CN108107727B - Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information - Google Patents
Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information Download PDFInfo
- Publication number
- CN108107727B CN108107727B CN201711317223.0A CN201711317223A CN108107727B CN 108107727 B CN108107727 B CN 108107727B CN 201711317223 A CN201711317223 A CN 201711317223A CN 108107727 B CN108107727 B CN 108107727B
- Authority
- CN
- China
- Prior art keywords
- miso
- partial derivative
- information
- compact
- free controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000013528 artificial neural network Methods 0.000 claims abstract description 34
- 238000004364 calculation method Methods 0.000 claims abstract description 26
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 5
- 230000009897 systematic effect Effects 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 11
- 235000015429 Mirabilis expansa Nutrition 0.000 abstract 5
- 244000294411 Mirabilis expansa Species 0.000 abstract 5
- 235000013536 miso Nutrition 0.000 abstract 5
- 239000010410 layer Substances 0.000 description 50
- 238000010586 diagram Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 6
- 238000012795 verification Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000009795 derivation Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种MISO紧格式无模型控制器基于偏导信息的参数自整定方法,利用偏导信息集作为BP神经网络的输入,BP神经网络进行前向计算并通过输出层输出惩罚因子、步长因子等MISO紧格式无模型控制器待整定参数,采用MISO紧格式无模型控制器的控制算法计算得到针对被控对象的控制输入向量,以系统误差函数的值最小化为目标,采用梯度下降法,并结合控制输入分别针对各个待整定参数的梯度信息集,进行系统误差反向传播计算,在线实时更新BP神经网络的隐含层权系数、输出层权系数,实现控制器基于偏导信息的参数自整定。本发明提出的MISO紧格式无模型控制器基于偏导信息的参数自整定方法,能有效克服控制器参数的在线整定难题,对MISO系统具有良好的控制效果。
The invention discloses a parameter self-tuning method based on partial derivative information for a MISO compact model-free controller. The partial derivative information set is used as the input of a BP neural network, and the BP neural network performs forward calculation and outputs penalty factors, Step size factor and other parameters of the MISO compact model-free controller to be set, the control algorithm of the MISO compact model-free controller is used to calculate the control input vector for the controlled object, with the goal of minimizing the value of the system error function, the gradient is used. The descending method, combined with the control input, respectively, for the gradient information set of each parameter to be tuned, the system error back-propagation calculation is performed, and the hidden layer weight coefficient and output layer weight coefficient of the BP neural network are updated online in real time, and the controller is based on the partial derivative. Information parameter auto-tuning. The parameter self-tuning method based on the partial derivative information of the MISO compact model-free controller proposed by the invention can effectively overcome the online tuning problem of the controller parameters, and has a good control effect on the MISO system.
Description
技术领域technical field
本发明属于自动化控制领域,尤其是涉及一种MISO紧格式无模型控制器基于偏导信息的参数自整定方法。The invention belongs to the field of automatic control, in particular to a parameter self-tuning method based on partial derivative information of a MISO compact model-free controller.
背景技术Background technique
MISO(Multiple Input and Single Output,多输入单输出)系统的控制问题,一直以来都是自动化控制领域所面临的重大挑战之一。The control problem of MISO (Multiple Input and Single Output) system has always been one of the major challenges in the field of automation control.
MISO控制器的现有实现方法中包括MISO紧格式无模型控制器。MISO紧格式无模型控制器是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MISO 被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,对未知非线性时变MISO系统也能够进行很好的控制,具有良好的应用前景。MISO 紧格式无模型控制器的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第95页)中提出,其控制算法如下:Existing implementations of MISO controllers include MISO compact model-free controllers. MISO compact model-free controller is a new type of data-driven control method, which does not rely on any mathematical model information of the controlled object, but only relies on the real-time measurement of the input and output data of the MISO controlled object to analyze and design the controller, and The implementation is simple, the computational burden is small, and the robustness is strong. It can also control the unknown nonlinear time-varying MISO system well, and has a good application prospect. The theoretical basis of the MISO compact model-free controller was proposed by Hou Zhongsheng and Jin Shangtai in their co-authored "Model-Free Adaptive Control - Theory and Application" (Science Press, 2013, p. 95). The algorithm is as follows:
其中,u(k)为k时刻的控制输入向量,u(k)=[u1(k),…,um(k)]T,m为控制输入个数;e(k)为 k时刻的系统误差;为k时刻的MISO系统伪梯度估计值的行矩阵,为行矩阵的2范数;λ为惩罚因子,ρ为步长因子。Among them, u(k) is the control input vector at time k, u(k)=[u 1 (k),...,u m (k)] T , m is the number of control inputs; e(k) is time k systematic error; is the row matrix of the pseudo-gradient estimates of the MISO system at time k, is a row matrix The 2 norm of ; λ is the penalty factor, and ρ is the step factor.
然而,MISO紧格式无模型控制器在实际投用前需要依赖经验知识来事先设定惩罚因子λ和步长因子ρ等参数的数值,在实际投用过程中也尚未实现惩罚因子λ和步长因子ρ等参数的在线自整定。参数有效整定手段的缺乏,不仅使MISO紧格式无模型控制器的使用调试过程费时费力,而且有时还会严重影响MISO紧格式无模型控制器的控制效果,制约了MISO 紧格式无模型控制器的推广应用。也就是说:MISO紧格式无模型控制器在实际投用过程中还需要解决在线自整定参数的难题。However, the MISO compact model-free controller needs to rely on empirical knowledge to pre-set the values of the penalty factor λ and the step size factor ρ before the actual operation, and the penalty factor λ and the step size have not yet been realized in the actual operation process. Online auto-tuning of parameters such as factor ρ. The lack of effective parameter tuning means not only makes the use and debugging of the MISO compact model-free controller time-consuming and laborious, but also sometimes seriously affects the control effect of the MISO compact model-free controller and restricts the performance of the MISO compact model-free controller. Promote the application. That is to say: the MISO compact model-free controller also needs to solve the problem of online self-tuning parameters in the actual operation process.
为此,为了打破制约MISO紧格式无模型控制器推广应用的瓶颈,本发明提出了一种 MISO紧格式无模型控制器基于偏导信息的参数自整定方法。Therefore, in order to break the bottleneck restricting the popularization and application of the MISO compact model-free controller, the present invention proposes a parameter self-tuning method of the MISO compact model-free controller based on partial derivative information.
发明内容SUMMARY OF THE INVENTION
为了解决背景技术中存在的问题,本发明的目的在于,提供一种MISO紧格式无模型控制器基于偏导信息的参数自整定方法。In order to solve the problems existing in the background art, the purpose of the present invention is to provide a parameter self-tuning method for a MISO compact model-free controller based on partial derivative information.
为此,本发明的上述目的通过以下技术方案来实现,包括以下步骤:For this reason, the above-mentioned purpose of the present invention is achieved by the following technical solutions, comprising the following steps:
步骤(1):针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO(MultipleInput and Single Output,多输入单输出)系统,采用MISO紧格式无模型控制器进行控制;所述MISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定MISO紧格式无模型控制器待整定参数,所述MISO紧格式无模型控制器待整定参数,为所述MISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;确定 BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MISO紧格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;初始化集合{偏导信息集}中的偏导信息;Step (1): For a MISO (Multiple Input and Single Output) system with m inputs (m is an integer greater than or equal to 2) and 1 output, use a MISO compact format model-free controller for control; The parameters of the MISO compact model-free controller include a penalty factor λ and a step size factor ρ; the parameters to be set for the MISO compact model-free controller are determined, and the parameters to be set for the MISO compact model-free controller are the parameters of the MISO compact model-free controller. Format part or all of the parameters of the model-free controller, including any one or any combination of the penalty factor λ and the step factor ρ; determine the number of input layer nodes, hidden layer nodes, and output layer nodes of the BP neural network, The number of nodes in the output layer is not less than the number of parameters to be set in the MISO compact model-free controller; the weight coefficients of the hidden layer and the weight coefficients of the output layer of the BP neural network are initialized; the initialization set {partial derivative information set} partial derivative information in ;
步骤(2):将当前时刻记为k时刻;Step (2): record the current moment as time k;
步骤(3):基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k 时刻的系统误差,记为e(k);Step (3): Based on the expected value of the system output and the actual value of the system output, use the system error calculation function to calculate the system error at time k, denoted as e(k);
步骤(4):将所述集合{偏导信息集}中的偏导信息作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MISO紧格式无模型控制器待整定参数的值;Step (4): the partial derivative information in the set {partial derivative information set} is used as the input of the BP neural network, the BP neural network performs forward calculation, and the calculation result is output through the output layer of the BP neural network, Obtain the value of the parameter to be tuned in the MISO compact model-free controller;
步骤(5):基于步骤(3)得到的所述系统误差e(k)、步骤(4)得到的所述MISO紧格式无模型控制器待整定参数的值,采用MISO紧格式无模型控制器的控制算法,计算得到 MISO紧格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T;Step (5): based on the systematic error e(k) obtained in step (3) and the value of the parameters to be set for the MISO compact model-free controller obtained in step (4), adopt the MISO compact model-free controller The control algorithm is calculated to obtain the control input vector u(k)=[u 1 (k),..., um (k)] T of the MISO compact model-free controller for the controlled object at time k;
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第j个控制输入uj(k)(1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO紧格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:Step (6): For the jth control input u j (k) (1≤j≤m) in the control input vector u(k) obtained in step (5), calculate the jth control input u j (k) respectively for the gradient information of each of the MISO compact model-free controller parameters to be tuned at time k, the specific calculation formula is as follows:
当所述MISO紧格式无模型控制器待整定参数中包含惩罚因子λ时,所述第j个控制输入uj(k)针对所述惩罚因子λ在k时刻的梯度信息为:When a penalty factor λ is included in the to-be-adjusted parameters of the MISO compact model-free controller, the gradient information of the jth control input u j (k) for the penalty factor λ at time k is:
当所述MISO紧格式无模型控制器待整定参数中包含步长因子ρ时,所述第j个控制输入uj(k)针对所述步长因子ρ在k时刻的梯度信息为:When the parameters to be set in the MISO compact model-free controller include a step factor ρ, the gradient information of the jth control input u j (k) at time k for the step factor ρ is:
其中,为k时刻的MISO系统伪梯度估计值的行矩阵,为行矩阵的第j个梯度分量估计值,为行矩阵的2范数;in, is the row matrix of the pseudo-gradient estimates of the MISO system at time k, is a row matrix The j-th gradient component estimate of , is a row matrix 2 norm of ;
上述全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};The set of all the above-mentioned gradient information is denoted as {gradient information j}, and put into the set {gradient information set};
将所述{梯度信息j}集合中的梯度信息依序记为前一时刻的偏导信息,即:当所述MISO 紧格式无模型控制器待整定参数中包含惩罚因子λ时则所述{梯度信息j}集合中的梯度信息记为前一时刻的偏导信息当所述MISO紧格式无模型控制器待整定参数中包含步长因子ρ时则所述{梯度信息j}集合中的梯度信息记为前一时刻的偏导信息 Record the gradient information in the {gradient information j} set as the partial derivative information at the previous moment in sequence, that is: when the MISO compact model-free controller parameter to be tuned includes a penalty factor λ, the { Gradient information in the set of gradient information j} Denote the partial derivative information of the previous moment When the to-be-tuned parameters of the MISO compact model-free controller include a step size factor ρ, then the gradient information in the {gradient information j} set Denote the partial derivative information of the previous moment
上述全部所述偏导信息的集合记为{偏导信息j},放入所述集合{偏导信息集};The set of all the above-mentioned partial derivation information is denoted as {partial derivation information j}, and put into the set {partial derivation information set};
针对步骤(5)得到的所述控制输入向量u(k)中的其他m-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合,同时所述集合{偏导信息集}包含全部{{偏导信息1},…,{偏导信息m}}的集合,然后进入步骤(7);For the other m-1 control inputs in the control input vector u(k) obtained in step (5), this step is repeated until the set {gradient information set} contains all {{gradient information 1},... , a set of {gradient information m}}, and the set {partial derivative information set} includes all sets of {{partial derivative information 1},...,{partial derivative information m}}, and then enter step (7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;Step (7): With the goal of minimizing the value of the system error function, the gradient descent method is used, combined with the set {gradient information set} obtained in step (6), the back propagation calculation of the system error is performed, and the BP neural network is updated. The hidden layer weight coefficient and the output layer weight coefficient are used as the hidden layer weight coefficient and the output layer weight coefficient when the BP neural network performs forward calculation at the next moment;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。Step (8): After the control input vector u(k) acts on the controlled object, the actual value of the system output of the controlled object at the next moment is obtained, and then returns to step (2), and repeats steps (2) to ( 8).
在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:While adopting the above technical solutions, the present invention can also adopt or combine the following further technical solutions:
所述步骤(3)中的所述系统误差计算函数的自变量包含系统输出期望值与系统输出实际值。The independent variables of the system error calculation function in the step (3) include the expected value of the system output and the actual value of the system output.
所述步骤(3)中的所述系统误差计算函数采用e(k)=y*(k)-y(k),其中y*(k)为k时刻设定的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值;或者采用 e(k)=y*(k+1)-y(k),其中y*(k+1)为k+1时刻的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值。The system error calculation function in the step (3) adopts e(k)=y * (k)-y(k), wherein y * (k) is the expected value of the system output set at time k, and y(k ) is the actual value of the system output sampled at time k; or e(k)=y * (k+1)-y(k), where y * (k+1) is the expected value of the system output at time k+1, y(k) is the actual output value of the system sampled at time k.
所述步骤(7)中的所述系统误差函数的自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合。The independent variable of the system error function in the step (7) includes any one or any combination of the system error, the expected value of the system output, and the actual value of the system output.
所述步骤(7)中的所述系统误差函数为其中,e(k)为系统误差,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于0的常数,1≤j≤m。The systematic error function in the step (7) is Among them, e(k) is the systematic error, Δu j (k)=u j (k)-u j (k-1), b j is a constant greater than or equal to 0, 1≤j≤m.
本发明提供的MISO紧格式无模型控制器基于偏导信息的参数自整定方法,能够实现良好的控制效果,并有效克服惩罚因子λ和步长因子ρ需要费时费力进行整定的难题。The parameter self-tuning method of the MISO compact model-free controller based on partial derivative information provided by the present invention can achieve a good control effect and effectively overcome the problem that the penalty factor λ and the step size factor ρ need time-consuming and laborious tuning.
附图说明Description of drawings
图1为本发明的原理框图;Fig. 1 is the principle block diagram of the present invention;
图2为本发明采用的BP神经网络结构示意图;Fig. 2 is the BP neural network structure schematic diagram that the present invention adopts;
图3为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的控制效果图;Fig. 3 is a control effect diagram of the two-input single-output MISO system when the penalty factor λ and the step size factor ρ are self-tuning at the same time;
图4为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的控制输入图;Fig. 4 is the control input diagram of the two-input single-output MISO system when the penalty factor λ and the step size factor ρ are self-tuning at the same time;
图5为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的惩罚因子λ变化曲线;Fig. 5 is the change curve of the penalty factor λ when the penalty factor λ and the step size factor ρ are self-tuning at the same time of the two-input single-output MISO system;
图6为两输入单输出MISO系统在惩罚因子λ和步长因子ρ同时自整定时的步长因子ρ变化曲线;Fig. 6 is the change curve of the step factor ρ when the penalty factor λ and the step factor ρ are self-tuning at the same time of the two-input single-output MISO system;
图7为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的控制效果图;Fig. 7 is a control effect diagram of the two-input single-output MISO system when the penalty factor λ is fixed and the step size factor ρ is self-tuning;
图8为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的控制输入图;Fig. 8 is a control input diagram of a two-input single-output MISO system when the penalty factor λ is fixed and the step size factor ρ is self-tuning;
图9为两输入单输出MISO系统在惩罚因子λ固定而步长因子ρ自整定时的步长因子ρ变化曲线。Fig. 9 is the change curve of step factor ρ when the penalty factor λ is fixed and the step factor ρ is self-tuning in the two-input single-output MISO system.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进一步说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
图1给出了本发明的原理框图。针对具有m个输入(m为大于或等于2的整数)与1个输出的MISO系统,采用MISO紧格式无模型控制器进行控制;MISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定MISO紧格式无模型控制器待整定参数,其为所述MISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;在图1中,MISO紧格式无模型控制器待整定参数为惩罚因子λ和步长因子ρ;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,其中输出层节点数不少于所述MISO紧格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;初始化集合{偏导信息集}中的偏导信息。Figure 1 shows the principle block diagram of the present invention. For a MISO system with m inputs (m is an integer greater than or equal to 2) and 1 output, the MISO compact model-free controller is used for control; the parameters of the MISO compact model-free controller include a penalty factor λ and a step factor ρ; determine the parameters to be set of the MISO compact model-free controller, which are part or all of the parameters of the MISO compact model-free controller, including any one or any combination of the penalty factor λ and the step factor ρ; In Figure 1, the parameters to be set for the MISO compact model-free controller are the penalty factor λ and the step size factor ρ; determine the number of input layer nodes, the number of hidden layer nodes, and the number of output layer nodes of the BP neural network, among which the number of output layer nodes Not less than the number of parameters to be set in the MISO compact model-free controller; initialize the hidden layer weight coefficient and output layer weight coefficient of the BP neural network; initialize the partial derivative information in the set {partial derivative information set}.
将当前时刻记为k时刻;将系统输出期望值y*(k)与系统输出实际值y(k)之差作为k时刻的系统误差e(k);将集合{偏导信息集}中的偏导信息作为BP神经网络的输入,BP神经网络进行前向计算,计算结果通过BP神经网络的输出层输出,得到MISO紧格式无模型控制器待整定参数的值;基于所述系统误差e(k)、所述MISO紧格式无模型控制器待整定参数的值,采用MISO紧格式无模型控制器的控制算法,计算得到MISO紧格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,um(k)]T;针对控制输入向量u(k)中的第j个控制输入uj(k)(1≤j≤m),计算所述第j个控制输入uj(k)分别针对各个所述MISO紧格式无模型控制器待整定参数在k时刻的梯度信息,并将全部所述梯度信息的集合记为{梯度信息j},放入集合{梯度信息集};将所述{梯度信息j}集合中的梯度信息依序记为前一时刻的偏导信息,并将全部所述偏导信息的集合记为{偏导信息j},放入所述集合{偏导信息集};针对控制输入向量u(k)中的其他m-1个控制输入,重复执行直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息m}}的集合,同时所述集合{偏导信息集}包含全部{{偏导信息 1},…,{偏导信息m}}的集合;随后,结合所述集合{梯度信息集},以系统误差函数的值最小化为目标,图1中以e2(k)最小化为目标,采用梯度下降法,进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,然后重复执行本段落所述的工作,进行后一时刻的MISO紧格式无模型控制器基于偏导信息的参数自整定过程。Denote the current time as time k; use the difference between the expected value y * (k) of the system output and the actual value y(k) of the system output as the systematic error e(k) at time k; The guided information is used as the input of the BP neural network, and the BP neural network performs forward calculation, and the calculation results are output through the output layer of the BP neural network to obtain the values of the parameters to be tuned for the MISO compact model-free controller; based on the system error e(k ), the value of the parameter to be set in the MISO tight format model-free controller, adopt the control algorithm of the MISO tight format model-free controller, calculate the MISO tight format model-free controller for the control input vector u of the controlled object at time k (k)=[u 1 (k),..., um (k)] T ; for the j-th control input u j (k) (1≤j≤m) in the control input vector u(k), calculate The jth control input u j (k) is respectively the gradient information of each of the MISO compact model-free controller parameters to be tuned at time k, and the set of all the gradient information is recorded as {gradient information j} , put it into the set {gradient information set}; record the gradient information in the {gradient information j} set as the partial derivative information at the previous moment in sequence, and record the set of all the partial derivative information as {partial derivative information information j}, put it into the set {partial derivative information set}; for the other m-1 control inputs in the control input vector u(k), repeat the execution until the set {gradient information set} contains all {{gradients} A set of information 1},...,{gradient information m}}, while the set {partial derivative information set} contains all sets of {{partial derivative information 1},...,{partial derivative information m}}; then, combining The set {gradient information set} aims to minimize the value of the system error function. In Figure 1, the goal is to minimize e 2 (k), and the gradient descent method is used to calculate the back propagation of the system error and update the BP neural network. The weight coefficient of the hidden layer and the weight coefficient of the output layer of the network are used as the weight coefficient of the hidden layer and the weight coefficient of the output layer when the BP neural network performs the forward calculation at the next moment; after the control input vector u(k) acts on the controlled object , obtain the actual value of the system output of the controlled object at the next moment, and then repeat the work described in this paragraph to carry out the parameter self-tuning process of the MISO compact model-free controller based on the partial derivative information at the next moment.
图2给出了本发明采用的BP神经网络结构示意图。BP神经网络可以采用隐含层为单层的结构,也可以采用隐含层为多层的结构。在图2的示意图中,为简明起见,BP神经网络采用了隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为m×待整定参数个数(图2中待整定参数个数为2个),隐含层节点数6个,输出层节点数设为待整定参数个数(图2中待整定参数个数为2个)。输入层节点数分为m组,每组的节点数为待整定参数个数,其中第j组的节点与{偏导信息j}集合中的偏导信息分别对应。输出层的节点,与惩罚因子λ和步长因子ρ分别对应。BP 神经网络的隐含层权系数、输出层权系数的更新过程具体为:以系统误差函数的值最小化为目标,图2中以e2(k)最小化为目标,采用梯度下降法,结合所述集合{梯度信息集},进行系统误差反向传播计算,从而更新BP神经网络的隐含层权系数、输出层权系数。FIG. 2 shows a schematic diagram of the structure of the BP neural network adopted in the present invention. The BP neural network can adopt a single-layer structure or a multi-layer structure. In the schematic diagram of Figure 2, for the sake of simplicity, the BP neural network adopts a structure in which the hidden layer is a single layer, that is, a three-layer network structure consisting of an input layer, a single-layer hidden layer, and an output layer is adopted, and the number of nodes in the input layer is It is set to m×the number of parameters to be set (the number of parameters to be set in Figure 2 is 2), the number of nodes in the hidden layer is 6, and the number of nodes in the output layer is set as the number of parameters to be set (the number of parameters to be set in Figure 2 is 6) number of 2). The number of nodes in the input layer is divided into m groups, the number of nodes in each group is the number of parameters to be set, and the nodes in the jth group are the same as the partial derivative information in the {partial derivative information j} set. corresponding respectively. The nodes of the output layer, corresponding to the penalty factor λ and the step size factor ρ, respectively. The update process of the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network is as follows: the goal is to minimize the value of the system error function. In Figure 2, the goal is to minimize e 2 (k). Combined with the set {gradient information set}, the system error back-propagation calculation is performed to update the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network.
以下是本发明的一个具体实施例。The following is a specific embodiment of the present invention.
被控对象为典型非线性的两输入单输出MISO系统:The controlled object is a typical nonlinear two-input single-output MISO system:
系统输出期望值y*(k)如下:The expected value of the system output y * (k) is as follows:
y*(k)=(-1)round((k-1)/100)y * (k)=(-1) round ( (k-1)/100 )
在本具体实施例中,m=2。In this specific embodiment, m=2.
BP神经网络采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为2×待整定参数个数,隐含层节点数设为6个,输出层节点数设为待整定参数个数。The BP neural network adopts a three-layer network structure consisting of an input layer, a single-layer hidden layer and an output layer. The number of nodes in the input layer is set to 2×the number of parameters to be set, the number of nodes in the hidden layer is set to 6, and the number of nodes in the output layer is set to 6. The number is set as the number of parameters to be set.
针对上述具体实施例,共进行了两组试验验证。For the above-mentioned specific embodiments, two groups of test verifications have been carried out.
第一组试验验证时,图2中BP神经网络的输入层节点数预设为4个,输出层节点数预设为2个,对惩罚因子λ和步长因子ρ进行同时自整定,图3为控制效果图,图4为控制输入图,图5为惩罚因子λ变化曲线,图6为步长因子ρ变化曲线。结果表明,本发明的方法通过对惩罚因子λ和步长因子ρ进行同时自整定,能够实现良好的控制效果,并且可以有效克服惩罚因子λ和步长因子ρ需要费时费力进行整定的难题。During the first set of experimental verification, the number of input layer nodes of the BP neural network in Figure 2 is preset to 4, and the number of output layer nodes is preset to 2, and the penalty factor λ and the step size factor ρ are simultaneously self-tuning, Figure 3 For the control effect diagram, Figure 4 is the control input diagram, Figure 5 is the change curve of the penalty factor λ, and Figure 6 is the change curve of the step factor ρ. The results show that the method of the present invention can achieve a good control effect by self-tuning the penalty factor λ and the step factor ρ at the same time, and can effectively overcome the problem that the penalty factor λ and the step factor ρ need time-consuming and laborious tuning.
第二组试验验证时,图2中BP神经网络的输入层节点数预设为2个,输出层节点数预设为1个,首先将惩罚因子λ固定取值为第一组试验验证时惩罚因子λ的平均值,然后对步长因子ρ进行自整定,图7为控制效果图,图8为控制输入图,图9为步长因子ρ变化曲线。结果同样表明,本发明的方法在惩罚因子λ固定时通过对步长因子ρ进行自整定,能够实现良好的控制效果,并且可以有效克服步长因子ρ需要费时费力进行整定的难题。In the second group of test verification, the number of input layer nodes of the BP neural network in Figure 2 is preset to 2, and the number of output layer nodes is preset to 1. First, the penalty factor λ is fixed as the penalty value for the first group of test verification. The average value of the factor λ, and then the step factor ρ is self-tuning, Figure 7 is the control effect diagram, Figure 8 is the control input diagram, and Figure 9 is the step size factor ρ variation curve. The results also show that the method of the present invention can achieve a good control effect by self-tuning the step factor ρ when the penalty factor λ is fixed, and can effectively overcome the problem of time-consuming and laborious tuning of the step factor ρ.
应该特别指出的是,在上述具体实施例中,将系统输出期望值y*(k)与系统输出实际值 y(k)之差作为系统误差e(k),也就是e(k)=y*(k)-y(k),仅为所述系统误差计算函数中的一种方法;也可以将k+1时刻的系统输出期望值y*(k+1)与k时刻的系统输出实际值y(k)之差作为系统误差e(k),也就是e(k)=y*(k+1)-y(k);所述系统误差计算函数还可以采用自变量包含系统输出期望值与系统输出实际值的其它计算方法,举例来说, -y(k);对上述具体实施例的被控对象而言,采用上述不同的系统误差计算函数,都能够实现良好的控制效果。It should be particularly pointed out that, in the above specific embodiment, the difference between the expected system output value y * (k) and the actual system output value y(k) is taken as the system error e(k), that is, e(k)=y * (k)-y(k), which is only a method in the system error calculation function; it is also possible to combine the expected system output value y * (k+1) at time k+1 with the actual value y output by the system at time k The difference between (k) is used as the systematic error e(k), that is, e(k)=y * (k+1)-y(k); the systematic error calculation function can also use the independent variable to include the expected value of the system output and the Other calculation methods for outputting the actual value, for example, -y(k); For the controlled object of the above-mentioned specific embodiment, good control effects can be achieved by using the above-mentioned different system error calculation functions.
更应该特别指出的是,在上述具体实施例中,在以系统误差函数的值最小化为目标来更新BP神经网络的隐含层权系数、输出层权系数时,所述系统误差函数采用e2(k),仅为所述系统误差函数中的一种函数;所述系统误差函数还可以采用自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合的其他函数,举例来说,系统误差函数采用(y*(k)-y(k))2或(y*(k+1)-y(k))2,也就是采用e2(k)的另一种函数形式;再举例来说,系统误差函数采用其中,Δuj(k)=uj(k)-uj(k-1),bj为大于或等于0的常数,1≤j≤m;显然,当bj均等于0时,系统误差函数仅考虑了e2(k)的贡献,表明最小化的目标是系统误差最小,也就是追求精度高;而当bj大于0时,系统误差函数同时考虑e2(k)的贡献和的贡献,表明最小化的目标在追求系统误差小的同时,还追求控制输入变化小,也就是既追求精度高又追求操纵稳。对上述具体实施例的被控对象而言,采用上述不同的系统误差函数,都能够实现良好的控制效果;与系统误差函数仅考虑e2(k)贡献时的控制效果相比,在系统误差函数同时考虑e2(k)的贡献和的贡献时其控制精度略有降低而其操纵平稳性则有提高。It should be particularly pointed out that, in the above-mentioned specific embodiment, when the value of the system error function is minimized to update the hidden layer weight coefficient and the output layer weight coefficient of the BP neural network, the system error function adopts e. 2 (k), which is only one function in the system error function; the system error function can also use any one of the independent variables including the system error, the expected value of the system output, the actual value of the system output, or any combination of other function, for example, the systematic error function uses (y * (k)-y(k)) 2 or (y * (k+1)-y(k)) 2 , which is another way of using e 2 (k) A functional form; as another example, the systematic error function takes Among them, Δu j (k)=u j (k)-u j (k-1), b j is a constant greater than or equal to 0, 1≤j≤m; obviously, when both b j are equal to 0, the systematic error The function only considers the contribution of e 2 (k), indicating that the goal of minimization is to minimize the systematic error, that is, to pursue high precision; and when b j is greater than 0, the systematic error function considers the contribution of e 2 (k) and The contribution of , shows that the goal of minimization is to pursue small system error and small change of control input, that is, to pursue both high precision and stable operation. For the controlled object of the above-mentioned specific embodiment, using the above - mentioned different system error functions, all can achieve good control effect; The function considers both the contribution of e 2 (k) and When the contribution of , its control accuracy is slightly reduced and its handling stability is improved.
最后应该特别指出的是,所述MISO紧格式无模型控制器待整定参数,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;在上述具体实施例中,第一组试验验证时惩罚因子λ和步长因子ρ实现了同时自整定,第二组试验验证时惩罚因子λ固定而步长因子ρ实现了自整定;在实际应用时,还可以根据具体情况,选择待整定参数的任意种组合,举例来说,步长因子ρ固定而惩罚因子λ实现自整定;此外,MISO紧格式无模型控制器待整定参数,包括但不限于惩罚因子λ和步长因子ρ,举例来说,根据具体情况,还可以包括MISO系统伪梯度估计值的行矩阵等参数。Finally, it should be particularly pointed out that the parameters to be set for the MISO compact model-free controller include any one or any combination of the penalty factor λ and the step factor ρ; At the same time, the penalty factor λ and the step factor ρ are self-tuning at the same time. In the second group of test verification, the penalty factor λ is fixed and the step factor ρ is self-tuning. In practical application, the parameters to be tuned can also be selected according to the specific situation. any combination of Say, depending on the situation, may also include a row matrix of pseudo-gradient estimates for the MISO system and other parameters.
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。The above-mentioned specific embodiments are used to explain the present invention, are only preferred embodiments of the present invention, rather than limit the present invention, within the spirit of the present invention and the protection scope of the claims, any modification, equivalent replacement, Improvements and the like all fall within the protection scope of the present invention.
Claims (3)
- The parameter self-tuning method of the MISO compact-format model-free controller based on the partial derivative information is characterized by comprising the following steps of:step (1): for a Multiple Input and Single Output (MISO) system with m inputs (m is an integer greater than or equal to 2) and 1 Output, adopting a MISO compact format model-free controller for control; the MISO compact-format model-free controller parameters comprise a penalty factor lambda and a step factor rho; determining parameters to be set of a MISO (multiple input single output) compact-format model-free controller, wherein the parameters to be set of the MISO compact-format model-free controller are part or all of the parameters of the MISO compact-format model-free controller and comprise any one or any combination of a punishment factor lambda and a step factor rho; determining the number of input layer nodes, the number of hidden layer nodes and the number of output layer nodes of the BP neural network, wherein the number of the output layer nodes is not less than the number of parameters to be set of the MISO compact-format model-free controller; initializing a hidden layer weight coefficient and an output layer weight coefficient of the BP neural network; initializing partial derivative information in a set { partial derivative information set };step (2): recording the current time as k time;and (3): calculating to obtain a system error at the k moment by adopting a system error calculation function based on the system output expected value and the system output actual value, and recording as e (k); the independent variables of the system error calculation function comprise a system output expected value and a system output actual value;and (4): taking the partial derivative information in the set { partial derivative information set } as the input of a BP (back propagation) neural network, carrying out forward calculation on the BP neural network, and outputting a calculation result through an output layer of the BP neural network to obtain a value of a parameter to be set of the MISO (single input single output) compact-format model-free controller;and (5): calculating and obtaining a control input vector u (k) [ [ u (k) of the MISO tight format model-free controller at the time k for the controlled object by adopting a control algorithm of the MISO tight format model-free controller based on the system error e (k) obtained in the step (3) and the value of the parameter to be set of the MISO tight format model-free controller obtained in the step (4)1(k),…,um(k)]T;And (6): aiming at the jth control input u in the control input vector u (k) obtained in the step (5)j(k) (j is more than or equal to 1 and less than or equal to m), calculating the jth control input uj(k) Respectively aiming at the gradient information of the parameters to be set of each MISO compact-format model-free controller at the moment k, the specific calculation formula is as follows:when the parameters to be set of the MISO compact-format model-free controller contain penalty factor lambdaThen, the jth control input uj(k) The gradient information at the k moment for the penalty factor λ is:when the parameters to be set of the MISO compact-format model-free controller contain the step factor rho, the jth control input uj(k) The gradient information at the k moment for the step factor ρ is:wherein,is a row matrix of MISO system pseudo gradient estimates at time k,is a row matrixThe j-th gradient component estimate of (a),is a row matrix2 norm of (d);the set of all the gradient information is marked as { gradient information j }, and a set { gradient information set } is put in;recording the gradient information in the { gradient information j } set as partial derivative information of the previous moment in sequence, namely: when the parameters to be set of the MISO compact-format model-free controller contain penalty factor lambda, the gradient information in the { gradient information j } setRecording as partial derivative information of previous timeWhen the parameters to be set of the MISO compact-format model-free controller contain the step factor rho, the gradient information in the set of the gradient information j is obtainedRecording as partial derivative information of previous timeThe set of all the partial derivative information is marked as { partial derivative information j }, and the set { partial derivative information set } is put into;repeating the step for the other m-1 control inputs in the control input vector u (k) obtained in step (5) until the set { gradient information set } contains the set of all { { gradient information 1}, …, { gradient information m } }, and the set { partial derivative information set } contains the set of all { { partial derivative information 1}, …, { partial derivative information m } }, and then proceeding to step (7);and (7): the value minimization of a system error function is taken as a target, a gradient descent method is adopted, the set { gradient information set } obtained in the step (6) is combined, the backward propagation calculation of the system error is carried out, and the weight coefficient of the hidden layer and the weight coefficient of the output layer of the BP neural network are updated and used as the weight coefficient of the hidden layer and the weight coefficient of the output layer when the BP neural network carries out forward calculation at the later moment; the independent variable of the system error function comprises any one or any combination of a system error, a system output expected value and a system output actual value;and (8): and (4) after the control input vector u (k) acts on the controlled object, obtaining a system output actual value of the controlled object at the later moment, returning to the step (2), and repeating the step (2) to the step (8).
- 2. The MISO compact format model-free control of claim 1The parameter self-tuning method based on the partial derivative information is characterized in that the system error calculation function in the step (3) adopts e (k) y*(k) -y (k), wherein y*(k) The system output expected value is set for the time k, and y (k) is the system output actual value obtained by sampling at the time k; or using e (k) ═ y*(k +1) -y (k), wherein y*And (k +1) is a system output expected value at the moment of k +1, and y (k) is a system output actual value obtained by sampling at the moment of k.
- 3. The MISO compact format model-less controller parameter self-tuning method of claim 1, wherein the systematic error function in step (7) isWherein e (k) is the systematic error, Δ uj(k)=uj(k)-uj(k-1),bjIs a constant greater than or equal to 0, and j is greater than or equal to 1 and less than or equal to m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711317223.0A CN108107727B (en) | 2017-12-12 | 2017-12-12 | Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711317223.0A CN108107727B (en) | 2017-12-12 | 2017-12-12 | Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108107727A CN108107727A (en) | 2018-06-01 |
CN108107727B true CN108107727B (en) | 2020-06-09 |
Family
ID=62215714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711317223.0A Active CN108107727B (en) | 2017-12-12 | 2017-12-12 | Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108107727B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274435A (en) * | 1997-10-06 | 2000-11-22 | 美国通控集团公司 | Model-free adaptive process control |
CN101349893A (en) * | 2007-07-18 | 2009-01-21 | 太极光控制软件(北京)有限公司 | Forecast control device of adaptive model |
CN101968629A (en) * | 2010-10-19 | 2011-02-09 | 天津理工大学 | PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification |
CN107023825A (en) * | 2016-08-31 | 2017-08-08 | 西安艾贝尔科技发展有限公司 | Fluidized-bed combustion boiler is controlled and combustion optimizing system |
CN107065541A (en) * | 2017-03-22 | 2017-08-18 | 杭州电子科技大学 | A kind of system ambiguous network optimization PID PFC control methods of coking furnace furnace pressure |
-
2017
- 2017-12-12 CN CN201711317223.0A patent/CN108107727B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1274435A (en) * | 1997-10-06 | 2000-11-22 | 美国通控集团公司 | Model-free adaptive process control |
CN101349893A (en) * | 2007-07-18 | 2009-01-21 | 太极光控制软件(北京)有限公司 | Forecast control device of adaptive model |
CN101968629A (en) * | 2010-10-19 | 2011-02-09 | 天津理工大学 | PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification |
CN107023825A (en) * | 2016-08-31 | 2017-08-08 | 西安艾贝尔科技发展有限公司 | Fluidized-bed combustion boiler is controlled and combustion optimizing system |
CN107065541A (en) * | 2017-03-22 | 2017-08-18 | 杭州电子科技大学 | A kind of system ambiguous network optimization PID PFC control methods of coking furnace furnace pressure |
Non-Patent Citations (6)
Title |
---|
Design of Self-Tuning SISO Partial-Form Model-Free Adaptive Controller for Vapor-Compression Refrigeration System;CHEN CHEN 等;《IEEE Access》;20190903;全文 * |
Neural-net-based model-free self-tuning controller with on-line self-learning ability for industrial furnace;Mingwang ZHAO;《1994 Proceedings of IEEE International Conference on Control and Applications》;20020806;全文 * |
Parameter Self-Tuning of SISO Compact-Form Model-Free Adaptive Controller based on Neural Network with System Error Set as Input;Chen CHEN 等;《2019 12th Asian Control Conference》;20190718;全文 * |
无模型控制器参数在线自整定研究;李雪园;《中国优秀硕士学位论文全文数据库信息科技辑》;20180815;全文 * |
无模型控制器参数学习步长和惩罚因子的整定研究;马平 等;《仪器仪表学报》;20080430;全文 * |
无模型自适应控制参数整定方法研究;郭代银;《中国优秀硕士学位论文全文数据库信息科技辑》;20150315;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108107727A (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287471B (en) | Parameter self-tuning method of MIMO offset format model-free controller based on system error | |
CN108170029B (en) | Parameter self-tuning method based on partial derivative information for MIMO full-format model-free controller | |
CN108345213B (en) | Parameter self-tuning method of MIMO (multiple input multiple output) compact-format model-free controller based on system error | |
CN108153151B (en) | Parameter self-tuning method of MIMO full-format model-free controller based on system error | |
CN108181809B (en) | Parameter self-tuning method based on systematic error for MISO compact model-free controller | |
CN108132600B (en) | Parameter Self-tuning Method Based on Partial Derivative Information for MIMO Compact Model-Free Controller | |
CN108287470B (en) | Parameter self-tuning method of MIMO offset format model-free controller based on offset information | |
CN106296434B (en) | A Grain Yield Prediction Method Based on PSO-LSSVM Algorithm | |
CN107942655B (en) | Parameter self-tuning method based on systematic error for SISO compact model-free controller | |
CN110262235A (en) | A kind of model-free optimal switching method of switching system | |
CN108073072B (en) | Parameter Self-tuning Method Based on Partial Derivative Information for SISO Compact Model-Free Controller | |
CN108062021B (en) | Parameter self-tuning method based on partial derivative information for SISO full-format model-free controller | |
CN107942654B (en) | Parameter self-tuning method of SISO offset format model-free controller based on offset information | |
CN108107715B (en) | Parameter self-tuning method based on partial derivative information for MISO full-format model-free controller | |
CN108008634B (en) | Parameter self-tuning method of MISO partial-format model-free controller based on partial derivative information | |
CN108181808B (en) | System error-based parameter self-tuning method for MISO partial-format model-free controller | |
CN108052006B (en) | Decoupling control method of MIMO based on SISO full-format model-free controller and partial derivative information | |
CN108107727B (en) | Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information | |
CN108154231A (en) | Methods of self-tuning of the MISO full format Non-Model Controller based on systematic error | |
CN108107722B (en) | MIMO Decoupling Control Method Based on SISO Partial Format Model-Free Controller and System Error | |
CN107991866B (en) | Decoupling control method for MIMO based on SISO tight format model-free controller and partial derivative information | |
CN107844051B (en) | Parameter self-tuning method of SISO full-format model-free controller based on system error | |
CN108107721B (en) | MIMO Decoupling Control Method Based on SISO Partial Format Model-Free Controller and Partial Derivative Information | |
CN107942656B (en) | Systematic Error-Based Parameter Self-tuning Method for SISO Partial Format Model-Free Controller | |
CN107942674B (en) | Decoupling control method of MIMO based on SISO full-format model-free controller and system error |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |