CN108164585A - For measure the polypeptide probe of transpeptidase A activity to, measure transpeptidase A activity method and the two application - Google Patents
For measure the polypeptide probe of transpeptidase A activity to, measure transpeptidase A activity method and the two application Download PDFInfo
- Publication number
- CN108164585A CN108164585A CN201711430280.XA CN201711430280A CN108164585A CN 108164585 A CN108164585 A CN 108164585A CN 201711430280 A CN201711430280 A CN 201711430280A CN 108164585 A CN108164585 A CN 108164585A
- Authority
- CN
- China
- Prior art keywords
- transpeptidase
- polypeptide probe
- polypeptide
- activity
- dye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 182
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 181
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 180
- 239000000523 sample Substances 0.000 title claims abstract description 148
- 108090000279 Peptidyltransferases Proteins 0.000 title claims abstract description 137
- 230000000694 effects Effects 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 41
- 230000000295 complement effect Effects 0.000 claims abstract description 26
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 25
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011535 reaction buffer Substances 0.000 claims abstract description 18
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 13
- 150000001413 amino acids Chemical class 0.000 claims description 29
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 20
- 230000001404 mediated effect Effects 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 10
- 239000012634 fragment Substances 0.000 claims description 9
- 241000894006 Bacteria Species 0.000 claims description 8
- 239000007983 Tris buffer Substances 0.000 claims description 8
- 230000007918 pathogenicity Effects 0.000 claims description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 8
- 238000003556 assay Methods 0.000 claims description 6
- 235000001014 amino acid Nutrition 0.000 claims description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 3
- 235000018417 cysteine Nutrition 0.000 claims description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 11
- 238000001514 detection method Methods 0.000 abstract description 18
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 238000002372 labelling Methods 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000011534 incubation Methods 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000000975 dye Substances 0.000 description 58
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 24
- 241000192125 Firmicutes Species 0.000 description 12
- 235000012754 curcumin Nutrition 0.000 description 12
- 229940109262 curcumin Drugs 0.000 description 12
- 239000004148 curcumin Substances 0.000 description 12
- FFCZHQLUEDCQKI-UHFFFAOYSA-N diarsenic Chemical compound [As]#[As] FFCZHQLUEDCQKI-UHFFFAOYSA-N 0.000 description 12
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 12
- 241000191967 Staphylococcus aureus Species 0.000 description 10
- 102000018697 Membrane Proteins Human genes 0.000 description 8
- 108010052285 Membrane Proteins Proteins 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 210000002421 cell wall Anatomy 0.000 description 5
- 102000012410 DNA Ligases Human genes 0.000 description 4
- 108010061982 DNA Ligases Proteins 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 4
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 2
- 108010013639 Peptidoglycan Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 230000002924 anti-infective effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000003271 compound fluorescence assay Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000001937 non-anti-biotic effect Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- 230000007923 virulence factor Effects 0.000 description 2
- 239000000304 virulence factor Substances 0.000 description 2
- WNHNMKOFKCHKKD-BFHQHQDPSA-N Ala-Thr-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O WNHNMKOFKCHKKD-BFHQHQDPSA-N 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 244000163122 Curcuma domestica Species 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- BMHBJCVEXUBGFI-BIIVOSGPSA-N Cys-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CS)N)C(=O)O BMHBJCVEXUBGFI-BIIVOSGPSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JVSBYEDSSRZQGV-GUBZILKMSA-N Glu-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCC(O)=O JVSBYEDSSRZQGV-GUBZILKMSA-N 0.000 description 1
- OLPPXYMMIARYAL-QMMMGPOBSA-N Gly-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)CN OLPPXYMMIARYAL-QMMMGPOBSA-N 0.000 description 1
- UUYBFNKHOCJCHT-VHSXEESVSA-N Gly-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN UUYBFNKHOCJCHT-VHSXEESVSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- VZIFYHYNQDIPLI-HJWJTTGWSA-N Ile-Arg-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N VZIFYHYNQDIPLI-HJWJTTGWSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- TWQIYNGNYNJUFM-NHCYSSNCSA-N Leu-Asn-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O TWQIYNGNYNJUFM-NHCYSSNCSA-N 0.000 description 1
- KAFOIVJDVSZUMD-DCAQKATOSA-N Leu-Gln-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O KAFOIVJDVSZUMD-DCAQKATOSA-N 0.000 description 1
- KAFOIVJDVSZUMD-UHFFFAOYSA-N Leu-Gln-Gln Natural products CC(C)CC(N)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(N)=O)C(O)=O KAFOIVJDVSZUMD-UHFFFAOYSA-N 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- BQWCDDAISCPDQV-XHNCKOQMSA-N Ser-Gln-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CO)N)C(=O)O BQWCDDAISCPDQV-XHNCKOQMSA-N 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000194019 Streptococcus mutans Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000194021 Streptococcus suis Species 0.000 description 1
- 102000005488 Thioesterase Human genes 0.000 description 1
- DIHPMRTXPYMDJZ-KAOXEZKKSA-N Thr-Tyr-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N2CCC[C@@H]2C(=O)O)N)O DIHPMRTXPYMDJZ-KAOXEZKKSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- DANHCMVVXDXOHN-SRVKXCTJSA-N Tyr-Asp-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DANHCMVVXDXOHN-SRVKXCTJSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000032770 biofilm formation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 108091006116 chimeric peptides Proteins 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 108010004073 cysteinylcysteine Proteins 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical group SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 1
- 108010078326 glycyl-glycyl-valine Proteins 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108010031719 prolyl-serine Proteins 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- UNIBJWQHKWCMGJ-UHFFFAOYSA-N resorufin bis-arsenide Chemical compound C=12OC3=C([As]4SCCS4)C(O)=CC=C3N=C2C=CC(=O)C=1[As]1SCCS1 UNIBJWQHKWCMGJ-UHFFFAOYSA-N 0.000 description 1
- -1 salt ion Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 108020002982 thioesterase Proteins 0.000 description 1
- 108010045269 tryptophyltryptophan Proteins 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明提供了一种用于测定转肽酶A活性的多肽探针对、测定转肽酶A活性的方法及二者的应用,涉及生物检测技术领域,本发明提供的用于测定转肽酶A活性的多肽探针对,包括具有反应区、互补区和染料结合区的第一多肽探针和第二多肽探针,具有特异性强、准确度好、灵敏度高的优点,无需进行修饰或标记处理,就能够达到测定转肽酶A活性的目的。本发明提供的测定转肽酶A活性的方法,包括将上述的用于测定转肽酶A活性的多肽探针对与待测样本于转肽反应缓冲液中混合并孵育,再用双砷染料来标记孵育后的反应产物,通过孵育后的反应产物与双砷染料结合形成复合物的荧光水平来判定转肽酶A的活性,操作简单、方便。
The invention provides a pair of polypeptide probes for measuring the activity of transpeptidase A, a method for measuring the activity of transpeptidase A and the application of the two, which relate to the technical field of biological detection. A active polypeptide probe pair, including the first polypeptide probe and the second polypeptide probe with a reaction region, a complementary region and a dye-binding region, has the advantages of strong specificity, good accuracy, and high sensitivity, without the need for Modification or labeling can achieve the purpose of measuring transpeptidase A activity. The method for measuring the activity of transpeptidase A provided by the present invention comprises mixing and incubating the above-mentioned polypeptide probe pair for measuring the activity of transpeptidase A with the sample to be tested in the transpeptidation reaction buffer, and then using a double arsenic dye To label the reaction product after incubation, the activity of transpeptidase A is determined by the fluorescence level of the complex formed by the combination of the reaction product after incubation and the double arsenic dye, and the operation is simple and convenient.
Description
技术领域technical field
本发明涉及生物检测技术领域,尤其是涉及一种用于测定转肽酶A活性的多肽探针对、测定转肽酶A活性的方法及二者的应用。The invention relates to the technical field of biological detection, in particular to a pair of polypeptide probes for measuring the activity of transpeptidase A, a method for measuring the activity of transpeptidase A and the application of the two.
背景技术Background technique
细菌表面蛋白在病原菌的感染过程(如粘附、免疫逃逸、生物膜形成) 中发挥重要作用,是决定病原菌感染严重性不可缺少的致病因素(Nat.Rev. Microbiol.,2014,12,49-62)。在革兰氏阳性细菌中,表面蛋白正确锚定到细胞壁需要转肽酶所催化的转肽反应。通常,表面蛋白以前体的形式被合成出来,前体蛋白的N端包含有一个分泌信号肽,C端包含有一个LPXTG(X 代表任意一种氨基酸)结构域,一个疏水区以及一个带正电荷残基的末端。 N端的信号肽会指引前体蛋白通过分泌途径运送至细胞外,在分泌过程中, N端的信号肽会被切除,C端的疏水区和正电荷尾部会将表面蛋白前体保留在胞膜内。随后,结合在细胞膜上的转肽酶会切割LPXTG氨基酸序列中苏氨酸和甘氨酸之间的共价键,形成一个硫酯酶中间体,硫酯酶中间体会被 II型类脂上游离的氨基亲核攻击,将表面蛋白共价结合到肽聚糖的交连桥上,脂连接的表面蛋白进一步通过转糖苷作用和转肽作用整合到细胞壁上。通过这一作用方式,转肽酶将20多种毒力因子蛋白锚定到细菌细胞壁上。转肽酶基因的缺失或转肽酶活性的丧失会导致多种表面蛋白不能定位到细菌表面,并且会降低细菌的感染能力和粘附能力。但是转肽酶并不是细菌生存与生长所必需的,抑制转肽酶的活性不会对病原菌带来生存压力从而产生耐药性,因此转肽酶成为抗感染新药研发的理想药物靶标。Bacterial surface proteins play an important role in the infection process of pathogenic bacteria (such as adhesion, immune escape, biofilm formation), and are indispensable pathogenic factors that determine the severity of pathogenic bacterial infection (Nat.Rev. Microbiol.,2014,12,49 -62). In Gram-positive bacteria, transpeptidation reactions catalyzed by transpeptidases are required for proper anchoring of surface proteins to the cell wall. Usually, surface proteins are synthesized in the form of precursors, the N-terminus of the precursor protein contains a secretion signal peptide, the C-terminus contains an LPXTG (X represents any amino acid) domain, a hydrophobic region and a positively charged end of the residue. The signal peptide at the N-terminus will guide the precursor protein to be transported out of the cell through the secretory pathway. During the secretion process, the signal peptide at the N-terminus will be cleaved, and the hydrophobic region and positively charged tail at the C-terminus will retain the surface protein precursor in the cell membrane. Subsequently, transpeptidase bound to the cell membrane will cleave the covalent bond between threonine and glycine in the LPXTG amino acid sequence to form a thioesterase intermediate, which will be replaced by the free amino group on the type II lipid Nucleophilic attack covalently binds surface proteins to peptidoglycan cross-bridges, and lipid-linked surface proteins are further integrated into the cell wall through transglycosidation and transpeptidation. Through this mode of action, transpeptidases anchor more than 20 virulence factor proteins to the bacterial cell wall. Deletion of the transpeptidase gene or loss of transpeptidase activity will result in the inability of localization of various surface proteins to the surface of bacteria, and will reduce the ability of infection and adhesion of bacteria. However, transpeptidase is not necessary for the survival and growth of bacteria. Inhibiting the activity of transpeptidase will not bring survival pressure to pathogenic bacteria and cause drug resistance. Therefore, transpeptidase has become an ideal drug target for the development of new anti-infective drugs.
当前,有多种方式来对转肽酶活性进行测定,其中最常用的是荧光淬灭活性检测法,该方法需要在LPXTG基序的一端修饰一个荧光基团,在另一端修饰一个淬灭基团,荧光基团和淬灭基团之间由于发生荧光共振能量转移因而会淬灭荧光基团的信号,转肽酶对底物的切割作用会将淬灭基团和荧光基团分离开来,从而恢复荧光基团的荧光特性。对于荧光淬灭活性检测法,主要存在两个问题:一是需要对底物进行标记,二是只能测定转肽酶的切割活性,而不能测定其转肽能力。此外,纤连蛋白结合法、HPLC-MS 检测法、基于酵母表面展示的荧光测定法也被用来测定转肽酶的活性,纤连蛋白结合法具有操作繁琐、检测特异性不好等缺点,HPLC-MS检测法需要昂贵的仪器和专业的操作,基于酵母表面展示的荧光测定法虽然可以来高通量筛选靶向转肽酶的抑制剂,但是检测灵敏度有限。这极大限制了“非抗生素类”药物的研发进程。Currently, there are several ways to measure transpeptidase activity, the most commonly used is the fluorescence quenching activity assay, which requires the modification of a fluorophore at one end of the LPXTG motif and a quencher at the other end. Due to the fluorescence resonance energy transfer between the fluorescent group and the quencher group, the signal of the fluorescent group will be quenched, and the cleavage of the substrate by the transpeptidase will separate the quencher group and the fluorescent group to restore the fluorescent properties of the fluorophore. For the fluorescence quenching activity detection method, there are two main problems: one is that the substrate needs to be labeled, and the other is that only the cleavage activity of the transpeptidase can be measured, but its transpeptide ability cannot be measured. In addition, fibronectin-binding method, HPLC-MS detection method, and fluorescence assay based on yeast surface display have also been used to measure the activity of transpeptidase. The fibronectin-binding method has the disadvantages of cumbersome operation and poor detection specificity. HPLC-MS detection requires expensive instruments and professional operations. Although the fluorescence assay based on yeast surface display can be used for high-throughput screening of inhibitors targeting transpeptidases, the detection sensitivity is limited. This greatly limits the development process of "non-antibiotic" drugs.
因此,迫切需要开发一些简单、高效、灵敏的方法来测定转肽酶的活性,加速非抗生素类抗感染新药的研发。Therefore, there is an urgent need to develop some simple, efficient and sensitive methods to measure the activity of transpeptidases and accelerate the development of new non-antibiotic anti-infective drugs.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的第一个目的在于提供一种用于测定转肽酶A活性的多肽探针对,以缓解现有技术中存在的用于测定转肽酶A活性的多肽探针均需要进行标记、制备繁琐、灵敏度有限的技术问题。The first object of the present invention is to provide a pair of polypeptide probes for measuring the activity of transpeptidase A, so as to alleviate the need for labeling, Technical problems of cumbersome preparation and limited sensitivity.
本发明的第二个目的在于提供一种测定转肽酶A活性的方法,以缓解现有技术中存在的测定转肽酶A活性的方法操作繁琐、灵敏度较低、需要专业技术人员才能实现的技术问题。The second object of the present invention is to provide a method for measuring the activity of transpeptidase A, so as to alleviate the problems that the method for measuring the activity of transpeptidase A existing in the prior art is cumbersome to operate, has low sensitivity, and needs professional technicians to realize. technical problem.
本发明的第三个目的在于提供上述的用于测定转肽酶A活性的多肽探针对或测定转肽酶A活性的方法在测定革兰氏阳性菌潜在致病能力中的应用。The third object of the present invention is to provide the application of the above-mentioned polypeptide probe pair for determining the activity of transpeptidase A or the method for determining the activity of transpeptidase A in determining the potential pathogenicity of Gram-positive bacteria.
本发明提供了一种用于测定转肽酶A活性的多肽探针对,所述多肽探针对包括第一多肽探针和第二多肽探针;The present invention provides a pair of polypeptide probes for measuring the activity of transpeptidase A, wherein the pair of polypeptide probes includes a first polypeptide probe and a second polypeptide probe;
所述第一多肽探针和第二多肽探针分别包括反应区、互补区和染料结合区;The first polypeptide probe and the second polypeptide probe respectively include a reaction zone, a complementary zone and a dye binding zone;
所述反应区用于参与转肽酶A介导的转肽反应,使所述第一多肽探针和第二多肽探针结合为嵌合多肽;所述互补区用于使所述嵌合多肽自组装成发夹结构;所述染料结合区用于结合染料。The reaction region is used to participate in the transpeptidation reaction mediated by transpeptidase A, so that the first polypeptide probe and the second polypeptide probe are combined into a chimeric polypeptide; the complementary region is used to make the chimeric polypeptide The complex polypeptide self-assembles into a hairpin structure; the dye-binding region is used to bind the dye.
进一步地,所述互补区为可形成发夹结构的多肽片段。Further, the complementary region is a polypeptide fragment that can form a hairpin structure.
进一步地,所述第一多肽探针的反应区的氨基酸序列为LPXTGX,所述第一多肽探针的互补区的氨基酸序列为PSQPTYPG,所述第一多肽探针的染料结合区的氨基酸序列为CC;Further, the amino acid sequence of the reaction region of the first polypeptide probe is LPXTGX, the amino acid sequence of the complementary region of the first polypeptide probe is PSQPTYPG, and the dye binding region of the first polypeptide probe is The amino acid sequence is CC;
其中,所述第一多肽探针的反应区的氨基酸序列LPXTGX中的X为除半胱氨酸外的任意一种氨基酸;Wherein, X in the amino acid sequence LPXTGX of the reaction region of the first polypeptide probe is any amino acid except cysteine;
优选地,所述第一多肽探针的反应区的氨基酸序列为LPATGG。Preferably, the amino acid sequence of the reaction region of the first polypeptide probe is LPATGG.
进一步地,所述第二多肽探针的反应区的氨基酸序列为GG,所述第二多肽探针的互补区的氨基酸序列为VEDLIRFYDNLQQYLNV,所述第二多肽探针的染料结合区的氨基酸序列为CC。Further, the amino acid sequence of the reaction region of the second polypeptide probe is GG, the amino acid sequence of the complementary region of the second polypeptide probe is VEDLIRFYDNLQQYLNV, and the dye binding region of the second polypeptide probe is The amino acid sequence is CC.
进一步地,所述第一多肽探针具有如SEQ ID NO.1所示的氨基酸序列,所述第二多肽探针具有如SEQ ID NO.2所示的氨基酸序列。Further, the first polypeptide probe has the amino acid sequence shown in SEQ ID NO.1, and the second polypeptide probe has the amino acid sequence shown in SEQ ID NO.2.
进一步地,所述染料为双砷染料;Further, the dye is bisarsenic dye;
优选地,所述双砷染料为FlAsH-EDT2、ReAsH-EDT2、F2FlAsH或 F4FlAsH。Preferably, the diarsenic dye is FlAsH-EDT 2 , ReAsH-EDT 2 , F2FlAsH or F4FlAsH.
本发明还提供了一种测定转肽酶A活性的方法,包括:The present invention also provides a method for measuring the activity of transpeptidase A, comprising:
将上述的用于测定转肽酶A活性的多肽探针对与待测样本于转肽反应缓冲液中混合并孵育,得到反应产物,通过所述反应产物与双砷染料结合形成复合物的荧光水平来判定转肽酶A的活性。Mix and incubate the above-mentioned polypeptide probe pair for determining the activity of transpeptidase A with the sample to be tested in the transpeptidation reaction buffer to obtain a reaction product, and the fluorescence of the complex formed by combining the reaction product with a double arsenic dye Level to determine the activity of transpeptidase A.
进一步地,所述转肽反应缓冲液中包含还原剂,所述还原剂优选为二硫键还原剂,更优选为DTT。Further, the buffer for the transpeptidation reaction contains a reducing agent, preferably a disulfide bond reducing agent, more preferably DTT.
进一步地,所述转肽反应缓冲液包括:Tris·HCl 40-60mmol/L、NaCl 120-180mmol/L、CaCl2 1-10mmol/L和DTT 0.5-1.5mmol/L;Further, the transpeptide reaction buffer includes: Tris·HCl 40-60mmol/L, NaCl 120-180mmol/L, CaCl 2 1-10mmol/L and DTT 0.5-1.5mmol/L;
优选地,所述转肽反应缓冲液由如下组分组成:Tris·HCl 45-55mmol/L、 NaCl130-170mmol/L、CaCl2 2-7mmol/L和DTT 0.7-1.3mmol/L。Preferably, the transpeptide reaction buffer consists of the following components: Tris·HCl 45-55mmol/L, NaCl 130-170mmol/L, CaCl 2 2-7mmol/L and DTT 0.7-1.3mmol/L.
另外,本发明还提供了上述的用于测定转肽酶A活性的多肽探针对或测定转肽酶A活性的方法在测定革兰氏阳性菌的潜在致病能力中的应用。In addition, the present invention also provides the application of the above-mentioned polypeptide probe pair for determining transpeptidase A activity or the method for determining transpeptidase A activity in determining the potential pathogenicity of Gram-positive bacteria.
本发明提供的用于测定转肽酶A活性的多肽探针对,包括具有反应区、互补区和染料结合区的第一多肽探针和第二多肽探针。本发明提供的多肽探针对的反应区,能够特异性参与转肽酶A介导的转肽反应,保证了多肽探针对具有特异性强、准确度好、灵敏度高的优点。转肽酶A介导的转肽反应会使第一多肽探针和第二多肽探针形成一个新的嵌合多肽,而互补区能够使新形成的嵌合多肽通过分子内互补发生自身回折,形成特定的空间构象,该空间构象能够结合染料使染料发出荧光,未连接的第一多肽探针和第二多肽探针则无法结合染料使染料发出荧光,从而使本发明提供的多肽探针对能够达到测定转肽酶A活性的目的,操作简单,节约人力物力。并且,应用多肽分子作为检测探针,与测定靶标转肽酶A之间具有较好的生物相容性。The pair of polypeptide probes for measuring the activity of transpeptidase A provided by the present invention comprises a first polypeptide probe and a second polypeptide probe having a reaction region, a complementary region and a dye binding region. The reaction region of the polypeptide probe pair provided by the present invention can specifically participate in the transpeptidation reaction mediated by transpeptidase A, which ensures that the polypeptide probe pair has the advantages of strong specificity, good accuracy and high sensitivity. The transpeptidation reaction mediated by transpeptidase A will cause the first polypeptide probe and the second polypeptide probe to form a new chimeric polypeptide, and the complementary region can make the newly formed chimeric polypeptide generate itself through intramolecular complementarity. turn back to form a specific spatial conformation, the spatial conformation can bind the dye to make the dye emit fluorescence, and the unconnected first polypeptide probe and the second polypeptide probe cannot bind the dye to make the dye emit fluorescence, so that the present invention provides The polypeptide probe pair can achieve the purpose of measuring the activity of transpeptidase A, is simple to operate, and saves manpower and material resources. Moreover, using the polypeptide molecule as the detection probe has good biocompatibility with the assay target transpeptidase A.
本发明提供的测定转肽酶A活性的方法,包括将上述的用于测定转肽酶A活性的多肽探针对与待测样本于转肽反应缓冲液中混合并孵育,得到反应产物,通过所述反应产物与双砷染料结合形成复合物的荧光水平来判定转肽酶A的活性。由于双砷染料只有在与嵌合多肽结合的情况下才会发出荧光,不会与第一多肽探针和第二多肽探针结合发出荧光,因此本发明提供的测定转肽酶A活性的方法在整个检测过程中无需分离或清洗的步骤,操作简单、方便,无需昂贵的仪器或专业技术人员进行操作。The method for determining the activity of transpeptidase A provided by the present invention comprises mixing and incubating the above-mentioned polypeptide probe pair for determining the activity of transpeptidase A with the sample to be tested in a transpeptidation reaction buffer to obtain a reaction product, which is obtained by The activity of transpeptidase A is determined by the fluorescence level of the complex formed by the reaction product combined with the dual arsenic dye. Since the dual arsenic dye will only emit fluorescence when it is combined with a chimeric polypeptide, it will not combine with the first polypeptide probe and the second polypeptide probe to emit fluorescence, so the method for measuring the activity of transpeptidase A provided by the present invention The method does not require separation or cleaning steps during the entire detection process, and is simple and convenient to operate without requiring expensive instruments or professional technicians to operate.
应用本发明提供的用于测定转肽酶A活性的多肽探针对或测定转肽酶 A活性的方法可测定革兰氏阳性菌的潜在致病能力,灵敏度高、特异性强,且操作简单。The potential pathogenicity of Gram-positive bacteria can be determined by using the polypeptide probe pair for determining the activity of transpeptidase A provided by the present invention or the method for determining the activity of transpeptidase A, which has high sensitivity, strong specificity, and simple operation .
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without creative work.
图1A为本发明实施例2提供的转肽酶A催化aPP-N和aPP-C形成 CC-aPP-CC的质谱学分析结果图;Figure 1A is a mass spectrometry analysis result diagram of CC-aPP-CC formed by transpeptidase A catalyzing aPP-N and aPP-C provided by Example 2 of the present invention;
图1B为本发明实施例2提供的双砷染料FlAsH-EDT2同aPP-N和aPP-C 的混合物、CC-aPP-CC以及CC-aPPP-CC结合后所形成复合物的荧光发射结果图;Fig. 1B is the fluorescence emission result of the complex formed after the double arsenic dye FlAsH-EDT 2 provided in Example 2 of the present invention combines with the mixture of aPP-N and aPP-C, CC-aPP-CC and CC-aPP P -CC picture;
图2A为本发明实施例3提供的转肽酶A、T4DNA连接酶和泛素连接酶催化aPP-N和aPP-C形成的反应产物同双砷染料结合产生荧光信号的成像结果图;Fig. 2A is an imaging result diagram of fluorescent signals generated by the combination of transpeptidase A, T4 DNA ligase and ubiquitin ligase catalyzed by aPP-N and aPP-C to form aPP-N and aPP-C provided in Example 3 of the present invention;
图2B为本发明实施例3提供的不同浓度的转肽酶A与其催化aPP-N 和aPP-C形成CC-aPP-CC同双砷染料结合所产生荧光信号之间的结果图;Fig. 2B is a graph showing the results of fluorescent signals generated by combining transpeptidase A at different concentrations in Example 3 of the present invention and its catalysis of aPP-N and aPP-C to form CC-aPP-CC combined with dual arsenic dyes;
图3A为本发明实施例4提供的姜黄素的分子结构式;Fig. 3 A is the molecular structural formula of the curcumin provided by the embodiment of the present invention 4;
图3B为本发明实施例4提供的姜黄素浓度同转肽酶A活性抑制率之间的结果图;Fig. 3 B is the result figure between the concentration of curcumin provided by the embodiment of the present invention 4 and the inhibition rate of transpeptidase A activity;
图4A为本发明实施例5提供的金黄色葡萄球菌裂解液作用于多肽探针对导致荧光信号增强的结果图;Fig. 4A is a graph showing the result of the enhanced fluorescent signal caused by the action of the Staphylococcus aureus lysate provided in Example 5 of the present invention on the polypeptide probe pair;
图4B为本发明实施例5提供的多肽探针对定量测定姜黄素对金黄色葡萄球菌内转肽酶A活性的抑制的结果图。Fig. 4B is a graph showing the results of the quantitative determination of curcumin's inhibition of Staphylococcus aureus endotranspeptidase A activity by the polypeptide probe pair provided in Example 5 of the present invention.
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solution of the present invention will be clearly and completely described below in conjunction with the embodiments. Apparently, the described embodiments are part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的一个方面,提供了一种用于测定转肽酶A活性的多肽探针对,包括第一多肽探针和第二多肽探针;In one aspect of the present invention, a pair of polypeptide probes for determining the activity of transpeptidase A is provided, including a first polypeptide probe and a second polypeptide probe;
第一多肽探针和第二多肽探针均包含用于参与转肽酶A介导的转肽反应,使第一多肽探针和第二多肽探针结合为嵌合多肽的反应区、用于使嵌合多肽自身回折的互补区和用于结合染料的染料结合区。Both the first polypeptide probe and the second polypeptide probe are used to participate in the transpeptidation reaction mediated by transpeptidase A, so that the first polypeptide probe and the second polypeptide probe are combined into a chimeric polypeptide reaction region, a complementary region for folding the chimeric polypeptide back on itself, and a dye binding region for binding a dye.
本发明提供的多肽探针对的反应区,能够特异性参与转肽酶A介导的转肽反应,保证了多肽探针对具有特异性强、准确度好的优点。转肽酶A 介导的转肽反应会使第一多肽探针和第二多肽探针形成一个新的嵌合多肽,而互补区能够使新形成的嵌合多肽通过分子内互补发生自身回折,形成特定的空间构象,该结构能够结合染料,由于染料的荧光水平极度依赖于嵌合多肽通过分子内互补所形成的特定的空间构象,从而使本发明提供的多肽探针对无需进行修饰或标记处理,通过与染料结合产生荧光来测定转肽酶A的活性,操作简单,节约人力物力。相反,在缺少转肽酶A的情况下,第一多肽探针和第二多肽探针无法形成上述特定的空间构象,因此无法结合染料,进一步说明了本发明提供的多肽探针对具有较高的特异性。并且,应用多肽分子作为检测探针,与测定靶标之间具有较好的生物相容性。The reaction region of the polypeptide probe pair provided by the present invention can specifically participate in the transpeptidation reaction mediated by transpeptidase A, which ensures that the polypeptide probe pair has the advantages of strong specificity and good accuracy. The transpeptidation reaction mediated by transpeptidase A will cause the first polypeptide probe and the second polypeptide probe to form a new chimeric polypeptide, and the complementary region can make the newly formed chimeric polypeptide generate itself through intramolecular complementarity. Turn back to form a specific spatial conformation, which can bind the dye. Since the fluorescence level of the dye is extremely dependent on the specific spatial conformation formed by the chimeric polypeptide through intramolecular complementarity, the polypeptide probe pair provided by the present invention does not need to be modified. Or labeling treatment, the activity of transpeptidase A is measured by combining with the dye to generate fluorescence, which is simple to operate and saves manpower and material resources. On the contrary, in the absence of transpeptidase A, the first polypeptide probe and the second polypeptide probe cannot form the above-mentioned specific spatial conformation, so they cannot bind the dye, which further illustrates that the polypeptide probe pair provided by the present invention has higher specificity. Moreover, the use of polypeptide molecules as detection probes has better biocompatibility with assay targets.
在一个优选的实施方式中,互补区为可形成发夹结构的多肽片段。In a preferred embodiment, the complementary region is a polypeptide fragment capable of forming a hairpin structure.
发夹结构是RNA和多肽通过分子内互补或相互作用在一级结构基础上形成的一种类似发夹样的结构。可形成发夹结构的多肽片段,能够使得第一多肽探针和第二多肽探针结合得到的嵌合多肽中的染料结合区相互靠近,从而形成特定的空间构象,用来结合染料。优选的可形成发夹结构的多肽片段的序列为:PSQPTYPG和VEDLIRFYDNLQQYLNV。The hairpin structure is a hairpin-like structure formed on the basis of the primary structure of RNA and polypeptide through intramolecular complementarity or interaction. The polypeptide fragment that can form a hairpin structure can make the dye-binding regions in the chimeric polypeptide obtained by combining the first polypeptide probe and the second polypeptide probe approach each other, thereby forming a specific spatial conformation for binding the dye. The preferred sequences of polypeptide fragments capable of forming a hairpin structure are: PSQPTYPG and VEDLIRFYDNLQQYLNV.
在另一个优选的实施方式中,互补区为色氨酸拉链。In another preferred embodiment, the complementary region is a tryptophan zipper.
色氨酸拉链是一段包含多个色氨酸残基的短肽,这个短肽会自发形成β发夹结构。色氨酸残基不连续地分布于发夹结构的两侧,链内色氨酸-色氨酸对之间的疏水相互作用会极大地稳定β发夹结构。选择色氨酸拉链作为互补区,能够使得第一多肽探针和第二多肽探针结合得到的嵌合多肽中的染料结合区相互靠近,形成十分稳定的发夹结构来结合染料。优选的色氨酸拉链互补对序列为:GKKWTWTW和WTWTWQEG。The tryptophan zipper is a short peptide containing multiple tryptophan residues, which spontaneously forms a β-hairpin structure. Tryptophan residues are discontinuously distributed on both sides of the hairpin structure, and the hydrophobic interaction between tryptophan-tryptophan pairs in the chain will greatly stabilize the β-hairpin structure. Selecting the tryptophan zipper as the complementary region can make the dye-binding regions in the chimeric polypeptide obtained by combining the first polypeptide probe and the second polypeptide probe close to each other, forming a very stable hairpin structure to bind the dye. The preferred tryptophan zipper complementary pair sequences are: GKKWTWTW and WTWTWQEG.
在一个优选的实施方式中,第一多肽探针的反应区的氨基酸序列为LPXTGX,染料结合区的氨基酸序列为CC,互补区的氨基酸序列为 PSQPTYPG。In a preferred embodiment, the amino acid sequence of the reaction region of the first polypeptide probe is LPXTGX, the amino acid sequence of the dye-binding region is CC, and the amino acid sequence of the complementary region is PSQPTYPG.
其中,第一多肽探针的反应区的氨基酸序列LPXTGX中的X可为除半胱氨酸外的任意一种氨基酸,例如可以为,但不限于A、G、T、L等。Wherein, X in the amino acid sequence LPXTGX of the reaction region of the first polypeptide probe can be any amino acid except cysteine, such as, but not limited to, A, G, T, L, etc.
优选地,第一多肽探针的反应区的氨基酸序列为LPATGG。Preferably, the amino acid sequence of the reaction region of the first polypeptide probe is LPATGG.
在一个优选的实施方式中,第二多肽探针的反应区的氨基酸序列为 GG,染料结合区的氨基酸序列为CC,互补区的氨基酸序列为 VEDLIRFYDNLQQYLNV。In a preferred embodiment, the amino acid sequence of the reaction region of the second polypeptide probe is GG, the amino acid sequence of the dye-binding region is CC, and the amino acid sequence of the complementary region is VEDLIRFYDNLQQYLNV.
第一多肽探针的互补区PSQPTYPG片段和第二多肽探针的互补区VEDLIRFYDNLQQYLNV片段在形成新的嵌合多肽后会相互结合,从而使得两个半胱氨酸-半胱氨酸二联子在空间上相临近,形成特定的构象来结合染料。The complementary region PSQPTYPG fragment of the first polypeptide probe and the complementary region VEDLIRFYDNLQQYLNV fragment of the second polypeptide probe will combine with each other after forming a new chimeric polypeptide, thereby making two cysteine-cysteine doublets The molecules are spatially adjacent to form a specific conformation to bind the dye.
在一个优选的实施方式中,第一多肽探针的氨基酸序列为: CCPSQPTYPGLPATGG(SEQ ID NO.1),第二多肽探针的氨基酸序列为: GGVEDLIRFYDNLQQYLNVCC(SEQ ID NO.2),第一多肽探针和第二多肽探针相互结合所形成的嵌合多肽的氨基酸序列为CCPSQPTYPGLPATGGVEDLIRFYDNLQQYLNVCC(SEQ ID NO.3)。In a preferred embodiment, the amino acid sequence of the first polypeptide probe is: CCPSQPTYPGLPATGG (SEQ ID NO.1), the amino acid sequence of the second polypeptide probe is: GGVEDLIRFYDNLQQYLNVCC (SEQ ID NO.2), the first The amino acid sequence of the chimeric polypeptide formed by combining the polypeptide probe and the second polypeptide probe is CCPSQPTYPGLPATGGVEDLIRFYDNLQQYLNVCC (SEQ ID NO. 3).
在一个优选的实施方式中,染料为双砷染料。In a preferred embodiment, the dye is a diarsenic dye.
双砷染料-四半胱氨酸标签体系可对细胞内蛋白进行特异性荧光标记,该体系由四半胱氨酸标签和双砷染料两部分构成。其中,四半胱氨酸标签是一个包含有四个半胱氨酸残基的六肽或十二肽,可以被双砷染料特异性标记。四半胱氨酸标签中的半胱氨酸-半胱氨酸二联子可以被脯氨酸-甘氨酸二肽直接连接起来,形成线性四半胱氨酸标签。此外,半胱氨酸-半胱氨酸二联子还可以被添加到多肽的末端或嵌入蛋白质内部,通过多肽和蛋白的折叠、结合让它们在空间上相临近,形成特定的能与双砷染料结合的构象。在该标记系统中,四半胱氨酸标签的空间结构会对所形成复合物的稳定性和量子产率产生影响。在本发明的一个实施方式中,第一多肽探针的互补区PSQPTYPG片段和第二多肽探针的互补区VEDLIRFYDNLQQYLNV片段在转肽酶A介导的转肽反应形成新的嵌合多肽后会相互结合,从而使得两个半胱氨酸-半胱氨酸二联子在空间上相临近,进而与双砷染料结合产生极强的荧光。相反,在缺少转肽酶A作用的情况下,两个半胱氨酸-半胱氨酸二联子无法形成特定的构象来结合双砷染料,双砷染料因此不会发光。利用双砷染料-四半胱氨酸标签复合物的荧光水平极度依赖于四半胱氨酸标签空间构象这一特性,通过测定反应前后荧光水平的变化,可以定量测定转肽酶A的活性,特异性强,灵敏度高,且测定结果准确可靠。The dual-arsenic dye-tetracysteine labeling system can specifically fluorescently label intracellular proteins. Among them, the tetracysteine tag is a hexapeptide or dodecapeptide containing four cysteine residues, which can be specifically labeled with arsenic dye. The cysteine-cysteine doublets in the tetracysteine tag can be directly linked by a proline-glycine dipeptide to form a linear tetracysteine tag. In addition, the cysteine-cysteine doublet can also be added to the end of the polypeptide or embedded in the protein, and through the folding and combination of the polypeptide and the protein, they are spatially adjacent to form a specific energy and diarsenic Dye bound conformation. In this labeling system, the spatial structure of the tetracysteine tag will affect the stability and quantum yield of the formed complex. In one embodiment of the present invention, the complementary region PSQPTYPG fragment of the first polypeptide probe and the complementary region VEDLIRFYDNLQQYLNV fragment of the second polypeptide probe form a new chimeric polypeptide after transpeptidation reaction mediated by transpeptidase A It will combine with each other, so that the two cysteine-cysteine doublets are spatially adjacent, and then combine with the diarsenic dye to produce extremely strong fluorescence. In contrast, in the absence of the action of transpeptidase A, the two cysteine-cysteine dyads cannot form a specific conformation to bind the diarsenic dye, and the diarsenic dye therefore does not emit light. Utilizing the characteristic that the fluorescence level of the dual arsenic dye-tetracysteine tag complex is extremely dependent on the space conformation of the tetracysteine tag, the activity and specificity of transpeptidase A can be quantitatively measured by measuring the change of the fluorescence level before and after the reaction. Strong, high sensitivity, and the determination results are accurate and reliable.
优选地,染料为FlAsH-EDT2、ReAsH-EDT2、F2FlAsH或F4FlAsH。Preferably, the dye is FlAsH- EDT2 , ReAsH- EDT2 , F2FlAsH or F4FlAsH.
FlAsH-EDT2、ReAsH-EDT2、F2FlAsH和F4FlAsH为具有不同激发和发射波长的双砷染料,因此有多种方式来测定转肽酶的活性,检测方式灵活。FlAsH-EDT 2 , ReAsH-EDT2, F2FlAsH and F4FlAsH are diarsenic dyes with different excitation and emission wavelengths, so there are many ways to measure the activity of transpeptidase, and the detection method is flexible.
在本发明的第二方面,还提供了一种测定转肽酶A活性的方法,包括:In the second aspect of the present invention, there is also provided a method for measuring transpeptidase A activity, comprising:
将上述的用于测定转肽酶A活性的多肽探针对与待测样本于转肽反应缓冲液中混合并孵育,得到反应产物,通过反应产物与双砷染料结合所产生荧光信号的强弱判定转肽酶A的活性。Mix and incubate the above-mentioned polypeptide probe pair for measuring the activity of transpeptidase A with the sample to be tested in the transpeptidation reaction buffer to obtain the reaction product, and the intensity of the fluorescent signal generated by the combination of the reaction product and the double arsenic dye Determine the activity of transpeptidase A.
利用本发明提供的用于测定转肽酶A活性的多肽探针对对转肽酶A活性进行检测,由于转肽酶A介导的转肽反应会使多肽探针对的第一多肽探针和第二多肽探针形成一个新的嵌合多肽,该嵌合多肽通过分子内互补发生自身回折,从而形成特定的能够结合染料的空间构象。并且,染料-多肽复合物的荧光水平依赖于嵌合多肽形成的特定的空间构象的数量,即嵌合多肽形成的越多,复合物的荧光水平就越高。而嵌合多肽的形成又依赖于转肽酶A介导的转肽反应,因此,通过反应产物的荧光水平能够判定转肽酶A的活性,且荧光信号越强,转肽酶A的活性越高,相反,荧光强度越弱,转肽酶A的活性越低。Utilize the polypeptide probe pair for measuring transpeptidase A activity provided by the present invention to detect transpeptidase A activity, because the transpeptidation reaction mediated by transpeptidase A will make the first polypeptide probe of the polypeptide probe pair The needle and the second polypeptide probe form a new chimeric polypeptide, and the chimeric polypeptide folds back on itself through intramolecular complementarity, thereby forming a specific spatial conformation capable of binding the dye. Moreover, the fluorescence level of the dye-polypeptide complex depends on the number of specific spatial conformations formed by the chimeric polypeptide, that is, the more chimeric polypeptides are formed, the higher the fluorescence level of the complex will be. The formation of chimeric polypeptides depends on the transpeptidase A-mediated transpeptidation reaction. Therefore, the activity of transpeptidase A can be determined by the fluorescence level of the reaction product, and the stronger the fluorescence signal, the higher the activity of transpeptidase A. High, on the contrary, the weaker the fluorescence intensity, the lower the activity of transpeptidase A.
由于本发明中双砷染料只有在与嵌合多肽结合的情况下才会发出荧光,不会与第一多肽探针和第二多肽探针结合发出荧光,因此本发明提供的测定转肽酶A活性的方法在整个检测过程中无需分离或清洗的步骤,操作简单、方便,亦无需昂贵的仪器或专业技术人员进行操作。Since the dual arsenic dye in the present invention will emit fluorescence only when combined with a chimeric polypeptide, and will not combine with the first polypeptide probe and the second polypeptide probe to emit fluorescence, the assay transpeptide provided by the present invention The method for enzyme A activity does not require separation or cleaning steps during the entire detection process, is simple and convenient to operate, and does not require expensive instruments or professional technicians to operate.
在一个优选的实施方式中,转肽反应缓冲液中包含还原剂。In a preferred embodiment, the transpeptide reaction buffer contains a reducing agent.
还原剂,是指自由基及活性氧的清除剂、阻断剂及修复剂等物质的总称。在转肽反应缓冲液中加入还原剂,可以确保多肽探针对中半胱氨酸残基中-SH处于还原状态,不形成二硫键,从而能与双砷染料相结合。Reducing agent refers to the general term for substances such as free radicals and active oxygen scavengers, blocking agents and repairing agents. Adding a reducing agent in the transpeptidation reaction buffer can ensure that -SH in the cysteine residue in the polypeptide probe pair is in a reduced state and does not form a disulfide bond, so that it can be combined with the diarsenic dye.
优选为二硫键还原剂,更优选为DTT。It is preferably a disulfide bond reducing agent, more preferably DTT.
DTT为二硫苏糖醇,是二硫键还原剂中的一种,可以保持半胱氨酸残基中-SH处于还原态。避免形成二硫键,从而使嵌合多肽能与双砷染料相结合。DTT is dithiothreitol, one of the disulfide bond reducing agents, which can keep -SH in the cysteine residue in a reduced state. Avoiding disulfide bond formation allows the chimeric peptide to bind to the diarsenic dye.
在一个优选的实施方式中,转肽反应缓冲液包括:Tris·HCl 40-60 mmol/L、NaCl120-180mmol/L、CaCl2 1-10mmol/L和DTT 0.5-1.5mmol/L。In a preferred embodiment, the transpeptide reaction buffer includes: Tris·HCl 40-60 mmol/L, NaCl 120-180 mmol/L, CaCl 2 1-10 mmol/L and DTT 0.5-1.5 mmol/L.
其中,Tris·HCl例如可以为,但不限于40mmol/L、45mmol/L、50 mmol/L、55mmol/L或60mmol/L。NaCl例如可以为,但不限于120mmol/L、 130mmol/L、140mmol/L、150mmol/L、160mmol/L、170mmol/L或180 mmol/L。CaCl2例如可以为,但不限于1mmol/L、2mmol/L、3mmol/L、4 mmol/L、5mmol/L、6mmol/L、7mmol/L、8mmol/L、9mmol/L或10mmol/L。 DTT例如可以为,但不限于0.5mmol/L、1mmol/L或1.5mmol/L。Wherein, Tris·HCl can be, for example, but not limited to 40mmol/L, 45mmol/L, 50mmol/L, 55mmol/L or 60mmol/L. NaCl can be, for example, but not limited to 120mmol/L, 130mmol/L, 140mmol/L, 150mmol/L, 160mmol/L, 170mmol/L or 180mmol/L. CaCl can be, for example, but not limited to 1mmol/L, 2mmol/L, 3mmol/L, 4mmol/L, 5mmol/L, 6mmol/L, 7mmol/L, 8mmol/L, 9mmol/L or 10mmol/L. DTT can be, for example, but not limited to 0.5 mmol/L, 1 mmol/L or 1.5 mmol/L.
优选地,转肽反应缓冲液由如下组分组成:Tris·HCl 45-55mmol/L、NaCl 130-170mmol/L、CaCl2 2-7mmol/L和DTT 0.7-1.3mmol/L;Preferably, the transpeptide reaction buffer is composed of the following components: Tris HCl 45-55mmol/L, NaCl 130-170mmol/L, CaCl 2 2-7mmol/L and DTT 0.7-1.3mmol/L;
优选地,转肽反应缓冲液包括:Tris·HCl 50mmol/L、NaCl 150mmol/L、 CaCl25mmol/L和DTT 1mmol/L。Preferably, the transpeptide reaction buffer includes: Tris·HCl 50mmol/L, NaCl 150mmol/L, CaCl 2 5mmol/L and DTT 1mmol/L.
通过选取特定的组分和配比,制备得到的转肽反应缓冲液能提供合适的pH环境以及盐离子浓度来保证转肽酶A的催化活性,并同时保证多肽探针中半胱氨酸残基中-SH处于还原状态。By selecting specific components and ratios, the prepared transpeptide reaction buffer can provide a suitable pH environment and salt ion concentration to ensure the catalytic activity of transpeptidase A, and at the same time ensure that the cysteine residues in the polypeptide probe Base-SH is in a reduced state.
在本发明的第三方面,提供了上述的用于测定转肽酶A活性的多肽探针对或测定转肽酶A活性的方法在测定革兰氏阳性菌潜在致病能力中的应用。In the third aspect of the present invention, the application of the above-mentioned polypeptide probe pair for measuring transpeptidase A activity or the method for measuring transpeptidase A activity in determining the potential pathogenicity of Gram-positive bacteria is provided.
革兰氏阳性菌是能够用革兰氏染色染成深蓝或紫色的细菌,它们细胞壁中含有较大量的肽聚糖。其中,转肽酶能够将多种毒力因子蛋白锚定到革兰氏阳性细菌细胞壁上。转肽酶基因缺失或转肽酶活性的丧失会导致多种表面蛋白不能定位在细菌表面,进而会降低细菌的感染能力和粘附能力。因此,通过对转肽酶A活性的测定能够反映革兰氏阳性菌的潜在致病能力,灵敏度高、特异性强,且操作简单,节约成本。Gram-positive bacteria are bacteria that can be stained dark blue or purple with Gram stain, and contain relatively large amounts of peptidoglycan in their cell walls. Among them, transpeptidase can anchor various virulence factor proteins to the cell wall of Gram-positive bacteria. The deletion of transpeptidase gene or the loss of transpeptidase activity will lead to the failure of localization of various surface proteins on the surface of bacteria, which in turn will reduce the ability of infection and adhesion of bacteria. Therefore, the detection of transpeptidase A activity can reflect the potential pathogenicity of Gram-positive bacteria, has high sensitivity, strong specificity, simple operation and cost saving.
典型的革兰氏阳性菌例如可以为,但不限于变形链球菌、酿脓链球菌、猪链球菌、肺炎链球菌、格氏链球菌、肠球菌或单核细胞增生李斯特氏菌。Typical Gram-positive bacteria can be, for example, but not limited to, Streptococcus mutans, Streptococcus pyogenes, Streptococcus suis, Streptococcus pneumoniae, Streptococcus gasseri, Enterococcus or Listeria monocytogenes.
为了进一步了解本发明提供的用于测定转肽酶A活性的多肽探针对的设计方法、工作原理和有益效果,下面结合具体实施例对本发明做进一步详细的说明。In order to further understand the design method, working principle and beneficial effect of the polypeptide probe pair for measuring transpeptidase A activity provided by the present invention, the present invention will be further described in detail below in conjunction with specific examples.
实施例1用于测定转肽酶A活性的多肽探针对的设计Embodiment 1 is used for measuring the design of the polypeptide probe pair of transpeptidase A activity
本实施例提供了一种用于测定转肽酶A活性的多肽探针对,包括第一多肽探针和第二多肽探针,将所设计的两条多肽探针分别命名为aPP-N和aPP-C,其中aPP-N的氨基酸序列为:CCPSQPTYPGLPATGG(SEQ ID NO.1),aPP-C的氨基酸序列为:GGVEDLIRFYDNLQQYLNVCC(SEQID NO.2)。每个探针都包含有三个不同的功能区:其中LPATGG和GG将参与转肽酶A介导的转肽反应;CC是与双砷染料结合的部位,用来读取转肽酶 A的活性;PSQPTYPG和VEDLIRFYDNLQQYLNV会相互结合从而使得两个半胱氨酸-半胱氨酸二联子在空间上相临近。转肽酶A介导的转肽反应会形成一个新的嵌合多肽,其氨基酸序列为:CCPSQPTYPGLPATGGVEDLIRFYDNLQQYLNVCC(SEQ ID NO.3),命名为CC-aPP-CC。对于所形成的嵌合多肽,PSQPTYPG和VEDLIRFYDNLQQYLNV之间的相互结合会使得两个半胱氨酸-半胱氨酸二联子在空间上相互接近,进而与双砷染料结合产生极强的荧光;相反,在缺少转肽酶A作用的情况下,两个半胱氨酸-半胱氨酸二联子无法形成特定的构象来结合双砷染料,双砷染料因此不会发光。利用双砷染料-四半胱氨酸标签复合物的量子产率和荧光水平极度依赖于四半胱氨酸标签空间构象这一特性,通过测定反应前后荧光水平的变化,可以定量测定转肽酶A 的活性,进而测定革兰氏阳性菌的潜在致病能力。This embodiment provides a pair of polypeptide probes for measuring the activity of transpeptidase A, including a first polypeptide probe and a second polypeptide probe, and the two designed polypeptide probes are named aPP- N and aPP-C, wherein the amino acid sequence of aPP-N is: CCPSQPTYPGLPATGG (SEQ ID NO.1), and the amino acid sequence of aPP-C is: GGVEDLIRFYDNLQQYLNVCC (SEQ ID NO.2). Each probe contains three different functional regions: among them, LPATGG and GG will participate in the transpeptidase A-mediated transpeptidation reaction; CC is the site combined with arsenic dye to read the activity of transpeptidase A ; PSQPTYPG and VEDLIRFYDNLQQYLNV will bind to each other so that the two cysteine-cysteine doublets are spatially adjacent. The transpeptidation reaction mediated by transpeptidase A will form a new chimeric polypeptide, its amino acid sequence is: CCPSQPTYPGLPATGGVEDLIRFYDNLQQYLNVCC (SEQ ID NO.3), named CC-aPP-CC. For the formed chimeric polypeptide, the mutual combination between PSQPTYPG and VEDLIRFYDNLQQYLNV will make the two cysteine-cysteine doublets close to each other in space, and then combine with the double arsenic dye to produce extremely strong fluorescence; In contrast, in the absence of the action of transpeptidase A, the two cysteine-cysteine dyads cannot form a specific conformation to bind the diarsenic dye, and the diarsenic dye therefore does not emit light. Utilizing the characteristic that the quantum yield and fluorescence level of the dual arsenic dye-tetracysteine label complex are extremely dependent on the space conformation of the tetracysteine label, the activity of transpeptidase A can be quantitatively determined by measuring the change of the fluorescence level before and after the reaction. Activity, and then determine the potential pathogenicity of Gram-positive bacteria.
实施例2用于测定转肽酶A活性的多肽探针对的性能测定Embodiment 2 is used for measuring the performance measurement of the polypeptide probe pair of transpeptidase A activity
为了测定转肽酶A能否催化本发明实施例1提供的aPP-N和aPP-C形成CC-aPP-CC,本实施例添加10微摩尔每升的aPP-N、40微摩尔每升的a PP-C以及0.1微克的转肽酶A到20微升的转肽反应缓冲液(50mM Tris· HCl,pH 7.5,150mM NaCl,5mM CaCl2和1mM DTT)中,并在37 度孵育两个小时。随后用基质辅助激光解吸电离飞行时间质谱对稀释十倍的反应产物进行分析,结果如图1A所示,转肽反应会生成一个分子质量为 3920.85道尔顿的产物,该分子量和CC-aPP-CC的理论分子量(3920.51道尔顿)相一致,表明转肽酶A可以识别aPP-N/aPP-C中的反应元件并正确连接aPP-N和aPP-C。为测试形成的嵌合多肽能否形成特定的能与双砷染料相结合的构象,本实施例还提供了一条丧失分子内互补能力的多肽,命名为CC-aPPP-CC,其序列为CCPSQPTYPGLPATGGVEDLIRPYDNLQQPL NVCC(SEQ ID NO.4),多肽的N端和C端分别进行了乙酰化修饰和酰胺化修饰。本实施例测定了双砷染料FlAsH-EDT2与aPP-N和aPP-C的混合物、 CC-aPP-CC以及CC-aPPP-CC之间的结合情况,结果如图1B所示。双砷染料可以与CC-aPP-CC结合产生很强的荧光信号;相反,双砷染料与aPP-N/ aPP-C混合物以及CC-aPPP-CC之间则只能产生一些背景信号和比较微弱的荧光信号,这表明CC-aPP-CC能自组装形成特定的构象来结合双砷染料。In order to determine whether transpeptidase A can catalyze aPP-N and aPP-C provided in Example 1 of the present invention to form CC-aPP-CC, this example adds 10 micromoles per liter of aPP-N, 40 micromoles per liter of a Add PP-C and 0.1 μg of transpeptidase A to 20 μl of transpeptidation reaction buffer (50 mM Tris·HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl 2 and 1 mM DTT), and incubate two Hour. Subsequently, the ten-fold diluted reaction product was analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results are shown in Figure 1A. The theoretical molecular weight of CC (3920.51 Daltons) was consistent, indicating that transpeptidase A could recognize the response element in aPP-N/aPP-C and connect aPP-N and aPP-C correctly. In order to test whether the formed chimeric polypeptide can form a specific conformation capable of binding to arsenic dye, this example also provides a polypeptide that has lost its intramolecular complementarity, named CC-aPP P -CC, and its sequence is CCPSQPTYPGLPATGGVEDLIRPYDNLQQPL For NVCC (SEQ ID NO.4), the N-terminal and C-terminal of the polypeptide are modified by acetylation and amidation respectively. In this example, the binding conditions between the double arsenic dye FlAsH-EDT 2 and the mixture of aPP-N and aPP-C, CC-aPP-CC and CC-aPP P -CC were determined, and the results are shown in Figure 1B. Dual arsenic dye can combine with CC-aPP-CC to produce a strong fluorescent signal; on the contrary, only some background signal and comparison between dual arsenic dye and aPP-N/aPP-C mixture and CC-aPP P -CC can be produced. Weak fluorescent signal indicated that CC-aPP-CC could self-assemble into a specific conformation to bind diarsenic dye.
实施例3用于测定转肽酶A活性的多肽探针对在体外定量测定转肽酶 A的活性Embodiment 3 is used for measuring the activity of the polypeptide probe of transpeptidase A activity in vitro quantitative determination of transpeptidase A
本实施例通过实验进一步验证aPP-N和aPP-C能够特异性测定转肽酶 A的活性。本实施例在转肽反应缓冲液中测定了转肽酶A、T4DNA连接酶和泛素连接酶对aPP-N和aPP-C的连接作用。具体实验操作为:将10微摩尔每升的aPP-N和10微摩尔每升的aPP-C分别与0.1微克的转肽酶A、0.1 微克的T4DNA连接酶和0.1微克的泛素连接酶在37度孵育两小时,随后将反应混合物加入到80微升包含0.4微摩尔每升FlAsH-EDT2的双砷染料标记缓冲液(100mMTris·Cl,pH 7.4,75mM NaCl,1mM EDTA,1mM DTT,0.05mM BAL)中去,并在室温避光孵育30分钟。反应结束后,对反应产物进行荧光成像分析,结果如图2A所示。从图2A中可以看到,T4DNA连接酶和泛素连接酶几乎不能催化产生荧光信号,因此说明,多肽探针aPP-N和aPP-C可以特异测定转肽酶A的活性。进一步,将aPP-N和aPP-C 探针分别与浓度为0μg/mL、0.02μg/mL、0.04μg/mL、0.06μg/mL、0.08 μg/mL、0.1μg/mL、0.2μg/mL、0.4μg/mL、0.6μg/mL、0.8μg/mL和1μg/mL 的转肽酶A相孵育,并测定每种浓度转肽酶A所能导致荧光信号的增加Δ F,ΔF与转肽酶A浓度之间的关系如图2B所示,随着转肽酶A浓度的增加,ΔF随之增大,计算出的最低检测限为8.1纳克每毫升,优于常用的荧光淬灭活性检测法,灵敏度高。This example further verifies that aPP-N and aPP-C can specifically measure the activity of transpeptidase A through experiments. In this example, the linking effects of transpeptidase A, T4 DNA ligase and ubiquitin ligase on aPP-N and aPP-C were determined in the transpeptidation reaction buffer. The specific experimental operation is as follows: 10 micromoles per liter of aPP-N and 10 micromoles per liter of aPP-C were mixed with 0.1 micrograms of transpeptidase A, 0.1 micrograms of T4 DNA ligase and 0.1 micrograms of ubiquitin ligase in Incubate at 37 degrees for two hours, then add the reaction mixture to 80 microliters of double arsenic dye labeling buffer (100 mM Tris Cl, pH 7.4, 75 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.05 mM BAL) and incubate at room temperature for 30 minutes in the dark. After the reaction, the reaction product was analyzed by fluorescence imaging, and the results are shown in Figure 2A. It can be seen from Figure 2A that T4 DNA ligase and ubiquitin ligase can hardly catalyze the generation of fluorescent signals, thus indicating that the polypeptide probes aPP-N and aPP-C can specifically measure the activity of transpeptidase A. Further, the aPP-N and aPP-C probes were mixed with concentrations of 0 μg/mL, 0.02 μg/mL, 0.04 μg/mL, 0.06 μg/mL, 0.08 μg/mL, 0.1 μg/mL, 0.2 μg/mL, 0.4μg/mL, 0.6μg/mL, 0.8μg/mL and 1μg/mL of transpeptidase A were incubated, and each concentration of transpeptidase A could lead to an increase in fluorescence signal ΔF, ΔF and transpeptidase The relationship between A concentrations is shown in Figure 2B. As the concentration of transpeptidase A increases, ΔF increases, and the calculated minimum detection limit is 8.1 ng/mL, which is better than the commonly used fluorescence quenching activity. detection method with high sensitivity.
实施例4用于测定转肽酶A活性的多肽探针对测定姜黄素对转肽酶A 活性的抑制Embodiment 4 is used for measuring the polypeptide probe of transpeptidase A activity to measuring curcumin to the inhibition of transpeptidase A activity
本实施例利用多肽探针对来测定姜黄素对转肽酶A活性的抑制作用。姜黄素是存在于姜黄中的一种多酚类化合物,其分子结构式如图3A所示。将转肽酶A与不同浓度的姜黄素在室温孵育10分钟,然后再与aPP-N和 aPP-C的混合物相孵育并测定所形成产物的荧光信号,结果如图3B所示。从结果图中可以看出,姜黄素会抑制转肽酶A的活性,转肽酶A的活性会随着姜黄素浓度的增加而逐渐降低,计算出的半抑制浓度为13.4微克每毫升,与文献中报道的13.8±0.7微克每毫升相一致,说明应用本发明提供的用于测定转肽酶A活性的多肽探针对能够可靠、准确地测定转肽酶A的活性,进而可以测定小分子抑制剂对转肽酶A的抑制作用。In this example, a pair of polypeptide probes was used to determine the inhibitory effect of curcumin on the activity of transpeptidase A. Curcumin is a polyphenolic compound present in turmeric, and its molecular structure is shown in Figure 3A. The transpeptidase A was incubated with different concentrations of curcumin at room temperature for 10 minutes, and then incubated with the mixture of aPP-N and aPP-C to measure the fluorescence signal of the formed product, the results are shown in Figure 3B. As can be seen from the result figure, curcumin can inhibit the activity of transpeptidase A, and the activity of transpeptidase A will gradually decrease with the increase of curcumin concentration, and the calculated half-inhibitory concentration is 13.4 micrograms per milliliter, which is the same as The 13.8 ± 0.7 micrograms reported in the literature are consistent with each milliliter, explaining that the polypeptide probe for measuring transpeptidase A activity provided by the present invention can reliably and accurately measure the activity of transpeptidase A, and then can measure small molecule Inhibition of transpeptidase A by inhibitors.
实施例5用于测定转肽酶A活性的多肽探针对测定金黄色葡萄球菌内转肽酶A的活性Embodiment 5 is used for measuring the activity of the polypeptide probe of transpeptidase A activity to measuring Staphylococcus aureus internal transpeptidase A
为确认本发明提供的用于测定转肽酶A活性的多肽探针对能否测定革兰氏阳性菌内转肽酶A的活性,本实施例以金黄色葡萄球菌为例,将本发明提供的用于测定转肽酶A活性的多肽探针对与金黄色葡萄球菌的裂解液相孵育,并测定了孵育前后的荧光水平。如图4A所示,金黄色葡萄球菌裂解液可以导致荧光增加,表明细菌内的转肽酶A可以促使aPP-N同aPP-C 之间发生转肽反应。进一步,本实施例分别应用浓度为0μg/mL、1μg/mL、 3μg/mL和5μg/mL的姜黄素来处理金黄色葡萄球菌,并测定了被姜黄素处理的金黄色葡萄球菌内转肽酶的活性。如图4B所示,随着姜黄素浓度的逐渐增加,金黄色葡萄球菌内转肽酶A的活性逐渐降低,因此本发明提供的用于测定转肽酶A活性的多肽探针对可以有效测定金黄色葡萄球菌内转肽酶A的活性。In order to confirm whether the polypeptide probe pair used for determining the activity of transpeptidase A provided by the present invention can determine the activity of transpeptidase A in Gram-positive bacteria, this embodiment takes Staphylococcus aureus as an example, and the present invention provides The peptide probe pair used to measure transpeptidase A activity was incubated with the lysate of Staphylococcus aureus, and the fluorescence levels before and after incubation were measured. As shown in FIG. 4A , the lysate of Staphylococcus aureus can lead to an increase in fluorescence, indicating that transpeptidase A in bacteria can promote the transpeptidation reaction between aPP-N and aPP-C. Further, the present embodiment uses curcumin with a concentration of 0 μg/mL, 1 μg/mL, 3 μg/mL and 5 μg/mL to treat Staphylococcus aureus, and measures the endotranspeptidase activity of Staphylococcus aureus treated with curcumin active. As shown in Figure 4B, with the gradual increase of curcumin concentration, the activity of transpeptidase A in Staphylococcus aureus gradually decreases, so the polypeptide probe pair for measuring transpeptidase A activity provided by the present invention can be effectively measured Staphylococcus aureus endotranspeptidase A activity.
综上所述,本发明提供的用于测定转肽酶A活性的多肽探针对,能够特异性参与转肽酶A介导的转肽反应,保证了多肽探针对具有特异性强、准确度好、灵敏度高的优点。第一多肽探针和第二多肽探针经转肽酶A介导的转肽反应形成的新的嵌合多肽,其互补区能够通过分子内相互作用发生自身回折,形成特定的空间构象来结合双砷染料并发出荧光,而未连接的第一多肽探针和第二多肽探针则不会同双砷染料结合,从而使本发明提供的多肽探针对能够测定转肽酶A的活性,操作简单,节约人力物力。并且,应用多肽分子作为检测探针,与测定靶标转肽酶A之间具有较好的生物相容性。In summary, the polypeptide probe pair used for measuring the activity of transpeptidase A provided by the present invention can specifically participate in the transpeptidation reaction mediated by transpeptidase A, which ensures that the polypeptide probe pair has strong specificity and accuracy. The advantages of good accuracy and high sensitivity. The new chimeric polypeptide formed by the transpeptidation reaction mediated by the first polypeptide probe and the second polypeptide probe through transpeptidase A, its complementary region can undergo self-folding through intramolecular interaction to form a specific spatial conformation To bind the double arsenic dye and emit fluorescence, while the unconnected first polypeptide probe and the second polypeptide probe will not combine with the double arsenic dye, so that the polypeptide probe pair provided by the invention can measure transpeptidase A High activity, simple operation, saving manpower and material resources. Moreover, using the polypeptide molecule as the detection probe has good biocompatibility with the assay target transpeptidase A.
本发明提供的测定转肽酶A活性的方法,双砷染料只与多肽探针对连接后所形成的嵌合多肽结合产生荧光,与未连接的多肽探针对之间不会产生荧光,因此本发明提供的测定转肽酶A活性的方法在整个检测过程中无需分离或清洗的步骤,操作简单、方便,亦无需昂贵的仪器或专业技术人员进行操作。In the method for measuring the activity of transpeptidase A provided by the present invention, the dual arsenic dye only combines with the chimeric polypeptide formed after the connection of the polypeptide probe pair to generate fluorescence, and does not generate fluorescence with the unconnected polypeptide probe pair, so The method for measuring the activity of transpeptidase A provided by the present invention does not need separation or cleaning steps in the whole detection process, is simple and convenient to operate, and does not require expensive instruments or professional technicians to operate.
应用本发明提供的用于测定转肽酶A活性的多肽探针对或测定转肽酶 A活性的方法来测定革兰氏阳性菌的潜在致病能力,灵敏度高、特异性强、检测结果准确,且操作简单。Applying the polypeptide probe pair for measuring the activity of transpeptidase A provided by the present invention or the method for measuring the activity of transpeptidase A to determine the potential pathogenicity of Gram-positive bacteria, the sensitivity is high, the specificity is strong, and the detection result is accurate , and the operation is simple.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中国科学院深圳先进技术研究院<110> Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
<120> 用于测定转肽酶A活性的多肽探针对、测定转肽酶A活性的方法及二者的应用<120> Polypeptide probe pair for measuring transpeptidase A activity, method for measuring transpeptidase A activity and application of both
<160> 2<160> 2
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 16<211> 16
<212> PRT<212> PRT
<213> 人工序列<213> Artificial sequence
<400> 1<400> 1
Cys Cys Pro Ser Gln Pro Thr Tyr Pro Gly Leu Pro Ala Thr Gly GlyCys Cys Pro Ser Gln Pro Thr Tyr Pro Gly Leu Pro Ala Thr Gly Gly
1 5 10 151 5 10 15
<210> 2<210> 2
<211> 21<211> 21
<212> PRT<212> PRT
<213> 人工序列<213> Artificial sequence
<400> 2<400> 2
Gly Gly Val Glu Asp Leu Ile Arg Phe Tyr Asp Asn Leu Gln Gln TyrGly Gly Val Glu Asp Leu Ile Arg Phe Tyr Asp Asn Leu Gln Gln Tyr
1 5 10 151 5 10 15
Leu Asn Val Cys CysLeu Asn Val Cys Cys
20 20
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711430280.XA CN108164585B (en) | 2017-12-25 | 2017-12-25 | Polypeptide probe pair for assaying transpeptidase A activity, method for assaying transpeptidase A activity, and application of both |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711430280.XA CN108164585B (en) | 2017-12-25 | 2017-12-25 | Polypeptide probe pair for assaying transpeptidase A activity, method for assaying transpeptidase A activity, and application of both |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108164585A true CN108164585A (en) | 2018-06-15 |
CN108164585B CN108164585B (en) | 2020-07-24 |
Family
ID=62521069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711430280.XA Active CN108164585B (en) | 2017-12-25 | 2017-12-25 | Polypeptide probe pair for assaying transpeptidase A activity, method for assaying transpeptidase A activity, and application of both |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108164585B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116693610A (en) * | 2023-06-16 | 2023-09-05 | 安阳师范学院 | Probe molecule for determining polypeptide ligase, method for determining transpeptidase A and application |
-
2017
- 2017-12-25 CN CN201711430280.XA patent/CN108164585B/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116693610A (en) * | 2023-06-16 | 2023-09-05 | 安阳师范学院 | Probe molecule for determining polypeptide ligase, method for determining transpeptidase A and application |
CN116693610B (en) * | 2023-06-16 | 2024-05-03 | 安阳师范学院 | Probe molecule for determining polypeptide ligase, method for determining transpeptidase A and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108164585B (en) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7532562B2 (en) | Activation of bioluminescence by structural complementation | |
JP4060886B2 (en) | Isolation and utilization of SH3-binding peptides | |
JP2007259856A (en) | SrcSH3 binding peptide and method for separating and using the same | |
US20120283136A1 (en) | Compositions and methods for the rapid biosynthesis and in vivo screening of biologically relevant peptides | |
CN112639118A (en) | Method for enhancing sensitivity of endotoxin-assaying agent | |
US7166475B2 (en) | Compositions and methods for monitoring the modification state of a pair of polypeptides | |
JP2001514849A (en) | Polypeptides containing coiled coils and additional sites | |
JP5553326B2 (en) | Single molecule probe and use thereof | |
US20200271651A1 (en) | Methods, compositions, and kits for detection of aspergillosis | |
CN108164585B (en) | Polypeptide probe pair for assaying transpeptidase A activity, method for assaying transpeptidase A activity, and application of both | |
CN106632689B (en) | Polypeptide probe, kit containing the probe and application thereof | |
US20020015943A1 (en) | Assays, methods and means relating to the modulation of levels of nuclear beta-catenin | |
EP3097124B1 (en) | Means and methods for detecting activated malt1 | |
EP4508095A1 (en) | Methods of identifying proximity effector polypeptides and methods of use thereof | |
Xu et al. | Transpeptidation-directed intramolecular bipartite tetracysteine display for sortase activity assay | |
JP2001019700A (en) | Fluorescently labeled peptide | |
US20060040319A1 (en) | Multiple sensor-containing active modified polypeptides, preparation and uses thereof | |
KR20250046456A (en) | Live cell-based sensor for EGFR inhibitor screening | |
CN118547044A (en) | Enzyme-enhanced ADAMTS-13 Activity assays | |
Yamabhai | BAP-fusion: A versatile molecular probe for biotechnology research |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |