[go: up one dir, main page]

CN108060207B - 一种基于微量天然化合物的最小杀菌浓度测定方法 - Google Patents

一种基于微量天然化合物的最小杀菌浓度测定方法 Download PDF

Info

Publication number
CN108060207B
CN108060207B CN201711477021.2A CN201711477021A CN108060207B CN 108060207 B CN108060207 B CN 108060207B CN 201711477021 A CN201711477021 A CN 201711477021A CN 108060207 B CN108060207 B CN 108060207B
Authority
CN
China
Prior art keywords
concentration
bacterial
tested
liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711477021.2A
Other languages
English (en)
Other versions
CN108060207A (zh
Inventor
尹卫平
刘华清
吕碧玉
白洁
朱培文
胡永鑫
何纪虎
朱丽妍
苏会浩
秦天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Shangyan Biotechnology Co ltd
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201711477021.2A priority Critical patent/CN108060207B/zh
Publication of CN108060207A publication Critical patent/CN108060207A/zh
Application granted granted Critical
Publication of CN108060207B publication Critical patent/CN108060207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/21Assays involving biological materials from specific organisms or of a specific nature from bacteria from Pseudomonadaceae (F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/245Escherichia (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/265Enterobacter (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/305Assays involving biological materials from specific organisms or of a specific nature from bacteria from Micrococcaceae (F)
    • G01N2333/31Assays involving biological materials from specific organisms or of a specific nature from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/32Assays involving biological materials from specific organisms or of a specific nature from bacteria from Bacillus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/36Assays involving biological materials from specific organisms or of a specific nature from bacteria from Actinomyces; from Streptomyces (G)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于微量天然化合物的最小杀菌浓度测定方法,包括以下步骤:一、取70%甲醇溶液溶解待测天然化合物药品,采用倍数稀释法配制成不同溶度的待测药液;二、将所选菌种接种到装有液体培养基的试管中,放入摇床进行震荡,然后配制得到该菌种在OD600时最佳吸光度值的菌液;三、最小抑菌浓度(MIC)的测定;四、最小杀菌浓度(MBC)的测定用移液枪分别移取澄清发酵管中的溶液,滴加在灭过菌的空白固体培养基上,置于恒温培养箱中培养,观察培养结果,24小时后,无细菌生长的最小药液浓度即为待测药液的杀菌浓度。本发明的方法可方便快捷准确的获得微量抗菌化合物的MBC值。

Description

一种基于微量天然化合物的最小杀菌浓度测定方法
技术领域
本发明涉及抗菌化合物技术领域,具体涉及一种基于微量天然化合物的最小杀菌浓度测定方法。
背景技术
最低杀菌浓度是指能够杀灭培养基内细菌(即杀死99.9%供试微生物)的最低药物浓度,通常用MBC(Minimum bactericidal concentration)值表示。微生物学上MBC的测定方法,一般来说是基于物质的最小抑菌浓度MIC值,采用试管倍比稀释法测定抗菌药物能使活菌生长减少99%以上的最小浓度。具体做法为:“将药物溶解,用灭菌水制成1000μg/mL药品母液。在96孔细胞培养板上,每排的1-12孔各加入100μL3% NaCl营养肉汤,再取100μL的药品母液从第一孔做倍比稀释至10孔,11孔为无药对照, 12孔为空白对照。充分混匀后加盖,置于30℃温箱中培养24小时后观察菌的生长情况,以在小孔内完全抑制细菌生长的最低药物浓度为MIC。继续培养48h后观察菌的生长情况,涂平板观察,无菌生长孔所含的最低药物浓度即为该药物的MBC值。”然而这种实验方法并不适用于针对微量的天然产物的来源的MBC的测定,是因为在天然产物抑菌杀菌的研究中,上述方法需药量比较大。众所周知,一般经提取分离获取的天然产物的样品,往往以样品的微量而难以满足实验测定的需要。同时MBC值的测定结果,往往会受多种因素影响,如培养温度、接种菌悬液的浓度、培养时间的影响等。所以在进行天然化合物研究中,针对新的或微量物质的抑菌杀菌的测定,如何选择适当的细菌菌株的量和得到准确测定的MBC值就成为必须解决的主要问题。
发明内容
本发明的目的是提供一种基于微量天然化合物的最小杀菌浓度测定方法,可方便快捷准确的获得抗菌化合物的MBC值。
本发明为解决上述技术问题,所采用的技术方案是:一种基于微量天然化合物的最小杀菌浓度测定方法,包括以下步骤:
一、待测药液的制备
取70%甲醇溶液溶解待测天然化合物药品,采用倍数稀释法将待测药品70%甲醇混合液配制成不同溶度的待测药液,置于冰箱内冷藏,备用;
所述待测天然化合物药品为通过体外高通量筛选法得到、已有明确的抗菌谱并且最小抑菌浓度MIC值小于256ug/mL的药品;
二、标准菌液的制备
将所选菌种接种到装有液体培养基的试管中,放入摇床进行震荡,然后配制得到该菌种在OD600时最佳吸光度值的菌液,即为标准菌液,备用;
三、抑菌浓度(MIC)的测定
在发酵管中加入液体培养基、待测药液和标准菌液,并按照待测药液浓度的不同进行编号,然后封闭发酵管放入恒温培养箱中培养,并在不同时间段分别观察其澄清度,过夜或12小时后,无细菌生长的澄清发酵管中药液浓度最小的即为待测药液的抑菌浓度;
四、最小杀菌浓度(MBC)的测定
用移液枪分别移取澄清发酵管中的溶液,滴加在灭过菌的空白固体培养基上,置于恒温培养箱中培养,观察培养结果。24h后,其中无细菌生长的最小药液浓度即为待测药液的最小杀菌浓度。
作为本发明一种基于微量天然化合物的最小杀菌浓度测定方法的进一步优化:所述步骤一中待测药液的浓度分别为625ug/mL、256ug/mL、128ug/mL、78ug/mL、64ug/mL、32ug/mL、16ug/mL、8ug/mL以及4ug/mL。
作为本发明一种基于微量天然化合物的最小杀菌浓度测定方法的进一步优化:所述步骤二中菌种在OD600时的最佳吸光度值由以下方法得到:用紫外分光光度计测得菌种不同浓度梯度的菌悬液在600nm下的吸光度,然后采用电子显微镜直接计数法测得不同浓度梯度菌悬液的OD600值对应的细菌数,绘制出菌落形成单位CFU与OD600值相关的标准曲线,通过标准曲线确定CFU为3×108个菌落数/mL时所对应的吸光度值,乘以活菌有效系数90%,即为该菌种在OD600时最佳吸光度值。
作为本发明一种基于微量天然化合物的最小杀菌浓度测定方法的进一步优化:所述步骤三中每个发酵管中加入液体培养基60uL、待测药液60uL以及标准菌液2uL。
有益效果
一、本发明的测定方法适用于体外高通量筛选法得到、已有明确的抗菌谱且最小抑菌浓度MIC值小于256ug/mL以下的天然样品,先确定不同菌种在OD600时的最佳吸光度值,采用药敏倍数稀释法先测最小抑菌浓度MIC值,在MIC浓度上下几个稀释度均取培养液接种到培养基上,可方便快捷准确的获得了抗菌化合物的MBC值的测定;
二、本发明的最小杀菌浓度测定方法,为微量抗生素先导化合物筛选增添了新的可靠的手段,另外该MBC测定改良的新方法与药敏法检测的MIC值相互印证,更增加了抗菌生物学信息的可靠性,为寻找和发现具抗生素潜能的天然物质、尤其微量重要活性物质的获得提供了可靠保障。
三、本发明在测定过程中使用70%甲醇溶解药品,只有70%的甲醇在生物学上本身即对细菌活性不产生影响,又不易与药品发生反应。
附图说明
图1为S.aureus菌落数量与OD600值曲线图;
图2为P.aeruginosa菌落数量与OD600值曲线图;
图3为MRSA菌落数量与OD600值曲线图;
图4为全蝎提取化合物对绿脓杆菌的MBC值检测结果;
图5为全蝎提取化合物对金黄色葡萄球菌的MBC值检测结果;
图6为地龙提取化合物对绿脓杆菌的MBC值检测结果;
图7为牡丹籽提取化合物D、E对MRSA的MBC值检测结果;
图8为牡丹籽提取化合物E对绿脓杆菌的MBC值检测结果;
具体实施方式
以下结合具体实施方式进一步对本发明的技术方案进行阐述。
一种基于微量天然化合物的最小杀菌浓度测定方法,包括以下步骤:
一、待测药液的制备
取70%甲醇溶液溶解待测天然化合物药品,采用倍数稀释法将待测药品70%甲醇混合液配制成不同溶度的待测药液,置于冰箱内冷藏,备用;
所述待测天然化合物药品为通过体外高通量筛选法得到、已有明确的抗菌谱并且最小抑菌浓度MIC值小于256ug/mL的药品;待测药液的浓度分别为625ug/mL、256ug/mL、128ug/mL、78ug/mL、64ug/mL、32ug/mL、16ug/mL、8ug/mL以及4ug/mL。
二、标准菌液的制备
将所选菌种接种到装有液体培养基的试管中,放入摇床进行震荡,然后配制得到该菌种在OD600时最佳吸光度值的菌液,即为标准菌液,备用;
最佳吸光度值由以下方法得到:用紫外分光光度计测得菌种不同浓度梯度的菌悬液在600nm下的吸光度,然后采用电子显微镜直接计数法测得不同浓度梯度菌悬液的OD600值对应的细菌数,绘制出菌落形成单位CFU与OD600值相关的标准曲线,通过标准曲线确定CFU为3×108个菌落数/mL时所对应的吸光度值,乘以活菌有效系数90%,即为该菌种在OD600时最佳吸光度值。例如
四种条件致病菌最佳抑菌浓度为:
1)B.subtilis (ATCC 6633) ABs600 = 0.040-0.015
2)S.aureus (ATCC 6538) ABs600 = 0.080-0.035
3)E.coli (ATCC 27853) ABs600 = 0.085-0.055
4)P.aeruginosa(ATCC15442) ABs600 = 0.070-0.045
四种临床致病菌最佳抑菌浓度为:
1)MRSA (分离株) ABs600 = 0.086-0.052
2)Staph.Epidermidis(分离株) ABs600 = 0.076-0.047
3)A.baumannii(分离株) ABs600 = 0.080-0.035
4)Enterobacter cloacae (分离株)ABs600 = 0.075-0.038
三、抑菌浓度(MIC)的测定
在发酵管中加入液体培养基、待测药液和标准菌液(每个发酵管中加入液体培养基60uL、待测药液60uL以及标准菌液2uL),并按照待测药液浓度的不同进行编号,然后封闭发酵管放入恒温培养箱中培养,并在不同时间段分别观察其澄清度,过夜或12小时后,无细菌生长的澄清发酵管中药液浓度最小的即为待测药液的抑菌浓度;
四、最小杀菌浓度(MBC)的测定
用移液枪分别移取澄清发酵管中的溶液,滴加在灭过菌的空白固体培养基上,置于恒温培养箱中培养,观察培养结果。24h后,其中无细菌生长的最小药液浓度即为待测药液的最小杀菌浓度。
实施例1
一种基于微量天然化合物的最小杀菌浓度测定方法,包括以下步骤:
步骤一:待测药液的制备
1.药液准备:70%甲醇、全蝎提取化合物;2.用70%甲醇溶解全蝎提取化合物2;3.将全蝎提取药品用倍数稀释法配制为浓度分别为①号625ug/mL;②号256ug/mL ③号128ug/mL;④号78ug/mL;⑤号64ug/mL;⑥号32ug/mL; 4.药液浓度梯度配置好后,放入冰箱,备用;
步骤二:标准菌液的制备
1.将所选金黄色葡萄球菌和绿脓杆菌种接种到装有液体培养基的试管中,放入摇床震荡4个小时;2.将1中的菌液配制成不同菌种原相对应的OD值,现配现用。最终确定最佳细菌浓度所对应的不同菌株的OD600时的吸光度测定如下:
S. aureus (ATCC 6538) A=0.064
P. aeruginosa(ATCC15442) A=0.060
具体测定是将金黄色葡萄球菌(SA)和绿脓杆菌(P.aeruginosa)接入液体培养基于37℃气浴恒温振荡器中,培养16 h,吸取1 mL菌液于9 mL无菌生理盐水中10倍稀释,相同操作稀释至10-8。取一适当的稀释倍数为C的菌液,用无菌的毛细滴管将摇匀的菌悬液滴于血球计数板上(见图1和2),用生物显微镜高倍镜进行计数,要求计数板上每个小格内约有5-10个菌体,通过显微镜观察计数板5个中方格的菌数,求平均值得出每个方格中的平均菌数A,根据公式总菌数·mL-1=A×B×C×104,算出1 mL菌液中细菌的总数,B为计数板包含的中方格 数,104为血球计数板体积0.1 mm3与1 mL的体积转换倍数。
同时对菌液用紫外可见分光光度计测定其600 nm下的吸光度,重复试验3次取平均值,得出菌落总数和OD600值曲线,如图1所示。
针对金黄色葡萄球菌(SA),x取0.1,代入直线方程y = 0.1368x + 0.093中得吸光度的值为0.072,有效细菌浓度:0.072x90% =0.064
最终确定最佳细菌浓度所对应的吸光度为0.064。
同理,针对绿脓杆菌(P.aeruginosa),当x = 0.1时,代入直线方程y = 0.5608x +0.0104中得吸光度的值为0.0665. 有效细菌浓度:0.067x 90% =0.060最终确定最佳细菌浓度所对应的吸光度为0.060。
步骤三:抑菌浓度(MIC)的测定
在发酵管中加入液体培养基60uL,备用药液(上述步骤一中的全蝎提取化合物2)60uL,和现配的菌液2uL,编号按药液浓度分别为①②③④⑤⑥,⑦号为空白,只加60uL的液体培养基,⑧号为对照,加入60uL的液体培养基,2uL的菌液;盖上盖子放入37℃的恒温培养箱中培养,12h,18h,24h分别观察其澄清度。结果显示,无细菌生长的澄清发酵管中,药液浓度最小的即为MIC值。
步骤四:最小杀菌浓度(MBC)的测定
用移液枪分别移取澄清发酵管中4uL的溶液,滴加在灭过菌的空白固体培养基上(提前培养24h,无细菌生长的空白培养基方可使用),做好标记,置于恒温培养箱中培养12h,18h,24h。观察结果,无细菌生长的最小药液浓度即为MBC值。
由图4可知,经24h培养后,浓度为32ug/mL的样品浑浊,其余均澄清。将所有的样品在无菌空白平板上培养24h后,32ug/mL的样品无杀菌作用,这与抑菌杀菌的原理相一致。故化合物2对革兰氏阴性菌绿脓杆菌的最小杀菌浓度MBC值为64ug/mL(见图4.)。
由图5可知,经24h培养后,样品均澄清。将上述样品在无菌空白平板上培养24h后,所有样品均有杀菌作用,故化合物2对金黄色葡萄球菌的最小杀菌浓度MBC值为 < 32ug/mL(见图5.)。
实施例2:
一种基于微量天然化合物的最小杀菌浓度测定方法,包括以下步骤:
步骤一:待测药液的制备
1.药液准备:70%甲醇、地龙提取化合物5;2.先用溶媒2% DMSO溶解后,再用70%甲醇溶液溶解地龙提取化合物5;3.将地龙提取化合物5用倍数稀释法配制为浓度分别为①号625ug/mL;②号256ug/mL ③号128ug/mL;④号78ug/mL;⑤号64ug/mL;⑥号32ug/mL;4.药液浓度梯度配置好后,放入冰箱,备用;
步骤二:标准菌液的制备
1.将所选绿脓菌种接种到装有液体培养基的试管中,放入摇床震荡5个小时;2.将1中的菌液配制成该菌种原相对应的OD值,现配现用。
最终确定最佳细菌浓度所对应的不同菌株的OD600时的吸光度测定如下:P. aeruginosa(ATCC15442) A=0.060
步骤三:抑菌浓度(MIC)的测定
在发酵管中加入液体培养基60uL,备用药液(上述一中的地龙提取化合物5)60uL,和现配的菌液2uL,编号按药液浓度分别为①②③④⑤⑥,⑦号为空白,只加60uL的液体培养基,⑧号为对照,加入60uL的液体培养基,2uL的菌液;盖上盖子放入37℃的恒温培养箱中培养,12h,18h,24h分别观察其澄清度。结果显示,无细菌生长的澄清发酵管中,药液浓度最小的即为MIC值。
步骤四:杀菌浓度(MBC)的测定
用移液枪分别移取澄清发酵管中4uL的溶液,滴加在灭过菌的空白固体培养基上(提前培养24h,无细菌生长的空白培养基方可使用),做好标记,置于恒温培养箱中培养12h,18h,24h。观察结果,无细菌生长的最小药液浓度即为MBC值。
由图6可知,经24h培养后,浓度为64ug/mL的样品浑浊,其余均澄清。将上述澄清样品在无菌空白平板上培养24h后,32ug/mL和78ug/mL的样品均无杀菌作用,故化合物5对革兰氏阴性菌绿脓杆菌最小杀菌浓度MBC值为64ug/mL(见图6.)。
实施例3:
一种基于微量天然化合物的抑菌浓度和杀菌浓度测定方法,包括以下步骤:
步骤一:待测药液的制备
1.药液准备:70%甲醇、牡丹籽D、E;2.用70%甲醇分别溶解牡丹籽D、E;3.将牡丹籽D、E用倍数稀释法配制为浓度分别为①号625ug/mL;②号256ug/mL ③号128ug/mL;④号78ug/mL;⑤号64ug/mL;⑥号32ug/mL;应补充16ug/mL和8ug/mL; 4.药液浓度梯度配置好后,放入冰箱,备用;
步骤二:标准菌液的制备
1.将所选绿脓杆菌和耐甲氧西林葡萄球菌MRSA菌种接种到装有液体培养基的试管中,放入摇床震荡6个小时;2.将1中的菌液配制成不同菌种原相对应的OD值,(MRSA测定曲线如图3所示)现配现用。
同理,针对MRSA,当x = 0.1时,代入直线方程y = 0.5968x + 0.0164中得吸光度的值为0.0761. 效细菌浓度:0.076x90% =0.068
同上对应的不同菌株的OD600时的吸光度测定如下:
P. aeruginosa(ATCC15442) A=0.060
MRSA (分离菌株) A=0.068
步骤三:抑菌浓度(MIC)的测定
在发酵管中分别加入液体培养基60uL,备用药液(上述一中的牡丹籽D、E)60uL,和现配的菌液2uL,编号按药液浓度分别为①②③④⑤⑥,⑦号为空白,只加60uL的液体培养基,⑧号为对照,加入60uL的液体培养基,2uL的菌液;盖上盖子放入37℃的恒温培养箱中培养,12h,18h,24h分别观察其澄清度。结果显示,无细菌生长的澄清发酵管中,药液浓度最小的即为MIC值。
步骤四:杀菌浓度(MBC)的测定
用移液枪分别移取澄清发酵管中4uL的溶液,滴加在灭过菌的空白固体培养基上(提前培养24h,无细菌生长的空白培养基方可使用),做好标记,置于恒温培养箱中培养12h,18h,24h。观察结果,无细菌生长的最小药液浓度即为MBC值。由图7可知,经24h培养后,样品均澄清。将上述澄清样品在无菌空白平板上培养24h后,32ug/mL的样品无杀菌作用,但64ug/mL杀菌作用显著,故牡丹籽D对耐药菌MRSA的MBC值约为48ug/mL(见图7.)。将牡丹籽提取物E澄清样品在无菌空白平板上培养24h后,均有杀菌作用,故牡丹籽E对耐药菌MRSA的MBC值< 32ug/mL(见图7.)。
由图8可知,经24h培养后,发酵管浓度为32ug/mL的样品浑浊,其余均澄清。将上述样品在无菌空白平板上培养24h后,64ug/mL的样品无杀菌作用,故牡丹籽E对革兰氏阴性菌绿脓的MBC值为64ug/mL。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (3)

1.一种基于微量天然化合物的最小杀菌浓度测定方法,其特征在于:包括以下步骤:
一、待测药液的制备
取70%甲醇溶液溶解待测天然化合物药品,采用倍数稀释法将待测药品70%甲醇混合液配制成不同浓度的待测药液,置于冰箱内冷藏,备用;
所述待测天然化合物药品为通过体外高通量筛选法得到、已有明确的抗菌谱并且最小抑菌浓度MIC值小于256μg/mL的药品;所述待测天然化合物能被70%甲醇溶液充分溶解;
二、标准菌液的制备
将所选菌种接种到装有液体培养基的试管中,放入摇床进行震荡,然后配制得到该菌种在OD600时最佳吸光度值的菌液,即为标准菌液,备用;
所述菌种在OD600时最佳吸光度值由以下方法得到:用紫外分光光度计测得菌种不同浓度梯度的菌悬液在600nm下的吸光度,然后采用电子显微镜直接计数法测得不同浓度梯度菌悬液的OD600值对应的细菌数,绘制出菌落形成单位CFU与OD600值相关的标准曲线,通过标准曲线确定CFU为0.1×108个菌落数/mL时所对应的吸光度值,乘以活菌有效系数90%,即为该菌种在OD600时最佳吸光度值;
三、最小抑菌浓度MIC的测定
在发酵管中加入液体培养基、待测药液和标准菌液,并按照待测药液浓度的不同进行编号,然后封闭发酵管放入恒温培养箱中培养,并在不同时间段分别观察其澄清度,过夜或12小时后,无细菌生长的澄清发酵管中药液浓度最小的即为待测药液的抑菌浓度;
四、最小杀菌浓度MBC的测定
用移液枪分别移取澄清发酵管中的溶液,滴加在灭过菌的空白固体培养基上,置于恒温培养箱中培养,观察培养结果,24h后,其中无细菌生长的最小药液浓度即为待测药液的最小杀菌浓度。
2.如权利要求1所述一种基于微量天然化合物的最小杀菌浓度测定方法,其特征在于:所述步骤一中待测药液的浓度分别为625μg/mL、256μg/mL、128μg/mL、78μg/mL、64μg/mL、32μg/mL、16μg/mL、8μg/mL以及4μg/mL。
3.如权利要求1所述一种基于微量天然化合物最小杀菌浓度测定方法,其特征在于:所述步骤三中每个发酵管中加入液体培养基60μL、待测药液60μL以及标准菌液2μL。
CN201711477021.2A 2017-12-29 2017-12-29 一种基于微量天然化合物的最小杀菌浓度测定方法 Active CN108060207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711477021.2A CN108060207B (zh) 2017-12-29 2017-12-29 一种基于微量天然化合物的最小杀菌浓度测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711477021.2A CN108060207B (zh) 2017-12-29 2017-12-29 一种基于微量天然化合物的最小杀菌浓度测定方法

Publications (2)

Publication Number Publication Date
CN108060207A CN108060207A (zh) 2018-05-22
CN108060207B true CN108060207B (zh) 2021-10-15

Family

ID=62140832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711477021.2A Active CN108060207B (zh) 2017-12-29 2017-12-29 一种基于微量天然化合物的最小杀菌浓度测定方法

Country Status (1)

Country Link
CN (1) CN108060207B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116076621A (zh) * 2023-04-06 2023-05-09 四川省畜牧科学研究院 猪饲料有机酸适宜添加量算法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278989A2 (en) * 2008-04-08 2011-02-02 Targanta Therapeutics Corp. Methods of inhibiting and treating biofilms using glycopeptide antibiotics
CN105229012A (zh) * 2013-01-23 2016-01-06 恩塔西斯治疗有限公司 用于治疗细菌感染的化合物和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348651A (ja) * 2004-06-10 2005-12-22 Nagasaki Prefecture 有機・無機系抗菌剤のマイクロプレート殺菌力試験方法
CN103173517B (zh) * 2013-03-01 2014-07-30 浙江大学 微量测定阳离子抗菌肽最小抑菌和最小杀菌浓度的方法
GB201402267D0 (en) * 2014-02-10 2014-03-26 Cambridge Entpr Ltd Antibacterial agents
CN106242953A (zh) * 2016-07-14 2016-12-21 中国林业科学研究院林产化学工业研究所 一种从丹凤牡丹籽壳中制备白藜芦醇的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278989A2 (en) * 2008-04-08 2011-02-02 Targanta Therapeutics Corp. Methods of inhibiting and treating biofilms using glycopeptide antibiotics
CN105229012A (zh) * 2013-01-23 2016-01-06 恩塔西斯治疗有限公司 用于治疗细菌感染的化合物和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
常见卫生害虫提取物的抗菌活性研究和五谷虫抗菌成分的鉴定;李文渊;《中国优秀硕士学位论文全文数据库医药卫生科技辑(月刊)》;20140615(第06期);第4.2.2节 *

Also Published As

Publication number Publication date
CN108060207A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN108165498B (zh) 拮抗水稻白叶枯病菌的灰黄青霉Pg-35菌株及其发酵滤液和在植物病害防冶中的应用
Pereira et al. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces
Tiwari et al. Antidiabetic activity of endophytic fungi isolated from Ficus religiosa
CN110791448B (zh) 一株甘蔗内生芽孢杆菌及其应用
CN104277982A (zh) 一种三环系倍半萜类化合物及其制备方法和用途
CN108060207B (zh) 一种基于微量天然化合物的最小杀菌浓度测定方法
Patrick The antibiotic activity of soil microorganisms as related to bacterial plant pathogens
Yanagita et al. Comparative and quantitative studies of fungitoxicity against fungal spores and mycelia
Kouam et al. Evaluation of antimicrobial activity of the stem bark of Cylicodiscus gabunensis (Mimosaceae)
Naqvi et al. Determination of antibacterial activity of various broad spectrum antibiotics against Xanthomonas oryzae pv. oryzae, a cause of bacterial leaf blight of rice
CN109463386A (zh) 倒捻子素在防治青枯病中的应用
RU2319746C2 (ru) Способ ускоренного определения чувствительности буркхольдерий к химиопрепаратам
Chawawisit et al. Antimicrobial and cytotoxic activities of bioactive compounds produced by Streptomyces sp. KB1
Mori et al. Development of a selective medium and antisera for Pseudomonas syringae pv. syringae from seeds of barley and wheat
CN104304251B (zh) 一种吡咯类化合物用于制备农用杀菌剂的用途
Polischuk et al. The study of phenolic compounds and the antimicrobial action of the alcoholic extract from the cake of the red raspberry fruit
Sarkar et al. A brief research study on novel antibiotic producing isolate from VIT Lake, Vellore, Tamil Nadu
El-Sherbiny et al. Enhancement of Streptomyces sp. Mh-133 activity against some antibiotic resistant bacteria using biotic elicitation
CN118027154B (zh) 一种钩状木霉t21抗菌肽bⅰ及其制备方法、用途
Ramesh et al. Traditional Screening of Actinomycetes for Antibacterial, Antifungal, and Antiviral Properties
Hachfi et al. Hypochlorous acid staining with R19-S in the Drosophila intestine upon ingestion of opportunistic bacteria
RU2446214C1 (ru) Способ определения степени эпидемической опасности патогенных и потенциально-патогенных бактерий, выделенных из воды различного вида водопользования
Hadke et al. Anti-microbial activity of antibiotic produced from fungi by fermentation process
PN et al. Purification and cytotoxic assays of four antimicrobial metabolites extracted from Actinomycetes of the soils of Menengai Crater, Kenya
Wahyuni et al. Screening of antibacterial activities of actinomycetes isolates from Indonesia

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240726

Address after: Room 1901, Building A, World Trade Center, No. 258 Kaiyuan Avenue, Luolong District, Luoyang City, Henan Province, 471000

Patentee after: HENAN SHANGYAN BIOTECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 471000 No. 48, Xiyuan Road, Jianxi District, Henan, Luoyang

Patentee before: HENAN University OF SCIENCE AND TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right