[go: up one dir, main page]

CN105809344A - Hyper-heuristic algorithm based ZDT flow shop job scheduling method - Google Patents

Hyper-heuristic algorithm based ZDT flow shop job scheduling method Download PDF

Info

Publication number
CN105809344A
CN105809344A CN201610128423.0A CN201610128423A CN105809344A CN 105809344 A CN105809344 A CN 105809344A CN 201610128423 A CN201610128423 A CN 201610128423A CN 105809344 A CN105809344 A CN 105809344A
Authority
CN
China
Prior art keywords
job
scheduling
individual
zero
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610128423.0A
Other languages
Chinese (zh)
Inventor
林剑
张帅
黄朝耿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Finance and Economics
Original Assignee
Zhejiang University of Finance and Economics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Finance and Economics filed Critical Zhejiang University of Finance and Economics
Priority to CN201610128423.0A priority Critical patent/CN105809344A/en
Publication of CN105809344A publication Critical patent/CN105809344A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Animal Husbandry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于超启发式算法的零空闲流水车间作业调度方法,该方法首先设定零空闲流水车间作业调度问题的目标函数,建立相应的调度优化模型,在此基础上,结合超启发式算法框架,将应用较为广泛的和声搜索算法作为超启发式算法的HLH策略,并针对零空闲流水车间作业调度问题特点,设计简易启发式规则,用以构建LLH方法集合,从而实现对于零空闲流水车间作业调度问题的优化求解。该方法既保留了元启发式算法良好的全局寻优性能,又避免了元启发式算法中凭人工经验调整算法参数带来的不确定性,可以有效提高算法设计的效率,对于流水作业调度效率的提高也具有重要意义。The invention discloses a job scheduling method for a zero-idle flow shop based on a hyperheuristic algorithm. The method first sets the objective function of the job scheduling problem of a zero-idle flow shop, and establishes a corresponding scheduling optimization model. On this basis, combined with a super The heuristic algorithm framework uses the widely used harmony search algorithm as the HLH strategy of the super-heuristic algorithm, and designs simple heuristic rules for the characteristics of the job scheduling problem in the zero-idle flow shop to build the LLH method set, so as to realize the Optimal solution to job scheduling problem in zero-idle flow shop. This method not only retains the good global optimization performance of the meta-heuristic algorithm, but also avoids the uncertainty caused by adjusting the algorithm parameters based on manual experience in the meta-heuristic algorithm, which can effectively improve the efficiency of algorithm design. The improvement is also significant.

Description

一种基于超启发式算法的零空闲流水车间作业调度方法A Job Scheduling Method for Zero Idle Flow Shop Based on Hyperheuristic Algorithm

技术领域technical field

本发明属于车间作业调度技术领域,具体涉及一种基于超启发式算法的零空闲流水车间作业调度方法。The invention belongs to the technical field of workshop job scheduling, and in particular relates to a zero-idle flow workshop job scheduling method based on a super-heuristic algorithm.

背景技术Background technique

流水车间调度问题(Flow-shopSchedulingProblem,FSP)作为生产调度的一个重要分支,本质上属于NP难的复杂组合优化问题。零空闲流水车间作业调度问题是FSP的进一步扩展,要求机器在生产过程中不出现空转,即机器上加工的相邻工件之间不允许有空闲时间。比如在玻璃纤维的制造流程中,加热炉在一个生产周期内需一直保持2800℉的恒定高温,由于炉中大量的热惯性,其停止和开启都需要数天时间,且设备使用过程中要耗费大量能源,因此一旦运行不希望有空闲时间;又如在采用光刻法的集成电路生产流程中,所使用的分档器是一种昂贵的设备,运行过程中也希望是零空闲。零空闲流水车间调度问题普遍存在于纺织、化工、冶金等流程工业的生产过程中,具有广泛的工程应用背景。目前有关零空闲流水车间调度问题求解方法的研究主要分为三类:As an important branch of production scheduling, Flow-shop Scheduling Problem (FSP) is an NP-hard complex combinatorial optimization problem in essence. The zero-idle flow shop job scheduling problem is a further extension of FSP, which requires that the machine does not idle during the production process, that is, no idle time is allowed between adjacent workpieces processed on the machine. For example, in the manufacturing process of glass fiber, the heating furnace needs to maintain a constant high temperature of 2800℉ in a production cycle. Due to the large amount of thermal inertia in the furnace, it takes several days to stop and start, and it takes a lot of time to use the equipment. Therefore, once it is running, it is not expected to have idle time; and for example, in the integrated circuit production process using photolithography, the stepper used is an expensive device, and it is hoped that there will be zero idle time during operation. The zero-idle flow shop scheduling problem generally exists in the production process of textile, chemical, metallurgical and other process industries, and has a wide range of engineering application backgrounds. At present, the research on the solution method of the zero-idle flow shop scheduling problem is mainly divided into three categories:

(1)精确算法,如分支定界法、混合整数规划等,此类算法用于解决NFSP时,主要用于求解小规模问题实例;(1) Accurate algorithms, such as branch and bound method, mixed integer programming, etc. When such algorithms are used to solve NFSP, they are mainly used to solve small-scale problem instances;

(2)启发式算法,如NEH方法、Johnson启发式规则、KK方法等,该类算法实现较为简单,但是得到调度解的质量不高,往往很难得到最优解;(2) Heuristic algorithms, such as NEH method, Johnson heuristic rules, KK method, etc. The implementation of this type of algorithm is relatively simple, but the quality of the scheduling solution obtained is not high, and it is often difficult to obtain the optimal solution;

(3)元启发式算法,如离散粒子群优化算法、和声搜索算法、差分进化算法、人工蜂群算法、萤火虫算法和分布估计算法等,元启发式算法由于其良好的全局优化性能,在生产调度优化中得到了广泛应用。(3) Meta-heuristic algorithms, such as discrete particle swarm optimization algorithm, harmony search algorithm, differential evolution algorithm, artificial bee colony algorithm, firefly algorithm, and distribution estimation algorithm. Due to its good global optimization performance, meta-heuristic algorithms are widely used in It has been widely used in production scheduling optimization.

上述三类算法中,元启发式算法应用最为广泛,但是该类算法要求设计者具备足够的专业背景知识,针对某一具体问题(实例)设计一种特定算法,并通过一组测试实例进行评价。事实上,这种做法存在不足之处,由于不同调度指标下的问题定义、约束条件和优化目标等参数均存在较大差异,因此单一元启发式算法无法保证在所有问题(实例)上始终优于其它算法。Among the above three types of algorithms, the metaheuristic algorithm is the most widely used, but this type of algorithm requires the designer to have sufficient professional background knowledge, design a specific algorithm for a specific problem (instance), and evaluate it through a set of test examples . In fact, this approach has shortcomings. Due to the large differences in problem definitions, constraints and optimization objectives under different scheduling indicators, a single meta-heuristic algorithm cannot guarantee that it is always optimal on all problems (instances). in other algorithms.

超启发式算法是新近出现的一类用于解决复杂多样性优化问题的概念模型,并已成为当前计算智能技术领域的研究热点之一。超启发式算法通过一种高层次启发式(HighLevelHeuristic,HLH)策略管理和操纵一系列低层次启发式(LowLevelHeuristics,LLH)方法,以生成最优启发式算法用以求解不同问题(实例)。HLH策略间接地通过LLH方法对问题域解空间进行搜索,由于启发式域和问题域之间实现了领域屏蔽,通过修改问题域的LLH方法、目标函数等信息,可方便地将超启发式算法移植到不同问题模型。因此,本发明将超启发式算法用于解决零空闲流水车间作业调度问题。Hyperheuristic algorithm is a newly emerged conceptual model for solving complex and diverse optimization problems, and has become one of the research hotspots in the field of computational intelligence technology. Hyper-heuristic algorithms manage and manipulate a series of low-level heuristics (Low Level Heuristics, LLH) methods through a high-level heuristic (HighLevelHeuristic, HLH) strategy to generate optimal heuristic algorithms for solving different problems (instances). The HLH strategy searches the solution space of the problem domain indirectly through the LLH method. Since the domain shielding is realized between the heuristic domain and the problem domain, by modifying the LLH method, objective function and other information of the problem domain, the hyperheuristic algorithm can be easily Transplant to a different problem model. Therefore, the present invention uses the hyperheuristic algorithm to solve the zero-idle flow shop job scheduling problem.

发明内容Contents of the invention

本发明的目的是针对现有技术存在的不足,提出了一种基于超启发式算法的零空闲流水车间作业调度方法,该方法首先设定零空闲流水车间作业调度问题的目标函数,建立相应的调度优化模型,在此基础上,结合超启发式算法框架,将应用较为广泛的一种元启发式算法—和声搜索(HarmonySearch,HS)算法作为超启发式算法的HLH策略,并针对零空闲流水车间作业调度问题特点,设计简易启发式规则,用以构建LLH方法集合,从而实现对于零空闲流水车间作业调度问题的优化求解。The purpose of the present invention is to address the deficiencies in the prior art, and propose a zero-idle assembly line job scheduling method based on a hyperheuristic algorithm. The method first sets the objective function of the zero-idle assembly line job scheduling problem, and establishes a corresponding Scheduling optimization model, on this basis, combined with the framework of the hyper-heuristic algorithm, a widely used meta-heuristic algorithm—Harmony Search (HS) algorithm is used as the HLH strategy of the hyper-heuristic algorithm, and for zero idle Based on the characteristics of the job scheduling problem of the flow shop, a simple heuristic rule is designed to construct the LLH method set, so as to realize the optimal solution to the job scheduling problem of the zero-idle flow shop.

本发明解决上述技术问题所采取的方法,步骤如下:The method that the present invention solves the problems of the technologies described above takes, and the steps are as follows:

(1)设定零空闲流水车间作业调度优化问题的目标函数fit(·);(1) Set the objective function fit(·) of the job scheduling optimization problem in the zero-idle flow shop;

(2)初始化HS算法参数,所述HS算法参数包括:和声记忆库容量(HMS)、记忆库取值概率(HMCR)、音调调节概率(PAR)、音调调节范围(bw)、个体长度(L)和迭代次数(T);(2) Initialize the HS algorithm parameters, the HS algorithm parameters include: harmony memory capacity (HMS), memory value probability (HMCR), pitch adjustment probability (PAR), pitch adjustment range (bw), individual length ( L) and the number of iterations (T);

(3)采用作业交换、插入和翻转操作设计启发式规则,构建面向零空闲流水车间作业调度问题的LLH方法集合,并将LLH方法进行编号;(3) Design heuristic rules by using job exchange, insertion and flipping operations, construct a set of LLH methods for job scheduling problems in a zero-idle flow shop, and number the LLH methods;

(4)初始化群体,生成和声记忆库,和声记忆库中每一个体对应的是LLH方法的编号序列k∈[1,HMS],xk∈RL,RL为L维实数空间;(4) Initialize the group and generate a harmony memory bank, each individual in the harmony memory bank corresponds to the numbering sequence of the LLH method k∈[1,HMS], x k ∈ R L , R L is the L-dimensional real number space;

(5)随机生成和声记忆库中每一个体对应的调度候选解πk=Permuting(J),其中J={J1,J2,…,Jn},为待作业集合,Permuting(·)为随机打乱顺序操作;(5) Randomly generate the scheduling candidate solution π k =Permuting(J) corresponding to each individual in the harmony memory bank, where J={J 1 ,J 2 ,...,J n }, which is the set of jobs to be performed, Permuting(· ) is a random random order operation;

(6)计算和声记忆库中所有个体的适应度值fit(xk),具体方法如下:(6) Calculate the fitness value fit(x k ) of all individuals in the harmony memory bank, the specific method is as follows:

(a)针对和声记忆库中某一个体xk,令i=1;(a) For an individual x k in the harmony memory bank, set i=1;

(b)将第个LLH方法应用到对应的调度候选解πk,得到新调度候选解 (b) will A LLH method is applied to the corresponding scheduling candidate solution π k to obtain a new scheduling candidate solution

(c)分别计算πk的适应度值fit(πk)和否则保留调度候选解πk不变;(c) Calculate π k and The fitness value fit(π k ) and like but Otherwise, keep the scheduling candidate solution π k unchanged;

(d)令i=i+1,判断i≤L是否成立,若成立则转到(b)继续执行,否则转(e)执行;(d) Make i=i+1, judge whether i≤L is established, if established, go to (b) to continue execution, otherwise go to (e) execution;

(e)将第个LLH方法得到的调度候选解πk及其适应度值fit(πk)作为个体xk的最终适应度值,即fit(xk)=fit(πk);(e) will The scheduling candidate solution π k and its fitness value fit(π k ) obtained by the LLH method are used as the final fitness value of the individual x k , that is, fit(x k )=fit(π k );

(7)生成一个新个体x′={x′1,x′2,…,x′L},具体步骤如下:(7) Generate a new individual x′={x′ 1 ,x′ 2 ,…,x′ L }, the specific steps are as follows:

(a)首先生成两个随机数,即[0,1]上均匀分布的随机数r1、r2(a) First generate two random numbers, namely random numbers r 1 and r 2 uniformly distributed on [0,1];

(b)从和声记忆库中随机选取某一个体xj(b) Randomly select an individual x j from the harmony memory bank;

(c)得到一个新个体第i维上的值x′i,i=1,2,…,L,其计算规则为:若r1<HMCR且r2≥PAR,则若r1<HMCR且r2<PAR,则若r1≥HMCR,则x′i=Rnd(Lb(x′i),Ub(x′i)),其中Rnd(a,b)表示生成a到b范围内的随机数,Lb(x′i)和Ub(x′i)分别表示和声记忆库中第i维上的最小值和最大值;(c) Obtain the value x′ i of the i-th dimension of a new individual, i=1,2,…,L, the calculation rule is: if r 1 <HMCR and r 2 ≥PAR, then If r 1 <HMCR and r 2 <PAR, then If r 1 ≥ HMCR, then x′ i =Rnd(Lb(x′ i ),Ub(x′ i )), where Rnd(a,b) means generating a random number in the range from a to b, and Lb(x′ i ) and Ub(x′ i ) respectively represent the minimum and maximum values on the i-th dimension in the harmony memory;

(d)规整化处理,由于(c)中得到的新个体x′={x′1,x′2,…,x′L}在第i维上的值x′i有可能会超过可行解的范围,因此采用如下公式进行规整化处理,其中[·]为取整运算:(d) Regularization processing, because the value x′ i of the new individual x′={x′ 1 ,x′ 2 ,…,x′ L } obtained in (c) may exceed the feasible solution Therefore, the following formula is used for normalization, where [·] is the rounding operation:

xx ii &prime;&prime; == 11 ,, xx ii &prime;&prime; << 11 LL ,, xx ii &prime;&prime; >> LL &lsqb;&lsqb; xx ii &prime;&prime; &rsqb;&rsqb; ,, ee ll sthe s ee ;;

(8)更新和声记忆库。若步骤(7)中得到的新个体适应度值fit(x′)要优于和声记忆库中个体xj的适应度值fit(xj),则用新个体x′及其对应的调度候选解替代库中适应度最差个体及其调度候选解;(8) Update the harmony memory bank. If the fitness value fit(x′) of the new individual obtained in step (7) is better than the fitness value fit(x j ) of the individual x j in the harmony memory, then use the new individual x′ and its corresponding scheduling The candidate solution replaces the individual with the worst fitness in the library and its scheduling candidate solution;

(9)检查当前迭代次数是否已达到T次。若没达到则转回步骤(7),否则对当前和声记忆库中的较优候选解按适应度值进行排序,并保存适应度最优的个体xbest及其对应的调度候选解πbest(9) Check whether the current number of iterations has reached T times. If not, go back to step (7), otherwise sort the better candidate solutions in the current harmony memory according to the fitness value, and save the individual x best with the best fitness and its corresponding scheduling candidate solution π best ;

(10)输出调度候选解πbest对应的甘特图,从而完成对于零空闲流水车间作业调度问题的优化求解。(10) Output the Gantt chart corresponding to the scheduling candidate solution π best , so as to complete the optimal solution to the zero-idle flow shop job scheduling problem.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

在零空闲流水作业调度问题中,不同调度指标下的解个体表达、约束条件、优化目标等参数存在较大差异,使元启发式算法难以在各种调度优化问题中均保持较高性能。本发明采用超启发式算法实现对零空闲流水车间的作业调度优化,将应用较为广泛的HS算法作为超启发式框架下的HLH策略,用以操纵一系列简易LLH方法间接地实现对于目标问题的求解,既保留了元启发式算法良好的全局寻优性能,又避免了元启发式算法中凭人工经验调整算法参数带来的不确定性。本发明中HLH策略的算法参数一旦确定不需要调整,根据不同的调度优化目标只需简单修改相应的LLH方法以及目标函数,因此也可以方便地移植到其它包含不同调度目标的问题实例中,可以有效提高算法设计的效率。此外,本发明提出的超启发式算法的核心思想在于有效组织LLH方法集合用以生成求解零空闲流水车间作业调度问题的最优启发式方法,而这些LLH方法集合都是由简易启发式规则所组成,算法复杂度较低,因此对于流水作业调度效率的提高也具有重要意义。In the zero-idle pipeline job scheduling problem, there are large differences in the parameters of the solution individual expression, constraint conditions, and optimization objectives under different scheduling indicators, which makes it difficult for the meta-heuristic algorithm to maintain high performance in various scheduling optimization problems. The present invention adopts the super-heuristic algorithm to realize the job scheduling optimization of the zero-idle flow shop, and uses the widely used HS algorithm as the HLH strategy under the super-heuristic framework to manipulate a series of simple LLH methods to indirectly realize the target problem. The solution not only retains the good global optimization performance of the meta-heuristic algorithm, but also avoids the uncertainty caused by adjusting the algorithm parameters based on manual experience in the meta-heuristic algorithm. Once the algorithm parameters of the HLH strategy in the present invention are determined and do not need to be adjusted, the corresponding LLH method and objective function only need to be simply modified according to different scheduling optimization objectives, so it can also be easily transplanted to other problem instances containing different scheduling objectives, and can Effectively improve the efficiency of algorithm design. In addition, the core idea of the super-heuristic algorithm proposed by the present invention is to effectively organize the LLH method set to generate the optimal heuristic method for solving the zero-idle flow shop job scheduling problem, and these LLH method sets are all determined by simple heuristic rules. Composition, the algorithm complexity is low, so it is also of great significance to improve the efficiency of pipeline job scheduling.

附图说明Description of drawings

图1是零空闲流水车间作业中的加工时间描述;Figure 1 is a description of the processing time in the zero-idle flow shop operation;

图2是基于超启发式算法的零空闲流水车间作业调度总体流程图;Figure 2 is the overall flow chart of job scheduling in zero-idle flow shop based on hyperheuristic algorithm;

图3是LLH方法操作示意图;Fig. 3 is a schematic diagram of LLH method operation;

图4是和声搜索算法中和声记忆库及其对应调度候选解示意图。Fig. 4 is a schematic diagram of the harmony memory bank and its corresponding scheduling candidate solutions in the harmony search algorithm.

具体实施方式detailed description

为了更好地理解本发明的技术方案和特点,以下结合说明书附图对本发明的实施方式作进一步的描述。In order to better understand the technical solutions and features of the present invention, the implementation of the present invention will be further described below in conjunction with the accompanying drawings.

首先,需设定零空闲流水车间作业调度优化问题的目标函数fit(·),由于不同调度指标下的优化目标各不相同,本实施例以常见的最小化完工时间(Makespan)为例进行说明。给定调度解π={J1,J2,…,Jn},其中J1,J2,…,Jn为n个待作业工件,需依次通过零空闲流水线作业中的m台机器设备,即机器上加工的相邻工件之间不允许有空闲时间。设定工件Ji(i=1,2,…,n)在机器j(j=1,2,…,m)上的加工时间、开始时间和完工时间分别为Pi,j,Si,j和Ci,j。图1给出了工件Ji在机器j上可能存在的加工流程情况示意图,零空闲流水车间作业调度问题的完工时间可计算如下:First, it is necessary to set the objective function fit( ) of the job scheduling optimization problem in a zero-idle flow shop. Since the optimization objectives under different scheduling indicators are different, this embodiment takes the common minimum completion time (Makespan) as an example to illustrate . Given scheduling solution π={J 1 ,J 2 ,…,J n }, where J 1 ,J 2 ,…,J n are n workpieces to be operated, which need to pass through m machines in the zero-idle pipeline operation in turn , that is, no idle time is allowed between adjacent workpieces processed on the machine. Set the processing time, start time and completion time of workpiece J i (i=1,2,…,n) on machine j (j=1,2,…,m) as P i,j , S i, j and C i,j . Figure 1 shows a schematic diagram of the possible processing flow of workpiece J i on machine j. The completion time of the zero-idle flow shop job scheduling problem can be calculated as follows:

在图1(a)中,工件Ji的加工开始时间Si,j是其在前一台机器上的完工时间Ci,j-1,而零空闲约束下的机器则要求两个相邻工件操作时间间隔Γj=0,这种情况下会对后面的加工时间产生影响。而在图1(b)中,Si,j则是前一工件Ji-1在当前机器上的完工时间Ci-1,j,且总存在Γj=0。对于流水作业生产中的第一台机器而言,由于其不存在前一机器影响,因此有Γ1=0,可以得到:In Fig. 1(a), the processing start time S i ,j of workpiece Ji is its completion time C i,j-1 on the previous machine, while the machine under the zero-idle constraint requires two adjacent The workpiece operation time interval Γ j =0, in this case, it will affect the subsequent processing time. In Fig. 1(b), S i,j is the completion time C i-1,j of the previous job J i-1 on the current machine, and Γ j =0 always exists. For the first machine in assembly line production, since it does not have the influence of the previous machine, Γ 1 =0, we can get:

C1,1=S1,1+P1,1(1)C 1,1 = S 1,1 +P 1,1 (1)

Ci,1=Ci-1,1+Pi,1(2)C i,1 =C i-1,1 +P i,1 (2)

其中S1,1=0。此外,在每一台机器上的第一个工件J1的开始时间S1,1就是该工件在前一台机器上的完工时间C1,j-1,所以有S1,j=C1,j-1,同时也可以计算得到J1在每一台机器加工的完工时间为:where S 1,1 =0. In addition, the start time S 1,1 of the first job J 1 on each machine is the completion time C 1,j-1 of the job on the previous machine, so S 1,j = C 1 ,j-1 , at the same time, it can also be calculated that the completion time of J 1 processed by each machine is:

C1,j=S1,j+P1,j(3)C 1,j =S 1,j +P 1,j (3)

从图1(a)可知,如果当前机器存在零空闲约束,则Ji-1在机器j上的加工开始时间需往后延迟Γj才能满足约束条件。因此综合图1的情况,当加工流程遇到机器j时,往后延迟的时间Γj=max{Ci,j-1-Ci-1,j,0},同时会导致后续所有工序上加工操作均发生延迟,其总的延迟时间可以通过式(4)计算得到。It can be seen from Figure 1(a) that if there is a zero-idle constraint on the current machine, the processing start time of J i-1 on machine j needs to be delayed by Γ j to meet the constraint condition. Therefore, considering the situation in Figure 1, when the processing flow encounters machine j, the delayed time Γ j = max{C i,j-1 -C i-1,j ,0} will cause all subsequent processes to All processing operations are delayed, and the total delay time can be calculated by formula (4).

Γj=Γj-1+max{Ci,j-1-(Ci-1,jj-1),0}(4)Γ j =Γ j-1 +max{C i,j-1 -(C i-1,jj-1 ),0}(4)

从而可以得到每一机器j的开始时间和完工时间分别如式(5)和(6)所示。Thus, the start time and completion time of each machine j can be obtained as shown in equations (5) and (6) respectively.

Si,j=max{Ci-1,jj,Ci,j-1}(5)S i,j =max{C i-1,jj ,C i,j-1 }(5)

Ci,j=Si,j+Pi,j(6)C i,j =S i,j +P i,j (6)

因此,可以得到调度解π对应的完工时间为:Therefore, the completion time corresponding to the scheduling solution π can be obtained as:

Cmax(π)=Cn,m(7)C max (π) = C n,m (7)

零空闲流水车间调度问题的目标函数可表示如下:The objective function of the zero-idle flow shop scheduling problem can be expressed as follows:

fit(π)=Cmax(π)(8)fit(π)= Cmax (π)(8)

求解上述目标函数零空闲流水车间作业调度问题的总体流程如图2所示,具体实施步骤是:The overall process of solving the above objective function zero-idle assembly line job scheduling problem is shown in Figure 2. The specific implementation steps are:

步骤(1)初始化HS算法参数。初始化和声记忆库容量(HMS)、记忆库取值概率(HMCR)、音调调节概率(PAR)、音调调节范围(bw)、个体长度(L)和迭代次数(T);Step (1) Initialize the HS algorithm parameters. Initialize harmony memory capacity (HMS), memory value probability (HMCR), pitch adjustment probability (PAR), pitch adjustment range (bw), individual length (L) and number of iterations (T);

步骤(2)采用交换、插入、翻转操作设计LLH方法集合,如图3所示,具体方法如下:Step (2) Design the LLH method set by swapping, inserting and flipping operations, as shown in Figure 3, the specific method is as follows:

(a)作业交换:随机选取调度候选解的两个作业Ja和Jb,并交换相应位置;(a) Job exchange: randomly select two jobs J a and J b of scheduling candidate solutions, and exchange corresponding positions;

(b)作业插入1:随机选取调度候选解的两个作业Ja和Jb,并将Jb插入到Ja之后;(b) Job insertion 1: Randomly select two jobs J a and J b of scheduling candidate solutions, and insert J b after J a ;

(c)作业插入2:随机选取调度候选解的两个作业Ja和Jb,并将Ja插入到Jb之后;(c) Job insertion 2: randomly select two jobs J a and J b of scheduling candidate solutions, and insert J a after J b ;

(d)作业翻转:将所有作业{J1,J2,…,Jn}进行翻转操作,得到{Jn,…,J2,J1};(d) Job flipping: flip all jobs {J 1 ,J 2 ,…,J n } to get {J n ,…,J 2 ,J 1 };

采用上述方法构建面向零空闲流水车间作业调度问题的LLH方法集合,并按上述顺序依次进行编号,即1:作业交换,2:作业插入1,3:作业插入2,4:作业翻转;The above method is used to construct the LLH method set for the job scheduling problem of the zero-idle flow shop, and the numbers are sequentially numbered in the above order, that is, 1: job exchange, 2: job insertion 1, 3: job insertion 2, 4: job reversal;

步骤(3)初始化群体,即生成和声记忆库。和声记忆库中每一个体对应的是LLH方法的编号序列k∈[1,HMS],xk∈RL,其生成方法如下:Step (3) Initialize the group, that is, generate a harmony memory bank. Each individual in the harmony memory library corresponds to the numbering sequence of the LLH method k∈[1,HMS], x k ∈ R L , its generation method is as follows:

xx ii kk == RR nno dd nno %% 44 ++ 11 ,, ii &Element;&Element; &lsqb;&lsqb; 11 ,, LL &rsqb;&rsqb; -- -- -- (( 99 ))

其中Rndn为生成的随机正整数,%表示取模运算;Wherein Rndn is a generated random positive integer, and % represents a modulo operation;

步骤(4)随机生成和声记忆库中每一个体对应的调度候选解πk=Permuting(J),其中J={J1,J2,…,Jn},Permuting(·)为随机打乱顺序操作,最终生成的初始化和声记忆库和对应调度候选解如图4所示;Step (4) Randomly generate the scheduling candidate solution π k =Permuting(J) corresponding to each individual in the harmony memory bank, where J={J 1 ,J 2 ,...,J n }, and Permuting(·) is the random Random order operations, the final generated initialization harmony memory and corresponding scheduling candidate solutions are shown in Figure 4;

步骤(5)计算和声记忆库中所有个体的适应度值fit(xk),具体方法如下:Step (5) Calculate the fitness value fit(x k ) of all individuals in the harmony memory bank, the specific method is as follows:

(a)针对和声记忆库中某一个体xk,令i=1;(a) For an individual x k in the harmony memory bank, set i=1;

(b)将第个LLH方法应用到对应的调度候选解πk,得到新调度候选解 (b) will A LLH method is applied to the corresponding scheduling candidate solution π k to obtain a new scheduling candidate solution

(c)采用公式(6)分别计算πk的适应度值fit(πk)和否则保留调度候选解πk不变;(c) Use formula (6) to calculate π k and The fitness value fit(π k ) and like but Otherwise, keep the scheduling candidate solution π k unchanged;

(d)令i=i+1,判断i≤L是否成立,若成立则转到(b)继续执行,否则转(e)执行;(d) Make i=i+1, judge whether i≤L is established, if established, go to (b) to continue execution, otherwise go to (e) execution;

(e)将第个LLH方法得到的调度候选解πk及其适应度值fit(πk)作为个体xk的最终适应度值,即fit(xk)=fit(πk);(e) will The scheduling candidate solution π k and its fitness value fit(π k ) obtained by the LLH method are used as the final fitness value of the individual x k , that is, fit(x k )=fit(π k );

步骤(6)生成一个新个体x′={x′1,x′2,…,x′L},具体步骤如下:Step (6) Generate a new individual x′={x′ 1 ,x′ 2 ,…,x′ L }, the specific steps are as follows:

(a)首先生成两个随机数,即[0,1]上均匀分布的随机数r1、r2(a) First generate two random numbers, namely random numbers r 1 and r 2 uniformly distributed on [0,1];

(b)从和声记忆库中随机选取某一个体xj(b) Randomly select an individual x j from the harmony memory bank;

(c)得到一个新个体第i维上的值x′i,i=1,2,…,L,其计算规则为:若r1<HMCR且r2≥PAR,则若r1<HMCR且r2<PAR,则若r1≥HMCR,则x′i=Rnd(Lb(x′i),Ub(x′i)),其中Rnd(a,b)表示生成a到b范围内的随机数,Lb(x′i)和Ub(x′i)分别表示和声记忆库中第i维上的最小值和最大值;(c) Obtain the value x′ i of the i-th dimension of a new individual, i=1,2,…,L, the calculation rule is: if r 1 <HMCR and r 2 ≥PAR, then If r 1 <HMCR and r 2 <PAR, then If r 1 ≥ HMCR, then x′ i =Rnd(Lb(x′ i ),Ub(x′ i )), where Rnd(a,b) means generating a random number in the range from a to b, and Lb(x′ i ) and Ub(x′ i ) respectively represent the minimum and maximum values on the i-th dimension in the harmony memory;

(d)规整化处理,由于(c)中得到的新个体x′={x′1,x′2,…,x′L}在第i维上的值x′i有可能会超过可行解的范围,因此采用式(10)进行规整化处理,其中[·]为取整运算;(d) Regularization processing, because the value x′ i of the new individual x′={x′ 1 ,x′ 2 ,…,x′ L } obtained in (c) may exceed the feasible solution range, so formula (10) is used for regularization processing, where [ ] is rounding operation;

xx ii &prime;&prime; == 11 ,, xx ii &prime;&prime; << 11 LL ,, xx ii &prime;&prime; >> LL &lsqb;&lsqb; xx ii &prime;&prime; &rsqb;&rsqb; ,, ee ll sthe s ee -- -- -- (( 1010 ))

步骤(7)更新和声记忆库。若步骤(7)中得到的新个体适应度值fit(x′)要优于和声库中个体xj的适应度值fit(xj),则用新个体x′及其对应的调度候选解替代库中适应度最差个体及其调度候选解;Step (7) updating the harmony memory. If the fitness value fit(x′) of the new individual obtained in step (7) is better than the fitness value fit(x j ) of the individual x j in the harmony library, then use the new individual x′ and its corresponding scheduling candidate The individual with the worst fitness in the solution substitution library and its scheduling candidate solution;

步骤(8)检查当前迭代次数是否已达到T次。若没达到则转回步骤(7),否则对当前和声记忆库中的较优候选解按适应度值进行排序,并保存适应度最优的个体xbest及其对应的调度候选解πbestStep (8) Check whether the current number of iterations has reached T times. If not, go back to step (7), otherwise sort the better candidate solutions in the current harmony memory according to the fitness value, and save the individual x best with the best fitness and its corresponding scheduling candidate solution π best ;

步骤(9)输出调度候选解πbest对应的甘特图。从而完成对于零空闲流水车间作业调度问题的求解。Step (9) outputs the Gantt chart corresponding to the scheduling candidate solution π best . In this way, the solution to the job scheduling problem of the zero-idle flow shop is completed.

Claims (2)

1.一种基于超启发式算法的零空闲流水车间作业调度方法,其特征在于,包括以下步骤:1. A zero-idle flow shop job scheduling method based on super-heuristic algorithm, is characterized in that, comprises the following steps: 步骤(1)设定零空闲流水车间作业调度优化问题的目标函数fit(·);Step (1) Set the objective function fit(·) of the job scheduling optimization problem in the zero-idle flow shop; 步骤(2)初始化HS算法参数;所述的参数包括:和声记忆库容量HMS、记忆库取值概率HMCR、音调调节概率PAR、音调调节范围bw、个体长度L和迭代次数T;Step (2) Initialize the HS algorithm parameters; the parameters include: harmony memory capacity HMS, memory value probability HMCR, pitch adjustment probability PAR, pitch adjustment range bw, individual length L and iteration number T; 步骤(3)采用作业交换、插入和翻转操作设计启发式规则,用以构建面向零空闲流水车间作业调度问题的LLH方法集合,并将LLH方法进行编号;步骤(4)初始化群体,生成和声记忆库;和声记忆库中每一个体对应LLH方法的编号序列k∈[1,HMS],xk∈RLStep (3) Design heuristic rules by using job exchange, insertion and flipping operations to construct a set of LLH methods for job scheduling problems in a zero-idle flow shop, and number the LLH methods; Step (4) initialize the population and generate harmony Memory bank; each individual in the harmony memory bank corresponds to the numbering sequence of the LLH method k ∈ [1, HMS], x k ∈ R L ; 步骤(5)随机生成和声记忆库中每一个体对应的调度候选解πk=Permuting(J),其中J={J1,J2,…,Jn},为待作业集合,Permuting(·)为随机打乱顺序操作;Step (5) Randomly generate the scheduling candidate solution π k =Permuting(J) corresponding to each individual in the harmony memory bank, where J={J 1 ,J 2 ,...,J n } is the set of jobs to be performed, and Permuting( ) is a random random operation; 步骤(6)计算和声记忆库中所有个体的适应度值fit(xk),具体方法如下:Step (6) Calculate the fitness value fit(x k ) of all individuals in the harmony memory bank, the specific method is as follows: (a)针对和声记忆库中某一个体xk,令i=1;(a) For an individual x k in the harmony memory bank, set i=1; (b)将第个LLH方法应用到对应的调度候选解πk,得到新调度候选解 (b) will A LLH method is applied to the corresponding scheduling candidate solution π k to obtain a new scheduling candidate solution (c)分别计算πk的适应度值fit(πk)和否则保留调度候选解πk不变;(c) Calculate π k and The fitness value fit(π k ) and like but Otherwise, keep the scheduling candidate solution π k unchanged; (d)令i=i+1,判断i≤L是否成立,若成立则转到(b)继续执行,否则转(e)执行;(d) Make i=i+1, judge whether i≤L is established, if established, go to (b) to continue execution, otherwise go to (e) execution; (e)将第个LLH方法得到的调度候选解πk及其适应度值fit(πk)作为个体xk的最终适应度值,即fit(xk)=fit(πk);(e) will The scheduling candidate solution π k and its fitness value fit(π k ) obtained by the LLH method are used as the final fitness value of the individual x k , that is, fit(x k )=fit(π k ); 步骤(7)生成一个新个体x′={x′1,x′2,…,x′L},具体步骤如下:Step (7) Generate a new individual x′={x′ 1 ,x′ 2 ,…,x′ L }, the specific steps are as follows: (a)首先生成两个随机数,即[0,1]上均匀分布的随机数r1、r2(a) First generate two random numbers, namely random numbers r 1 and r 2 uniformly distributed on [0,1]; (b)从和声记忆库中随机选取某一个体xj(b) Randomly select an individual x j from the harmony memory bank; (c)得到一个新个体第i维上的值x′i,i=1,2,…,L,其计算规则为:若r1<HMCR且r2≥PAR,则若r1<HMCR且r2<PAR,则若r1≥HMCR,则x′i=Rnd(Lb(x’i),Ub(x’i)),其中Rnd(a,b)表示生成a到b范围内的随机数,Lb(x′i)和Ub(x′i)分别表示和声记忆库中第i维上的最小值和最大值;(c) Obtain the value x′ i of a new individual on the i-th dimension, i=1,2,…,L, and its calculation rule is: if r 1 <HMCR and r 2 ≥PAR, then If r 1 <HMCR and r 2 <PAR, then If r 1 ≥ HMCR, then x′ i =Rnd(Lb(x' i ),Ub(x' i )), where Rnd(a,b) means generating a random number in the range from a to b, and Lb(x' i ) and Ub(x′ i ) respectively represent the minimum and maximum values on the i-th dimension in the harmony memory; (d)规整化处理,由于(c)中得到的新个体x′={x1′,x′2,…,x′L}在第i维上的值x′i有可能会超过可行解的范围,因此采用如下公式进行规整化处理,其中[·]为取整运算。(d) Regularization processing, because the value x′ i of the new individual x′={x 1 ′,x′ 2 ,…,x′ L } obtained in (c) may exceed the feasible solution Therefore, the following formula is used for normalization processing, where [·] is the rounding operation. xx ii &prime;&prime; == 11 ,, xx ii &prime;&prime; << 11 LL ,, xx ii &prime;&prime; >> LL &lsqb;&lsqb; xx ii &prime;&prime; &rsqb;&rsqb; ,, ee ll sthe s ee 步骤(8)更新和声记忆库;若步骤(7)中得到的新个体适应度值fit(x′)要优于和声记忆库中个体xj的适应度值fit(xj),则用新个体x′及其对应的调度候选解替代库中适应度最差个体及其调度候选解;Step (8) update the harmony memory; if the new individual fitness value fit(x′) obtained in step (7) is better than the fitness value fit(x j ) of the individual x j in the harmony memory, then Replace the individual with the worst fitness and its scheduling candidate solution in the library with the new individual x' and its corresponding scheduling candidate solution; 步骤(9)检查当前迭代次数是否已达到T次;若没达到则转回步骤(7),否则对当前和声记忆库中的较优候选解按适应度值进行排序,并保存适应度最优的个体xbest及其对应的调度候选解πbestStep (9) Check whether the current number of iterations has reached T times; if not, return to step (7), otherwise, sort the better candidate solutions in the current harmony memory according to the fitness value, and save the best fitness The optimal individual x best and its corresponding scheduling candidate solution π best ; 步骤(10)输出调度候选解πbest对应的甘特图,从而完成对于零空闲流水车间作业调度问题的优化求解。Step (10) outputs the Gantt chart corresponding to the scheduling candidate solution π best , thereby completing the optimal solution to the zero-idle assembly line job scheduling problem. 2.根据权利要求1所述的基于超启发式算法的零空闲流水车间作业调度方法,其特征在于,所述的步骤(3)采用作业交换、插入和翻转操作设计启发式规则,用以构建面向零空闲流水车间作业调度问题的LLH方法集合,具体方法如下:2. the zero-idle assembly line job scheduling method based on super-heuristic algorithm according to claim 1, is characterized in that, described step (3) adopts job exchange, insertion and flip operation design heuristic rule, in order to construct A collection of LLH methods for the job scheduling problem of zero-idle flow shop, the specific methods are as follows: (a)作业交换:随机选取调度候选解的两个作业Ja和Jb,并交换相应位置;(a) Job exchange: randomly select two jobs J a and J b of scheduling candidate solutions, and exchange corresponding positions; (b)作业插入1:随机选取调度候选解的两个作业Ja和Jb,并将Jb插入到Ja之后;(b) Job insertion 1: Randomly select two jobs J a and J b of scheduling candidate solutions, and insert J b after J a ; (c)作业插入2:随机选取调度候选解的两个作业Ja和Jb,并将Ja插入到Jb之后;(c) Job insertion 2: randomly select two jobs J a and J b of scheduling candidate solutions, and insert J a after J b ; (d)作业翻转:将所有作业{J1,J2,…,Jn}进行翻转操作,得到{Jn,…,J2,J1};(d) Job flipping: flip all jobs {J 1 ,J 2 ,…,J n } to get {J n ,…,J 2 ,J 1 }; 采用上述方法构建面向零空闲流水车间作业调度问题的LLH方法集合,并按上述顺序依次进行编号,即1:作业交换,2:作业插入1,3:作业插入2,4:作业翻转。The above method is used to construct the LLH method set for the job scheduling problem of the zero-idle flow shop, and numbered in sequence according to the above order, that is, 1: job exchange, 2: job insertion 1, 3: job insertion 2, 4: job reversal.
CN201610128423.0A 2016-03-07 2016-03-07 Hyper-heuristic algorithm based ZDT flow shop job scheduling method Pending CN105809344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610128423.0A CN105809344A (en) 2016-03-07 2016-03-07 Hyper-heuristic algorithm based ZDT flow shop job scheduling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610128423.0A CN105809344A (en) 2016-03-07 2016-03-07 Hyper-heuristic algorithm based ZDT flow shop job scheduling method

Publications (1)

Publication Number Publication Date
CN105809344A true CN105809344A (en) 2016-07-27

Family

ID=56466836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610128423.0A Pending CN105809344A (en) 2016-03-07 2016-03-07 Hyper-heuristic algorithm based ZDT flow shop job scheduling method

Country Status (1)

Country Link
CN (1) CN105809344A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707990A (en) * 2016-12-19 2017-05-24 湘潭大学 Multi-objective flexible job shop scheduling method based on discrete firefly algorithm
CN107767022A (en) * 2017-09-12 2018-03-06 重庆邮电大学 A kind of Dynamic Job-shop Scheduling rule intelligent selecting method of creation data driving
CN108132650A (en) * 2016-12-01 2018-06-08 北京理工大学 A kind of Flow Shop control method and device
CN108681818A (en) * 2018-05-18 2018-10-19 昆明理工大学 A kind of Optimization Scheduling of gear mechanism process
CN109298923A (en) * 2018-09-14 2019-02-01 中科驭数(北京)科技有限公司 Deep pipeline task processing method and device
CN109377111A (en) * 2018-12-13 2019-02-22 合肥工业大学 Job scheduling method and device based on improved simulated annealing algorithm
CN109615228A (en) * 2018-12-12 2019-04-12 杭州电子科技大学 Calculation method of railway transportation risk probability based on hybrid heuristic rule system
CN110134092A (en) * 2019-05-28 2019-08-16 山东师范大学 Method and system for dynamic dispatching of rail-type automatic guided vehicles based on harmony search
CN111507523A (en) * 2020-04-16 2020-08-07 浙江财经大学 An optimization method for cable production scheduling based on reinforcement learning
CN112257296A (en) * 2020-11-27 2021-01-22 西南交通大学 Improved genetic algorithm-based job shop scheduling method with cache constraint
CN114066065A (en) * 2021-11-18 2022-02-18 福州大学 A multi-objective hybrid zero-idle replacement flow shop scheduling method and system
CN114399227A (en) * 2022-02-08 2022-04-26 无锡雪浪数制科技有限公司 Production scheduling method and device based on digital twins and computer equipment
CN114839930A (en) * 2022-03-17 2022-08-02 兰州理工大学 Integrated dispatching system for distributed assembly blocking flow workshop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120130929A1 (en) * 2010-11-24 2012-05-24 International Business Machines Corporation Controlling quarantining and biasing in cataclysms for optimization simulations
CN102929219A (en) * 2012-09-24 2013-02-13 四川大学 Cloud-computing-based production monitoring and intelligent scheduling decision making system
CN102831314B (en) * 2012-08-23 2015-05-27 鸿博股份有限公司 Optimized design method for meander-line dipole RFID (radiofrequency identification) tag antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120130929A1 (en) * 2010-11-24 2012-05-24 International Business Machines Corporation Controlling quarantining and biasing in cataclysms for optimization simulations
CN102831314B (en) * 2012-08-23 2015-05-27 鸿博股份有限公司 Optimized design method for meander-line dipole RFID (radiofrequency identification) tag antenna
CN102929219A (en) * 2012-09-24 2013-02-13 四川大学 Cloud-computing-based production monitoring and intelligent scheduling decision making system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武磊 等: "求解零空闲流水线调度问题的和声退火算法", 《计算机工程与应用》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132650A (en) * 2016-12-01 2018-06-08 北京理工大学 A kind of Flow Shop control method and device
CN106707990A (en) * 2016-12-19 2017-05-24 湘潭大学 Multi-objective flexible job shop scheduling method based on discrete firefly algorithm
CN107767022A (en) * 2017-09-12 2018-03-06 重庆邮电大学 A kind of Dynamic Job-shop Scheduling rule intelligent selecting method of creation data driving
CN108681818A (en) * 2018-05-18 2018-10-19 昆明理工大学 A kind of Optimization Scheduling of gear mechanism process
CN109298923B (en) * 2018-09-14 2019-11-29 中科驭数(北京)科技有限公司 Deep pipeline task processing method and device
CN109298923A (en) * 2018-09-14 2019-02-01 中科驭数(北京)科技有限公司 Deep pipeline task processing method and device
CN109615228B (en) * 2018-12-12 2023-04-07 杭州电子科技大学 Railway transportation risk probability calculation method based on mixed heuristic rule system
CN109615228A (en) * 2018-12-12 2019-04-12 杭州电子科技大学 Calculation method of railway transportation risk probability based on hybrid heuristic rule system
CN109377111B (en) * 2018-12-13 2020-11-24 合肥工业大学 Job scheduling method and device based on improved simulated annealing algorithm
CN109377111A (en) * 2018-12-13 2019-02-22 合肥工业大学 Job scheduling method and device based on improved simulated annealing algorithm
CN110134092A (en) * 2019-05-28 2019-08-16 山东师范大学 Method and system for dynamic dispatching of rail-type automatic guided vehicles based on harmony search
CN111507523A (en) * 2020-04-16 2020-08-07 浙江财经大学 An optimization method for cable production scheduling based on reinforcement learning
CN111507523B (en) * 2020-04-16 2023-04-18 浙江财经大学 Cable production scheduling optimization method based on reinforcement learning
CN112257296A (en) * 2020-11-27 2021-01-22 西南交通大学 Improved genetic algorithm-based job shop scheduling method with cache constraint
CN112257296B (en) * 2020-11-27 2021-06-25 西南交通大学 Job Shop Scheduling Method with Cache Constraints Based on Improved Genetic Algorithm
CN114066065A (en) * 2021-11-18 2022-02-18 福州大学 A multi-objective hybrid zero-idle replacement flow shop scheduling method and system
CN114066065B (en) * 2021-11-18 2024-07-12 福州大学 Multi-target mixed zero-idle replacement flow shop scheduling method and system
CN114399227A (en) * 2022-02-08 2022-04-26 无锡雪浪数制科技有限公司 Production scheduling method and device based on digital twins and computer equipment
CN114839930A (en) * 2022-03-17 2022-08-02 兰州理工大学 Integrated dispatching system for distributed assembly blocking flow workshop

Similar Documents

Publication Publication Date Title
CN105809344A (en) Hyper-heuristic algorithm based ZDT flow shop job scheduling method
Qin et al. An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem
CN109948029B (en) Neural network self-adaptive depth Hash image searching method
CN102122251B (en) A kind of many spacecraft parallel tests method for scheduling task based on genetic algorithm
CN113792924A (en) A single job shop scheduling method based on Deep Q-network deep reinforcement learning
Katoen et al. Three-valued abstraction for probabilistic systems
CN111160755B (en) Real-time scheduling method for aircraft overhaul workshop based on DQN
CN105931109A (en) Method and device for account balance update
CN111353646A (en) Steelmaking flexible scheduling optimization method, system, medium and equipment with switching time
Yan et al. Intelligent fault diagnosis for air handing units based on improved generative adversarial network and deep reinforcement learning
CN116048811A (en) Fully homomorphic encryption neural network reasoning acceleration method and system based on resource multiplexing
Kizilay et al. An iterated greedy algorithm for the hybrid flowshop problem with makespan criterion
CN104698838A (en) Discourse domain based dynamic division and learning fuzzy scheduling rule mining method
CN114462772A (en) Semiconductor manufacturing scheduling method, system, and computer-readable storage medium
CN117892969B (en) Flexible workshop operation dynamic scheduling method based on deep reinforcement learning
CN117726119A (en) A graph bionic learning method to solve distributed hybrid flow workshop group scheduling
CN115766475B (en) Semi-asynchronous power federated learning network and its communication method based on communication efficiency
Dominik Solving multi-objective job shop problem using nature-based algorithms: new Pareto approximation features
Bożejko et al. Minimal cycle time determination and golf neighborhood generation for the cyclic flexible job shop problem
CN116362495A (en) A Method for Semiconductor Final Test Scheduling Based on Hyperheuristic Multidimensional Distribution Estimation
CN115130744A (en) A production scheduling method for a job shop with parallel machines under shift constraints
CN111143966B (en) Regional power grid overhaul plan generation method and system
Liu et al. Applying variable neighborhood search to the single-machine maximum lateness rescheduling problem
Seyedi et al. Tabu search and simulated annealing for new three-stage assembly flow shop scheduling with blocking
CN111652412A (en) A kind of neighborhood search scheduling method and device applied to replacement flow workshop

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160727

RJ01 Rejection of invention patent application after publication