CN108209934B - Auditory sensitivity detection system based on stimulus frequency otoacoustic emission - Google Patents
Auditory sensitivity detection system based on stimulus frequency otoacoustic emission Download PDFInfo
- Publication number
- CN108209934B CN108209934B CN201810025486.2A CN201810025486A CN108209934B CN 108209934 B CN108209934 B CN 108209934B CN 201810025486 A CN201810025486 A CN 201810025486A CN 108209934 B CN108209934 B CN 108209934B
- Authority
- CN
- China
- Prior art keywords
- frequency
- module
- stimulation
- sound
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/12—Audiometering
- A61B5/121—Audiometering evaluating hearing capacity
- A61B5/125—Audiometering evaluating hearing capacity objective methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Otolaryngology (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Power Engineering (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明涉及一种基于刺激频率耳声发射的听觉灵敏度检测系统,该检测系统包括声卡、声学传感器、计算机和信号反馈装置;微型扬声器的输入端连接声卡,微型麦克风的输出端连接声卡,信号反馈装置连接计算机,计算机内设置有听觉灵敏度综合检测系统,测试执行系统包括基于SFOAEs的强度灵敏度检测模块和基于SFOAEs的频率灵敏度检测模块,基于SFOAEs的强度灵敏度检测模块用于通过检测各频率点的刺激频率耳声发射检测数据,确定相应频率点对应的听觉强度阈值;基于SFOAEs的频率灵敏度检测模块用于提取在指定频率点处的刺激频率耳声发射抑制调谐曲线,确定在指定频率点的频率灵敏度。
The invention relates to an auditory sensitivity detection system based on stimulation frequency otoacoustic emission. The detection system includes a sound card, an acoustic sensor, a computer and a signal feedback device; the input end of the miniature speaker is connected to the sound card, the output end of the miniature microphone is connected to the sound card, and the signal feedback The device is connected to a computer, and a comprehensive hearing sensitivity detection system is installed in the computer. The test execution system includes an intensity sensitivity detection module based on SFOAEs and a frequency sensitivity detection module based on SFOAEs. The intensity sensitivity detection module based on SFOAEs is used to detect the stimulation of each frequency point. The frequency otoacoustic emission detection data is used to determine the hearing intensity threshold corresponding to the corresponding frequency point; the frequency sensitivity detection module based on SFOAEs is used to extract the stimulation frequency otoacoustic emission suppression tuning curve at the specified frequency point, and determine the frequency sensitivity at the specified frequency point. .
Description
技术领域technical field
本发明涉及一种听觉检测系统,特别是关于一种基于刺激频率耳声发射对听觉系统的强度灵敏度和频率灵敏度进行客观、定量、综合检测的听觉灵敏度检测系统。The invention relates to an auditory detection system, in particular to an auditory sensitivity detection system for objective, quantitative and comprehensive detection of the intensity sensitivity and frequency sensitivity of the auditory system based on stimulation frequency otoacoustic emission.
背景技术Background technique
耳声发射(Otoacoustic Emissions,OAEs)是一种产生于内耳耳蜗,经听骨链及鼓膜,传导释放到外耳道的微弱音频能量,是人耳正常功能的一部分。该现象在1978年由英国学者David Kemp首次发现并将其应用于临床。耳声发射的发现证实了耳蜗作为听觉末稍感受器,不仅能够被动地将外界声信号转换成生物电信号传入中枢引起听觉,同时存在着主动的释能过程,从而确立了耳蜗是一双向换能器的学说。由于OAE的存在与否成为评价听觉外周系统功能是否完好无损的客观指标,因此为听生理研究提供了全新的概念和研究方向,它的发现成为现代听生理学的重要突破之一。根据外界刺激声的有无,耳声发射可分为自发耳声发射(Spontaneous Otoacoustic Emissions,SOAEs)和诱发耳声发射(EvokedOtoacoustic Emissions,EOAEs)两大类。EOAEs根据诱发刺激声的不同,又可分为瞬态诱发耳声发射(Transient-Evoked Otoacoustic Emissions,TEOAEs)、畸变产物耳声发射(Distortion-Product Otoacoustic Emissions,DPOAEs)和刺激频率耳声发射(Stimulus-Frequency Otoacoustic Emissions,SFOAEs)三类。Otoacoustic Emissions (OAEs) is a kind of weak audio energy generated in the cochlea of the inner ear, transmitted through the ossicular chain and tympanic membrane, and released to the external auditory canal. It is a part of the normal function of the human ear. This phenomenon was first discovered by British scholar David Kemp in 1978 and applied clinically. The discovery of otoacoustic emission confirms that the cochlea, as a sensory terminal of hearing, not only passively converts external acoustic signals into bioelectrical signals into the center to induce hearing, but also has an active energy release process, thus establishing that the cochlea is a two-way exchange. energy theory. Since the existence of OAE has become an objective index to evaluate whether the function of the auditory peripheral system is intact, it provides a new concept and research direction for the study of auditory physiology, and its discovery has become one of the important breakthroughs in modern auditory physiology. According to the presence or absence of external stimuli, otoacoustic emissions can be divided into two categories: Spontaneous Otoacoustic Emissions (SOAEs) and Evoked Otoacoustic Emissions (EOAEs). EOAEs can be divided into Transient-Evoked Otoacoustic Emissions (TEOAEs), Distortion-Product Otoacoustic Emissions (DPOAEs) and Stimulus Otoacoustic Emissions (DPOAEs) according to the different evoked stimuli. -Frequency Otoacoustic Emissions, SFOAEs) three categories.
目前临床上对听觉阈值强度测试采用主观行为反应测听的方法,例如:纯音测听,这种需要主观配合的方法无法对婴幼儿进行客观测试。而临床上采用的瞬态诱发耳声发射(TEOAEs)和畸变产物耳声发射(DPOAEs)的测试只能进行定性筛查,给出听觉外周功能正常与否的筛查结果,缺乏对强度灵敏度(听阈值)的定量检测结果。因此,目前临床上缺乏对听觉系统的强度灵敏度进行定量、客观、综合的检测方法。另外,临床上还没有对听觉系统的频率灵敏度的客观、定量、综合的检测方法。Currently, subjective behavioral response audiometry is used clinically to test auditory threshold strength, such as pure tone audiometry. This method requires subjective cooperation and cannot objectively test infants and young children. However, the clinically used tests for transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) can only perform qualitative screening and provide screening results for normal auditory peripheral function, lacking sensitivity to intensity ( Quantitative detection results of hearing threshold). Therefore, there is currently a lack of quantitative, objective and comprehensive detection methods for the intensity sensitivity of the auditory system. In addition, there is no objective, quantitative, and comprehensive detection method for the frequency sensitivity of the auditory system clinically.
刺激频率耳声发射(SFOAEs)是内耳耳蜗受到单一频率的信号刺激之后,主动发出与刺激声频率相同的微弱的声音信号。由于其能够反映耳蜗外毛细胞的主动机制,从而进一步反映听觉外周系统的功能。因此,刺激频率耳声发射具有客观、定量、无创地检测听觉系统功能的潜力。由于刺激频率耳声发射的频率与刺激声的频率完全相同,故被称之为刺激频率耳声发射。刺激频率耳声发射的强度非常低,通常在-15dB SPL至+20dB SPL之间。其在某一特征频率下的频率灵敏度可以用刺激频率耳声发射抑制调谐曲线所代表的调谐特性的Q值来表征。在纯音刺激下的SFOAEs是与刺激声频率相同的纯音,因此SFOAEs的强度具有客观定量地反映在某一频率下的听力阈值的潜力。由于SFOAEs信号与刺激声信号在频域下是完全混叠的;而且在大部分时间内,SFOAEs信号与刺激伪迹在时域下也是混叠的。此外,相对于刺激声的强度,SFOAEs信号的强度也极小,通常SFOAEs强度比刺激声要低30dBSPL左右甚至更多。因此,利用SFOAEs信号来定量、客观地反映听觉强度的阈值,需要较为复杂的检测技术来抑制刺激声伪迹。Stimulated frequency otoacoustic emissions (SFOAEs) are the active emission of weak sound signals at the same frequency as the stimulating sound after the inner cochlea is stimulated by a signal of a single frequency. Because it can reflect the active mechanism of cochlear outer hair cells, it further reflects the function of the auditory peripheral system. Therefore, stimulated frequency otoacoustic emissions have the potential to objectively, quantitatively, and noninvasively detect auditory system function. Since the frequency of stimulus frequency otoacoustic emission is exactly the same as that of stimulus sound, it is called stimulus frequency otoacoustic emission. The intensity of stimulus frequency otoacoustic emissions is very low, typically between -15dB SPL and +20dB SPL. Its frequency sensitivity at a certain characteristic frequency can be characterized by the Q value of the tuning characteristic represented by the stimulation frequency otoacoustic emission suppression tuning curve. SFOAEs under pure tone stimulation are pure tones with the same frequency as the stimulation sound, so the intensity of SFOAEs has the potential to objectively and quantitatively reflect the hearing threshold at a certain frequency. Because the SFOAEs signal and the stimulation sound signal are completely aliased in the frequency domain; and most of the time, the SFOAEs signal and the stimulation artifact are also aliased in the time domain. In addition, the intensity of the SFOAEs signal is extremely small relative to the intensity of the stimulus sound, usually the intensity of the SFOAEs is about 30dBSPL lower than that of the stimulus sound or even more. Therefore, the use of SFOAEs signals to quantitatively and objectively reflect the threshold of auditory intensity requires more complex detection techniques to suppress stimulus artifacts.
现有技术中,专利申请号200910237175.3,发明名称为“一种便携式全功能耳声发射检测系统”公开了基于USB多媒体声卡的便携式耳声发射检测系统,在基于VC++Studio2005软件平台上,实现了对瞬态诱发耳声发射(TEOAEs)和畸变耳声发射(DPOAEs)信号的全功能定量检测和分析。但是该专利没有涉及刺激频率耳声发射的检测、以及利用SFOAEs进行听觉系统的强度听阈值客观定量检测的技术和方法,同时,也没有涉及利用SFOAE STCs进行听觉系统的频率灵敏度的定量检测的技术和方法;另外,专利申请号为201210333260.1,发明名称为“一种刺激频率耳声发射调谐曲线检测及校准系统”仅公开了刺激频率耳声发射调谐曲线的检测方法及校准系统的检测技术,但是没有涉及利用刺激频率耳声发射进行听觉系统的强度听阈值的客观、定量检测的技术和方法,也没有涉及利用SFOAE STCs进行听觉系统的频率灵敏度定量检测的详细技术和方法。In the prior art, the patent application number 200910237175.3, the invention title is "a portable full-function otoacoustic emission detection system" discloses a portable otoacoustic emission detection system based on a USB multimedia sound card, which is based on the VC++Studio2005 software platform. Full-featured quantitative detection and analysis of transient evoked otoacoustic emissions (TEOAEs) and distorted otoacoustic emissions (DPOAEs) signals. However, this patent does not involve the detection of stimulus frequency otoacoustic emissions, and the use of SFOAEs for the objective quantitative detection of the intensity hearing threshold of the auditory system. At the same time, it does not involve the use of SFOAE STCs for the quantitative detection of the frequency sensitivity of the auditory system. and method; in addition, the patent application number is 201210333260.1, and the name of the invention is "a stimulation frequency otoacoustic emission tuning curve detection and calibration system" only discloses the detection method of the stimulation frequency otoacoustic emission tuning curve and the detection technology of the calibration system, but There are no techniques and methods for the objective and quantitative detection of the intensity hearing threshold of the auditory system using stimulus frequency otoacoustic emissions, nor detailed techniques and methods for quantitative detection of the frequency sensitivity of the auditory system using SFOAE STCs.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种基于刺激频率耳声发射的听觉灵敏度检测系统,不仅能够通过刺激频率耳声发射的测试,实现对不同频率处的强度分辨灵敏度的定量、客观检测;而且还能够通过刺激频率耳声发射抑制调谐曲线的测试,完成对不同频率处的频率分辨灵敏度的定量、客观检测。In view of the above problems, the purpose of the present invention is to provide an auditory sensitivity detection system based on stimulation frequency otoacoustic emission, which can not only realize quantitative and objective detection of intensity resolution sensitivity at different frequencies through the test of stimulation frequency otoacoustic emission; Moreover, it can also complete the quantitative and objective detection of the frequency resolution sensitivity at different frequencies through the test of the stimulation frequency otoacoustic emission suppression tuning curve.
为实现上述目的,本发明采取以下技术方案:一种基于刺激频率耳声发射的听觉灵敏度检测系统,其特征在于,该检测系统包括声卡、声学传感器和计算机,其中,所述声学传感器包括微型扬声器和微型麦克风;所述计算机内设置有听觉灵敏度综合检测系统,包括声卡驱动系统和测试执行系统;所述声卡驱动系统用于驱动所述声卡接收所述计算机发出的信号,并通过所述微型扬声器发送到受试者耳中;同时驱动所述声卡接收由所述微型麦克风发回的信号,并将其发送到测试执行系统;所述测试执行系统包括基于SFOAEs的强度灵敏度检测模块和基于SFOAEs的频率灵敏度检测模块,所述基于SFOAEs的强度灵敏度检测模块用于通过检测各频率点的刺激频率耳声发射数据,确定相应频率点对应的听觉强度阈值;所述基于SFOAEs的频率灵敏度检测模块用于提取在指定频率点处的刺激频率耳声发射抑制调谐曲线,确定在指定频率点的频率灵敏度。In order to achieve the above object, the present invention adopts the following technical solutions: an auditory sensitivity detection system based on stimulation frequency otoacoustic emission, characterized in that the detection system includes a sound card, an acoustic sensor and a computer, wherein the acoustic sensor includes a miniature speaker and a miniature microphone; the computer is provided with a comprehensive hearing sensitivity detection system, including a sound card drive system and a test execution system; the sound card drive system is used to drive the sound card to receive the signal sent by the computer, and through the micro speaker Send to the subject's ear; at the same time drive the sound card to receive the signal sent back by the miniature microphone, and send it to the test execution system; the test execution system includes an intensity sensitivity detection module based on SFOAEs and a SFOAEs-based intensity sensitivity detection module. A frequency sensitivity detection module, the SFOAEs-based intensity sensitivity detection module is used to determine the auditory intensity threshold corresponding to the corresponding frequency point by detecting the stimulation frequency otoacoustic emission data of each frequency point; the SFOAEs-based frequency sensitivity detection module is used for Extract the stimulation frequency otoacoustic emission suppression tuning curve at the specified frequency point, and determine the frequency sensitivity at the specified frequency point.
进一步地,所述基于SFOAEs的强度灵敏度检测模块包括刺激声参数设置模块、抑制声参数设置模块、刺激声信号生成模块、抑制声信号生成模块、刺激声信号刺激模块、抑制声信号刺激模块、检测信号采集模块、信号处理模块、频域波形显示模块、测试数据显示模块、强度灵敏度转换模块以及测试结果报告生成和保存模块;所述刺激声参数设置模块用于设置刺激声频率、频带范围、刺激声频率测试步长以及刺激强度;所述抑制声参数设置模块用于设置抑制声的频率和强度;所述刺激声信号生成模块和抑制声信号生成模块分别根据设置的参数生成相应的数字刺激声信号和数字抑制声信号并发送相应信号到所述刺激声信号刺激模块和抑制声信号刺激模块;所述刺激声信号刺激模块和抑制声信号刺激模块发出刺激声信号和抑制声信号经所述声卡和微型扬声器到受试者耳中,所述微型麦克风接收受试者外耳道发回的信号进行放大后发送到所述声卡,所述声卡将信号进行A/D转换后发送到所述检测信号采集模块,所述检测信号采集模块将采集的信号发送到所述信号处理模块,所述信号处理模块提取出不同刺激频率下的刺激频率耳声发射,并将检测结果分别发送到所述频域波形显示模块、测试数据显示模块、强度灵敏度转换模块以及测试结果报告生成和保存模块,所述波形显示模块动态显示SFOAEs在不同频率下的检测数据的幅度、基线、相位和噪声的波形;所述测试数据显示模块动态显示SFOAEs在不同频率下的检测数据包括幅度、波形、相位、基线和噪声,所述强度灵敏度转换模块根据检测频率进行分组,在各分组内根据幅度、波形、基线和噪声进行聚类分析,再根据先验数学关系模型,得出具体的强度灵敏度数值;所述测试结果报告生成和保存模块用于生成并保存受试者的所有检测结果及测试信息。Further, the intensity sensitivity detection module based on SFOAEs includes a stimulation sound parameter setting module, a suppression sound parameter setting module, a stimulation sound signal generation module, a suppression sound signal generation module, a stimulation sound signal stimulation module, a suppression sound signal stimulation module, a detection Signal acquisition module, signal processing module, frequency domain waveform display module, test data display module, intensity sensitivity conversion module and test result report generation and storage module; the stimulation sound parameter setting module is used for setting stimulation sound frequency, frequency band range, stimulation sound Acoustic frequency test step size and stimulation intensity; the suppression sound parameter setting module is used to set the frequency and intensity of the suppressed sound; the stimulation sound signal generation module and the suppression sound signal generation module respectively generate corresponding digital stimulation sounds according to the set parameters Signal and digital suppression sound signal and send corresponding signals to the stimulation sound signal stimulation module and the suppression sound signal stimulation module; the stimulation sound signal stimulation module and the suppression sound signal stimulation module send the stimulation sound signal and the suppression sound signal through the sound card and a miniature speaker into the subject's ear, the miniature microphone receives the signal sent back from the subject's external auditory canal, amplifies it and sends it to the sound card, and the sound card performs A/D conversion on the signal and sends it to the detection signal acquisition. module, the detection signal acquisition module sends the collected signal to the signal processing module, the signal processing module extracts the stimulation frequency otoacoustic emission under different stimulation frequencies, and sends the detection results to the frequency domain waveform respectively A display module, a test data display module, an intensity sensitivity conversion module and a test result report generation and storage module, the waveform display module dynamically displays the waveforms of amplitude, baseline, phase and noise of the detection data of the SFOAEs at different frequencies; the test The data display module dynamically displays the detection data of SFOAEs at different frequencies, including amplitude, waveform, phase, baseline and noise. Class analysis, and then according to a priori mathematical relationship model, to obtain specific intensity sensitivity values; the test result report generation and storage module is used to generate and save all test results and test information of the subject.
进一步地,所述强度灵敏度转换模块的具体计算过程为:根据在检测频率处出现的信号频谱分成四类:Further, the specific calculation process of the intensity sensitivity conversion module is: according to the signal spectrum appearing at the detection frequency, it is divided into four categories:
第一类:没有出现纯音频谱的或对于信噪比低于0dB;The first category: there is no pure audio spectrum or the signal-to-noise ratio is lower than 0dB;
第二类:出现纯音频谱并且信噪比高于10dB;The second category: pure audio spectrum appears and the signal-to-noise ratio is higher than 10dB;
第三类:出现纯音频谱且信噪比介于5dB和10dB之间的;The third category: the presence of pure audio spectrum and the signal-to-noise ratio between 5dB and 10dB;
第四类:出现纯音频谱且信噪比介于5dB-0dB之间的;Category 4: Pure audio spectrum appears and the signal-to-noise ratio is between 5dB-0dB;
对于第一类进行二次分类,如果没有出现纯音频谱,则判别为检测失败,重新检测或换频率检测,对于信噪比低于0dB但是高于基线6dB的,则SFOAEs强度灵敏度=a*(SFOAE幅度-基线幅度),a值根据所在频率不同进行设置;For the first category, perform secondary classification. If there is no pure audio spectrum, it is judged that the detection fails, and the detection is performed again or the frequency is changed. For the signal-to-noise ratio lower than 0dB but higher than the baseline 6dB, then the SFOAEs intensity sensitivity = a*( SFOAE amplitude - baseline amplitude), the a value is set according to the frequency;
对于第二类,出现纯音频谱并且信噪比高于10dB的进行二次分类,对于基线高于噪声大于3dB的,则SFOAEs强度灵敏度=b*(SFOAE幅度-基线幅度)+c*(SFOAE基线幅度-噪声幅度),b、c值根据所在频率不同进行设置;对于基线大于噪声值小于3dB的,则SFOAEs强度灵敏度数学模型=d*(SFOAE幅度-基线幅度),d值根据所在频率不同进行设置;For the second category, the pure audio spectrum appears and the signal-to-noise ratio is higher than 10dB for secondary classification. For the baseline higher than the noise by more than 3dB, then the SFOAEs intensity sensitivity = b*(SFOAE amplitude - baseline amplitude) + c*(SFOAE baseline Amplitude - noise amplitude), the b and c values are set according to different frequencies; for the baseline greater than the noise value and less than 3dB, the mathematical model of SFOAEs intensity sensitivity = d*(SFOAE amplitude - baseline amplitude), the d value is determined according to the different frequencies. set up;
对于第三类,出现纯音频谱且信噪比介于5dB和10dB之间的进行二次分类,对于基线高于噪声的,则SFOAEs强度灵敏度=e*(SFOAE幅度-f*基线幅度),对于基线低于噪声的,则SFOAEs强度灵敏度=g*(SFOAE幅度-h*噪声幅度),e、f、g、h值根据所在频率不同进行设置;For the third category, the pure audio spectrum appears and the signal-to-noise ratio is between 5dB and 10dB for secondary classification, for the baseline higher than the noise, then the SFOAEs intensity sensitivity = e*(SFOAE amplitude-f*baseline amplitude), for If the baseline is lower than the noise, the SFOAEs intensity sensitivity=g*(SFOAE amplitude-h*noise amplitude), and the e, f, g, and h values are set according to different frequencies;
对于第四类,出现纯音频谱且信噪比介于5dB-0dB之间的,进行二次分类,对于基线高于噪声的,则SFOAEs强度灵敏度=i*(SFOAE幅度-j*噪声幅度),对于基线低于噪声的,则SFOAEs强度灵敏度=k*(SFOAE幅度-l*基线幅度),i、j、k、l值根据所在频率不同进行设置。For the fourth category, if the pure audio spectrum appears and the signal-to-noise ratio is between 5dB-0dB, the secondary classification is performed. For the baseline higher than the noise, the SFOAEs intensity sensitivity = i*(SFOAE amplitude-j*noise amplitude), For the baseline lower than the noise, the SFOAEs intensity sensitivity=k*(SFOAE amplitude-l*baseline amplitude), the i, j, k, l values are set according to the different frequencies.
进一步地,所述SFOAEs频率灵敏度检测模块包括刺激声参数设置模块、抑制声参数设置模块、刺激声信号生成模块、抑制声信号生成模块、刺激声信号刺激模块、抑制声信号刺激模块、检测信号采集模块、检测信号处理模块、SFOAE STCs波形显示模块、测试数据显示模块、频率灵敏度转换模块、测试结果报告生成和保存模块;所述刺激声参数设置模块用于设置刺激声频率和刺激声强度;所述抑制声参数设置模块用于设置抑制声频率上限、抑制声频率下限、抑制声频率步长和抑制准则;所述刺激声信号生成模块和抑制声信号生成模块根据设置的参数生成相应的数字刺激信号和数字抑制信号;所述刺激声信号刺激模块和抑制声信号刺激模块经所述声卡和微型扬声器发出刺激频率下的刺激声和不同频率不同强度的抑制声至受试者耳中,抑制声的频率在刺激频率左右的范围内以设定的抑制声频率步长进行调整,所述微型麦克风将耳道中的信号放大后发送到所述声卡,最后经所述检测信号采集模块传送至所述检测信号处理模块,所述检测信号处理模块提取抑制声频率范围内各个抑制频率下、满足设定抑制准则的刺激频率耳声发射得到SFOAE STCs曲线的测试结果,所述SFOAE STCs波形显示模块用于显示测试波形;所述测试数据显示模块动态显示SFOAE STCs在不同频率下的检测数据,所述频率灵敏度转换模块对检测频率进行分组,在各组内根据SFOAE STCs曲线的幅度、波形、基线和噪声进行聚类分类,并根据先验数学关系模型,得出具体的频率灵敏度数值;所述测试结果报告生成和保存模块用于生成并保存受试者的所有检测结果及测试信息。Further, the SFOAEs frequency sensitivity detection module includes a stimulation sound parameter setting module, a suppression sound parameter setting module, a stimulation sound signal generation module, a suppression sound signal generation module, a stimulation sound signal stimulation module, a suppression sound signal stimulation module, and a detection signal acquisition module. module, detection signal processing module, SFOAE STCs waveform display module, test data display module, frequency sensitivity conversion module, test result report generation and saving module; the stimulation sound parameter setting module is used for setting stimulation sound frequency and stimulation sound intensity; The suppression sound parameter setting module is used to set the upper limit of the suppression sound frequency, the lower limit of the suppression sound frequency, the step size of the suppression sound frequency and the suppression criterion; the stimulation sound signal generation module and the suppression sound signal generation module generate corresponding digital stimulation according to the set parameters signal and digital suppression signal; the stimulation sound signal stimulation module and the suppression sound signal stimulation module send stimulation sound at the stimulation frequency and suppression sound with different frequencies and intensities to the ear of the subject through the sound card and the micro-speaker to suppress the sound. The frequency of the sensor is adjusted within the range around the stimulation frequency with the set step size of the suppressed sound frequency. The micro microphone amplifies the signal in the ear canal and sends it to the sound card, and finally transmits it to the sound card through the detection signal acquisition module. A detection signal processing module, the detection signal processing module extracts the test results of the SFOAE STCs curve obtained by the stimulation frequency otoacoustic emission at each inhibition frequency within the inhibition acoustic frequency range that satisfies the set inhibition criteria, and the SFOAE STCs waveform display module is used for Display the test waveform; the test data display module dynamically displays the detection data of SFOAE STCs at different frequencies, the frequency sensitivity conversion module groups the detection frequencies, and in each group, according to the amplitude, waveform, baseline and noise of the SFOAE STCs curve Cluster classification is performed, and specific frequency sensitivity values are obtained according to a priori mathematical relationship model; the test result report generation and storage module is used to generate and save all test results and test information of the subject.
进一步地,所述频率灵敏度转换模块的具体计算过程为:根据在检测频率处出现的SFOAE STCs曲线形状和位置分成两类,第一类为出现双顶点的SFOAE STCs曲线,第二类为出现单顶点的SFOAE STCs曲线;Further, the specific calculation process of the frequency sensitivity conversion module is: according to the shape and position of the SFOAE STCs curve appearing at the detection frequency, it is divided into two categories, the first category is the SFOAE STCs curve with double vertices, and the second category is the occurrence of single vertices. SFOAE STCs curves of vertices;
对于第一类,出现双顶点的SFOAE STCs曲线进行二次分类,若顶点高于刺激声强度,则频率灵敏度=a*Q10+b*高端斜率-c*低端斜率,若顶点低于刺激声强度,则频率灵敏度=a*Q10;For the first type, the SFOAE STCs curves with double vertices are used for secondary classification. If the apex is higher than the stimulus intensity, the frequency sensitivity = a*Q10+b*high-end slope-c*low-end slope, if the apex is lower than the stimulus sound intensity, then frequency sensitivity=a*Q10;
对于第二类出现单顶点的SFOAE STCs曲线,若右偏移,则频率灵敏度=d*Q10+e*(高端斜率-f*低端斜率),若左偏移,则频率灵敏度=g*Q10+h*(高端斜率),若无偏移,则频率灵敏度=i*Q10,其中,Q10是指10dB点的品质因素,根据所检测频率不同,选取不同的a、b、c、d、e、f、g和h值。For the second type of SFOAE STCs curve with a single vertex, if it is shifted to the right, the frequency sensitivity=d*Q10+e*(high-end slope-f*low-end slope), if it is shifted to the left, then the frequency sensitivity=g*Q10 +h*(high-end slope), if there is no offset, then frequency sensitivity=i*Q10, where Q10 refers to the quality factor of 10dB point, according to the detected frequency, select different a, b, c, d, e , f, g and h values.
进一步地,该检测系统还包括分辨率为1dB的纯音测听检测模块,所述纯音测听检测模块采用主观行为方法得到在各频率点处分辨率为1dB的听阈值,用于与所述基于SFOAEs强度灵敏度检测模块的结果进行对比,建立基于SFOAEs的强度检测与纯音测听的听觉阈值的模型关系。Further, the detection system also includes a pure-tone audiometry detection module with a resolution of 1dB, and the pure-tone audiometry detection module adopts a subjective behavior method to obtain a hearing threshold with a resolution of 1dB at each frequency point, which is used to compare with the based on the The results of the SFOAEs intensity sensitivity detection module were compared, and the model relationship between the intensity detection based on SFOAEs and the auditory threshold of pure tone audiometry was established.
进一步地,该检测系统还包括心理物理调谐曲线检测模块,所述心理物理调谐曲线检测模块采用主观行为方法得到在指定频率点处的频率灵敏度,用于与基于SFOAEs频率灵敏度检测模块的结果进行对比,通过建立基于SFOAEs的频率灵敏度检测结果与PTCs的频率灵敏度检测结果之间的模型关系。Further, the detection system also includes a psychophysical tuning curve detection module, and the psychophysical tuning curve detection module adopts a subjective behavior method to obtain the frequency sensitivity at the specified frequency point, for comparing with the result based on the SFOAEs frequency sensitivity detection module , by establishing a model relationship between the frequency sensitivity detection results based on SFOAEs and the frequency sensitivity detection results of PTCs.
进一步地,该检测系统还包括前置放大器,所述前置放大器的输入端连接所述微型麦克风的输出端,所述前置放大器的输出端连接所述声卡。Further, the detection system further includes a preamplifier, the input end of the preamplifier is connected to the output end of the miniature microphone, and the output end of the preamplifier is connected to the sound card.
进一步地,该检测系统还包括信号反馈装置,所述信号反馈装置连接所述计算机,用于受试者进行信号反馈并将受试者的反馈结果发送到所述计算机;所述信号反馈装置采用手柄,所述手柄通过USB接口连接所述计算机。Further, the detection system also includes a signal feedback device, the signal feedback device is connected to the computer for the subject to perform signal feedback and send the subject's feedback result to the computer; the signal feedback device adopts The handle is connected to the computer through a USB interface.
本发明由于采取以上技术方案,其具有以下优点:1、本发明的基于SFOAEs强度灵敏度的测试模块(包括常规测试模块和指定频率点下的测试模块)用于客观、定量、快速地提取所设频率点下的强度灵敏度,能够在临床上客观检测听觉阈值。2、本发明的基于刺激频率耳声发射抑制调谐曲线(SFOAE STCs)的测试,实现对不同频率处的频率分辨灵敏度的定量、客观检测,并与主观行为反应的心理物理调谐曲线(PTCs)所检测出的频率灵敏度的分辨结果进行对比,能够实现临床上对频率分辨灵敏度的定量检测。3、本发明在SFOAEs的频域、时域均与刺激声混叠的情况下,提取出微弱的SFOAEs信号,利用SFOAEs信号的强度来客观、定量地反映听觉系统的强度灵敏度(听阈值),刺激频率耳声发射抑制调谐曲线(SFOAE STCs)是在某一刺激频率下的调谐曲线,具有反映在该频率下耳蜗分辨频率灵敏度的潜力,利用SFOAE STCs客观、定量地反映听觉系统的频率灵敏度,综上,本发明的基于SFOAEs的强度灵敏度和频率灵敏度的测试,实现了对听觉系统的客观、定量、综合、快速地检测,具有广泛的听觉临床应用前景。The present invention has the following advantages due to the adoption of the above technical solutions: 1. The test module based on the intensity sensitivity of SFOAEs of the present invention (including the conventional test module and the test module at a specified frequency point) is used to objectively, quantitatively and rapidly extract the set The intensity sensitivity at the frequency point enables the objective detection of auditory thresholds clinically. 2. The test based on the stimulation frequency otoacoustic emission suppression tuning curve (SFOAE STCs) of the present invention realizes quantitative and objective detection of the frequency resolution sensitivity at different frequencies, which is consistent with the psychophysical tuning curves (PTCs) of subjective behavioral responses. By comparing the detected resolution results of the frequency resolution, the quantitative detection of the frequency resolution sensitivity in clinical can be realized. 3. The present invention extracts the weak SFOAEs signal under the condition that the frequency domain and time domain of SFOAEs are mixed with the stimulus sound, and uses the intensity of the SFOAEs signal to objectively and quantitatively reflect the intensity sensitivity (hearing threshold) of the auditory system, Stimulation frequency otoacoustic emission suppression tuning curves (SFOAE STCs) are tuning curves at a certain stimulation frequency, which have the potential to reflect the frequency sensitivity of the cochlea at this frequency. Using SFOAE STCs to objectively and quantitatively reflect the frequency sensitivity of the auditory system, In conclusion, the test of the intensity sensitivity and frequency sensitivity based on SFOAEs of the present invention realizes objective, quantitative, comprehensive and rapid detection of the auditory system, and has a broad prospect of clinical application of hearing.
附图说明Description of drawings
图1是本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2是本发明的测试执行系统原理示意图;Fig. 2 is the principle schematic diagram of the test execution system of the present invention;
图3是本发明的基于SFOAEs的强度灵敏度常检测模块原理示意图;Fig. 3 is the principle schematic diagram of the intensity sensitivity constant detection module based on SFOAEs of the present invention;
图4是本发明的基于SFOAE STCs的频率灵敏度检测模块原理示意图;Fig. 4 is the schematic diagram of the frequency sensitivity detection module based on SFOAE STCs of the present invention;
图5是本发明的分辨率为1dB的纯音测听检测模块的流程示意图;5 is a schematic flow chart of a pure tone audiometry detection module with a resolution of 1dB according to the present invention;
图6是本发明的心理物理调谐曲线(PTCs)的检测模块的流程示意图。FIG. 6 is a schematic flowchart of the detection module of psychophysical tuning curves (PTCs) of the present invention.
具体实施方式Detailed ways
以下结合附图来对本发明进行详细的描绘。然而应当理解,附图的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。The present invention will be described in detail below with reference to the accompanying drawings. It should be understood, however, that the accompanying drawings are provided only for a better understanding of the present invention, and they should not be construed to limit the present invention.
如图1所示,本发明提供的基于刺激频率耳声发射的听觉灵敏度检测系统,用于获取刺激频率耳声发射的强度灵敏度和频率灵敏度,包括计算机1、声卡2、声学传感器(微型探头)3、前置放大器和信号反馈装置;其中,声学传感器3包括微型扬声器31和微型麦克风32,为了将受试者外耳道内声音与外界声音隔离,可以将微型扬声器31和微型麦克风32插设在同一软质耳塞内。As shown in Figure 1, the hearing sensitivity detection system based on stimulation frequency otoacoustic emission provided by the present invention is used to obtain the intensity sensitivity and frequency sensitivity of stimulation frequency otoacoustic emission, including
声卡2采用能够与计算机1连接的多媒体声卡,用于将计算机1发出的数字信号转换成模拟电压信号,本发明在进行检测时采用由RME公司生产的具有24bit采样深度、最高采样率为192kHz的便携式多媒体声卡通过IEEE1394接口连接计算机1,以此为例,不限于此,声卡2还可以采用其它结构形式和连接方式,例如通过USB接口连接计算机1的多媒体声卡或普通声卡。The sound card 2 adopts a multimedia sound card that can be connected with the
微型扬声器31包括分别产生刺激声和抑制声的两个电-声换能器,用于诱发刺激频率耳声发射信号,两个电-声换能器通过两声管插设在耳塞内,两个电-声换能器的输入端通过两个TRS接口分别连接声卡2,用于将模拟电压信号进行电声转换成声信号,经耳塞发送到受试者耳内。微型扬声器31可以采用已有技术的各种产品,比如本发明检测时采用Etymotic公司生产的ER2插入式耳机。The micro-speaker 31 includes two electro-acoustic transducers for generating stimulation sound and suppressing sound respectively, for inducing stimulation frequency otoacoustic emission signals, the two electro-acoustic transducers are inserted into the earplugs through two sound tubes, The input ends of the electro-acoustic transducers are respectively connected to the sound card 2 through two TRS interfaces, which are used to electro-acoustically convert the analog voltage signal into an acoustic signal, which is sent to the subject's ear through the earplugs. Various products in the prior art can be used for the micro-speaker 31, for example, the ER2 plug-in earphone produced by Etymotic Company is used in the detection of the present invention.
微型麦克风32包括声-电换能器,用于采集耳声发射信号和人耳外耳道内的其它信号,并将所采集的声信号转换成电信号,微型麦克风32的输入端经传输声管插设在耳塞内,耳道中的声音信号通过传输声管到声-电换能器将声信号转换为模拟电压信号,微型麦克风32的输出端连接前置放大器的输入端。微型麦克风32可以采用已有技术的各种产品,比如本发明检测时采用美国Etymotic公司生产的ER-10B+。The
前置放大器用于将微型麦克风32输出的信号进行放大,放大倍数可以根据实际需要进行调节,调节倍数可以选择0dB、20dB和40dB。为了避免接地回路带来的信号干扰,前置放大器采用两节9V电池供电,前置放大器的输出端连接声卡2。The preamplifier is used to amplify the signal output by the
信号反馈装置连接计算机1,用于受试者进行信号反馈并将受试者的反馈结果发送到计算机1,信号反馈装置可以采用各种装置,本发明的信号反馈装置采用手柄4,手柄4通过USB接口连接计算机1。The signal feedback device is connected to the
如图2所示,计算机1内设置有听觉灵敏度综合检测系统,包括声卡驱动系统和测试执行系统。声卡驱动系统用于驱动声卡2接收计算机1发出的信号,并通过微型扬声器31发送到受试者耳中;同时驱动声卡2接收由前置放大器发回的信号,并将其发送到测试执行系统。As shown in FIG. 2 , the
测试执行系统包括基于SFOAEs的强度灵敏度检测模块、基于SFOAEs的频率灵敏度检测模块、分辨率为1dB的纯音测听(PT)检测模块和基于心理物理调谐曲线(PTCs)的检测模块。The test execution system includes an intensity sensitivity detection module based on SFOAEs, a frequency sensitivity detection module based on SFOAEs, a pure tone audiometry (PT) detection module with a resolution of 1dB, and a psychophysical tuning curve (PTCs)-based detection module.
基于SFOAEs的强度灵敏度的检测模块用于通过检测各频率点的刺激频率耳声发射的幅度、波形、基线、相位、噪声,确定相应频率点对应的听觉强度阈值;The detection module based on the intensity sensitivity of SFOAEs is used to determine the auditory intensity threshold corresponding to the corresponding frequency point by detecting the amplitude, waveform, baseline, phase, and noise of the stimulus frequency otoacoustic emission at each frequency point;
基于SFOAEs的频率灵敏度检测模块用于提取在指定频率点处的刺激频率耳声发射抑制调谐曲线(SFOAE STCs),确定在指定频率点的频率灵敏度;The frequency sensitivity detection module based on SFOAEs is used to extract the stimulation frequency otoacoustic emission suppression tuning curve (SFOAE STCs) at the specified frequency point, and determine the frequency sensitivity at the specified frequency point;
分辨率为1dB的纯音测听检测模块采用主观行为方法得到在各频率点处分辨率为1dB的听阈值,用于与基于SFOAEs强度灵敏度检测模块的结果进行对比,早期建立基于SFOAEs的强度检测与纯音测听的听觉阈值的模型关系,实现可与临床上的纯音测听检测结果一致的基于SFOAEs的强度灵敏度检测;The pure tone audiometry detection module with a resolution of 1dB adopts the subjective behavior method to obtain the hearing threshold with a resolution of 1dB at each frequency point, which is used to compare with the results of the intensity sensitivity detection module based on SFOAEs. The model relationship of the auditory threshold of pure tone audiometry, realizes the intensity sensitivity detection based on SFOAEs that can be consistent with the clinical pure tone audiometry detection results;
心理物理调谐曲线检测模块采用主观行为方法得到在指定频率点处的频率灵敏度,用于与基于SFOAEs频率灵敏度检测模块的结果进行对比,在早期建立基于SFOAEs的频率灵敏度检测结果与PTCs的频率灵敏度检测结果之间的模型关系,实现应用于临床的基于SFOAEs频率灵敏度检测。The psychophysical tuning curve detection module adopts the subjective behavior method to obtain the frequency sensitivity at the specified frequency point, which is used for comparison with the results of the frequency sensitivity detection module based on SFOAEs, and establishes the frequency sensitivity detection results based on SFOAEs and the frequency sensitivity detection of PTCs in the early stage. The model relationship between the results enables a frequency-sensitive detection of SFOAEs for clinical applications.
在一个优选的实施例中,如图3所示,基于SFOAEs的强度灵敏度检测模块用于对各频率进行测试,包括刺激声参数设置模块、抑制声参数设置模块、刺激声信号生成模块、抑制声信号生成模块、刺激声信号刺激模块、抑制声信号刺激模块、检测信号采集模块、信号处理模块、频域波形显示模块、测试数据显示模块、强度灵敏度转换模块以及测试结果报告生成和保存模块。刺激声参数设置模块用于设置刺激声的频率、频带范围、刺激声频率测试步长以及刺激强度;抑制声参数设置模块用于设置抑制声的频率和强度;刺激声信号生成模块和抑制声信号生成模块分别根据设置的参数生成相应的数字刺激声信号和数字抑制声信号并发送相应信号到刺激声信号刺激模块和抑制声信号刺激模块;刺激声信号刺激模块和抑制声信号刺激模块发出刺激声信号和抑制声信号经声卡2和微型扬声器31到受试者耳中,微型麦克风32接收受试者外耳道发回的信号,将其发送到前置放大器进行放大后发送到声卡2,声卡2将信号进行A/D转换发送检测信号采集模块,检测信号采集模块将采集的信号发送到信号处理模块,信号处理模块提取出不同刺激频率下的刺激频率耳声发射,并将检测结果分别发送到频域波形显示模块、测试数据显示模块、强度灵敏度转换模块以及测试结果报告生成和保存模块。波形显示模块动态显示SFOAEs在不同频率下的检测数据的幅度、基线、相位和噪声的波形;测试数据显示模块动态显示SFOAEs在不同频率下的检测数据(幅度、波形、相位、基线和噪声),强度灵敏度转换模块根据检测频率进行分组;在各分组内根据幅度、波形、基线和噪声进行聚类分析,再根据先验数学关系模型,得出具体的强度灵敏度数值;测试结果报告生成和保存模块用于生成并保存受试者的所有检测结果及测试信息。In a preferred embodiment, as shown in Figure 3, the intensity sensitivity detection module based on SFOAEs is used to test each frequency, including a stimulus sound parameter setting module, a suppression sound parameter setting module, a stimulus sound signal generation module, and a suppression sound parameter setting module. Signal generation module, stimulation sound signal stimulation module, suppression sound signal stimulation module, detection signal acquisition module, signal processing module, frequency domain waveform display module, test data display module, intensity sensitivity conversion module and test result report generation and storage module. The stimulus sound parameter setting module is used to set the frequency, frequency band range, stimulus sound frequency test step and stimulation intensity of the stimulus sound; the suppression sound parameter setting module is used to set the frequency and intensity of the suppression sound; the stimulus sound signal generation module and the suppression sound signal The generation module generates the corresponding digital stimulation sound signal and digital inhibition sound signal according to the set parameters, and sends the corresponding signals to the stimulation sound signal stimulation module and the inhibition sound signal stimulation module; the stimulation sound signal stimulation module and the inhibition sound signal stimulation module emit stimulation sound The signal and the suppressed sound signal are sent to the subject's ear through the sound card 2 and the micro-speaker 31. The micro-microphone 32 receives the signal sent back from the external auditory canal of the subject, sends it to the preamplifier for amplification, and then sends it to the sound card 2. The signal is A/D converted and sent to the detection signal acquisition module, the detection signal acquisition module sends the collected signal to the signal processing module, the signal processing module extracts the stimulation frequency otoacoustic emission under different stimulation frequencies, and sends the detection results to the frequency Domain waveform display module, test data display module, intensity sensitivity conversion module and test result report generation and saving module. The waveform display module dynamically displays the waveforms of amplitude, baseline, phase and noise of the detection data of SFOAEs at different frequencies; the test data display module dynamically displays the detection data (amplitude, waveform, phase, baseline and noise) of SFOAEs at different frequencies, The intensity sensitivity conversion module is grouped according to the detection frequency; the cluster analysis is performed according to the amplitude, waveform, baseline and noise in each group, and then the specific intensity sensitivity value is obtained according to the prior mathematical relationship model; the test result report generation and storage module Used to generate and save all test results and test information for subjects.
在一个优选的实施例中,强度灵敏度转换模块根据检测频率进行分组,在各分组内根据幅度、波形、基线和噪声进行聚类分析,再根据先验数学关系模型,得出具体的强度灵敏度数值,具体过程为:In a preferred embodiment, the intensity sensitivity conversion module performs grouping according to the detection frequency, performs cluster analysis according to amplitude, waveform, baseline and noise in each group, and then obtains specific intensity sensitivity values according to a priori mathematical relationship model , the specific process is:
根据在检测频率处出现的信号频谱分成四类:There are four categories according to the spectrum of the signal present at the detection frequency:
第一类:没有出现纯音信号频谱的或对于信噪比低于0dB;The first category: there is no pure tone signal spectrum or the signal-to-noise ratio is lower than 0dB;
第二类:出现纯音频谱并且信噪比高于10dB;The second category: pure audio spectrum appears and the signal-to-noise ratio is higher than 10dB;
第三类:出现纯音频谱且信噪比介于5dB和10dB之间的;The third category: the presence of pure audio spectrum and the signal-to-noise ratio between 5dB and 10dB;
第四类:出现纯音频谱且信噪比介于5dB-0之间的;Category 4: Pure audio spectrum appears and the signal-to-noise ratio is between 5dB-0;
在第一类中,再进行二次分类,如果没有出现纯音信号频谱,则判别为检测失败,重新检测或换频率检测(可能与出现与SOAE重叠现象),对于信噪比低于0dB但高于基线6dB的,则SFOAEs强度灵敏度=a*(SFOAE幅度-基线幅度),a值根据所在频率不同进行设置;In the first category, the secondary classification is performed. If there is no pure tone signal spectrum, it is judged that the detection fails, and the detection is re-detected or the frequency is changed (which may overlap with SOAE). For the signal-to-noise ratio below 0dB but high If it is 6dB above the baseline, the SFOAEs intensity sensitivity=a*(SFOAE amplitude-baseline amplitude), and the a value is set according to the frequency;
对于第二类,出现纯音频谱并且信噪比高于10dB的,再进行二次分类,对于基线高于噪声大于3dB的,则SFOAEs强度灵敏度=b*(SFOAE幅度-基线幅度)+c*(SFOAE基线幅度-噪声幅度),根据所检测频率不同,选择适合的b、c值;对于基线大于噪声值小于3dB的,则SFOAEs强度灵敏度数学模型=d*(SFOAE幅度-基线幅度)。根据所检测频率不同,选取不同的d值;For the second category, the pure audio spectrum appears and the signal-to-noise ratio is higher than 10dB, and then the secondary classification is performed. For the baseline higher than the noise by more than 3dB, then the SFOAEs intensity sensitivity=b*(SFOAE amplitude-baseline amplitude)+c*( SFOAE baseline amplitude - noise amplitude), according to the different detected frequencies, select the appropriate b and c values; for the baseline greater than the noise value less than 3dB, then the mathematical model of SFOAEs intensity sensitivity = d*(SFOAE amplitude - baseline amplitude). According to different detected frequencies, select different d values;
对于第三类,出现纯音频谱且信噪比介于5dB和10dB之间的,再进行二次分类,对于基线高于噪声的,则SFOAEs强度灵敏度=e*(SFOAE幅度-f*基线幅度),对于基线低于噪声的,则SFOAEs强度灵敏度=g*(SFOAE幅度-h*噪声幅度)根据所检测频率不同,选取不同的e、f、g、h值;For the third category, the pure audio spectrum appears and the signal-to-noise ratio is between 5dB and 10dB, and then the secondary classification is performed. For the baseline higher than the noise, the SFOAEs intensity sensitivity=e*(SFOAE amplitude-f*baseline amplitude) , for the baseline lower than the noise, then the SFOAEs intensity sensitivity = g * (SFOAE amplitude - h * noise amplitude) According to the different detected frequencies, select different e, f, g, h values;
对于第四类,出现纯音频谱且信噪比介于5dB-0之间的;则进行二次分类,对于基线高于噪声的,则SFOAEs强度灵敏度=i*(SFOAE幅度-j*噪声幅度),对于基线低于噪声的,则SFOAEs强度灵敏度=k*(SFOAE幅度-l*基线幅度),根据所检测频率不同,选取不同的i、j、k、l值For the fourth category, the pure audio spectrum appears and the signal-to-noise ratio is between 5dB-0; then the secondary classification is performed, and for the baseline higher than the noise, the SFOAEs intensity sensitivity = i*(SFOAE amplitude-j*noise amplitude) , for the baseline lower than the noise, the SFOAEs intensity sensitivity=k*(SFOAE amplitude-l*baseline amplitude), according to the detected frequency, select different i, j, k, l values
在一个优选的实施例中,如图4所示,SFOAEs频率灵敏度检测模块包括刺激声参数设置模块、抑制声参数设置模块、刺激声信号生成模块、抑制声信号生成模块、刺激声信号刺激模块、抑制声信号刺激模块、检测信号采集模块、检测信号处理模块、SFOAE STCs波形显示模块、测试数据显示模块、频率灵敏度转换模块、测试结果报告生成和保存模块。刺激声参数设置模块用于设置刺激声频率和刺激声强度;抑制声参数设置模块用于设置抑制声频率上限、抑制声频率下限、抑制声频率步长和抑制准则;刺激声信号生成模块和抑制声信号生成模块根据设置的参数生成相应的数字刺激信号和数字抑制信号;刺激声信号刺激模块和抑制声信号刺激模块经声卡2和微型扬声器31发出刺激频率下的刺激声和不同频率不同强度的抑制声至受试者耳中,抑制声的频率在刺激频率左右的范围内以设定的抑制声频率步长进行调整,微型麦克风32将耳道中的信号经前置放大器发送到声卡2,最后经检测信号采集模块传送至检测信号处理模块,检测信号处理模块提取抑制声频率范围内各个抑制频率下、满足设定抑制准则的刺激频率耳声发射,具体过程为:不断增加或减少抑制声的强度,当刺激频率耳声发射残留量达到设定抑制准则时停止调整,则此时的点(所对应的抑制频率点和抑制强度)即为刺激频率耳声发射调谐曲线中的一点;依此类推测量下一个抑制频率点,将抑制声频率范围内的不同抑制频率下的各个点逐点连线即为刺激频率耳声发射调谐曲线的测试结果,SFOAE STCs波形显示模块用于显示测试波形;测试数据显示模块动态显示SFOAE STCs在不同频率下的检测数据(幅度、基线和噪声);频率灵敏度转换模块首先根据检测频率进行分组;然后在各组内,根据SFOAE STCs曲线的幅度、波形、基线和噪声进行聚类分类;在不同类中,根据先验数学关系模型,得出具体的频率灵敏度数值;测试结果报告生成和保存模块用于生成并保存受试者的所有检测结果及测试信息。In a preferred embodiment, as shown in FIG. 4 , the SFOAEs frequency sensitivity detection module includes a stimulation sound parameter setting module, a suppression sound parameter setting module, a stimulation sound signal generation module, a suppression sound signal generation module, a stimulation sound signal stimulation module, Suppression acoustic signal stimulation module, detection signal acquisition module, detection signal processing module, SFOAE STCs waveform display module, test data display module, frequency sensitivity conversion module, test result report generation and storage module. The stimulation sound parameter setting module is used to set the stimulation sound frequency and the stimulation sound intensity; the suppression sound parameter setting module is used to set the upper limit of the suppressed sound frequency, the lower limit of the suppressed sound frequency, the step size of the suppressed sound frequency and the suppression criterion; the stimulation sound signal generation module and the suppression sound The acoustic signal generation module generates corresponding digital stimulation signals and digital inhibition signals according to the set parameters; the stimulation acoustic signal stimulation module and the inhibition acoustic signal stimulation module send out stimulation sounds at stimulation frequencies and different frequencies and intensities through the sound card 2 and the micro-speaker 31 . Suppress the sound to the subject's ear, the frequency of the suppressed sound is adjusted within the range around the stimulation frequency with the set suppression sound frequency step size, the
在一个优选的实施例中,频率灵敏度转换模块首先根据检测频率进行分组;然后在各组内,根据SFOAE STCs曲线的幅度、波形、基线和噪声进行聚类分类;在不同类中,根据先验数学关系模型,得出具体的频率灵敏度数值的具体过程为:In a preferred embodiment, the frequency sensitivity conversion module is firstly grouped according to the detection frequency; then within each group, cluster classification is performed according to the amplitude, waveform, baseline and noise of the SFOAE STCs curve; in different categories, according to the priori Mathematical relationship model, the specific process of obtaining the specific frequency sensitivity value is as follows:
根据在检测频率处出现的SFOAE STCs曲线形状和位置分成两类,出现双顶点的和出现单顶点的SFOAE STCs曲线。According to the shape and position of the SFOAE STCs curve appearing at the detection frequency, it is divided into two categories, the SFOAE STCs curve with double apex and the SFOAE STCs with single apex.
对于第一类,出现双顶点的SFOAE STCs曲线,再进行二次分类,若顶点高于刺激声强度,则频率灵敏度=a*Q10(10dB点的品质因素)+b*高端斜率-c*低端斜率,若顶点低于刺激声强度,则频率灵敏度=a*Q10(10dB点的品质因素);For the first type, a double-apex SFOAE STCs curve appears, and then a secondary classification is performed. If the apex is higher than the stimulus sound intensity, then the frequency sensitivity = a*Q10 (10dB point quality factor) + b* high-end slope - c* low end slope, if the vertex is lower than the stimulus intensity, then the frequency sensitivity = a*Q10 (the quality factor of the 10dB point);
2)对于第二类出现单顶点的SFOAE STCs曲线,若右偏移,则频率灵敏度=d*Q10(10Db点的品质因素)+e*(高端斜率-f*低端斜率),若左偏移,则频率灵敏度=g*Q10(10Db点的品质因素)+h*(高端斜率),若无偏移,则频率灵敏度=i*Q10(10Db点的品质因素),根据所检测频率不同,选取不同的a、b、c、d、e、f、g和h值。2) For the second type of SFOAE STCs curve with a single vertex, if it is shifted to the right, then the frequency sensitivity = d*Q10 (quality factor of 10Db point) + e* (high-end slope-f*low-end slope), if left-biased If there is no offset, then the frequency sensitivity=g*Q10(quality factor of 10Db point)+h*(high-end slope), if there is no offset, then frequency sensitivity=i*Q10(quality factor of 10Db point), according to the detected frequency, Choose different a, b, c, d, e, f, g, and h values.
在一个优选的实施例中,如图5所示,分辨率为1dB的纯音测听检测模块包括手柄配置模块、反馈信号接收模块、测试类型选择模块、测试参数选择模块、测试控制分析模块、纯音信号刺激模块、结果分析模块和显示模块;手柄配置模块用于对手柄4的按钮进行绑定配置,并发送绑定配置结果到反馈信号接收模块;测试类型选择模块用于选择测试类型(可供选择的测试类型包括:上升法和升降法);测试参数选择模块用于设置测试方法、测试频率和纯音强度上下限;测试控制分析模块根据选取的测试方法和测试参数,发送测试频率和纯音起始测试强度到纯音信号刺激模块,纯音信号刺激模块发送数字纯音刺激信号到受试者耳中,反馈信号接收模块接收受试者通过手柄按钮反馈的判断结果,并将判断结果发回测试控制分析模块,测试控制分析模块根据结果增加或降低纯音强度,得到在该纯音信号刺激下的听阈值,并将其发送到结果分析模块进行保存或更新,同时判断是否所有测试频率的听阈值都已获得;如果都已获得,则绘制听力图并发送到显示模块中进行显示,分辨率为1dB的纯音测听检测模块用于在前期大数据量分析中,与基于SFOAEs的强度测试结果建立数学模型关系,实现可与临床上的纯音测听检测结果一致的基于SFOAEs的强度灵敏度检测。In a preferred embodiment, as shown in Figure 5, the pure tone audiometry detection module with a resolution of 1dB includes a handle configuration module, a feedback signal receiving module, a test type selection module, a test parameter selection module, a test control analysis module, a pure tone Signal stimulation module, result analysis module and display module; the handle configuration module is used to bind and configure the buttons of the handle 4, and send the binding configuration results to the feedback signal receiving module; the test type selection module is used to select the test type (available for The selected test types include: rising method and rising method); the test parameter selection module is used to set the test method, test frequency and the upper and lower limits of the pure tone intensity; the test control analysis module sends the test frequency and pure tone start according to the selected test method and test parameters. The initial test intensity is sent to the pure tone signal stimulation module, the pure tone signal stimulation module sends a digital pure tone stimulation signal to the subject's ear, and the feedback signal receiving module receives the judgment result fed back by the subject through the handle button, and sends the judgment result back to the test control analysis Module, the test control analysis module increases or decreases the pure tone intensity according to the result, obtains the hearing threshold value under the pure tone signal stimulation, and sends it to the result analysis module for saving or updating, and at the same time judges whether the hearing threshold value of all test frequencies has been obtained. ; If all have been obtained, draw the audiogram and send it to the display module for display. The pure tone audiometry detection module with a resolution of 1dB is used to establish a mathematical model relationship with the strength test results based on SFOAEs in the early large data volume analysis. , to achieve intensity-sensitivity detection based on SFOAEs that is consistent with clinical pure-tone audiometry detection results.
在一个优选的实施例中,如图6所示,基于心理物理调谐曲线的检测模块包括手柄配置模块、测试参数选择模块、测试信号生成模块、测试控制模块、测试信号刺激模块、反馈信号接收模块、结果分析模块和显示模块;手柄配置模块用于对手柄4的按钮进行绑定配置,并发送绑定配置结果到反馈信号接收模块;测试参数选择模块设置刺激声频率、刺激声强度和掩蔽声强度上限;测试信号生成模块根据接收的各测试参数,生成纯音刺激声和扫频窄带掩蔽声,并发送到测试控制模块,由测试控制模块发送信号到测试信号刺激模块,使其发出刺激声和掩蔽声;反馈信号接收模块接收受试者通过手柄按钮反馈的判断结果,并将判断结果发回测试控制模块,由其根据结果增加或降低掩蔽声强度,并实时记录掩蔽声强度,且将记录值发送到结果分析模块,由结果分析模块绘制掩蔽声强度变化图,并进行平滑和正负向平均处理,得到心理物理调谐曲线,且将其发送到显示模块中进行显示,基于心理物理调谐曲线的频率灵敏度检测模块用于在前期大数据量分析中,与基于SFOAEs的抑制调谐曲线的测试结果建立数学模型关系,为得到基于SFOAE STCs的频率灵敏度的检测结果做准备,In a preferred embodiment, as shown in FIG. 6 , the detection module based on the psychophysical tuning curve includes a handle configuration module, a test parameter selection module, a test signal generation module, a test control module, a test signal stimulation module, and a feedback signal receiving module , result analysis module and display module; the handle configuration module is used to bind and configure the buttons of the handle 4, and send the binding configuration results to the feedback signal receiving module; the test parameter selection module sets the stimulation sound frequency, stimulation sound intensity and masking sound The upper limit of intensity; the test signal generation module generates pure tone stimulation sound and swept-frequency narrowband masker according to the received test parameters, and sends them to the test control module. Masking sound; the feedback signal receiving module receives the judgment result fed back by the subject through the handle button, and sends the judgment result back to the test control module, which increases or decreases the intensity of the masking sound according to the result, and records the intensity of the masking sound in real time. The value is sent to the result analysis module, and the result analysis module draws the masking sound intensity change map, and performs smoothing and positive and negative average processing to obtain the psychophysical tuning curve, which is sent to the display module for display, based on the psychophysical tuning curve The frequency sensitivity detection module is used to establish a mathematical model relationship with the test results of the suppression tuning curve based on SFOAEs in the early large-scale data analysis, so as to prepare for the detection results of frequency sensitivity based on SFOAE STCs.
在一个优选的实施例中,基于SFOAEs的强度灵敏度检测模块和基于SFOAEs的频率灵敏度检测模块的检测信号采集模块即刺激频率耳声发射的测试信号提取,提取刺激频率耳声发射的方法基本相同,主要包括三种现有方法:非线性压缩、双音抑制以及频谱平滑处理,每一种方法都利用一种不同的耳蜗现象或者信号处理技术来提取刺激频率耳声发射,其中,非线性压缩的方法充分利用了刺激频率耳声发射幅度的压缩增长与刺激声的线性增长关系;双音抑制的方法是将SFOAEs定义为在刺激频率附近,增加抑制声和不增加抑制声所检测到的耳道声压之间的复合差异,认为抑制声可以大量地降低或者去除耳声发射;频谱平滑处理是利用平滑函数将复合耳道声压的频谱进行卷积处理,其分析方法是利用了刺激声和耳声发射的潜伏期不同,等价于在相应潜伏期区域内加窗。In a preferred embodiment, the detection signal acquisition module of the intensity sensitivity detection module based on SFOAEs and the frequency sensitivity detection module based on SFOAEs is the test signal extraction of stimulation frequency otoacoustic emission, and the method for extracting stimulation frequency otoacoustic emission is basically the same, There are mainly three existing methods: nonlinear compression, two-tone suppression, and spectral smoothing, each of which utilizes a different cochlear phenomenon or signal processing technique to extract stimulus-frequency otoacoustic emissions. The method makes full use of the relationship between the compressive increase of the stimulus frequency otoacoustic emission amplitude and the linear increase of the stimulus sound; the method of two-tone suppression is to define the SFOAEs as the ear canal detected by the increase of the inhibitory sound and without the increase of the inhibitory sound near the stimulation frequency. The composite difference between sound pressures, it is believed that suppressing sound can greatly reduce or remove otoacoustic emissions; spectral smoothing is to use a smoothing function to convolve the spectrum of the composite ear canal sound pressure, and its analysis method is to use the stimulation sound and The latency of otoacoustic emission is different, which is equivalent to adding a window in the corresponding latency area.
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and the structure, connection method and manufacturing process of each component can be changed to some extent. Any equivalent transformation and improvement based on the technical solution of the present invention should not be used. Excluded from the scope of protection of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810025486.2A CN108209934B (en) | 2018-01-11 | 2018-01-11 | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission |
PCT/CN2018/113601 WO2019137079A1 (en) | 2018-01-11 | 2018-11-02 | Auditory sensitivity detection system based on stimulus-frequency otoacoustic emissions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810025486.2A CN108209934B (en) | 2018-01-11 | 2018-01-11 | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108209934A CN108209934A (en) | 2018-06-29 |
CN108209934B true CN108209934B (en) | 2020-10-09 |
Family
ID=62640854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810025486.2A Active CN108209934B (en) | 2018-01-11 | 2018-01-11 | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108209934B (en) |
WO (1) | WO2019137079A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108209934B (en) * | 2018-01-11 | 2020-10-09 | 清华大学 | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission |
CN109620251B (en) * | 2018-12-29 | 2024-05-14 | 天津工业大学 | A non-invasive hearing detection method based on compound nerve action potential |
TWI693926B (en) * | 2019-03-27 | 2020-05-21 | 美律實業股份有限公司 | Hearing test system and setting method thereof |
CN110960224B (en) * | 2019-12-31 | 2021-08-10 | 杭州耳青聪科技有限公司 | Hearing threshold and/or hearing status detection systems and methods |
CN111768834A (en) * | 2020-03-03 | 2020-10-13 | 天津工业大学 | A wearable intelligent hearing comprehensive detection and analysis rehabilitation system |
CN111631728B (en) * | 2020-05-26 | 2023-01-24 | 广州大学 | Method and device for measuring bone conduction transfer function and storage medium |
CN111669676B (en) * | 2020-05-27 | 2021-06-08 | 中国科学院声学研究所 | Bone conduction earphone equalization method based on stimulation frequency otoacoustic emission |
CN113834560B (en) * | 2020-06-08 | 2023-08-15 | 浙江大学 | A kind of animal auditory assessment detection device and method |
CN111803080B (en) * | 2020-06-11 | 2023-06-16 | 河南迈松医用设备制造有限公司 | Infant distortion otoacoustic detector and detection method thereof |
CN114286252B (en) * | 2022-01-21 | 2022-08-30 | 清华大学 | Method for calibrating frequency response of playing equipment |
CN115644860B (en) * | 2022-10-31 | 2024-11-12 | 无锡清耳话声科技有限公司 | A cochlear dead zone edge detection method based on PTC |
CN115736905B (en) * | 2022-10-31 | 2025-05-02 | 无锡清耳话声科技有限公司 | A sweep frequency equalization threshold noise test method for rapid detection of cochlear dead zone |
CN118555528B (en) * | 2024-05-14 | 2025-04-22 | 无锡清耳话声科技有限公司 | Otoacoustic emission signal detection method and device, electronic equipment and storage medium |
CN119227436B (en) * | 2024-12-05 | 2025-02-28 | 杭州爱华仪器有限公司 | TEOAE feedback signal generation method and device based on software simulation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102813520A (en) * | 2012-08-27 | 2012-12-12 | 清华大学 | Pure tone audiometric and psychophysical tuning curve detecting system |
CN102892069A (en) * | 2012-09-10 | 2013-01-23 | 清华大学 | Stimulus frequency otoacoustic emission tuning curve detection and calibration system |
CN102908150A (en) * | 2012-09-27 | 2013-02-06 | 清华大学 | Composite nervous action potential turning curve calibration and detection system |
CN106233754A (en) * | 2013-05-28 | 2016-12-14 | 西北大学 | Hearing assistance devices controls |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6231521B1 (en) * | 1998-12-17 | 2001-05-15 | Peter Zoth | Audiological screening method and apparatus |
JP2004065734A (en) * | 2002-08-08 | 2004-03-04 | National Institute Of Advanced Industrial & Technology | Mobile audiometer |
KR100857877B1 (en) * | 2006-09-14 | 2008-09-17 | 유메디칼 주식회사 | Pure sound hearing inspection device that can be closed |
CN102973277B (en) * | 2012-10-30 | 2015-04-22 | 清华大学 | Frequency following response signal test system |
CN104545940B (en) * | 2014-12-31 | 2017-03-08 | 深圳先进技术研究院 | Audio feedback regulating system based on frequency of stimulation otoacoustic emission |
CN108209934B (en) * | 2018-01-11 | 2020-10-09 | 清华大学 | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission |
-
2018
- 2018-01-11 CN CN201810025486.2A patent/CN108209934B/en active Active
- 2018-11-02 WO PCT/CN2018/113601 patent/WO2019137079A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102813520A (en) * | 2012-08-27 | 2012-12-12 | 清华大学 | Pure tone audiometric and psychophysical tuning curve detecting system |
CN102892069A (en) * | 2012-09-10 | 2013-01-23 | 清华大学 | Stimulus frequency otoacoustic emission tuning curve detection and calibration system |
CN102908150A (en) * | 2012-09-27 | 2013-02-06 | 清华大学 | Composite nervous action potential turning curve calibration and detection system |
CN106233754A (en) * | 2013-05-28 | 2016-12-14 | 西北大学 | Hearing assistance devices controls |
Also Published As
Publication number | Publication date |
---|---|
CN108209934A (en) | 2018-06-29 |
WO2019137079A1 (en) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108209934B (en) | Auditory sensitivity detection system based on stimulus frequency otoacoustic emission | |
US11665488B2 (en) | Auditory device assembly | |
CN102892069B (en) | Stimulus frequency otoacoustic emission tuning curve detection and calibration system | |
TWI699755B (en) | Methods and systems for personalization of the auditory stimulus | |
CN110960224B (en) | Hearing threshold and/or hearing status detection systems and methods | |
CN102973277B (en) | Frequency following response signal test system | |
CN102908150B (en) | Composite nervous action potential turning curve calibration and detection system | |
JP2018528735A5 (en) | ||
CN101732054A (en) | Portable all-purpose otoacoustic emission detecting system | |
CN102232833A (en) | Audiometry device based on over-sampled multi-frequency multi-amplitude joint estimated auditory evoke potentials | |
CN103384494B (en) | Based on electrophysiological cochlea dead region checkout gear and the information providing method for using this device to detect cochlea dead region | |
CN109620251B (en) | A non-invasive hearing detection method based on compound nerve action potential | |
CN101690664B (en) | Comprehensive detection platform for auditory indexes of auditory system transmission access | |
Schairer et al. | Wideband ipsilateral measurements of middle-ear muscle reflex thresholds in children and adults | |
Chung et al. | Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants | |
CN202179545U (en) | Auditory evoked potential audiometry apparatus based on oversampling multiple-frequency multiple-amplitude joint estimation | |
CN111803080B (en) | Infant distortion otoacoustic detector and detection method thereof | |
Kandzia et al. | Binaural measurement of bone conduction click evoked otoacoustic emissions in adults and infants | |
Beauchaine et al. | Applications of the auditory brainstem response to pediatric hearing aid selection | |
Boothalingam et al. | External and middle ear influence on envelope following responses | |
US20060277999A1 (en) | Audiometer and method of hearing screening | |
Qin et al. | On frequency characteristics of bone conduction actuators by measuring loudness, acceleration and otoacoustic emission | |
Robinson et al. | Relative benefits of stepped and constant bore earmoulds: a crossover trial | |
Dunckley | Testing the Phase Prediction of a Nonlinear SFOAE Generation Model | |
CN116866810A (en) | Bone conduction hearing threshold measurement method based on bone conduction headphones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |