CN108181808B - System error-based parameter self-tuning method for MISO partial-format model-free controller - Google Patents
System error-based parameter self-tuning method for MISO partial-format model-free controller Download PDFInfo
- Publication number
- CN108181808B CN108181808B CN201711323412.9A CN201711323412A CN108181808B CN 108181808 B CN108181808 B CN 108181808B CN 201711323412 A CN201711323412 A CN 201711323412A CN 108181808 B CN108181808 B CN 108181808B
- Authority
- CN
- China
- Prior art keywords
- miso
- partial
- free controller
- controller
- format model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 235000015429 Mirabilis expansa Nutrition 0.000 title abstract 6
- 244000294411 Mirabilis expansa Species 0.000 title abstract 6
- 235000013536 miso Nutrition 0.000 title abstract 6
- 238000013528 artificial neural network Methods 0.000 claims abstract description 34
- 238000004364 calculation method Methods 0.000 claims abstract description 27
- 238000011478 gradient descent method Methods 0.000 claims abstract description 4
- 230000009897 systematic effect Effects 0.000 claims description 45
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000009825 accumulation Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 44
- 238000010586 diagram Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 108010046685 Rho Factor Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种MISO偏格式无模型控制器基于系统误差的参数自整定方法,利用系统误差集作为BP神经网络的输入,BP神经网络进行前向计算并通过输出层输出惩罚因子、步长因子等MISO偏格式无模型控制器待整定参数,采用MISO偏格式无模型控制器的控制算法计算得到针对被控对象的控制输入向量,以系统误差函数的值最小化为目标,采用梯度下降法,并结合控制输入分别针对各个待整定参数的梯度信息集,进行系统误差反向传播计算,在线实时更新BP神经网络的隐含层权系数、输出层权系数,实现控制器基于系统误差的参数自整定。本发明提出的MISO偏格式无模型控制器基于系统误差的参数自整定方法,能有效克服控制器参数的在线整定难题,对MISO系统具有良好的控制效果。
The invention discloses a parameter self-tuning method based on system error for a MISO partial format model-free controller. The system error set is used as the input of a BP neural network, and the BP neural network performs forward calculation and outputs a penalty factor and a step size through an output layer. The parameters to be set in the MISO partial model-free controller such as factors are calculated using the control algorithm of the MISO partial model-free controller to obtain the control input vector for the controlled object. The objective is to minimize the value of the system error function, and the gradient descent method is used. , and combined with the control input for the gradient information set of each parameter to be tuned, the system error back-propagation calculation is performed, and the hidden layer weight coefficient and output layer weight coefficient of the BP neural network are updated online in real time, so as to realize the parameters of the controller based on the system error. VDF. The parameter self-tuning method based on the system error of the MISO partial format model-free controller proposed by the invention can effectively overcome the on-line tuning problem of the controller parameters, and has a good control effect on the MISO system.
Description
技术领域technical field
本发明属于自动化控制领域,尤其是涉及一种MISO偏格式无模型控制器基于系统误差的参数自整定方法。The invention belongs to the field of automatic control, and in particular relates to a parameter self-tuning method based on system error of a MISO partial format model-free controller.
背景技术Background technique
MISO(Multiple Input and Single Output,多输入单输出)系统的控制问题,一直以来都是自动化控制领域所面临的重大挑战之一。The control problem of MISO (Multiple Input and Single Output) system has always been one of the major challenges in the field of automation control.
MISO控制器的现有实现方法中包括MISO偏格式无模型控制器。MISO偏格式无模型控制器是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MISO 被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,对未知非线性时变MISO系统也能够进行很好的控制,具有良好的应用前景。MISO 偏格式无模型控制器的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第106页)中提出,其控制算法如下:Existing implementations of MISO controllers include MISO partial format model-free controllers. MISO partial format model-free controller is a new type of data-driven control method, which does not rely on any mathematical model information of the controlled object, but only relies on the input and output data measured in real time by the MISO controlled object to analyze and design the controller, and The implementation is simple, the computational burden is small, and the robustness is strong. It can also control the unknown nonlinear time-varying MISO system well, and has a good application prospect. The theoretical basis of the MISO partial model-free controller was proposed by Hou Zhongsheng and Jin Shangtai in their co-authored "Model-Free Adaptive Control - Theory and Application" (Science Press, 2013, p. 106). The algorithm is as follows:
其中,u(k)为k时刻的控制输入向量,u(k)=[u1(k),…,um(k)]T,m为控制输入个数,Δu(k)=u(k)-u(k-1);e(k)为k时刻的系统误差;为k时刻的MISO系统伪分块梯度估计值的行矩阵,为行矩阵的第i块行矩阵(i=1,…,L),为行矩阵的2范数;λ为惩罚因子,ρ1,…,ρL为步长因子,L为控制输入线性化长度常数。Among them, u(k) is the control input vector at time k, u(k)=[u 1 (k),...,u m (k)] T , m is the number of control inputs, Δu(k)=u( k)-u(k-1); e(k) is the systematic error at time k; is the row matrix of pseudo-block gradient estimates of the MISO system at time k, is a row matrix The i-th row matrix of (i=1,...,L), is a row matrix The 2 norm of ; λ is the penalty factor, ρ 1 ,…,ρ L is the step factor, and L is the control input linearization length constant.
然而,MISO偏格式无模型控制器在实际投用前需要依赖经验知识来事先设定惩罚因子λ和步长因子ρ1,…,ρL等参数的数值,在实际投用过程中也尚未实现惩罚因子λ和步长因子ρ1,…,ρL等参数的在线自整定。参数有效整定手段的缺乏,不仅使MISO偏格式无模型控制器的使用调试过程费时费力,而且有时还会严重影响MISO偏格式无模型控制器的控制效果,制约了MISO偏格式无模型控制器的推广应用。也就是说:MISO偏格式无模型控制器在实际投用过程中还需要解决在线自整定参数的难题。However, the MISO partial model-free controller needs to rely on empirical knowledge to pre-set the values of the penalty factor λ and the step factor ρ 1 ,..., ρ L and other parameters before the actual operation, which has not been realized in the actual operation process. Online self-tuning of parameters such as penalty factor λ and step size factor ρ 1 ,…,ρ L. The lack of effective parameter tuning means not only makes the use and debugging process of the MISO partial model-free controller time-consuming and laborious, but also sometimes seriously affects the control effect of the MISO partial model-free controller and restricts the performance of the MISO partial model-free controller. Promote the application. That is to say: the MISO partial format model-free controller also needs to solve the problem of online self-tuning parameters in the actual operation process.
为此,为了打破制约MISO偏格式无模型控制器推广应用的瓶颈,本发明提出了一种 MISO偏格式无模型控制器基于系统误差的参数自整定方法。Therefore, in order to break the bottleneck restricting the popularization and application of the MISO partial model-free controller, the present invention proposes a parameter self-tuning method based on the system error of the MISO partial model-free controller.
发明内容SUMMARY OF THE INVENTION
为了解决背景技术中存在的问题,本发明的目的在于,提供一种MISO偏格式无模型控制器基于系统误差的参数自整定方法。In order to solve the problems existing in the background art, the purpose of the present invention is to provide a parameter self-tuning method based on the systematic error of the MISO partial format model-free controller.
为此,本发明的上述目的通过以下技术方案来实现,包括以下步骤:For this reason, the above-mentioned purpose of the present invention is achieved by the following technical solutions, comprising the following steps:
步骤(1):针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO(MultipleInput and Single Output,多输入单输出)系统,采用MISO偏格式无模型控制器进行控制;确定所述MISO偏格式无模型控制器的控制输入线性化长度常数L,L为大于1的整数;所述MISO偏格式无模型控制器参数包含惩罚因子λ和步长因子ρ1,…,ρL;确定MISO偏格式无模型控制器待整定参数,所述MISO偏格式无模型控制器待整定参数,为所述MISO偏格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MISO偏格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;Step (1): For a MISO (Multiple Input and Single Output) system with m inputs (m is an integer greater than or equal to 2) and 1 output, use a MISO partial format model-free controller for control; Determine the control input linearization length constant L of the MISO partial model-free controller, where L is an integer greater than 1; the MISO partial model-free controller parameters include a penalty factor λ and a step factor ρ 1 ,...,ρ L ; Determine the parameters to be set of the MISO partial format model-free controller, and the parameters to be set of the MISO partial format model-free controller are part or all of the parameters of the MISO partial format model-free controller, including the penalty factor λ and the step size Any one or any combination of factors ρ 1 , . The number of parameters to be set in the partial format model-free controller; the weight coefficient of the hidden layer and the weight coefficient of the output layer of the BP neural network are initialized;
步骤(2):将当前时刻记为k时刻;Step (2): record the current moment as time k;
步骤(3):基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k 时刻的系统误差,记为e(k);将所述系统误差及其函数组、系统输出期望值、系统输出实际值的任意之一或任意种组合,放入集合{系统误差集};Step (3): Based on the expected value of the system output and the actual value of the system output, use the system error calculation function to calculate the system error at time k, denoted as e(k); the system error and its function group, the system output expected value, the system Output any one or any combination of actual values and put them into the set {system error set};
步骤(4):将步骤(3)得到的所述集合{系统误差集}作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MISO 偏格式无模型控制器待整定参数的值;Step (4): the set {system error set} obtained in step (3) is used as the input of the BP neural network, the BP neural network performs forward calculation, and the calculation result is output through the output layer of the BP neural network, obtain the values of the parameters to be tuned in the MISO partial format model-free controller;
步骤(5):基于步骤(3)得到的所述系统误差e(k)、步骤(4)得到的所述MISO偏格式无模型控制器待整定参数的值,采用MISO偏格式无模型控制器的控制算法,计算得到 MISO偏格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T;Step (5): Based on the systematic error e(k) obtained in step (3) and the values of the parameters to be tuned in the MISO partial model-free controller obtained in step (4), the MISO partial model-free controller is adopted. The control algorithm is calculated to obtain the control input vector u(k)=[u 1 (k),..., um (k)] T of the MISO partial model-free controller for the controlled object at time k;
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第j个控制输入uj(k)(1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO偏格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:Step (6): For the jth control input u j (k) (1≤j≤m) in the control input vector u(k) obtained in step (5), calculate the jth control input u j (k) respectively for the gradient information of each of the MISO partial format model-free controller parameters to be tuned at time k, the specific calculation formula is as follows:
当所述MISO偏格式无模型控制器待整定参数中包含惩罚因子λ时,所述第j个控制输入uj(k)针对所述惩罚因子λ在k时刻的梯度信息为:When the to-be-tuned parameters of the MISO partial model-free controller include a penalty factor λ, the gradient information of the jth control input u j (k) for the penalty factor λ at time k is:
当所述MISO偏格式无模型控制器待整定参数中包含步长因子ρ1时,所述第j个控制输入uj(k)针对所述步长因子ρ1在k时刻的梯度信息为:When the to-be-adjusted parameters of the MISO partial model-free controller include a step factor ρ 1 , the gradient information of the jth control input u j (k) for the step factor ρ 1 at time k is:
当所述MISO偏格式无模型控制器待整定参数中包含步长因子ρi且2≤i≤L时,所述第j 个控制输入uj(k)针对所述步长因子ρi在k时刻的梯度信息为:When the to-be-tuned parameters of the MISO partial model-free controller include a step size factor ρ i and 2≤i≤L, the jth control input u j (k) is at k for the step size factor ρ i The gradient information at time is:
其中,Δuj(k)=uj(k)-uj(k-1),为k时刻的MISO系统伪分块梯度估计值的行矩阵,为行矩阵的第i块行矩阵(i=1,…,L),为行矩阵的第j个梯度分量估计值,为行矩阵的2范数;where Δu j (k)=u j (k)-u j (k-1), is the row matrix of pseudo-block gradient estimates of the MISO system at time k, is a row matrix The i-th row matrix of (i=1,...,L), is a row matrix The j-th gradient component estimate of , is a row matrix 2 norm of ;
上述全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};The set of all the above-mentioned gradient information is denoted as {gradient information j}, and put into the set {gradient information set};
针对步骤(5)得到的所述控制输入向量u(k)中的其他m-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合,然后进入步骤(7);For the other m-1 control inputs in the control input vector u(k) obtained in step (5), this step is repeated until the set {gradient information set} contains all {{gradient information 1},... , the set of {gradient information m}}, and then enter step (7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;Step (7): With the goal of minimizing the value of the system error function, the gradient descent method is used, combined with the set {gradient information set} obtained in step (6), the back propagation calculation of the system error is performed, and the BP neural network is updated. The hidden layer weight coefficient and the output layer weight coefficient are used as the hidden layer weight coefficient and the output layer weight coefficient when the BP neural network performs forward calculation at the next moment;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。Step (8): After the control input vector u(k) acts on the controlled object, the actual value of the system output of the controlled object at the next moment is obtained, and then returns to step (2), and repeats steps (2) to ( 8).
在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:While adopting the above technical solutions, the present invention can also adopt or combine the following further technical solutions:
所述步骤(3)中的所述系统误差计算函数的自变量包含系统输出期望值与系统输出实际值。The independent variables of the system error calculation function in the step (3) include the expected value of the system output and the actual value of the system output.
所述步骤(3)中的所述系统误差计算函数采用e(k)=y*(k)-y(k),其中y*(k)为k时刻设定的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值;或者采用e(k)=y*(k+1)-y(k),其中y*(k+1)为k+1时刻的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值。The system error calculation function in the step (3) adopts e(k)=y * (k)-y(k), wherein y * (k) is the expected value of the system output set at time k, and y(k ) is the actual value of the system output sampled at time k; or e(k)=y * (k+1)-y(k), where y * (k+1) is the expected value of the system output at time k+1, y(k) is the actual output value of the system sampled at time k.
所述步骤(3)中的所述系统误差及其函数组,包含k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)、 k时刻系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、k时刻系统误差e(k)的高阶后向差分的任意之一或任意种组合。The systematic error and its function group in the step (3) include the systematic error e(k) at time k, the accumulation of systematic errors at time k and all previous times, namely: The first-order backward difference e(k)-e(k-1) of the systematic error e(k) at time k, the second-order backward difference e(k)-2e(k-1) of the systematic error e(k) at time k +e(k-2), any one or any combination of the higher-order backward difference of the systematic error e(k) at time k.
所述步骤(7)中的所述系统误差函数的自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合。The independent variable of the system error function in the step (7) includes any one or any combination of the system error, the expected value of the system output, and the actual value of the system output.
所述步骤(7)中的所述系统误差函数为其中,e(k)为系统误差,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于0的常数,1≤j≤m。The systematic error function in the step (7) is Among them, e(k) is the systematic error, Δu j (k)=u j (k)-u j (k-1), b j is a constant greater than or equal to 0, 1≤j≤m.
本发明提供的MISO偏格式无模型控制器基于系统误差的参数自整定方法,能够实现良好的控制效果,并有效克服惩罚因子λ和步长因子ρ1,…,ρL需要费时费力进行整定的难题。The parameter self-tuning method of the MISO partial model-free controller based on the system error provided by the present invention can achieve a good control effect and effectively overcome the time-consuming and laborious tuning of the penalty factor λ and the step factor ρ 1 ,..., ρ L. problem.
附图说明Description of drawings
图1为本发明的原理框图;Fig. 1 is the principle block diagram of the present invention;
图2为本发明采用的BP神经网络结构示意图;Fig. 2 is the BP neural network structure schematic diagram that the present invention adopts;
图3为两输入单输出MISO系统在惩罚因子λ和步长因子ρ1,ρ2,ρ3同时自整定时的控制效果图;Fig. 3 is a control effect diagram of the two-input single-output MISO system when the penalty factor λ and the step size factors ρ 1 , ρ 2 , and ρ 3 are simultaneously self-tuning;
图4为两输入单输出MISO系统在惩罚因子λ和步长因子ρ1,ρ2,ρ3同时自整定时的控制输入图;Fig. 4 is the control input diagram of the two-input single-output MISO system when the penalty factor λ and the step size factors ρ 1 , ρ 2 , and ρ 3 are simultaneously self-tuning;
图5为两输入单输出MISO系统在惩罚因子λ和步长因子ρ1,ρ2,ρ3同时自整定时的惩罚因子λ变化曲线;Fig. 5 is the change curve of the penalty factor λ when the penalty factor λ and the step size factors ρ 1 , ρ 2 , ρ 3 are simultaneously self-tuning in the two-input single-output MISO system;
图6为两输入单输出MISO系统在惩罚因子λ和步长因子ρ1,ρ2,ρ3同时自整定时的步长因子ρ1,ρ2,ρ3变化曲线;Fig. 6 is the change curve of step factor ρ 1 , ρ 2 , ρ 3 when the penalty factor λ and step factor ρ 1 , ρ 2 , ρ 3 are self-tuning at the same time in the two-input single-output MISO system;
图7为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ1,ρ2,ρ3自整定时的控制效果图;Fig. 7 is a control effect diagram of the two-input single-output MISO system when the penalty factor λ is fixed and the step size factors ρ 1 , ρ 2 , ρ 3 are self-tuning;
图8为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ1,ρ2,ρ3自整定时的控制输入图;Fig. 8 is the control input diagram of the two-input single-output MISO system when the penalty factor λ is fixed and the step size factors ρ 1 , ρ 2 , ρ 3 are self-tuning;
图9为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ1,ρ2,ρ3自整定时的步长因子ρ1,ρ2,ρ3变化曲线。Fig. 9 is the change curve of the step size factors ρ 1 , ρ 2 , ρ 3 when the penalty factor λ is fixed and the step size factors ρ 1 , ρ 2 , ρ 3 are self-tuning in the two-input single-output MISO system.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进一步说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
图1给出了本发明的原理框图。针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO系统,采用MISO偏格式无模型控制器进行控制;确定MISO偏格式无模型控制器的控制输入线性化长度常数L,L为大于1的整数;MISO偏格式无模型控制器参数包含惩罚因子λ和步长因子ρ1,…,ρL;确定MISO偏格式无模型控制器待整定参数,其为所述 MISO偏格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;在图1中,MISO偏格式无模型控制器待整定参数为惩罚因子λ和步长因子ρ1,…,ρL;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,其中输出层节点数不少于MISO偏格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数。Figure 1 shows the principle block diagram of the present invention. For a MISO system with m inputs (m is an integer greater than or equal to 2) and 1 output, the MISO partial model-free controller is used for control; the control input linearization length constant L of the MISO partial model-free controller is determined , L is an integer greater than 1; the parameters of the MISO partial model-free controller include a penalty factor λ and a step factor ρ 1 , . Part or all of the parameters of the model-free controller in the format, including any one or any combination of the penalty factor λ and the step factor ρ 1 ,...,ρ L ; in Figure 1, the parameters to be tuned for the MISO partial model-free controller is the penalty factor λ and the step size factor ρ 1 ,...,ρ L ; determine the number of nodes in the input layer, the number of nodes in the hidden layer, and the number of nodes in the output layer of the BP neural network, wherein the number of nodes in the output layer is not less than the MISO partial format model-free The number of parameters to be set by the controller; the weight coefficient of the hidden layer and the weight coefficient of the output layer of the BP neural network are initialized.
将当前时刻记为k时刻;将系统输出期望值y*(k)与系统输出实际值y(k)之差作为k时刻的系统误差e(k),然后将k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)的组合,放入集合{系统误差集};将集合{系统误差集}作为BP神经网络的输入,BP神经网络进行前向计算,计算结果通过BP神经网络的输出层输出,得到MISO偏格式无模型控制器待整定参数的值;基于所述系统误差e(k)、所述MISO偏格式无模型控制器待整定参数的值,采用MISO偏格式无模型控制器的控制算法,计算得到MISO偏格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T;针对控制输入向量u(k)中的第j个控制输入uj(k) (1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO偏格式无模型控制器待整定参数在k时刻的梯度信息,并将全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};针对控制输入向量u(k)中的其他m-1个控制输入,重复执行直至集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合;随后,结合所述集合{梯度信息集},以系统误差函数的值最小化为目标,图1中以e2(k)最小化为目标,采用梯度下降法,进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP 神经网络进行前向计算时的隐含层权系数、输出层权系数;控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,然后重复执行本段落所述的工作,进行后一时刻的MISO偏格式无模型控制器基于系统误差的参数自整定过程。Record the current time as time k; use the difference between the expected value of the system output y * (k) and the actual value of the system output y(k) as the systematic error e(k) at time k, and then use the system error at time k e(k) , the accumulation of systematic errors at time k and all previous times is The combination of the first-order backward difference e(k)-e(k-1) of the systematic error e(k) at time is put into the set {systematic error set}; the set {systematic error set} is used as the input of the BP neural network, The BP neural network performs forward calculation, and the calculation results are output through the output layer of the BP neural network to obtain the values of the parameters to be set for the MISO partial model-free controller; based on the system error e(k), the MISO partial model-free model The value of the parameters to be tuned by the controller, the control algorithm of the MISO partial model-free controller is used to calculate the control input vector u(k)=[u 1 (k ),..., um (k)] T ; for the j-th control input u j (k) (1≤j≤m) in the control input vector u(k), calculate the j-th control input u j (k) For each of the gradient information of the parameters to be set in the MISO partial model-free controller at time k, denote the set of all the gradient information as {gradient information j}, and put it into the set {gradient information set} ; for the other m-1 control inputs in the control input vector u(k), repeat the execution until the set {gradient information set} contains all sets of {{gradient information 1},...,{gradient information m}}; then, Combined with the set {gradient information set}, the goal is to minimize the value of the system error function. In Figure 1, the goal is to minimize e 2 (k), and the gradient descent method is used to calculate the back propagation of the system error and update the BP The weight coefficient of the hidden layer and the weight coefficient of the output layer of the neural network are used as the weight coefficient of the hidden layer and the weight coefficient of the output layer when the BP neural network performs forward calculation at the next moment; the control input vector u(k) acts on the controlled object Then, the actual value of the system output of the controlled object at the next moment is obtained, and then the work described in this paragraph is repeated to carry out the parameter self-tuning process of the MISO partial model-free controller based on the system error at the next moment.
图2给出了本发明采用的BP神经网络结构示意图。BP神经网络可以采用隐含层为单层的结构,也可以采用隐含层为多层的结构。在图2的示意图中,为简明起见,BP神经网络采用了隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为3个,隐含层节点数设为6个,输出层节点数设为待整定参数个数(图2中待整定参数个数为L+1个)。输入层的3个节点,与系统误差e(k)、系统误差的累积系统误差e(k)的一阶后向差分e(k)-e(k-1)分别对应。输出层的节点,与惩罚因子λ和步长因子ρ1,…,ρL分别对应。BP神经网络的隐含层权系数、输出层权系数的更新过程具体为:以系统误差函数的值最小化为目标,图2中以e2(k)最小化为目标,采用梯度下降法,结合所述集合{梯度信息集},进行系统误差反向传播计算,从而更新BP神经网络的隐含层权系数、输出层权系数。FIG. 2 shows a schematic diagram of the structure of the BP neural network adopted in the present invention. The BP neural network can adopt a single-layer structure or a multi-layer structure. In the schematic diagram of Figure 2, for the sake of simplicity, the BP neural network adopts a structure in which the hidden layer is a single layer, that is, a three-layer network structure consisting of an input layer, a single-layer hidden layer, and an output layer is adopted, and the number of nodes in the input layer is It is set to 3, the number of hidden layer nodes is set to 6, and the number of output layer nodes is set to the number of parameters to be set (the number of parameters to be set in Figure 2 is L+1). The 3 nodes of the input layer, the accumulation of the systematic error e(k) and the systematic error The first-order backward differences e(k)-e(k-1) of the systematic error e(k) correspond respectively. The nodes of the output layer correspond to the penalty factor λ and the step size factor ρ 1 ,...,ρ L respectively. The update process of the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network is as follows: the goal is to minimize the value of the system error function. In Figure 2, the goal is to minimize e 2 (k). Combined with the set {gradient information set}, the system error back-propagation calculation is performed to update the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network.
以下是本发明的一个具体实施例。The following is a specific embodiment of the present invention.
被控对象为典型非线性的两输入单输出MISO系统:The controlled object is a typical nonlinear two-input single-output MISO system:
系统输出期望值y*(k)如下:The expected value of the system output y * (k) is as follows:
y*(k)=(-1)round((k-1)/100) y * (k)=(-1) round((k-1)/100)
在本具体实施例中,m=2。In this specific embodiment, m=2.
MISO偏格式无模型控制器的控制输入线性化长度常数L的数值通常根据被控对象的复杂程度和实际的控制效果进行设定,一般在1到10之间,过小会影响控制效果,过大会导致计算量大,所以一般常取3或5,在本具体实施例中L取为3。The value of the control input linearization length constant L of the MISO partial model-free controller is usually set according to the complexity of the controlled object and the actual control effect. It is generally between 1 and 10. If it is too small, it will affect the control effect. The assembly leads to a large amount of calculation, so generally 3 or 5 are often taken, and L is taken as 3 in this specific embodiment.
BP神经网络采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为3个,隐含层节点数设为6个,输出层节点数设为待整定参数个数。The BP neural network adopts a three-layer network structure consisting of an input layer, a single-layer hidden layer, and an output layer. The number of nodes in the input layer is set to 3, the number of nodes in the hidden layer is set to 6, and the number of nodes in the output layer is set to be set. number of parameters.
针对上述具体实施例,共进行了两组试验验证。For the above-mentioned specific embodiments, two groups of test verifications have been carried out.
第一组试验验证时,图2中BP神经网络的输出层节点数预设为4个,对惩罚因子λ和步长因子ρ1,ρ2,ρ3进行同时自整定,图3为控制效果图,图4为控制输入图,图5为惩罚因子λ变化曲线,图6为步长因子ρ1,ρ2,ρ3变化曲线。结果表明,本发明的方法通过对惩罚因子λ和步长因子ρ1,ρ2,ρ3进行同时自整定,能够实现良好的控制效果,并且可以有效克服惩罚因子λ和步长因子ρ1,ρ2,ρ3需要费时费力进行整定的难题。In the first set of test verification, the number of output layer nodes of the BP neural network in Figure 2 is preset to 4, and the penalty factor λ and the step size factors ρ 1 , ρ 2 , ρ 3 are simultaneously self-tuning, and Figure 3 shows the control effect. Fig. 4 is the control input diagram, Fig. 5 is the change curve of the penalty factor λ, and Fig. 6 is the change curve of the step factor ρ 1 , ρ 2 , ρ 3 . The results show that the method of the present invention can achieve a good control effect by simultaneously self-tuning the penalty factor λ and the step size factors ρ 1 , ρ 2 , ρ 3 , and can effectively overcome the penalty factor λ and the step size factor ρ 1 , ρ 2 , ρ 3 need to be time-consuming and laborious to tune.
第二组试验验证时,图2中BP神经网络的输出层节点数为3个,首先将惩罚因子λ固定取值为第一组试验验证时惩罚因子λ的平均值,然后对步长因子ρ1,ρ2,ρ3进行自整定,图7为控制效果图,图8为控制输入图,图9为步长因子ρ1,ρ2,ρ3变化曲线。结果同样表明,本发明的方法在惩罚因子λ固定时通过对步长因子ρ1,ρ2,ρ3进行自整定,能够实现良好的控制效果,并且可以有效克服步长因子ρ1,ρ2,ρ3需要费时费力进行整定的难题。During the verification of the second set of experiments, the number of nodes in the output layer of the BP neural network in Figure 2 is 3. First, the penalty factor λ is fixed as the average value of the penalty factor λ in the verification of the first set of experiments, and then the step size factor ρ 1 , ρ 2 , ρ 3 perform self-tuning, Fig. 7 is the control effect diagram, Fig. 8 is the control input diagram, and Fig. 9 is the change curve of the step factor ρ 1 , ρ 2 , ρ 3 . The results also show that when the penalty factor λ is fixed, the method of the present invention can achieve a good control effect by self-tuning the step size factors ρ 1 , ρ 2 , ρ 3 , and can effectively overcome the step size factors ρ 1 , ρ 2 , ρ 3 is a time-consuming and laborious problem to tune.
应该特别指出的是,在上述具体实施例中,将系统输出期望值y*(k)与系统输出实际值 y(k)之差作为系统误差e(k),也就是e(k)=y*(k)-y(k),仅为所述系统误差计算函数中的一种方法;也可以将k+1时刻的系统输出期望值y*(k+1)与k时刻的系统输出实际值y(k)之差作为系统误差e(k),也就是e(k)=y*(k+1)-y(k);所述系统误差计算函数还可以采用自变量包含系统输出期望值与系统输出实际值的其它计算方法,举例来说, 对上述具体实施例的被控对象而言,采用上述不同的系统误差计算函数,都能够实现良好的控制效果。It should be particularly pointed out that, in the above specific embodiment, the difference between the expected system output value y * (k) and the actual system output value y(k) is taken as the system error e(k), that is, e(k)=y * (k)-y(k), which is only a method in the system error calculation function; it is also possible to combine the expected system output value y * (k+1) at time k+1 with the actual value y output by the system at time k The difference between (k) is used as the systematic error e(k), that is, e(k)=y * (k+1)-y(k); the systematic error calculation function can also use the independent variable to include the expected value of the system output and the Other calculation methods for outputting the actual value, for example, For the controlled object of the above-mentioned specific embodiment, good control effects can be achieved by using the above-mentioned different system error calculation functions.
还应该特别指出的是,在上述具体实施例中,作为BP神经网络输入的集合{系统误差集} 选择了系统误差e(k)、系统误差的累积系统误差e(k)的一阶后向差分e(k)-e(k-1) 的组合,仅为其中一种组合;所述集合{系统误差集}还可以采用其他组合,举例来说,为系统误差e(k)、系统误差的累积即系统误差e(k)的一阶后向差分e(k)-e(k-1)、系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、系统误差e(k)的三阶或四阶或更高阶的后向差分等函数的任意之一或任意种组合。对上述具体实施例的被控对象而言,采用上述不同的集合{系统误差集},都能够实现良好的控制效果。It should also be specially pointed out that, in the above-mentioned specific embodiment, as the set {systematic error set} of the input of the BP neural network, the systematic error e(k), the accumulation of the systematic error are selected. The combination of the first-order backward difference e(k)-e(k-1) of the systematic error e(k) is only one of the combinations; the set {systematic error set} can also adopt other combinations, for example , is the accumulation of systematic error e(k), systematic error namely The first-order backward difference e(k)-e(k-1) of the systematic error e(k), the second-order backward difference e(k)-2e(k-1)+e( k-2), any one or any combination of the third-order or fourth-order or higher-order backward difference and other functions of the systematic error e(k). For the controlled object of the above-mentioned specific embodiment, using the above-mentioned different sets {system error sets}, a good control effect can be achieved.
更应该特别指出的是,在上述具体实施例中,在以系统误差函数的值最小化为目标来更新BP神经网络的隐含层权系数、输出层权系数时,所述系统误差函数采用e2(k),仅为所述系统误差函数中的一种函数;所述系统误差函数还可以采用自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合的其他函数,举例来说,系统误差函数采用(y*(k)-y(k))2或(y*(k+1)-y(k))2,也就是采用e2(k)的另一种函数形式;再举例来说,系统误差函数采用其中,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于 0的常数,1≤j≤m;显然,当bj均等于0时,系统误差函数仅考虑了e2(k)的贡献,表明最小化的目标是系统误差最小,也就是追求精度高;而当bj大于0时,系统误差函数同时考虑e2(k)的贡献和的贡献,表明最小化的目标在追求系统误差小的同时,还追求控制输入变化小,也就是既追求精度高又追求操纵稳。对上述具体实施例的被控对象而言,采用上述不同的系统误差函数,都能够实现良好的控制效果;与系统误差函数仅考虑e2(k)贡献时的控制效果相比,在系统误差函数同时考虑e2(k)的贡献和的贡献时其控制精度略有降低而其操纵平稳性则有提高。It should be particularly pointed out that, in the above-mentioned specific embodiment, when the value of the system error function is minimized to update the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network, the system error function adopts e. 2 (k), which is only one function in the system error function; the system error function can also use any one of the independent variables including the system error, the expected value of the system output, the actual value of the system output, or any combination of other function, for example, the systematic error function uses (y * (k)-y(k)) 2 or (y * (k+1)-y(k)) 2 , which is another way of using e 2 (k) A functional form; as another example, the systematic error function takes Among them, Δu j (k)=u j (k)-u j (k-1), b j is a constant greater than or equal to 0, 1≤j≤m; obviously, when both b j are equal to 0, the systematic error The function only considers the contribution of e 2 (k), indicating that the goal of minimization is to minimize the systematic error, that is, to pursue high precision; and when b j is greater than 0, the systematic error function considers the contribution of e 2 (k) and The contribution of , shows that the goal of minimization is to pursue small system error and small change of control input, that is, to pursue both high precision and stable operation. For the controlled object of the above-mentioned specific embodiment, using the above - mentioned different system error functions, all can achieve good control effect; The function considers both the contribution of e 2 (k) and When the contribution of , its control accuracy is slightly reduced and its handling stability is improved.
最后应该特别指出的是,所述MISO偏格式无模型控制器待整定参数,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;在上述具体实施例中,第一组试验验证时惩罚因子λ和步长因子ρ1,ρ2,ρ3实现了同时自整定,第二组试验验证时惩罚因子λ固定而步长因子ρ1,ρ2,ρ3实现了自整定;在实际应用时,还可以根据具体情况,选择待整定参数的任意种组合,举例来说,步长因子ρ1,ρ2固定而惩罚因子λ、步长因子ρ3实现自整定;此外,MISO 偏格式无模型控制器待整定参数,包括但不限于惩罚因子λ和步长因子ρ1,…,ρL,举例来说,根据具体情况,还可以包括MISO系统伪分块梯度估计值的行矩阵等参数。Finally, it should be particularly pointed out that the parameters to be set for the MISO partial model-free controller include any one or any combination of the penalty factor λ and the step factor ρ 1 , . . . , ρ L ; in the above specific embodiment , the penalty factor λ and the step size factors ρ 1 , ρ 2 , ρ 3 achieve simultaneous self-tuning in the first group of test verifications, while the penalty factor λ is fixed and the step size factors ρ 1 , ρ 2 , ρ 3 when the second group of tests is verified. Self - tuning is realized; in practical application, any combination of parameters to be tuned can be selected according to the specific situation. tuning; in addition, the parameters to be tuned for the MISO partial model-free controller, including but not limited to the penalty factor λ and the step size factor ρ 1 ,...,ρ L , for example, according to the specific situation, can also include the MISO system pseudo-blocking row matrix of gradient estimates and other parameters.
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。The above-mentioned specific embodiments are used to explain the present invention, are only preferred embodiments of the present invention, rather than limit the present invention, within the spirit of the present invention and the protection scope of the claims, any modification, equivalent replacement, Improvements and the like all fall within the protection scope of the present invention.
Claims (4)
- The parameter self-tuning method of the MISO partial-format model-free controller based on the system error is characterized by comprising the following steps of:step (1): for a MISO (multiple input and Single Output) system with m inputs (m is an integer greater than or equal to 2) and 1 Output, adopting a MISO partial format model-free controller for control; determining a control input linearization length constant L of the MISO partial format model-free controller, wherein L is an integer greater than 1; the MISO partial format model-less controller parameters comprise a penalty factor lambda and a step factor rho1,…,ρL(ii) a Determining parameters to be set of the MISO partial-format model-free controller, wherein the parameters to be set of the MISO partial-format model-free controller are part or all of the parameters of the MISO partial-format model-free controller and comprise a penalty factor lambda and a step factor rho1,…,ρLAny one or any combination of the above; determining the number of input layer nodes, the number of hidden layer nodes and the number of output layer nodes of the BP neural network, wherein the number of the output layer nodes is not less than the number of parameters to be set of the MISO partial format model-free controller; initializing a hidden layer weight coefficient and an output layer weight coefficient of the BP neural network;step (2): recording the current time as k time;and (3): calculating to obtain a system error at the k moment by adopting a system error calculation function based on the system output expected value and the system output actual value, and recording as e (k); putting any one or any combination of the system error and the function set thereof, the system output expected value and the system output actual value into a set { a system error set }; the independent variables of the system error calculation function comprise a system output expected value and a system output actual value;and (4): taking the set { system error set } obtained in the step (3) as the input of a BP (back propagation) neural network, carrying out forward calculation on the BP neural network, and outputting a calculation result through an output layer of the BP neural network to obtain a value of a parameter to be set of the MISO partial-format model-free controller;and (5): calculating a control input vector u (k) [ [ u ] of the MISO partial-format model-free controller at the time k for the controlled object by adopting a control algorithm of the MISO partial-format model-free controller based on the system error e (k) obtained in the step (3) and the value of the parameter to be set of the MISO partial-format model-free controller obtained in the step (4)1(k),…,um(k)]T;And (6): aiming at the jth control input u in the control input vector u (k) obtained in the step (5)j(k) (j is more than or equal to 1 and less than or equal to m), calculating the jth control input uj(k) Respectively aiming at the gradient information of the parameters to be set of each MISO partial-format model-free controller at the moment k, the specific calculation formula is as follows:when the parameters to be set of the MISO partial-format model-free controller contain penalty factor lambda, the jth control input uj(k) The gradient information at the k moment for the penalty factor λ is:when the parameters to be set of the MISO partial-format model-free controller contain step-size factors rho1Then, the jth control input uj(k) For the step size factor p1The gradient information at time k is:when the parameters to be set of the MISO partial-format model-free controller contain step-size factors rhoiAnd when i is more than or equal to 2 and less than or equal to L, the jth control input uj(k) For the step size factor piThe gradient information at time k is:wherein, Δ uj(k)=uj(k)-uj(k-1),A row matrix of MISO system pseudo-block gradient estimates at time k,is a row matrixThe ith block row matrix of (i ═ 1, …, L),is a row matrixThe j-th gradient component estimate of (a),is a row matrix2 norm of (d);the set of all the gradient information is marked as { gradient information j }, and a set { gradient information set } is put in;repeating the step for the other m-1 control inputs in the control input vector u (k) obtained in step (5) until the set { gradient information set } contains the set of all { { gradient information 1}, …, { gradient information m } }, and then proceeding to step (7);and (7): the value minimization of a system error function is taken as a target, a gradient descent method is adopted, the set { gradient information set } obtained in the step (6) is combined, the backward propagation calculation of the system error is carried out, and the weight coefficient of the hidden layer and the weight coefficient of the output layer of the BP neural network are updated and used as the weight coefficient of the hidden layer and the weight coefficient of the output layer when the BP neural network carries out forward calculation at the later moment; the independent variable of the system error function comprises any one or any combination of a system error, a system output expected value and a system output actual value;and (8): and (4) after the control input vector u (k) acts on the controlled object, obtaining a system output actual value of the controlled object at the later moment, returning to the step (2), and repeating the step (2) to the step (8).
- 2. The MISO biased format modeless controller of claim 1, wherein said systematic error calculation function in said step (3) employs e (k) -y*(k) -y (k), wherein y*(k) The system output expected value is set for the time k, and y (k) is the system output actual value obtained by sampling at the time k; or using e (k) ═ y*(k +1) -y (k), wherein y*And (k +1) is a system output expected value at the moment of k +1, and y (k) is a system output actual value obtained by sampling at the moment of k.
- 3. The MISO partial-format model-less controller parameter self-tuning method according to claim 1, wherein the set of the systematic errors and their functions in the step (3) includes the systematic error e (k) at time k, and the accumulation of the systematic errors at time k and all the previous timesAny one or any combination of first order backward differences e (k) -e (k-1) of the k-time systematic error e (k), second order backward differences e (k) -2e (k-1) + e (k-2) of the k-time systematic error e (k), and high order backward differences of the k-time systematic error e (k).
- 4. The MISO biased format modeless controller of claim 1, wherein said systematic error function in said step (7) is a systematic error based parameter self-tuning methodWherein e (k) is the systematic error, Δ uj(k)=uj(k)-uj(k-1),bjIs a constant greater than or equal to 0, and j is greater than or equal to 1 and less than or equal to m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711323412.9A CN108181808B (en) | 2017-12-12 | 2017-12-12 | System error-based parameter self-tuning method for MISO partial-format model-free controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711323412.9A CN108181808B (en) | 2017-12-12 | 2017-12-12 | System error-based parameter self-tuning method for MISO partial-format model-free controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108181808A CN108181808A (en) | 2018-06-19 |
CN108181808B true CN108181808B (en) | 2020-06-09 |
Family
ID=62546138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711323412.9A Active CN108181808B (en) | 2017-12-12 | 2017-12-12 | System error-based parameter self-tuning method for MISO partial-format model-free controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108181808B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109581864A (en) * | 2019-02-01 | 2019-04-05 | 浙江大学 | The inclined format non-model control method of the different factor of the MIMO of parameter self-tuning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274435A (en) * | 1997-10-06 | 2000-11-22 | 美国通控集团公司 | Model-free adaptive process control |
CN101349893A (en) * | 2007-07-18 | 2009-01-21 | 太极光控制软件(北京)有限公司 | Forecast control device of adaptive model |
CN101968629A (en) * | 2010-10-19 | 2011-02-09 | 天津理工大学 | PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification |
CN107023825A (en) * | 2016-08-31 | 2017-08-08 | 西安艾贝尔科技发展有限公司 | Fluidized-bed combustion boiler is controlled and combustion optimizing system |
-
2017
- 2017-12-12 CN CN201711323412.9A patent/CN108181808B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274435A (en) * | 1997-10-06 | 2000-11-22 | 美国通控集团公司 | Model-free adaptive process control |
CN101349893A (en) * | 2007-07-18 | 2009-01-21 | 太极光控制软件(北京)有限公司 | Forecast control device of adaptive model |
CN101968629A (en) * | 2010-10-19 | 2011-02-09 | 天津理工大学 | PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification |
CN107023825A (en) * | 2016-08-31 | 2017-08-08 | 西安艾贝尔科技发展有限公司 | Fluidized-bed combustion boiler is controlled and combustion optimizing system |
Non-Patent Citations (6)
Title |
---|
Design of Self-Tuning SISO Partial-Form Model-Free Adaptive Controller for Vapor-Compression Refrigeration System;CHEN CHEN 等;《IEEE Access》;20190903;全文 * |
Neural-net-based model-free self-tuning controller with on-line self-learning ability for industrial furnace;Mingwang ZHAO;《1994 Proceedings of IEEE International Conference on Control and Applications》;20020806;全文 * |
Parameter Self-Tuning of SISO Compact-Form Model-Free Adaptive Controller based on Neural Network with System Error Set as Input;Chen CHEN 等;《2019 12th Asian Control Conference》;20190718;全文 * |
无模型控制器参数在线自整定研究;李雪园;《中国优秀硕士学位论文全文数据库信息科技辑》;20180815;全文 * |
无模型控制器参数学习步长和惩罚因子的整定研究;马平 等;《仪器仪表学报》;20080430;全文 * |
无模型自适应控制参数整定方法研究;郭代银;《中国优秀硕士学位论文全文数据库信息科技辑》;20150315;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108181808A (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287471B (en) | Parameter self-tuning method of MIMO offset format model-free controller based on system error | |
CN108345213B (en) | Parameter self-tuning method of MIMO (multiple input multiple output) compact-format model-free controller based on system error | |
CN108170029B (en) | Parameter self-tuning method based on partial derivative information for MIMO full-format model-free controller | |
CN110659722A (en) | AdaBoost-CBP neural network-based electric vehicle lithium ion battery health state estimation method | |
CN108153151B (en) | Parameter self-tuning method of MIMO full-format model-free controller based on system error | |
CN108181809B (en) | Parameter self-tuning method based on systematic error for MISO compact model-free controller | |
CN108132600B (en) | Parameter Self-tuning Method Based on Partial Derivative Information for MIMO Compact Model-Free Controller | |
CN108287470B (en) | Parameter self-tuning method of MIMO offset format model-free controller based on offset information | |
CN107942655B (en) | Parameter self-tuning method based on systematic error for SISO compact model-free controller | |
CN108181808B (en) | System error-based parameter self-tuning method for MISO partial-format model-free controller | |
CN108073072B (en) | Parameter Self-tuning Method Based on Partial Derivative Information for SISO Compact Model-Free Controller | |
CN107942654B (en) | Parameter self-tuning method of SISO offset format model-free controller based on offset information | |
CN108062021B (en) | Parameter self-tuning method based on partial derivative information for SISO full-format model-free controller | |
CN108107715B (en) | Parameter self-tuning method based on partial derivative information for MISO full-format model-free controller | |
CN108052006B (en) | Decoupling control method of MIMO based on SISO full-format model-free controller and partial derivative information | |
CN108154231B (en) | System error-based parameter self-tuning method for MISO full-format model-free controller | |
CN108008634B (en) | Parameter self-tuning method of MISO partial-format model-free controller based on partial derivative information | |
CN119644147A (en) | Lithium battery SOC estimation method based on constraint optimization Kalman filtering | |
CN108107722B (en) | MIMO Decoupling Control Method Based on SISO Partial Format Model-Free Controller and System Error | |
CN108107727B (en) | Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information | |
CN112561203A (en) | Method and system for realizing water level early warning based on clustering and GRU | |
CN107991866B (en) | Decoupling control method for MIMO based on SISO tight format model-free controller and partial derivative information | |
CN107844051B (en) | Parameter self-tuning method of SISO full-format model-free controller based on system error | |
CN107942656B (en) | Systematic Error-Based Parameter Self-tuning Method for SISO Partial Format Model-Free Controller | |
CN108107721B (en) | MIMO Decoupling Control Method Based on SISO Partial Format Model-Free Controller and Partial Derivative Information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |