
US20140019101A1 (en) * | 2010-06-16 | 2014-01-16 | Crosslight Software Inc. | Method of simulation and design of a semiconductor device |
-
2016
- 2016-10-28 CN CN201610966723.6A patent/CN106503374B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101739469A (en) * | 2008-11-06 | 2010-06-16 | 上海华虹Nec电子有限公司 | Method for extracting parameters of stress effect model of MOS transistors |
US20140019101A1 (en) * | 2010-06-16 | 2014-01-16 | Crosslight Software Inc. | Method of simulation and design of a semiconductor device |
CN102176215A (en) * | 2011-03-24 | 2011-09-07 | 中国科学院上海微系统与信息技术研究所 | Modeling method for SPICE model series of SOI (Silicon on Insulator) field effect transistor |
CN103116663A (en) * | 2011-11-17 | 2013-05-22 | 中国科学院微电子研究所 | Method for filling redundant metal and method for establishing redundant metal filling mode lookup table |
CN102955883A (en) * | 2012-11-12 | 2013-03-06 | 清华大学 | Field effect transistor model parameter correction method taking shallow trench isolation into account |
CN102956620A (en) * | 2012-12-03 | 2013-03-06 | 上海集成电路研发中心有限公司 | Testing structure and characterization method for junction capacitance of MOS (metal oxide semiconductor) transistor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256280A (en) * | 2018-03-22 | 2018-07-06 | 华南师范大学 | Verify method of the nickel doping minor radius carbon nanotube to the adsorption capacity of sulfur dioxide |
CN110990409A (en) * | 2019-12-02 | 2020-04-10 | 南京九芯电子科技有限公司 | Structured processing method for semiconductor device measurement data |
CN115100357A (en) * | 2022-07-08 | 2022-09-23 | 中国航空发动机研究院 | Geometric feature description data file generation method and geometric feature format conversion method |
CN115100357B (en) * | 2022-07-08 | 2024-03-12 | 中国航空发动机研究院 | Data file generation method and format conversion method for geometric feature description |
CN116306446A (en) * | 2023-05-22 | 2023-06-23 | 粤芯半导体技术股份有限公司 | Method and device for processing measurement data of mismatch model of semiconductor device |
CN116306446B (en) * | 2023-05-22 | 2023-08-04 | 粤芯半导体技术股份有限公司 | Method and device for processing measurement data of mismatch model of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN106503374B (en) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106503374B (en) | The structure of the compound semiconductor device of labyrinth describes method | |
Roberts et al. | Operator growth in the SYK model | |
US11693833B2 (en) | Computer-implemented method for storing unlimited amount of data as a mind map in relational database systems | |
Liu et al. | A new simulation software of solar cells—wxAMPS | |
Milne et al. | Geographical object–oriented databases—a case study | |
US20110313748A1 (en) | Method of simulation and design of a semiconductor device | |
Xin et al. | C-cubing: Efficient computation of closed cubes by aggregation-based checking | |
Liu et al. | A new solar cell simulator: WxAMPS | |
Rimada et al. | Conversion efficiency enhancement of AlGaAs quantum well solar cells | |
CN103500239B (en) | Based on the Terahertz quantum cascaded laser circuit modeling emulation mode of thermal effect | |
CN106599016A (en) | Front-end element maintenance method based on virtual DOM | |
CN111767547A (en) | A software vulnerability detection method based on complex network community | |
CN106682514A (en) | System call sequence characteristic mode set generation method based on subgraph mining | |
Tibaldi et al. | Analysis of carrier transport in tunnel-junction vertical-cavity surface-emitting lasers by a coupled nonequilibrium Green’s function–drift-diffusion approach | |
CN103049700B (en) | Conflict detection system and method for computer network defense (CND) policy | |
Goano et al. | Challenges towards the simulation of GaN-based LEDs beyond the semiclassical framework | |
CN106649216B (en) | A file conversion method for compound semiconductor device growth program | |
CN106339561A (en) | Numerical simulation method of compound multijunction solar cell | |
US12190028B2 (en) | Method of modeling interactions between many particles | |
Yuan et al. | Impurity photovoltaic effect in magnesium‐doped silicon solar cells with two energy levels | |
CN107679132A (en) | Minimizing Cut Sets of Fault Trees extracting method based on local propagation figure | |
CN106529012B (en) | Adaptive grid moving method for complex compound semiconductor device | |
CN106383933B (en) | A kind of complex structure semiconductor device analogy method | |
Heinrich et al. | Measurement-induced phase transitions in quantum raise-and-peel models | |
Searles et al. | Analytical expressions for the tunnel current at abrupt semiconductor-semiconductor heterojunctions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |