CN108132650A - A kind of Flow Shop control method and device - Google Patents
A kind of Flow Shop control method and device Download PDFInfo
- Publication number
- CN108132650A CN108132650A CN201611087989.XA CN201611087989A CN108132650A CN 108132650 A CN108132650 A CN 108132650A CN 201611087989 A CN201611087989 A CN 201611087989A CN 108132650 A CN108132650 A CN 108132650A
- Authority
- CN
- China
- Prior art keywords
- time
- workpiece
- target
- target device
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 238000012545 processing Methods 0.000 claims abstract description 370
- 230000008569 process Effects 0.000 claims abstract description 67
- 239000011159 matrix material Substances 0.000 claims description 53
- 238000003754 machining Methods 0.000 claims description 49
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 230000002354 daily effect Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 230000003203 everyday effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种流水车间控制方法及装置,该方法包括:获取流水车间的第一预设数目的目标设备的加工日历;获取第二预设数目的工件在目标设备上,具有最短总加工时间的目标加工次序;根据加工日历和目标加工次序,确定各个工件在各个目标设备上进行零空闲加工的目标开始时间和目标结束时间,其中,目标开始时间和目标结束时间均位于加工日历范围之内;根据目标开始时间和目标结束时间,控制各个目标设备对各个工件进行加工。因此,本发明的方案,能够根据不同设备的不同加工日历以及最优加工次序,确定各个工件在各个设备上进行零空闲加工的开始时间和结束时间,从而实现差异性设备工作日历下的流水车间设备工作的连续性。
The present invention provides a flow shop control method and device. The method includes: obtaining the processing calendar of the first preset number of target equipment in the flow shop; obtaining the second preset number of workpieces on the target device with the shortest total processing The target processing sequence of time; according to the processing calendar and the target processing sequence, determine the target start time and target end time of each workpiece for zero-idle processing on each target device, wherein the target start time and target end time are both within the range of the processing calendar within; according to the target start time and target end time, control each target equipment to process each workpiece. Therefore, the solution of the present invention can determine the start time and end time of zero-idle processing of each workpiece on each device according to the different processing calendars of different devices and the optimal processing sequence, thereby realizing the flow workshop under the working calendar of different devices Continuity of equipment work.
Description
技术领域technical field
本发明涉及制造技术领域,尤其涉及一种流水车间控制方法及装置。The invention relates to the field of manufacturing technology, in particular to a control method and device for a flow shop.
背景技术Background technique
流水车间调度问题(FSP)是研究最广泛的生产调度问题之一,具有很强的工程应用背景。研究表明:约有25%的生产制造系统、组装线和信息服务设施可简化为FSP模型。流水生产方式由于其按一定节拍进行的连续式生产过程,以及其任务工序间加工零件规律性传递的生产机制,能够大幅度提升生产任务的生产效率和质量。在传统的置换流水车间调度问题中,流水线生产过程的单个零件在一道工序加工完毕后,立即转移到下道工序继续加工,避免了任务零件在成批加工和流转过程中浪费大量的等待时间,从而实现任务加工效率的提升。然而,传统的置换流水车间这种以零件个体为单位的单件传递流水机制,由于后续工序需要等待前驱工序加工完毕后才能开始生产,因此如果零件前后工序加工时间存在差异,尤其是在后续工序加工时间快于前驱工序的情况下,相邻工序间就会出现一定的时间间隔。这种时间间隔会造成设备的频繁启停,对于一些特殊产品如集成电路、纺织和陶瓷等的生产制造过程,会增加设备使用成本,因此不允许机器停止运转,即形成所谓的零空闲调度问题。零空闲流水车间调度问题的求解核心为确定各工件的生产次序,即一个加工序列,使得某项生产指标最优。问题通常假设所有机器上工件的加工次序相同,即总共需要考虑n!(n为工件的个数)个不同的排列。The Flow Shop Scheduling Problem (FSP) is one of the most widely studied production scheduling problems and has a strong engineering application background. Research shows that about 25% of manufacturing systems, assembly lines and information service facilities can be simplified to FSP models. The flow production method can greatly improve the production efficiency and quality of production tasks due to its continuous production process at a certain pace and its production mechanism of regular transfer of processed parts between task processes. In the traditional replacement flow workshop scheduling problem, a single part in the assembly line production process is immediately transferred to the next process to continue processing after one process is completed, avoiding the waste of a lot of waiting time in the process of batch processing and circulation of task parts. In order to achieve the improvement of task processing efficiency. However, the single-piece transfer flow mechanism of the traditional replacement flow shop, which takes individual parts as the unit, requires the follow-up process to wait for the predecessor process to be completed before production can start. When the processing time is faster than the predecessor process, there will be a certain time interval between adjacent processes. This time interval will cause frequent start and stop of equipment. For the manufacturing process of some special products such as integrated circuits, textiles and ceramics, it will increase the cost of equipment use, so the machine is not allowed to stop running, which forms the so-called zero-idle scheduling problem. . The core of solving the zero-idle flow shop scheduling problem is to determine the production sequence of each workpiece, that is, a processing sequence, so that a certain production index is optimal. The problem usually assumes that the workpieces are processed in the same order on all machines, i.e. a total of n! (n is the number of workpieces) different permutations.
当给定工件加工次序,传统的零空闲流水车间调度问题的解码思路通常为,首先根据工件加工次序完成置换流水车间的调度,再根据置换流水车间的调度结果,从第二台设备开始,依次将相关工序的开始时间后移,消除设备内空闲时间并满足工序间约束,最后得到零空闲流水车间的调度结果。其中,工序后移的过程即为压件缓冲的过程,即单个零件在一道工序加工完毕后,不是立即转移到下道工序加工,而是被暂时存储在工序之间形成缓存,当缓存积累到一定量后再开始下道工序的加工,以保证下道工序设备的持续运行。因此,传统的零空闲流水车间调度问题的解码核心是工序间压件量的计算。When the workpiece processing sequence is given, the decoding idea of the traditional zero-idle flow shop scheduling problem is usually as follows: first complete the scheduling of the replacement flow shop according to the processing sequence of the workpieces, and then start from the second equipment according to the scheduling results of the replacement flow shop, and proceed sequentially The start time of related processes is shifted backward, the idle time in the equipment is eliminated and the constraints between processes are satisfied, and finally the scheduling result of the zero-idle flow shop is obtained. Among them, the process of moving the process back is the process of pressing parts buffering, that is, after a single part is processed in one process, it is not immediately transferred to the next process for processing, but is temporarily stored in the process to form a cache. When the cache is accumulated to After a certain amount, start the processing of the next process to ensure the continuous operation of the equipment in the next process. Therefore, the decoding core of the traditional zero-idle flow shop scheduling problem is the calculation of the quantity of pressing pieces between processes.
然而,在实际生产中,由于设备的加工日历不同,不同的设备每天或每周的加工时间存在差异,故对于零空闲流水车间调度问题,其调度结果无法用传统的甘特图形式表示,甘特图上每台设备对应的区域应分为可占用区域和不可占用区域。此外,压件量的计算也因为设备的工作时间差异比传统的零空闲流水车间调度问题复杂。However, in actual production, due to the different processing calendars of the equipment, the processing time of different equipment is different every day or every week. Therefore, for the zero-idle flow shop scheduling problem, the scheduling results cannot be expressed in the form of traditional Gantt charts. The area corresponding to each device on the special map should be divided into an occupable area and an unoccupiable area. In addition, the calculation of the quantity of pressed parts is also more complicated than the traditional zero-idle flow shop scheduling problem due to the difference in the working hours of the equipment.
此外,对于零空闲流水车间调度问题,虽然已有大量的研究,但往往存在以下不足:In addition, although there has been a lot of research on the scheduling problem of zero-idle flow shop, there are often the following deficiencies:
1、目前研究的零空闲流水车间调度问题所涉及的设备加工日历都相同,其调度算法尤其是解码算法简单,直接在时间轴上将相关工序后移,无法应对实际生产中的涉及到具有差异性加工日历的设备的调度问题;1. The equipment processing calendars involved in the zero-idle flow shop scheduling problem currently studied are all the same. The scheduling algorithm, especially the decoding algorithm, is simple, and the relevant processes are directly moved back on the time axis, which cannot cope with the differences involved in actual production. Scheduling of equipment for sex processing calendar;
2、传统的用于产生工件加工次序的参照最近插入规则所提出的启发式算法(Saadani-Guinet-Moalla,SGM)、改进贪心算法(important greedy algorithm,IGA)等启发式算法,以及差分进化算法等智能优化算法,都是以工序的工时为依据,以设备加工日历相同为基础,不适用于设备加工日历不同的实际生产情况。2. The traditional heuristic algorithm (Saadani-Guinet-Moalla, SGM), improved greedy algorithm (important greedy algorithm, IGA) and other heuristic algorithms proposed by referring to the nearest insertion rule for generating workpiece processing order, and differential evolution algorithm And other intelligent optimization algorithms are all based on the working hours of the process and the same equipment processing calendar, which is not suitable for the actual production situation with different equipment processing calendars.
发明内容Contents of the invention
为了克服现有技术中存在的上述问题,本发明的实施例提供了一种流水车间控制方法及装置,能够根据不同设备的不同加工日历以及最优加工次序,确定各个工件在各个设备上进行零空闲加工的开始时间和结束时间,从而实现差异性设备工作日历下的流水车间设备工作的连续性。In order to overcome the above-mentioned problems existing in the prior art, the embodiment of the present invention provides a flow shop control method and device, which can determine the zero-zero process of each workpiece on each device according to the different processing calendars and optimal processing sequences of different devices. The start time and end time of idle processing, so as to realize the continuity of the flow shop equipment work under the different equipment work calendar.
为了解决上述技术问题,本发明采用如下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
依据本发明实施例的一个方面,提供了一种流水车间控制方法,包括:According to an aspect of an embodiment of the present invention, a flow shop control method is provided, including:
获取流水车间的第一预设数目的目标设备的加工日历;Acquiring processing calendars of the first preset number of target devices in the flow shop;
获取第二预设数目的工件在所述目标设备上,具有最短总加工时间的目标加工次序;Obtaining a target processing order of the second preset number of workpieces on the target device with the shortest total processing time;
根据所述加工日历和所述目标加工次序,确定各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间,其中,所述目标开始时间和所述目标结束时间均位于所述加工日历范围之内;According to the processing calendar and the target processing sequence, determine the target start time and target end time for each workpiece to perform zero-idle processing on each of the target devices, wherein the target start time and the target end time are located at within the stated processing calendar;
根据所述目标开始时间和所述目标结束时间,控制各个所述目标设备对各个工件进行加工。According to the target start time and the target end time, each target device is controlled to process each workpiece.
其中,上述方案中,所述获取第二预设数目的工件在所述目标设备上,具有最短总加工时间的目标加工次序的步骤,包括:Wherein, in the above solution, the step of obtaining the target processing order of the second preset number of workpieces on the target device with the shortest total processing time includes:
获取第二预设数目的工件在各个所述目标设备上的耗时度,并构成耗时度矩阵,所述耗时度为任意工件在任意目标设备的加工日历内的预设时间段中在该目标设备上所加工的时间,与所述预设时间段的比值;Acquiring the time-consuming degree of the second preset number of workpieces on each of the target devices, and forming a time-consuming degree matrix, the time-consuming degree is any workpiece in the preset time period in the processing calendar of any target device The ratio of the processing time on the target device to the preset time period;
采用基于工序耗时度的改进(CDS)算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序。The improved (CDS) algorithm based on the time-consuming degree of the process is adopted, and the target processing order with the shortest total processing time is obtained according to the time-consuming degree matrix.
其中,上述方案中,所述第一预设数目为m,所述第二预设数目为n,所述加工日历包括每周工作的天数和每天工作的时长;Wherein, in the above scheme, the first preset number is m, the second preset number is n, and the processing calendar includes the number of working days per week and the working hours per day;
所述获取第二预设数目的工件在各个所述目标设备上的耗时度,并构成耗时度矩阵的步骤,包括:The step of obtaining the time-consuming degrees of the second preset number of workpieces on each of the target devices and forming a time-consuming degree matrix includes:
获取各个工件在各个所述目标设备上的加工时间;Obtain the processing time of each workpiece on each of the target devices;
根据各个工件在各个所述目标设备上的加工时间、各个所述目标设备的加工日历,以及第一预设公式p′j,i=pj,i/(di×hi),确定各个工件在各个所述目标设备上的耗时度,其中,p′j,i表示第j个工件在第i个目标设备上的耗时度,pj,i表示第j个工件在第i个目标设备上的加工时间,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长;According to the processing time of each workpiece on each of the target equipment, the processing calendar of each of the target equipment, and the first preset formula p' j,i =p j,i /(d i ×h i ), determine each The time-consuming degree of the workpiece on each of the target devices, where p′ j,i represents the time-consuming degree of the j-th workpiece on the i-th target device, and p j,i represents the time-consuming degree of the j-th workpiece on the i-th target device The processing time on the target device, d i represents the number of working days of the i-th target device per week, and h i represents the daily working hours of the i-th target device;
根据各个工件在各个所述目标设备上的耗时度,获得n×m阶的耗时度矩阵。According to the time-consuming degree of each workpiece on each of the target devices, an n×m-order time-consuming degree matrix is obtained.
其中,上述方案中,所述采用基于工序耗时度的改进CDS算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序的步骤,包括:Wherein, in the above-mentioned solution, the step of obtaining the target processing order with the shortest total processing time according to the time-consuming degree matrix using the improved CDS algorithm based on the time-consuming degree of the process includes:
采用CDS算法,将所述耗时度矩阵分解为m-1个n×2阶的目标矩阵;Using the CDS algorithm, decomposing the time-consuming degree matrix into m-1 target matrices of order n×2;
采用Johnson启发式算法,分别确定对应于各个所述目标矩阵的加工次序;Using the Johnson heuristic algorithm to respectively determine the processing order corresponding to each of the target matrices;
获取对应于各个所述目标矩阵的加工次序的总加工时间;obtaining the total processing time corresponding to the processing order of each of the target matrices;
从对应于各个所述目标矩阵的加工次序中选出总加工时间最小的加工次序作为所述目标加工次序。The processing sequence with the smallest total processing time is selected from the processing sequences corresponding to each of the target matrices as the target processing sequence.
其中,上述方案中,所述根据所述加工日历和所述目标加工次序,确定各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间的步骤,包括:Wherein, in the above solution, the step of determining the target start time and target end time of zero-idle processing of each workpiece on each of the target devices according to the processing calendar and the target processing sequence includes:
根据所述目标加工次序,确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;According to the target processing sequence, determine a first start time and a first end time for each workpiece to be processed on each of the target equipment;
根据所述加工日历,确定各个所述目标设备的停机区间;According to the processing calendar, determine the downtime interval of each of the target equipment;
根据所述停机区间,对所述第一开始时间和所述第一结束时间进行调整,获得各个工件基于所述加工日历在各个所述目标设备上加工的第二开始时间和第二结束时间;Adjusting the first start time and the first end time according to the shutdown interval to obtain a second start time and a second end time for each workpiece to be processed on each of the target devices based on the processing calendar;
对所述第二开始时间和所述第二结束时间进行调整,获得各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间。The second start time and the second end time are adjusted to obtain a target start time and a target end time for zero-idle processing of each workpiece on each of the target devices.
其中,上述方案中,所述根据所述目标加工次序,确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间的步骤,包括:Wherein, in the above solution, the step of determining the first start time and the first end time of processing each workpiece on each of the target equipment according to the target processing sequence includes:
根据公式:According to the formula:
确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;determining a first start time and a first end time for each workpiece to be processed on each of said target devices;
其中,j≤n,i≤m,且j、i、m、n均为正整数,m表示所述第一预设数目,n表示所述第二预设数目,π(j)表示在所述目标加工次序中排位第j的工件,Sπ(j),i表示工件π(j)在第i个目标设备上加工的第一开始时间,Cπ(j),i表示工件π(j)在第i个目标设备上加工的第一结束时间。Wherein, j≤n, i≤m, and j, i, m, and n are all positive integers, m represents the first preset number, n represents the second preset number, and π(j) represents the The j-th workpiece in the above target processing sequence, S π(j), i represents the first start time of the processing of the workpiece π(j) on the i-th target device, C π(j), i represents the workpiece π( j) The first end time of processing on the i-th target device.
其中,上述方案中,所述加工日历包括每周工作的天数和每天工作的时长;Wherein, in the above scheme, the processing calendar includes the number of working days per week and the working hours per day;
所述根据所述加工日历,确定各个所述目标设备的停机区间的步骤,包括:The step of determining the downtime interval of each target equipment according to the processing calendar includes:
确定满足公式(floor(ti))%24≥hi和((floor(ti))in24)%7≥di的时间ti的取值区间,并将所述时间ti的取值区间确定为第i个所述目标设备的停机区间INi;Determine the value interval of time t i that satisfies the formula (floor(t i ))%24≥h i and ((floor(t i ))in24)%7≥d i , and set the value of time t i The interval is determined as the outage interval IN i of the i-th target device;
其中,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长。Wherein, d i represents the working days of the i-th target device every week, and h i represents the working hours of the i-th target device every day.
其中,上述方案中,所述根据所述停机区间,对所述第一开始时间和所述第一结束时间进行调整,获得各个工件基于所述加工日历在各个所述目标设备上加工的第二开始时间和第二结束时间的步骤,包括:Wherein, in the above solution, the first start time and the first end time are adjusted according to the downtime interval to obtain the second time of each workpiece being processed on each of the target equipment based on the processing calendar. Steps for start time and second end time, including:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间进行第一次调整;adjusting the first start time and the first end time of each workpiece processed on each of the target equipment for the first time;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第k次调整,k为大于1且小于n的整数常量;Carrying out the kth adjustment to the start time and end time of each workpiece being processed on each of the target devices, k is an integer constant greater than 1 and less than n;
当各个工件在各个所述目标设备上的第一开始时间和第一结束时间进行n次调整完毕后,获得所述第二开始时间和所述第二结束时间;Obtain the second start time and the second end time after the first start time and first end time of each workpiece on each target device have been adjusted n times;
其中,表示工件π(j)在第i个目标设备上加工的第二开始时间;in, Indicates the second start time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间; Indicates the second end time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第一次调整之后的开始时间; Indicates the start time after the first adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第一次调整之后的结束时间; Indicates the end time after the first adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k次调整之后的开始时间; Represents the start time after the kth adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k次调整之后的结束时间; Indicates the end time after the kth adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k-1次调整之后的开始时间; Represents the start time after the k-1th adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k-1次调整之后的结束时间; Indicates the end time after the k-1th adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的开始时间插补量; Indicates the interpolation amount of the start time of workpiece π(j) being processed on the i-th target device when processing is performed based on the processing calendar of the target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的结束时间插补量。 Indicates the interpolation amount of the end time of workpiece π(j) processed on the i-th target device when processing is performed based on the processing calendar of the target device.
其中,上述方案中,所述对所述第二开始时间和所述第二结束时间进行调整,获得各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间的步骤,包括:Wherein, in the above solution, the step of adjusting the second start time and the second end time to obtain the target start time and target end time for each workpiece to perform zero-idle processing on each of the target devices, include:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行第一次调整; performing a first adjustment to a second start time and a second end time of processing each workpiece on each of the target devices;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第h次调整,h为大于1且小于m的整数常量;Adjusting the start time and end time of processing each workpiece on each target device for the hth time, h is an integer constant greater than 1 and less than m;
当各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行m次调整完毕后,获得所述目标开始时间和所述目标结束时间;After the second start time and the second end time of each workpiece processed on each of the target devices have been adjusted m times, the target start time and the target end time are obtained;
其中,表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标开始时间;in, Indicates the target start time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标结束时间; Indicates the target end time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h次调整后的开始时间; Indicates the start time after the second start time of the workpiece π(j) being processed on the i-th target device after the h-th adjustment;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整后的结束时间; Indicates the end time after the second end time of workpiece π(j) processed on the i-th target device is adjusted for the hth time;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h-1次调整后的开始时间; Indicates the start time after the h-1th adjustment of the second start time for processing the workpiece π(j) on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h-1次调整后的结束时间; Indicates the end time after the h-1th adjustment of the second end time of the workpiece π(j) processed on the i-th target device;
表示进行零空闲加工时,工件π(j)在第h个目标设备上加工的第二开始时间的时间插补量; Indicates the time interpolation amount of the second start time of the workpiece π(j) being processed on the h-th target device during zero-idle processing;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整时的时间插补量。 Indicates the time interpolation amount when the workpiece π(j) is adjusted for the hth time at the second end time of processing on the i-th target device.
依据本发明实施例的另一个方面,还提供了一种流水车间控制装置,包括:According to another aspect of the embodiments of the present invention, a flow shop control device is also provided, including:
加工日历获取模块,用于获取流水车间的第一预设数目的目标设备的加工日历;The processing calendar acquisition module is used to obtain the processing calendars of the first preset number of target devices in the assembly line;
加工次序确定模块,用于获取第二预设数目的工件在所述目标设备上,具有最短总加工时间的目标加工次序;A processing sequence determination module, configured to obtain a target processing sequence with the shortest total processing time for a second preset number of workpieces on the target device;
加工时间确定模块,用于根据所述加工日历和所述目标加工次序,确定各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间,其中,所述目标开始时间和所述目标结束时间均位于所述加工日历范围之内;The processing time determination module is used to determine the target start time and target end time of zero-idle processing of each workpiece on each of the target devices according to the processing calendar and the target processing sequence, wherein the target start time and The target end times are all within the range of the processing calendar;
加工控制模块,用于根据所述目标开始时间和所述目标结束时间,控制各个所述目标设备对各个工件进行加工。A processing control module, configured to control each of the target devices to process each workpiece according to the target start time and the target end time.
其中,上述方案中,所述加工次序确定模块,包括:Wherein, in the above scheme, the processing sequence determination module includes:
矩阵确定单元,用于获取第二预设数目的工件在各个所述目标设备上的耗时度,并构成耗时度矩阵,所述耗时度为任意工件在任意目标设备的加工日历内的预设时间段中在该目标设备上所加工的时间,与所述预设时间段的比值;a matrix determining unit, configured to obtain the time-consuming degree of the second preset number of workpieces on each of the target devices, and form a time-consuming degree matrix, the time-consuming degree is the time-consuming degree of any workpiece within the processing calendar of any target device The ratio of the processing time on the target device in the preset time period to the preset time period;
加工次序确定单元,用于采用基于工序耗时度的改进CDS算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序。The processing order determination unit is configured to adopt the improved CDS algorithm based on the time-consuming degree of the process, and obtain the target processing order with the shortest total processing time according to the time-consuming degree matrix.
其中,上述方案中,所述第一预设数目为m,所述第二预设数目为n,所述加工日历包括每周工作的天数和每天工作的时长;Wherein, in the above scheme, the first preset number is m, the second preset number is n, and the processing calendar includes the number of working days per week and the working hours per day;
所述矩阵确定单元包括:The matrix determination unit includes:
第一获取子单元,用于获取各个工件在各个所述目标设备上的加工时间;A first acquiring subunit, configured to acquire the processing time of each workpiece on each of the target devices;
第一计算子单元,用于根据各个工件在各个所述目标设备上的加工时间、各个所述目标设备的加工日历,以及第一预设公式p′j,i=pj,i/(di×hi),确定各个工件在各个所述目标设备上的耗时度,其中,p′j,i表示第j个工件在第i个目标设备上的耗时度,pj,i表示第j个工件在第i个目标设备上的加工时间,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长;The first calculation subunit is used to calculate according to the processing time of each workpiece on each of the target devices, the processing calendar of each of the target devices, and the first preset formula p'j ,i =p j,i /(d i ×h i ), determine the time-consuming degree of each workpiece on each of the target devices, where p′ j,i represents the time-consuming degree of the j-th workpiece on the i-th target device, and p j,i represents The processing time of the j-th workpiece on the i-th target device, d i represents the number of working days of the i-th target device per week, and h i represents the daily working hours of the i-th target device;
第一确定子单元,用于根据各个工件在各个所述目标设备上的耗时度,获得n×m阶的耗时度矩阵。The first determination subunit is configured to obtain a time-consuming degree matrix of order n×m according to the time-consuming degree of each workpiece on each of the target devices.
其中,上述方案中,所述加工次序确定单元包括:Wherein, in the above scheme, the processing order determination unit includes:
分解子单元,用于采用CDS算法,将所述耗时度矩阵分解为m-1个n×2阶的目标矩阵;The decomposition subunit is used to decompose the time-consuming degree matrix into m-1 target matrices of order n×2 by using the CDS algorithm;
第二计算子单元,用于采用Johnson启发式算法,分别确定对应于各个所述目标矩阵的加工次序;The second calculation subunit is used to determine the processing order corresponding to each of the target matrices by using the Johnson heuristic algorithm;
第三计算子单元,用于获取对应于各个所述目标矩阵的加工次序的总加工时间;A third calculation subunit, configured to obtain the total processing time corresponding to the processing order of each of the target matrices;
第二确定子单元,用于从对应于各个所述目标矩阵的加工次序中选出总加工时间最小的加工次序作为所述目标加工次序。The second determining subunit is configured to select a processing order with the smallest total processing time from the processing orders corresponding to each of the target matrices as the target processing order.
其中,上述方案中,所述加工时间确定模块包括:Wherein, in the above scheme, the processing time determination module includes:
开始与结束时间确定单元,用于根据所述目标加工次序,确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;A start and end time determining unit, configured to determine a first start time and a first end time for each workpiece to be processed on each of the target devices according to the target processing sequence;
停机区间确定单元,用于根据所述加工日历,确定各个所述目标设备的停机区间;a shutdown interval determining unit, configured to determine the shutdown interval of each of the target equipment according to the processing calendar;
第一调整单元,用于根据所述停机区间,对所述第一开始时间和所述第一结束时间进行调整,获得各个工件基于所述加工日历在各个所述目标设备上加工的第二开始时间和第二结束时间;A first adjustment unit, configured to adjust the first start time and the first end time according to the downtime interval to obtain a second start of processing each workpiece on each of the target equipment based on the processing calendar time and second end time;
第二调整单元,用于对所述第二开始时间和所述第二结束时间进行调整,获得各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间。The second adjustment unit is configured to adjust the second start time and the second end time to obtain a target start time and a target end time for zero-idle processing of each workpiece on each of the target devices.
其中,上述方案中,所述开始与结束时间确定单元具体用于:Wherein, in the above solution, the start and end time determination unit is specifically used for:
根据公式:According to the formula:
确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;determining a first start time and a first end time for each workpiece to be processed on each of said target devices;
其中,j≤n,i≤m,且j、i、m、n均为正整数,m表示所述第一预设数目,n表示所述第二预设数目,π(j)表示在所述目标加工次序中排位第j的工件,Sπ(j),i表示工件π(j)在第i个目标设备上加工的第一开始时间,Cπ(j),i表示工件π(j)在第i个目标设备上加工的第一结束时间。Wherein, j≤n, i≤m, and j, i, m, and n are all positive integers, m represents the first preset number, n represents the second preset number, and π(j) represents the The j-th workpiece in the above target processing sequence, S π(j), i represents the first start time of the processing of the workpiece π(j) on the i-th target device, C π(j), i represents the workpiece π( j) The first end time of processing on the i-th target device.
其中,上述方案中,所述加工日历包括每周工作的天数和每天工作的时长;Wherein, in the above scheme, the processing calendar includes the number of working days per week and the working hours per day;
所述停机区间确定单元具体用于:The shutdown interval determination unit is specifically used for:
确定满足公式(floor(ti))%24≥hi和((floor(ti))in24)%7≥di的时间ti的取值区间,并将所述时间ti的取值区间确定为第i个所述目标设备的停机区间INi;Determine the value interval of time t i that satisfies the formula (floor(t i ))%24≥h i and ((floor(t i ))in24)%7≥d i , and set the value of time t i The interval is determined as the outage interval IN i of the i-th target device;
其中,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长。Wherein, d i represents the working days of the i-th target device every week, and h i represents the working hours of the i-th target device every day.
其中,上述方案中,所述第一调整单元具体用于:Wherein, in the above solution, the first adjustment unit is specifically used for:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间进行第一次调整;adjusting the first start time and the first end time of each workpiece processed on each of the target equipment for the first time;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第k次调整,k为大于1且小于n的整数常量;Carrying out the kth adjustment to the start time and end time of each workpiece being processed on each of the target devices, k is an integer constant greater than 1 and less than n;
当各个工件在各个所述目标设备上的第一开始时间和第一结束时间进行n次调整完毕后,获得所述第二开始时间和所述第二结束时间;Obtain the second start time and the second end time after the first start time and first end time of each workpiece on each target device have been adjusted n times;
其中,表示工件π(j)在第i个目标设备上加工的第二开始时间;in, Indicates the second start time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间; Indicates the second end time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第一次调整之后的开始时间; Indicates the start time after the first adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第一次调整之后的结束时间; Indicates the end time after the first adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k次调整之后的开始时间; Represents the start time after the kth adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k次调整之后的结束时间; Indicates the end time after the kth adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k-1次调整之后的开始时间; Represents the start time after the k-1th adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k-1次调整之后的结束时间; Indicates the end time after the k-1th adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的开始时间插补量; Indicates the interpolation amount of the start time of workpiece π(j) being processed on the i-th target device when processing is performed based on the processing calendar of the target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的结束时间插补量。 Indicates the interpolation amount of the end time of workpiece π(j) processed on the i-th target device when processing is performed based on the processing calendar of the target device.
其中,上述方案中,所述第二调整单元具体用于:Wherein, in the above solution, the second adjustment unit is specifically used for:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行第一次调整; performing a first adjustment to a second start time and a second end time of processing each workpiece on each of the target devices;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第h次调整,h为大于1且小于m的整数常量;Adjusting the start time and end time of processing each workpiece on each target device for the hth time, h is an integer constant greater than 1 and less than m;
当各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行m次调整完毕后,获得所述目标开始时间和所述目标结束时间;After the second start time and the second end time of each workpiece processed on each of the target devices have been adjusted m times, the target start time and the target end time are obtained;
其中,表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标开始时间;in, Indicates the target start time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标结束时间; Indicates the target end time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h次调整后的开始时间; Indicates the start time after the second start time of the workpiece π(j) being processed on the i-th target device after the h-th adjustment;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整后的结束时间; Indicates the end time after the second end time of workpiece π(j) processed on the i-th target device is adjusted for the hth time;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h-1次调整后的开始时间; Indicates the start time after the h-1th adjustment of the second start time for processing the workpiece π(j) on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h-1次调整后的结束时间; Indicates the end time after the h-1th adjustment of the second end time of the workpiece π(j) processed on the i-th target device;
表示进行零空闲加工时,工件π(j)在第h个目标设备上加工的第二开始时间的时间插补量; Indicates the time interpolation amount of the second start time of the workpiece π(j) being processed on the h-th target device during zero-idle processing;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整时的时间插补量。 Indicates the time interpolation amount when the workpiece π(j) is adjusted for the hth time at the second end time of processing on the i-th target device.
本发明实施例的有益效果是:The beneficial effects of the embodiments of the present invention are:
本发明的实施例,通过确定各个工件在各个目标设备进行加工的最优加工次序,以及各个目标设备的加工日历,从而确定各个工件基于目标设备的加工日历在各个目标设备上进行零空闲加工的开始时间和结束时间,为调度人员进行具有差异性设备加工日历的零空闲流水车间调度提供辅助,从而实现差异性设备工作日历下的流水车间设备工作的连续性,适用于设备加工日历不同的实际生产情况。In the embodiment of the present invention, by determining the optimal processing sequence of each workpiece to be processed on each target device and the processing calendar of each target device, the zero-idle processing time of each workpiece on each target device based on the processing calendar of the target device is determined. The start time and end time provide assistance for the dispatcher to carry out the zero-idle flow shop scheduling with different equipment processing calendars, so as to realize the continuity of the flow shop equipment work under the different equipment work calendars, which is suitable for different actual equipment processing calendars Production status.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments of the present invention. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention , for those skilled in the art, other drawings can also be obtained according to these drawings without paying creative labor.
图1表示本发明第一实施例的流水车间控制方法的流程图;Fig. 1 represents the flow chart of the flow shop control method of the first embodiment of the present invention;
图2表示本发明第一实施例中采用CDS算法根据耗时度矩阵确定具有最短总加工时间的目标加工次序的流程示意图;Fig. 2 shows the schematic flow chart of determining the target processing sequence with the shortest total processing time according to the time-consuming degree matrix using the CDS algorithm in the first embodiment of the present invention;
图3表示本发明第一实施例中各个工件在各个目标设备上加工的甘特图;Fig. 3 represents the Gantt chart of each workpiece being processed on each target device in the first embodiment of the present invention;
图4表示本发明第一实施例中各个工件基于加工日历在各个目标设备上加工的甘特图;Fig. 4 represents the Gantt chart of each workpiece processed on each target device based on the processing calendar in the first embodiment of the present invention;
图5表示本发明第一实施例中各个工件基于加工日历在各个目标设备上进行零空闲加工的甘特图;Fig. 5 shows the Gantt chart of each workpiece performing zero-idle processing on each target device based on the processing calendar in the first embodiment of the present invention;
图6表示本发明第二实施例的流水车间控制装置的结构框图之一;Fig. 6 shows one of the structural block diagrams of the flow shop control device of the second embodiment of the present invention;
图7表示本发明第二实施例的流水车间控制装置的结构框图之二。Fig. 7 shows the second structural block diagram of the flow shop control device according to the second embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
第一实施例first embodiment
依据本发明实施例的一个方面,提供了一种流水车间控制方法,如图1所示,该方法包括:According to an aspect of an embodiment of the present invention, a flow shop control method is provided, as shown in FIG. 1 , the method includes:
步骤101:获取流水车间的第一预设数目的目标设备的加工日历。Step 101: Obtain processing calendars of a first preset number of target devices in an assembly line.
其中,所述加工日历为目标设备的工作时间。具体地,所述加工日历可表示为目标设备每周工作的天数以及每天工作的时长。另外,第一预设数目可以根据实际流水车间中进行工件加工过程中所应用的具体目标设备的数目进行更改。Wherein, the processing calendar is the working time of the target equipment. Specifically, the processing calendar may be expressed as the working days of the target device per week and the working hours of each day. In addition, the first preset number can be changed according to the number of specific target equipment used in the process of workpiece processing in the actual flow shop.
此外,本发明的实施例,应用于流水车间。在流水车间中,多个目标设备在各自的加工日历范围内对各个工件进行加工。即,目标设备只有在各自的工作时间范围内才能对各个工件进行加工。其中,对于不同流水车间内的目标设备,有些目标设备的加工日历相同,但有些目标设备的加工日历不同。而本分发明的实施例,可以适用于加工日历不同的目标设备,则所述第一预设数目的目标设备中包括至少两个加工日历不同的目标设备。In addition, the embodiments of the present invention are applied to flow workshops. In a flow shop, multiple target machines process individual workpieces within their respective processing calendars. That is, the target equipment can process each workpiece only within its respective working time range. Among them, for the target equipment in different flow workshops, some target equipment have the same processing calendar, but some target equipment have different processing calendars. However, the embodiment of the present invention may be applicable to target devices with different processing calendars, and the first preset number of target devices includes at least two target devices with different processing calendars.
步骤102:获取第二预设数目的工件在所述目标设备上,具有最短总加工时间的目标加工次序。Step 102: Obtain a target processing order of a second preset number of workpieces on the target device with the shortest total processing time.
其中,第二预设数目可以根据实际流水车间中所需要加工的具体工件数目进行更改。另外,具有最短总加工实际的目标加工次序为最优加工次序,即第二预设数目的工件按照最优加工次序在第一预设数目的目标设备上进行加工时,所用时间最短。Wherein, the second preset number can be changed according to the specific number of workpieces to be processed in the actual flow shop. In addition, the target processing sequence with the shortest total processing actuality is the optimal processing sequence, that is, when the second preset number of workpieces are processed on the first preset number of target devices according to the optimal processing sequence, the time taken is the shortest.
优选地,步骤102包括:Preferably, step 102 includes:
获取第二预设数目的工件在各个所述目标设备上的耗时度,并构成耗时度矩阵,所述耗时度为任意工件在任意目标设备的加工日历内的预设时间段中在该目标设备上所加工的时间,与所述预设时间段的比值;Acquiring the time-consuming degree of the second preset number of workpieces on each of the target devices, and forming a time-consuming degree matrix, the time-consuming degree is any workpiece in the preset time period in the processing calendar of any target device The ratio of the processing time on the target device to the preset time period;
采用CDS算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序。Using the CDS algorithm, according to the time-consuming degree matrix, the target processing order with the shortest total processing time is obtained.
其中,进一步地,所述预设时间段为目标设备在一周时间内的总工作时长,则在确定耗时度矩阵时,首先需要获取各个工件在各个目标设备上的加工时间,然后,将各个工件在各个目标设备上的加工时间除以对应目标设备在一周时间内的总工作时长,从而获得各个工件在各个目标设备上的耗时度。即,将各个工件在各个目标设备上的加工时间,以及各个目标设备每周工作的天数和每天工作的时长,代入第一预设公式p′j,i=Pj,i/(di×hi),则获得第j个工件在第i个目标设备上的耗时度p′j,i。其中,pj,i表示第j个工件在第i个目标设备上的加工时间,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长。Wherein, further, the preset time period is the total working hours of the target equipment within a week, then when determining the time-consuming matrix, it is first necessary to obtain the processing time of each workpiece on each target equipment, and then, each The processing time of each workpiece on each target device is divided by the total working hours of the corresponding target device within a week, so as to obtain the time-consuming degree of each workpiece on each target device. That is, the processing time of each workpiece on each target device, as well as the working days of each target device per week and the working time of each day, are substituted into the first preset formula p' j,i =P j,i /(d i × h i ), then the time-consuming degree p′ j,i of the j-th workpiece on the i-th target device is obtained. Among them, p j,i represents the processing time of the j-th workpiece on the i-th target device, d i represents the number of working days of the i-th target device per week, and h i represents the daily working hours of the i-th target device.
当第一预设数目为m,第二预设数目为n时,根据各个工件在各个所述目标设备上的耗时度,则可以获得n×m阶的耗时度矩阵。具体地,举例而言,当m取值为4,n取值为5时,获得的耗时度矩阵如图2中所示的[p′j,i]5×4。When the first preset number is m and the second preset number is n, according to the time-consuming degrees of each workpiece on each of the target devices, an n×m-order time-consuming degree matrix can be obtained. Specifically, for example, when m takes a value of 4 and n takes a value of 5, the obtained time-consuming degree matrix is [p′ j, i ] 5×4 as shown in FIG. 2 .
另外,获得耗时度矩阵后,可进一步采用CDS算法,根据耗时度矩阵获得具有最短加工时间的目标次序,即获得最优加工次序。优选地,上述采用CDS算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序的步骤,包括:采用CDS算法,将所述耗时度矩阵分解为m-1个n×2阶的目标矩阵;采用Johnson启发式算法,分别确定对应于各个所述目标矩阵的加工次序;获取对应于各个所述目标矩阵的加工次序的总加工时间;从对应于各个所述目标矩阵的加工次序中选出总加工时间最小的加工次序作为所述目标加工次序。In addition, after obtaining the time-consuming degree matrix, the CDS algorithm can be further used to obtain the target order with the shortest processing time according to the time-consuming degree matrix, that is, to obtain the optimal processing order. Preferably, the step of using the CDS algorithm to obtain the target processing order with the shortest total processing time according to the time-consuming degree matrix includes: using the CDS algorithm to decompose the time-consuming degree matrix into m-1 n× A target matrix of order 2; using the Johnson heuristic algorithm to determine respectively the processing order corresponding to each of the target matrices; obtaining the total processing time corresponding to the processing order of each of the target matrices; from corresponding to each of the target matrices The processing sequence with the smallest total processing time is selected from the processing sequences as the target processing sequence.
其中,采用CDS算法将所述耗时度矩阵分解为m-1个n×2阶的目标矩阵的过程,即为将Fm|perm,no-idle|Cmax(零空闲流水车间调度)问题分解为m-1组F2|perm,no-idle|Cmax问题。具体地,当耗时度矩阵为5×4阶的矩阵时,将该耗时度矩阵分解为3个5×2的目标矩阵的过程,如图2所示,从而得到图2中所示的这三个目标矩阵。Wherein, the process of decomposing the time-consuming degree matrix into m-1 n×2 order target matrices by using the CDS algorithm is the problem of F m | perm, no-idle | C max (zero idle flow shop scheduling) It is decomposed into m-1 groups of F 2 |perm, no-idle|C max problems. Specifically, when the time-consuming degree matrix is a matrix of order 5×4, the process of decomposing the time-consuming degree matrix into three 5×2 target matrices is shown in Figure 2, thereby obtaining the These three target matrices.
另外,针对每一个目标矩阵,需要进一步采用Johnson启发式算法,确定对应的加工次序。其中,具体地,针对每一个目标矩阵,将其假设为5个工件在两个目标设备上的加工时间,则根据加工时间将5个工件分成P和Q两组。其中,分组原则是:P组的加工时间在第一个目标设备上的加工时间比在第二个目标设备上的加工时间短;其余作业为Q组。举例而言,假设具体为:则第1、3、4工件归为Q组,将第2、5工件归为P组;然后,将P组的工件按其在第一个目标设备上加工时间递增顺序排列,得到排序为工件5、2;将Q组的工件按其加工时间在第一个目标设备上加工时间递增的顺序排列,得到排序为工件3、1、4,最后,将P组加工次序和Q组加工次序连接在一起,构成与矩阵对应的加工顺序,即π1=(5、2、3、1、4)。同理,可以得到与对应的加工次序π2以及与对应的加工次序π3。In addition, for each target matrix, it is necessary to further use the Johnson heuristic algorithm to determine the corresponding processing order. Specifically, for each target matrix, it is assumed that it is the processing time of 5 workpieces on two target devices, and then the 5 workpieces are divided into P and Q groups according to the processing time. Among them, the grouping principle is: the processing time of group P is shorter on the first target device than on the second target device; the rest of the operations are group Q. For example, suppose Specifically: Then, the 1st, 3rd, and 4th workpieces are classified into Q group, and the 2nd and 5th workpieces are classified into P group; then, the workpieces of P group are arranged in increasing order of their processing time on the first target device, and the sorting is obtained as workpieces 5, 2; Arrange the workpieces of group Q according to the increasing order of processing time on the first target device, and get the order of workpieces 3, 1, 4, and finally, connect the processing sequence of group P with the processing sequence of group Q together, constitute with The processing sequence corresponding to the matrix, that is, π 1 =(5, 2, 3, 1, 4). Similarly, it can be obtained with The corresponding processing order π 2 and the The corresponding processing order π 3 .
最后,可计算对应与各个加工次序的总加工时间,然后选出时间最短的加工顺序就是所述目标加工次序。Finally, the total processing time corresponding to each processing sequence can be calculated, and then the processing sequence with the shortest time is selected as the target processing sequence.
步骤103:根据所述加工日历和所述目标加工次序,确定各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间。Step 103: According to the processing calendar and the target processing sequence, determine a target start time and a target end time for zero-idle processing of each workpiece on each of the target devices.
其中,所述目标开始时间和所述目标结束时间均位于所述加工日历范围之内。Wherein, both the target start time and the target end time are within the range of the processing calendar.
优选地,步骤103包括:根据所述目标加工次序,确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;根据所述加工日历,确定各个所述目标设备的停机区间;根据所述停机区间,对所述第一开始时间和所述第一结束时间进行调整,获得各个工件基于所述加工日历在各个所述目标设备上加工的第二开始时间和第二结束时间;对所述第二开始时间和所述第二结束时间进行调整,获得各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间。Preferably, step 103 includes: according to the target processing sequence, determining the first start time and the first end time of each workpiece being processed on each of the target equipment; according to the processing calendar, determining the shutdown of each of the target equipment interval; according to the shutdown interval, the first start time and the first end time are adjusted to obtain a second start time and a second end time for each workpiece to be processed on each of the target devices based on the processing calendar Time: adjusting the second start time and the second end time to obtain a target start time and a target end time for zero-idle processing of each workpiece on each of the target devices.
即本发明的实施例,确定出最优加工次序后,利用约束分解算法将问题的零空闲约束、设备加工日历约束一一分解,有针对性地对加工次序进行解码,得到调度结果。That is to say, in the embodiment of the present invention, after the optimal processing order is determined, the constraint decomposition algorithm is used to decompose the zero idle constraint and the equipment processing calendar constraint of the problem one by one, and the processing sequence is decoded in a targeted manner to obtain the scheduling result.
具体地,本发明的实施例,在确定出最优加工次序后,按传统的Fm|perm|Cmax问题,求解得到各工序的第一开始时间和第一结束时间,计算公式如下:Specifically, in the embodiment of the present invention, after determining the optimal processing sequence, according to the traditional F m |perm|C max problem, the first start time and the first end time of each process are obtained by solving the calculation formula as follows:
确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;determining a first start time and a first end time for each workpiece to be processed on each of said target devices;
其中,j≤n,i≤m,且j、i、m、n均为正整数,m表示所述第一预设数目,n表示所述第二预设数目,π(j)表示在所述目标加工次序中排位第j的工件,Sπ(j),i表示工件π(j)在第i个目标设备上加工的第一开始时间,Cπ(j),i表示工件π(j)在第i个目标设备上加工的第一结束时间。Wherein, j≤n, i≤m, and j, i, m, and n are all positive integers, m represents the first preset number, n represents the second preset number, and π(j) represents the The j-th workpiece in the above target processing sequence, S π(j), i represents the first start time of the processing of the workpiece π(j) on the i-th target device, C π(j), i represents the workpiece π( j) The first end time of processing on the i-th target device.
举例而言,当5个工件在4个目标设备上的加工时间如矩阵所示时,根据最优加工次序,按照传统Fm|perm|Cmax问题,确定出的各个工件在各个目标设备上的第一开始时间和第一结束时间如图3所示。For example, when the processing time of 5 workpieces on 4 target devices is as matrix As shown, according to the optimal processing sequence and according to the traditional F m |perm|C max problem, the first start time and first end time of each workpiece on each target device are determined as shown in FIG. 3 .
另外,在基于目标设备的加工日历对上述第一加工时间和第二加工时间进行调整时,需要具体确定各个目标设备的停机区间,即确定各个目标设备的非工作时间范围。其中,根据目标设备每周工作的天数,以及每天工作的时长,可以在时间轴上划定各个目标设备的停机区间,即容易得出满足公式(floor(ti))%24≥hi和((floor(ti))in24)%7≥di的时间ti的取值区间即为第i个目标设备的停机区间INi。其中,floor(ti)表示对第i个目标设备的时间轴上的时间(单位为小时)进行向下取整;%表示取符号左右两数相除的余数;in表示取符号左右两数相除的商。In addition, when adjusting the first processing time and the second processing time based on the processing calendar of the target equipment, it is necessary to specifically determine the shutdown interval of each target equipment, that is, determine the non-working time range of each target equipment. Among them, according to the number of working days of the target equipment per week and the working hours of each day, the downtime interval of each target equipment can be delineated on the time axis, that is, it is easy to obtain that the formula (floor(t i ))%24≥h i and ((floor(t i ))in24)%7≥d i The value interval of time t i is the downtime interval IN i of the i-th target device. Among them, floor(t i ) means to round down the time (unit is hour) on the time axis of the i-th target device; % means to take the remainder of dividing the left and right numbers of the sign; in means to take the left and right numbers of the sign The quotient of division.
具体地,举例而言,若四个目标设备每周的工作天数均为七天,且每周的工作天数如矩阵所示时,这四个目标设备的停机区间分别如图4和图5中所示。其中,由于这四个目标设备在每天当中的12~24小时内均处于非工作时间,因此,为了简化图4和图5的表示,省略了每个目标设备在每天当中的12~24小时的停机区间。Specifically, for example, if the working days of the four target devices are all seven days a week, and the working days of the week are as matrix When shown, the shutdown intervals of the four target devices are shown in Fig. 4 and Fig. 5 respectively. Wherein, since these four target devices are all in non-working hours during 12-24 hours of each day, in order to simplify the representations in Figures 4 and 5, the 12-24 hours of each target device are omitted. shutdown interval.
确定出各个目标设备的停机区间后,需要进一步根据停机区间调整各个工件在各个目标设备上加工的第一开始时间和第一结束时间,使得各个工件在各个目标设备上加工的第一开始时间和第一结束时间均处于停机区间之外。即本发明的实施例中,需要计算出新的基于设备加工日历的各工序的开始时间和结束时间计算步骤为,依次调整第一个目标设备上的工序,其中,第一个目标设备上的工序每调整一次,其设备内后续工序及工件内后续工序的加工时间均发生变化,即共进行n次大调整(n为目标设备的总数目),计算公式如下:After determining the shutdown interval of each target equipment, it is necessary to further adjust the first start time and first end time of each workpiece processed on each target equipment according to the shutdown interval, so that the first start time and first end time of each workpiece processed on each target equipment The first end times are all outside the downtime interval. That is, in the embodiment of the present invention, it is necessary to calculate the new start time of each process based on the equipment processing calendar and end time The calculation steps are to sequentially adjust the procedures on the first target equipment, wherein, every time the procedures on the first target equipment are adjusted, the processing time of the subsequent procedures in the equipment and the subsequent procedures in the workpiece will change, that is, a total of n The second largest adjustment (n is the total number of target devices), the calculation formula is as follows:
第一次调整:First adjustment:
第k次调整(k为大于1且小于n的整数常量):The kth adjustment (k is an integer constant greater than 1 and less than n):
其中,表示工件π(j)在第i个目标设备上加工的第二开始时间;表示工件π(j)在第i个目标设备上加工的第二结束时间;表示工件π(j)在第i个目标设备上加工的第一开始时间进行第一次调整之后的开始时间;表示工件π(j)在第i个目标设备上加工的第一结束时间进行第一次调整之后的结束时间;表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k次调整之后的开始时间;表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k次调整之后的结束时间;表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k-1次调整之后的开始时间;表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k-1次调整之后的结束时间;表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的开始时间插补量;表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的结束时间插补量。in, Indicates the second start time of workpiece π(j) being processed on the i-th target device; Indicates the second end time of workpiece π(j) being processed on the i-th target device; Indicates the start time after the first adjustment of the first start time of the workpiece π(j) being processed on the i-th target device; Indicates the end time after the first adjustment of the first end time of the workpiece π(j) processed on the i-th target device; Represents the start time after the kth adjustment of the first start time of the workpiece π(j) being processed on the i-th target device; Indicates the end time after the kth adjustment of the first end time of the workpiece π(j) processed on the i-th target device; Represents the start time after the k-1th adjustment of the first start time of the workpiece π(j) being processed on the i-th target device; Indicates the end time after the k-1th adjustment of the first end time of the workpiece π(j) processed on the i-th target device; Indicates the interpolation amount of the start time of workpiece π(j) being processed on the i-th target device when processing is performed based on the processing calendar of the target device; Indicates the interpolation amount of the end time of workpiece π(j) processed on the i-th target device when processing is performed based on the processing calendar of the target device.
另外,上述开始时间插补量用于保证工序开始时间在目标设备的工作时间范围内;结束时间插补量用于保证工序结束时间在设备的工作时间范围内。开始时间插补量为工序的开始时间处于某一停机区间内时,该开始时间与该停机区间的上限时间之差,例如某一工序的开始时间为9点整,位于8点~12点的停机区间内,则该工序的开时时间插补量为3小时。结束时间插补量为工序的结束时间处于某一停机区间内时,该停机区间的时长,例如某一工序的结束时间为22点整,位于20点~24点的停机区间内,则该工序的结束时间插补量为4小时。In addition, the above start time interpolation amount is used to ensure that the start time of the process is within the working time range of the target equipment; the end time interpolation amount is used to ensure that the process end time is within the working time range of the equipment. The start time interpolation amount is the difference between the start time and the upper limit time of the stop zone when the start time of the process is within a certain stop zone. In the downtime interval, the open time interpolation amount of this process is 3 hours. The end time interpolation amount is the duration of the stop interval when the end time of the process is within a certain stop interval. The amount of end time interpolation is 4 hours.
即在上述第k次调整过程中,首先根据第一个目标设备的停机区间,对第k次调整所针对的第k个工件在第一个目标设备上加工的开始时间和结束时间进行调整,使得位于第一个目标设备的停机区间内的开始时间和结束时间后延到其所处于的停机区间之外;That is, in the above kth adjustment process, firstly, according to the downtime interval of the first target equipment, the start time and end time of processing the kth workpiece targeted for the kth adjustment on the first target equipment are adjusted, Make the start time and end time in the downtime interval of the first target equipment be extended to outside the outage interval;
然后,根据第2个目标设备的停机区间,调整第k个工件在第2个目标设备上加工的开始时间和结束时间;接着,根据第3个目标设备的停机区间,调整第k个工件在第3个目标设备上加工的开始时间和结束时间,直到第k个工件在第m个目标设备上加工的开时时间和结束时间调整完毕为止;Then, according to the downtime interval of the second target equipment, adjust the start time and end time of the k-th workpiece being processed on the second target equipment; then, according to the downtime interval of the third target equipment, adjust the k-th workpiece in The start time and end time of processing on the third target device, until the start time and end time of the processing of the k-th workpiece on the m-th target device are adjusted;
再次,根据上述调整过程中对第k个工件在第一个目标设备上对开始时间所作出的插补量,修正在目标加工次序中位于第k个工件后面的其他工件在第一个目标设备上加工的开始时间,进而根据各个工件在各个设备上加工所需的时长,修正在目标加工次序中位于第k个工件后面的其他工件在第一个目标设备上加工的结束时间;Again, according to the interpolation amount made to the start time of the k-th workpiece on the first target device during the above adjustment process, the other workpieces that are behind the k-th workpiece in the target processing sequence are corrected on the first target device The start time of the upper processing, and then according to the time required for each workpiece to be processed on each device, correct the end time of other workpieces that are located behind the k-th workpiece in the target processing sequence on the first target device;
再次,根据第k个工件在第2个目标设备上加工的结束时间所作出的插补量,将位于第k个工件后面的其他工件在第2个目标设备上加工的开始时间后延;同理,根据第k个工件在第3个目标设备上加工的结束时间所作出的插补量,将位于第k个工件后面的其他工件在第3个目标设备上加工的开始时间后延,直到根据第k个工件在第m个目标设备上加工的结束时间所作出的插补量,将位于第k个工件后面的其他工件在第m个目标设备上加工的开始时问后延完毕为止;Again, according to the interpolation amount made by the end time of the k-th workpiece being processed on the second target device, the start time of the processing of other workpieces behind the k-th workpiece on the second target device is delayed; at the same time According to the interpolation amount made by the end time of the k-th workpiece processed on the third target device, the start time of other workpieces behind the k-th workpiece to be processed on the third target device will be delayed until According to the interpolation amount made by the end time of the processing of the k-th workpiece on the m-th target device, the other workpieces located behind the k-th workpiece are delayed until the start time of processing on the m-th target device is completed;
最后,根据各个工件在各个设备上加工所需的时长,修正位于第k个工件后面的其他工件在第2至第m个目标设备上加工的结束时间;Finally, according to the time required for each workpiece to be processed on each device, correct the end time of processing other workpieces behind the k-th workpiece on the 2nd to m-th target equipment;
根据上述方法,完成第k次调整过程。According to the above method, the kth adjustment process is completed.
其中,需要注意的是,上述第k次调整过程调整后,可以得到第k个工件在各个目标设备上基于加工日历的最终结果,其余的修正过程得到的开始时间和结束时间并不是对应工序基于目标设备的加工日历的最终结果,只是调整过程的中间结果。此外,第k次调整是基于第k-1次调整过程所进行的。Among them, it should be noted that after the adjustment of the above kth adjustment process, the final result of the kth workpiece on each target device based on the processing calendar can be obtained, and the start time and end time obtained by the rest of the correction process are not based on the corresponding process. The final result of the machining calendar of the target device is only an intermediate result of the adjustment process. In addition, the kth adjustment is performed based on the k-1th adjustment process.
具体地,举例而言,将图3所示的五个工件在四个目标设备上的第一开始时间和第一结束时间,根据各个目标设备的停机区间进行调整后,得到如图4所示的甘特图。Specifically, for example, after adjusting the first start time and first end time of the five workpieces shown in FIG. 3 on the four target devices according to the downtime intervals of each target device, the result is as shown in FIG. 4 Gantt chart.
此外,根据步骤c得到的工序加工时间进行逆向计算,得到满足零空闲流水车间调度的各工序的开始时间和结束时间需要进行m次调整,计算公式如下:In addition, reverse calculation is performed based on the process processing time obtained in step c, and the start time of each process that satisfies the zero-idle flow shop scheduling is obtained and end time It needs to be adjusted m times, and the calculation formula is as follows:
第一次调整:First adjustment:
第h次调整(h为大于1且小于m的整数常量):The hth adjustment (h is an integer constant greater than 1 and less than m):
其中,表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标开始时间;in, Indicates the target start time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标结束时间; Indicates the target end time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h次调整后的开始时间; Indicates the start time after the second start time of the workpiece π(j) being processed on the i-th target device after the h-th adjustment;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整后的结束时间; Indicates the end time after the second end time of workpiece π(j) processed on the i-th target device is adjusted for the hth time;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h-1次调整后的开始时间; Indicates the start time after the h-1th adjustment of the second start time for processing the workpiece π(j) on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h-1次调整后的结束时间; Indicates the end time after the h-1th adjustment of the second end time of the workpiece π(j) processed on the i-th target device;
表示进行零空闲加工时,工件π(j)在第h个目标设备上加工的第二开始时间的时间插补量,保证工序开始时间在第h个目标设备的工作时间范围内; Indicates the time interpolation amount of the second start time of workpiece π(j) processed on the h-th target device during zero-idle processing, ensuring that the process start time is within the working time range of the h-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整时的时间插补量。 Indicates the time interpolation amount when the workpiece π(j) is adjusted for the hth time at the second end time of processing on the i-th target device.
其中,上述调整过程,就是将图4中对应于各个目标设备的空闲时间消除。即按照目标加工次序的逆序,将位于空闲时间前面的工序依次后延,使得位于空闲时间之前的工序的结束时间,等于位于空闲时间后面的工序的开始时间。Wherein, the above adjustment process is to eliminate the idle time corresponding to each target device in FIG. 4 . That is, according to the reverse order of the target processing sequence, the processes before the idle time are delayed in turn, so that the end time of the process before the idle time is equal to the start time of the process behind the idle time.
具体地,举例而言,将图4所示的五个工件在四个目标设备上的第二开始时间和第二结束时间,进行零空闲加工调整后,得到如图5所示的甘特图。Specifically, for example, the second start time and the second end time of the five workpieces shown in Figure 4 on the four target devices are adjusted for zero-idle processing, and the Gantt chart shown in Figure 5 is obtained .
步骤104:根据所述目标开始时间和所述目标结束时间,控制各个所述目标设备对各个工件进行加工。Step 104: Control each of the target devices to process each workpiece according to the target start time and the target end time.
通过上述步骤确定出各个工件基于各个目标设备的加工日历,在各个目标设备上进行零空闲加工的目标开始时间和目标结束时间后,可根据此目标开始时间和目标结束时间,控制各个目标设备对各个工件进行加工,从而实现差异性设备工作日历下的流水车间设备工作的连续性。Through the above steps, the processing calendar of each workpiece based on each target device is determined, and after the target start time and target end time of zero idle processing are performed on each target device, each target device can be controlled according to the target start time and target end time. Each workpiece is processed, so as to realize the continuity of the flow shop equipment work under the different equipment work calendar.
综上所述,本发明的实施例,基于CDS算法以生成工件加工的最优次序,并采用约束分解算法将问题的零空闲约束、设备加工日历约束和工件的工艺路线约束一一分解,有针对性地求解,得到调度结果,从而完成流水车间多品种、小批量产品的调度,实现差异性设备工作日历下的流水车间设备工作的连续性。In summary, the embodiment of the present invention is based on the CDS algorithm to generate the optimal sequence of workpiece processing, and uses the constraint decomposition algorithm to decompose the zero idle constraint of the problem, the equipment processing calendar constraint and the workpiece process route constraint one by one. Targeted solution to obtain scheduling results, so as to complete the scheduling of multi-variety and small-batch products in the flow workshop, and realize the continuity of the equipment work in the flow workshop under the different equipment work calendar.
第二实施例second embodiment
本发明的实施例提供了一种流水车间控制装置,如图6所示,该装置600包括:An embodiment of the present invention provides a flow shop control device, as shown in Figure 6, the device 600 includes:
加工日历获取模块601,用于获取流水车间的第一预设数目的目标设备的加工日历;A processing calendar acquisition module 601, configured to acquire the processing calendars of the first preset number of target devices in the assembly line;
加工次序确定模块602,用于获取第二预设数目的工件在所述目标设备上,具有最短总加工时间的目标加工次序;A processing sequence determination module 602, configured to obtain a target processing sequence with the shortest total processing time for a second preset number of workpieces on the target device;
加工时间确定模块603,用于根据所述加工日历和所述目标加工次序,确定各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间,其中,所述目标开始时间和所述目标结束时间均位于所述加工日历范围之内;The processing time determination module 603 is configured to determine, according to the processing calendar and the target processing sequence, the target start time and target end time of zero-idle processing of each workpiece on each of the target devices, wherein the target start time and the target end time are both within the range of the processing calendar;
加工控制模块604,用于根据所述目标开始时间和所述目标结束时间,控制各个所述目标设备对各个工件进行加工。The processing control module 604 is configured to control each of the target devices to process each workpiece according to the target start time and the target end time.
优选地,如图7所示,所述加工次序确定模块602,包括:Preferably, as shown in Figure 7, the processing sequence determination module 602 includes:
矩阵确定单元6021,用于获取第二预设数目的工件在各个所述目标设备上的耗时度,并构成耗时度矩阵,所述耗时度为任意工件在任意目标设备的加工日历内的预设时间段中在该目标设备上所加工的时间,与所述预设时间段的比值;The matrix determining unit 6021 is configured to obtain the time-consuming degree of the second preset number of workpieces on each of the target devices, and form a time-consuming degree matrix, the time-consuming degree is that any workpiece is within the processing calendar of any target device The ratio of the processing time on the target device in the preset time period to the preset time period;
加工次序确定单元6022,用于采用CDS算法,根据所述耗时度矩阵,获得具有最短总加工时间的目标加工次序。The processing order determining unit 6022 is configured to use the CDS algorithm to obtain the target processing order with the shortest total processing time according to the time-consuming degree matrix.
优选地,所述第一预设数目为m,所述第二预设数目为n,所述加工日历包括每周工作的天数和每天工作的时长;如图7所示,所述矩阵确定单元6021包括:Preferably, the first preset number is m, the second preset number is n, and the processing calendar includes the number of working days per week and the working hours of each day; as shown in Figure 7, the matrix determination unit 6021 includes:
第一获取子单元60211,用于获取各个工件在各个所述目标设备上的加工时间;The first obtaining subunit 60211 is used to obtain the processing time of each workpiece on each of the target devices;
第一计算子单元60212,用于根据各个工件在各个所述目标设备上的加工时间、各个所述目标设备的加工日历,以及第一预设公式p′j,i=pj,i/(di×hi),确定各个工件在各个所述目标设备上的耗时度,其中,p′j,i表示第j个工件在第i个目标设备上的耗时度,pj,i表示第j个工件在第i个目标设备上的加工时间,dj表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长;The first calculation subunit 60212 is used to calculate according to the processing time of each workpiece on each of the target devices, the processing calendar of each of the target devices, and the first preset formula p' j,i =p j,i /( d i ×h i ), determine the time-consuming degree of each workpiece on each of the target devices, where p′ j,i represents the time-consuming degree of the j-th workpiece on the i-th target device, p j,i Indicates the processing time of the j-th workpiece on the i-th target device, d j represents the number of working days of the i-th target device per week, h i represents the daily working hours of the i-th target device;
第一确定子单元60213,用于根据各个工件在各个所述目标设备上的耗时度,获得n×m阶的耗时度矩阵。The first determining subunit 60213 is configured to obtain a time-consuming degree matrix of order n×m according to the time-consuming degree of each workpiece on each of the target devices.
优选地,如图7所示,所述加工次序确定单元6022包括:Preferably, as shown in FIG. 7, the processing order determining unit 6022 includes:
分解子单元60221,用于采用CDS算法,将所述耗时度矩阵分解为m-1个n×2阶的目标矩阵;The decomposition subunit 60221 is used to decompose the time-consuming degree matrix into m-1 target matrices of order n×2 by using the CDS algorithm;
第二计算子单元60222,用于采用Johnson启发式算法,分别确定对应于各个所述目标矩阵的加工次序;The second calculation subunit 60222 is configured to use the Johnson heuristic algorithm to respectively determine the processing order corresponding to each of the target matrices;
第三计算子单元60223,用于获取对应于各个所述目标矩阵的加工次序的总加工时间;The third calculation subunit 60223 is configured to obtain the total processing time corresponding to the processing order of each of the target matrices;
第二确定子单元60224,用于从对应于各个所述目标矩阵的加工次序中选出总加工时间最小的加工次序作为所述目标加工次序。The second determining subunit 60224 is configured to select the processing order with the smallest total processing time from the processing orders corresponding to each of the target matrices as the target processing order.
优选地,如图7所示,所述加工时间确定模块603包括:Preferably, as shown in Figure 7, the processing time determination module 603 includes:
开始与结束时间确定单元6031,用于根据所述目标加工次序,确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;A start and end time determining unit 6031, configured to determine the first start time and the first end time of each workpiece being processed on each of the target devices according to the target processing sequence;
停机区间确定单元6032,用于根据所述加工日历,确定各个所述目标设备的停机区间;A shutdown interval determining unit 6032, configured to determine the shutdown interval of each of the target equipment according to the processing calendar;
第一调整单元6033,用于根据所述停机区间,对所述第一开始时间和所述第一结束时间进行调整,获得各个工件基于所述加工日历在各个所述目标设备上加工的第二开始时间和第二结束时间;;The first adjustment unit 6033 is configured to adjust the first start time and the first end time according to the downtime interval, and obtain the second processing time of each workpiece on each of the target equipment based on the processing calendar. start time and second end time;
第二调整单元6034,用于对所述第二开始时间和所述第二结束时间进行调整,获得各个工件在各个所述目标设备上进行零空闲加工的目标开始时间和目标结束时间。The second adjustment unit 6034 is configured to adjust the second start time and the second end time to obtain a target start time and a target end time for zero-idle processing of each workpiece on each of the target devices.
优选地于,所述开始与结束时间确定单元6031具体用于:Preferably, the start and end time determination unit 6031 is specifically configured to:
根据公式:According to the formula:
确定各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间;determining a first start time and a first end time for each workpiece to be processed on each of said target devices;
其中,j≤n,i≤m,且j、i、m、n均为正整数,m表示所述第一预设数目,n表示所述第二预设数目,π(j)表示在所述目标加工次序中排位第j的工件,Sπ(j),i表示工件π(j)在第i个目标设备上加工的第一开始时间,Cπ(j),i表示工件π(j)在第i个目标设备上加工的第一结束时间。Wherein, j≤n, i≤m, and j, i, m, and n are all positive integers, m represents the first preset number, n represents the second preset number, and π(j) represents the The j-th workpiece in the above target processing sequence, S π(j), i represents the first start time of the processing of the workpiece π(j) on the i-th target device, C π(j), i represents the workpiece π( j) The first end time of processing on the i-th target device.
优选地,所述加工日历包括每周工作的天数和每天工作的时长;所述停机区间确定单元6032具体用于:Preferably, the processing calendar includes the number of working days per week and the working hours per day; the downtime interval determining unit 6032 is specifically used for:
确定满足公式(floor(ti))%24≥hi和((floor(ti))in24)%7≥di的时间ti的取值区间,并将所述时间ti的取值区间确定为第i个所述目标设备的停机区间INi;Determine the value interval of time t i that satisfies the formula (floor(t i ))%24≥h i and ((floor(t i ))in24)%7≥d i , and set the value of time t i The interval is determined as the outage interval IN i of the i-th target equipment;
其中,di表示第i个目标设备每周工作的天数,hi表示第i个目标设备每天工作的时长。Wherein, d i represents the working days of the i-th target device every week, and h i represents the working hours of the i-th target device every day.
优选地,所述第一调整单元6033具体用于:Preferably, the first adjustment unit 6033 is specifically used for:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第一开始时间和第一结束时间进行第一次调整;adjusting the first start time and the first end time of each workpiece processed on each of the target equipment for the first time;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第k次调整,k为大于1且小于n的整数常量;Carrying out the kth adjustment to the start time and end time of each workpiece being processed on each of the target devices, k is an integer constant greater than 1 and less than n;
当各个工件在各个所述目标设备上的第一开始时间和第一结束时间进行n次调整完毕后,获得所述第二开始时间和所述第二结束时间;Obtain the second start time and the second end time after the first start time and first end time of each workpiece on each target device have been adjusted n times;
其中,表示工件π(j)在第i个目标设备上加工的第二开始时间;in, Indicates the second start time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间; Indicates the second end time of workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第一次调整之后的开始时间; Indicates the start time after the first adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第一次调整之后的结束时间; Indicates the end time after the first adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k次调整之后的开始时间; Represents the start time after the kth adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k次调整之后的结束时间; Indicates the end time after the kth adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一开始时间进行第k-1次调整之后的开始时间; Represents the start time after the k-1th adjustment of the first start time of the workpiece π(j) being processed on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第一结束时间进行第k-1次调整之后的结束时间; Indicates the end time after the k-1th adjustment of the first end time of the workpiece π(j) processed on the i-th target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的开始时间插补量; Indicates the interpolation amount of the start time of workpiece π(j) being processed on the i-th target device when processing is performed based on the processing calendar of the target device;
表示基于所述目标设备的加工日历进行加工时,工件π(j)在第i个目标设备上加工的结束时间插补量。 Indicates the interpolation amount of the end time of workpiece π(j) processed on the i-th target device when processing is performed based on the processing calendar of the target device.
优选地,所述第二调整单元6034具体用于:Preferably, the second adjustment unit 6034 is specifically used for:
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行第一次调整; performing a first adjustment to a second start time and a second end time of processing each workpiece on each of the target devices;
根据公式:According to the formula:
对各个工件在各个所述目标设备上加工的开始时间和结束时间进行第h次调整,h为大于1且小于m的整数常量;Adjusting the start time and end time of processing each workpiece on each target device for the hth time, h is an integer constant greater than 1 and less than m;
当各个工件在各个所述目标设备上加工的第二开始时间和第二结束时间进行m次调整完毕后,获得所述目标开始时间和所述目标结束时间;After the second start time and the second end time of each workpiece processed on each of the target devices have been adjusted m times, the target start time and the target end time are obtained;
其中,表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标开始时间;in, Indicates the target start time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行零空闲加工时工件π(j)在第i个目标设备上加工的目标结束时间; Indicates the target end time of workpiece π(j) being processed on the i-th target device during zero-idle processing;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h次调整后的开始时间; Indicates the start time after the second start time of the workpiece π(j) being processed on the i-th target device after the h-th adjustment;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整后的结束时间; Indicates the end time after the second end time of workpiece π(j) processed on the i-th target device is adjusted for the hth time;
表示进行工件π(j)在第i个目标设备上加工的第二开始时间进行第h-1次调整后的开始时间; Indicates the start time after the h-1th adjustment of the second start time for processing the workpiece π(j) on the i-th target device;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h-1次调整后的结束时间; Indicates the end time after the h-1th adjustment of the second end time of the workpiece π(j) processed on the i-th target device;
表示进行零空闲加工时,工件π(j)在第h个目标设备上加工的第二开始时间的时间插补量; Indicates the time interpolation amount of the second start time of the workpiece π(j) being processed on the h-th target device during zero-idle processing;
表示工件π(j)在第i个目标设备上加工的第二结束时间进行第h次调整时的时间插补量。 Indicates the time interpolation amount when the workpiece π(j) is adjusted for the hth time at the second end time of processing on the i-th target device.
本发明的实施例,通过加工日历获取模块601获取流水车间的各个目标设备的加工日历,通过加工次序确定模块602确定各个工件在各个目标设备上进行加工的最优次序,从而触发加工时间确定模块603根据加工日历确定模块获取的加工日历以及加工次序确定模块602确定的最优次序,确定各个工件基于加工日历在各个目标设备上进行零空闲加工的目标开始时间和目标结束时间,进而触发加工控制模块604根据加工时间确定模块603确定的目标开始时间和目标结束时间控制各个目标设备对各个工件进行加工。因此,本发明实施例的流程车间控制装置600,能够实现差异性设备工作日历下的流水车间设备工作的连续性,从而避免因设备的加工日历不同导致设备频繁启动,进而避免了对工件的损害,延长了设备的使用寿命。In the embodiment of the present invention, the processing calendar of each target device in the flow shop is obtained through the processing calendar acquisition module 601, and the optimal sequence of processing each workpiece on each target device is determined through the processing sequence determination module 602, thereby triggering the processing time determination module 603 According to the processing calendar acquired by the processing calendar determination module and the optimal sequence determined by the processing sequence determination module 602, determine the target start time and target end time of zero-idle processing for each workpiece based on the processing calendar on each target device, and then trigger processing control Module 604 controls each target device to process each workpiece according to the target start time and target end time determined by the processing time determination module 603 . Therefore, the process workshop control device 600 of the embodiment of the present invention can realize the continuity of the work of the equipment in the workshop under the different equipment working calendar, thereby avoiding the frequent startup of the equipment due to the different processing calendar of the equipment, thereby avoiding the damage to the workpiece , prolong the service life of the equipment.
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。What has been described above is a preferred embodiment of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications can also be made without departing from the principles described in the present invention. within the scope of protection of the invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611087989.XA CN108132650B (en) | 2016-12-01 | 2016-12-01 | Flow shop control method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611087989.XA CN108132650B (en) | 2016-12-01 | 2016-12-01 | Flow shop control method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108132650A true CN108132650A (en) | 2018-06-08 |
CN108132650B CN108132650B (en) | 2020-03-17 |
Family
ID=62387597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611087989.XA Active CN108132650B (en) | 2016-12-01 | 2016-12-01 | Flow shop control method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108132650B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112836928A (en) * | 2020-12-28 | 2021-05-25 | 浙江理工大学 | An optimization method for manpower scheduling in an assembly shop |
CN112987662A (en) * | 2021-02-05 | 2021-06-18 | 山东大学 | Machine tool processing capacity sequencing-based sustainable scheduling method for mixed flow workshop |
CN117495057A (en) * | 2023-12-29 | 2024-02-02 | 深圳市微优微科技有限公司 | Production scheme generation method, device, equipment and storage medium |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174030A (en) * | 1991-12-20 | 1993-07-13 | Shimizu Corp | Job shop scheduling expert system |
JPH07282140A (en) * | 1994-04-08 | 1995-10-27 | Hitachi Ltd | Production planning system |
JP2000316019A (en) * | 1999-04-28 | 2000-11-14 | Fujitsu Ltd | DATA COMMUNICATION DEVICE, DATA COMMUNICATION METHOD, AND COMPUTER-READABLE RECORDING MEDIUM RECORDING DATA COMMUNICATION PROGRAM |
JP2007026361A (en) * | 2005-07-21 | 2007-02-01 | Toshiba Tec Corp | Work shift plan table creation device |
CN1930883A (en) * | 2004-11-02 | 2007-03-14 | 松下电器产业株式会社 | Display apparatus and display method |
CN101364107A (en) * | 2008-09-24 | 2009-02-11 | 永凯软件技术(上海)有限公司 | Dynamic dispatching method with prediction in complex large system environment |
CN101533490A (en) * | 2009-04-29 | 2009-09-16 | 江南大学 | Workshop scheduling method for Job-shop discrete production |
CN101794147A (en) * | 2010-02-25 | 2010-08-04 | 北京理工大学 | Shop operation dynamic dispatching method based on disturbance event driving |
KR20120138549A (en) * | 2011-06-15 | 2012-12-26 | 전북대학교산학협력단 | An algorithm for planning of the production schedule at the job-shop company and the planning system of the production schedule cited the algorithm |
CN102929263A (en) * | 2012-11-16 | 2013-02-13 | 北京理工大学 | A Hybrid Flow Shop Scheduling Method |
CN103676902A (en) * | 2013-12-20 | 2014-03-26 | 东北大学 | Flow shop rescheduling method |
CN104391488A (en) * | 2014-11-18 | 2015-03-04 | 广东工业大学 | Optimizing and dispatching method of energy consumption of flexible flow shop with associated adjustment time and sequence |
CN104808636A (en) * | 2015-04-28 | 2015-07-29 | 广东工业大学 | Flexible flow shop energy consumption optimization scheduling method |
CN105809344A (en) * | 2016-03-07 | 2016-07-27 | 浙江财经大学 | Hyper-heuristic algorithm based ZDT flow shop job scheduling method |
-
2016
- 2016-12-01 CN CN201611087989.XA patent/CN108132650B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174030A (en) * | 1991-12-20 | 1993-07-13 | Shimizu Corp | Job shop scheduling expert system |
JPH07282140A (en) * | 1994-04-08 | 1995-10-27 | Hitachi Ltd | Production planning system |
JP2000316019A (en) * | 1999-04-28 | 2000-11-14 | Fujitsu Ltd | DATA COMMUNICATION DEVICE, DATA COMMUNICATION METHOD, AND COMPUTER-READABLE RECORDING MEDIUM RECORDING DATA COMMUNICATION PROGRAM |
CN1930883A (en) * | 2004-11-02 | 2007-03-14 | 松下电器产业株式会社 | Display apparatus and display method |
JP2007026361A (en) * | 2005-07-21 | 2007-02-01 | Toshiba Tec Corp | Work shift plan table creation device |
CN101364107A (en) * | 2008-09-24 | 2009-02-11 | 永凯软件技术(上海)有限公司 | Dynamic dispatching method with prediction in complex large system environment |
CN101533490A (en) * | 2009-04-29 | 2009-09-16 | 江南大学 | Workshop scheduling method for Job-shop discrete production |
CN101794147A (en) * | 2010-02-25 | 2010-08-04 | 北京理工大学 | Shop operation dynamic dispatching method based on disturbance event driving |
KR20120138549A (en) * | 2011-06-15 | 2012-12-26 | 전북대학교산학협력단 | An algorithm for planning of the production schedule at the job-shop company and the planning system of the production schedule cited the algorithm |
CN102929263A (en) * | 2012-11-16 | 2013-02-13 | 北京理工大学 | A Hybrid Flow Shop Scheduling Method |
CN103676902A (en) * | 2013-12-20 | 2014-03-26 | 东北大学 | Flow shop rescheduling method |
CN104391488A (en) * | 2014-11-18 | 2015-03-04 | 广东工业大学 | Optimizing and dispatching method of energy consumption of flexible flow shop with associated adjustment time and sequence |
CN104808636A (en) * | 2015-04-28 | 2015-07-29 | 广东工业大学 | Flexible flow shop energy consumption optimization scheduling method |
CN105809344A (en) * | 2016-03-07 | 2016-07-27 | 浙江财经大学 | Hyper-heuristic algorithm based ZDT flow shop job scheduling method |
Non-Patent Citations (5)
Title |
---|
S. SHIINA: "PC master production scheduling system with task/resource/quantity selection heuristics", 《PROCEEDINGS OF 7TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE》 * |
刘长平 等: "求解零空闲置换流水车间调度问题的离散萤火虫算法", 《系统管理学报》 * |
熊唯 等: "解决动态作业车间调度关键问题的方法研究", 《组合机床与自动化加工技术》 * |
陈亮 等: "柔性作业车间调度问题的集成启发式算法", 《计算机工程》 * |
黄学文 等: "面向Jobshop调度的时间映射算法", 《工业工程》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112836928A (en) * | 2020-12-28 | 2021-05-25 | 浙江理工大学 | An optimization method for manpower scheduling in an assembly shop |
CN112836928B (en) * | 2020-12-28 | 2023-09-22 | 浙江理工大学 | A flow workshop manpower scheduling optimization method |
CN112987662A (en) * | 2021-02-05 | 2021-06-18 | 山东大学 | Machine tool processing capacity sequencing-based sustainable scheduling method for mixed flow workshop |
CN117495057A (en) * | 2023-12-29 | 2024-02-02 | 深圳市微优微科技有限公司 | Production scheme generation method, device, equipment and storage medium |
CN117495057B (en) * | 2023-12-29 | 2024-04-26 | 深圳市微优微科技有限公司 | Production scheme generation method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN108132650B (en) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Defersha et al. | Simultaneous balancing, sequencing, and workstation planning for a mixed model manual assembly line using hybrid genetic algorithm | |
CN113592319A (en) | INSGA-II-based flexible job shop scheduling method and device under complex constraint | |
CN108132650A (en) | A kind of Flow Shop control method and device | |
CN108122055A (en) | The resource regulating method and device of a kind of Flow Shop | |
CN101533490B (en) | Processing optimization method for processing equipment of workshop | |
CN117391423B (en) | A multi-constraint automated scheduling method for chip high multi-layer ceramic packaging substrate production lines | |
Liu et al. | Two-agent group scheduling with deteriorating jobs on a single machine | |
CN102346882A (en) | Bilayer planning method for intelligent scheduling for steelmaking-continuous welding production | |
CN111966049B (en) | Scheduling control method for production equipment of mixed flow shop | |
US20210181726A1 (en) | Control product flow of semiconductor manufacture process under time constraints | |
CN112859785A (en) | Paper basin workshop production scheduling method and scheduling system based on multi-objective optimization algorithm | |
CN110363402B (en) | Factory personnel scheduling method based on grouping strategy | |
CN116774658A (en) | Flexible job shop dynamic scheduling method under material limitation | |
JP5318651B2 (en) | Scheduling method, scheduling program, and scheduling system | |
CN107464059A (en) | A kind of public transport company based on historical information automates control method of arranging an order according to class and grade | |
CN104122861B (en) | The conflict resolution method lax based on the waiting time and Optimization Scheduling | |
CN101311952A (en) | Production plan reverse scheduling system and method | |
CN104636610B (en) | A kind of manufacture system being applied under dynamic environment sends work Information revision method | |
CN114406009B (en) | Roll shape determining method and device with convexity control capability | |
CN110989535B (en) | Dynamic production plan adjusting method for coping with change of processing sequence | |
CN116681225A (en) | Rail vehicle maintenance and production scheduling method and device | |
CN114185312A (en) | A Multi-objective Intelligent Optimization Algorithm for Solving the Dynamic Production Scheduling Problem of Distributed Flow Shop | |
CN112926792A (en) | Dynamic scheduling method and system for welding shop order change based on rolling time window | |
CN107544452B (en) | Centralized Scheduling Method for CNC Machine Tools in Processing Workshops in Case of Emergency Adding Orders | |
CN103123486B (en) | Initial workpiece is with the segmentation insertion method of the workpiece reschedule of doing over again of release time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220527 Address after: 112, F1, building 405, Tiantongyuan, Dongxiaokou Town, Changping District, Beijing 102208 Patentee after: Beijing Yingjie Technology Co.,Ltd. Address before: 100081 No. 5 South Main Street, Haidian District, Beijing, Zhongguancun Patentee before: BEIJING INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right |