CN108048716A - High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process - Google Patents
High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process Download PDFInfo
- Publication number
- CN108048716A CN108048716A CN201810074489.5A CN201810074489A CN108048716A CN 108048716 A CN108048716 A CN 108048716A CN 201810074489 A CN201810074489 A CN 201810074489A CN 108048716 A CN108048716 A CN 108048716A
- Authority
- CN
- China
- Prior art keywords
- alloy
- heat treatment
- casting
- treatment process
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910018182 Al—Cu Inorganic materials 0.000 title claims abstract description 39
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 25
- 238000010438 heat treatment Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229910052706 scandium Inorganic materials 0.000 title claims abstract description 14
- 238000005266 casting Methods 0.000 title claims abstract description 10
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 title claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 84
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 79
- 238000011282 treatment Methods 0.000 claims abstract description 26
- 230000032683 aging Effects 0.000 claims abstract description 25
- 238000004321 preservation Methods 0.000 claims abstract description 7
- 238000010791 quenching Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000006104 solid solution Substances 0.000 claims abstract description 5
- 238000000265 homogenisation Methods 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 230000000171 quenching effect Effects 0.000 claims abstract description 3
- 238000007670 refining Methods 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 4
- 239000010931 gold Substances 0.000 claims 4
- 229910052737 gold Inorganic materials 0.000 claims 4
- 238000002791 soaking Methods 0.000 claims 2
- 239000002244 precipitate Substances 0.000 abstract description 9
- 238000001556 precipitation Methods 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910000881 Cu alloy Inorganic materials 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明公开了一种高强抗蠕变含钪Al‑Cu系铝合金的铸造及热处理工艺,其合金成分为:Cu的质量百分数为2.0—5.0%,Sc的质量百分数为0.1—0.5%,Si的质量百分数为0.01—0.03%,Ti的质量百分数为0.01—0.03%,其余为Al和不可避免的杂质,常规铸造制备。时效热处理工艺包括:均匀化处理:保温3小时—50小时,空冷;固溶处理:保温30分钟—15小时,水淬;时效处理:保温1小时—20小时。本发明在Al‑Cu合金中添加少量Sc元素,结果表明Sc不仅可以明显细化θ′‑Al2Cu析出相,而且可以提高θ′‑Al2Cu析出相的析出密度,进而明显提高了Al‑Cu合金的室温强度。The invention discloses a casting and heat treatment process of a high-strength creep-resistant scandium-containing Al-Cu series aluminum alloy. The alloy composition is: the mass percentage of Cu is 2.0-5.0%, the mass percentage of Sc is 0.1-0.5%, Si The mass percentage of Ti is 0.01-0.03%, the mass percentage of Ti is 0.01-0.03%, and the rest is Al and unavoidable impurities, which are prepared by conventional casting. The aging heat treatment process includes: homogenization treatment: heat preservation for 3 hours to 50 hours, air cooling; solid solution treatment: heat preservation for 30 minutes to 15 hours, water quenching; aging treatment: heat preservation for 1 hour to 20 hours. The present invention adds a small amount of Sc to the Al-Cu alloy, and the results show that Sc can not only significantly refine the θ′-Al 2 Cu precipitates, but also increase the precipitation density of the θ’-Al 2 Cu precipitates, thereby significantly increasing the Al ‑Cu alloy room temperature strength.
Description
技术领域technical field
本发明属于金属材料领域,涉及一种铝合金材料,特别涉及一种含钪Al-Cu系合金的制备及热处理工艺,相对于传统Al-Cu合金,在提升强度的同时大幅提升其室温强度与高温抗蠕变性能。The invention belongs to the field of metal materials, and relates to an aluminum alloy material, in particular to a preparation and heat treatment process of a scandium-containing Al-Cu alloy. Compared with the traditional Al-Cu alloy, the strength at room temperature is greatly improved while the strength is increased. High temperature creep resistance.
背景技术Background technique
在轻合金中,时效铝合金作为一类重要的结构材料,具有比强度高、加工性能好及优异的抗腐蚀性能等特点,被广泛应用于汽车和航空航天工业。Al-Cu合金是时效铝合金中最具有代表性的二元合金,由于它的密度小、比强度高,具有优良的切削加工性能等优点,因此其铸造合金在航空产品上应用较多,并且主要用作承受大载荷的结构件。然而通常情况下Al-Cu合金的热稳定性较差,这主要是由于室温强化相θ′-Al2Cu相热稳定性差,在高温服役环境下θ′-Al2Cu极易发生粗化,导致材料高温强度降低,进而影响其使用性能,因此传统铝合金的使用温度均低于200℃,难以满足高速飞行器和推进器发展对材料的要求,因此研制使用温度达到200℃~400℃的高温铝合金,并部分代替钛合金,成为下一代高温铝合金急需解决的问题。Among light alloys, aging aluminum alloys, as an important class of structural materials, have the characteristics of high specific strength, good processability and excellent corrosion resistance, and are widely used in the automotive and aerospace industries. Al-Cu alloy is the most representative binary alloy among aging aluminum alloys. Because of its low density, high specific strength, and excellent machinability, its casting alloys are widely used in aviation products, and It is mainly used as a structural part that bears a large load. However, in general, the thermal stability of Al-Cu alloys is poor, which is mainly due to the poor thermal stability of the room temperature strengthening phase θ′-Al 2 Cu phase, and the θ′-Al 2 Cu phase is prone to coarsening in high-temperature service environments. As a result, the high-temperature strength of the material is reduced, which in turn affects its performance. Therefore, the use temperature of traditional aluminum alloys is lower than 200°C, which is difficult to meet the requirements for materials for the development of high-speed aircraft and propellers. Aluminum alloy, and partially replace titanium alloy, has become an urgent problem to be solved for the next generation of high-temperature aluminum alloy.
通常提高Al-Cu合金高温性能的办法是在Al-Cu合金中加入耐高温的第二相硬化颗粒,即金属基复合材料,它可以有效的提高Al-Cu合金的高温性能,但是其由于第二相与基体存在严重的界面问题,导致其延性和断裂韧性较差,此外由于复合材料制造以及加工成本较高,极大的限制了其工业应用。Usually, the way to improve the high-temperature performance of Al-Cu alloy is to add high-temperature-resistant second-phase hardened particles, that is, metal matrix composites, to the Al-Cu alloy, which can effectively improve the high-temperature performance of Al-Cu alloy, but it is due to the first There are serious interface problems between the two phases and the matrix, resulting in poor ductility and fracture toughness. In addition, the high manufacturing and processing costs of composite materials greatly limit its industrial application.
Sc添加到铝合金中,一方面可以改善合金铸态组织,影响强化相的析出行为,另一方面还能形成热稳定性强的Al3Sc颗粒,提高铝合金的高温性能。此外前期研究表明,Sc是铝合金中一种有效的微合金化元素。Sc的微合金化作用主要表现为:细晶强化、抑制再结晶、析出强化和抗腐蚀等。目前关于含Sc铝合金的研究主要集中在纯铝及不可热处理铝合金上,虽然在这些铝合金中添加Sc元素后会呈现出可时效强化性,然而单一析出的Al3Sc颗粒析出量有限,强化效果不明显。本专利通过在Al-Cu合金中添加微量的Sc元素,通过微合金化来以及热处理工艺调控析出相,同时提高室温综合力学性能与高温力学性能,具有极其重要的工程价值与应用前景。The addition of Sc to aluminum alloy can improve the as-cast structure of the alloy and affect the precipitation behavior of the strengthening phase on the one hand, and form Al 3 Sc particles with strong thermal stability on the other hand to improve the high temperature performance of the aluminum alloy. In addition, previous studies have shown that Sc is an effective microalloying element in aluminum alloys. The microalloying effect of Sc is mainly manifested as: fine grain strengthening, inhibition of recrystallization, precipitation strengthening and corrosion resistance. At present, the research on Sc-containing aluminum alloys mainly focuses on pure aluminum and non-heat-treatable aluminum alloys. Although the addition of Sc elements to these aluminum alloys will show aging strengthening properties, the amount of single-precipitated Al 3 Sc particles is limited. The strengthening effect is not obvious. This patent adds a trace amount of Sc element to the Al-Cu alloy, regulates the precipitated phase through microalloying and heat treatment process, and improves the comprehensive mechanical properties at room temperature and high temperature mechanical properties at the same time, which has extremely important engineering value and application prospect.
发明内容Contents of the invention
本发明旨在解决提高铸造Al-Cu合金室温力学性能,特别是高温力学性能这一问题。相对于复合材料,在提高Al-Cu合金高温性能的同时,增加材料的延性。从而提出一种高温性能优异的Al-Cu合金材料及制备技术和热处理方法。The invention aims to solve the problem of improving the mechanical properties of cast Al-Cu alloy at room temperature, especially the high temperature mechanical properties. Compared with the composite material, while improving the high temperature performance of the Al-Cu alloy, the ductility of the material is increased. Therefore, an Al-Cu alloy material with excellent high-temperature performance, its preparation technology and heat treatment method are proposed.
为了解决以上问题,本发明的技术方案为:In order to solve the above problems, the technical solution of the present invention is:
本发明提供了一种高温性能优异的含Sc的铸造Al-Cu合金材料,包含以下组分,Cu的质量百分数为2.0—5.0%,Sc的质量百分数为0.1—0.5%,Si的质量百分数为0.01—0.03%,Ti的质量百分数为0.01—0.03%,其余为Al和不可避免的杂质;The invention provides a casting Al-Cu alloy material containing Sc with excellent high temperature performance, which comprises the following components, the mass percentage of Cu is 2.0-5.0%, the mass percentage of Sc is 0.1-0.5%, and the mass percentage of Si is 0.01-0.03%, the mass percentage of Ti is 0.01-0.03%, the rest is Al and unavoidable impurities;
该合金的制备方法是在将纯Al置于熔炼炉中加热升温至660-780℃至熔化,随后加入规定配比的Al-Cu中间合金、Al-Sc中间合金,持续搅拌至全部熔化,之后控温至735-750℃,加入适量精炼剂进行精炼,静置10-30min后,在金属模具中浇铸。The preparation method of the alloy is to place pure Al in a smelting furnace and heat it up to 660-780°C to melt, then add the specified ratio of Al-Cu master alloy and Al-Sc master alloy, and continue to stir until they are completely melted, and then Control the temperature to 735-750°C, add an appropriate amount of refining agent for refining, let it stand for 10-30 minutes, and then cast it in a metal mold.
为实现上述技术目的,本发明提供了一种含Sc的铸造Al-Cu合金材料的以及对应的时效热处理工艺,该热处理工艺采用:(1)均匀化处理:420—480℃,保温3小时—50小时,空冷;(2)固溶处理:510℃—610℃,保温30分钟—15小时,水淬;(5)时效处理:200℃—350℃,保温1小时—20小时。In order to achieve the above technical purpose, the present invention provides a casting Al-Cu alloy material containing Sc and the corresponding aging heat treatment process. The heat treatment process adopts: (1) Homogenization treatment: 420-480 ° C, heat preservation for 3 hours - 50 hours, air cooling; (2) solution treatment: 510°C-610°C, heat preservation for 30 minutes-15 hours, water quenching; (5) aging treatment: 200°C-350°C, heat preservation for 1 hour-20 hours.
发明人研究发现,在铸造Al-Cu合金中添加Sc元素可以促进了θ′-Al2Cu沉淀相的析出,使其密度增加、尺寸减小,此外由于Sc原子在θ′-Al2Cu析出相与基体界面偏聚,抑制了θ′-Al2Cu析出相的长大和粗化,特别是在高温环境下(250℃-300℃),材料经过300h以上蠕变测试下θ′-Al2Cu析出相几乎没有粗化,从而极大地提高了Al-Cu合金的高温性能,拓展了Al-Cu合金在高温下的应用。The inventors have found that the addition of Sc elements to cast Al-Cu alloys can promote the precipitation of θ′-Al 2 Cu precipitates, resulting in increased density and reduced size. In addition, due to the precipitation of Sc atoms in θ′-Al 2 Cu The segregation of the phase and the matrix interface inhibits the growth and coarsening of the θ′-Al 2 Cu precipitated phase, especially in a high temperature environment (250°C-300°C), and the material passes through the creep test for more than 300h under the θ′-Al 2 There is almost no coarsening of Cu precipitates, which greatly improves the high-temperature performance of Al-Cu alloys and expands the application of Al-Cu alloys at high temperatures.
与传统Al-Cu合金相比,本发明的优点在于:传统Al-Cu合金在高温环境下,由于其室温强化相θ′-Al2Cu的快速粗化,极大限制了其高温应用。而添加高温稳定颗粒的复合材料不仅制造困难、成本较高,而且由于外加颗粒与基体界面的不稳定,导致其延性和断裂韧性较差,很难满足工业应用的要求。本发明的合金成分及热处理工艺能够调控基体中时效析出θ′-Al2Cu析出相,并通过Sc在θ′-Al2Cu/基体的界面偏聚,抑制θ′-Al2Cu析出相在高温环境下的快速粗化,在保证合金材料的室温强度的同时提高了高温性能。相对于复合材料来说,可以大幅提高材料的延性,拓展Al-Cu合金的应用空间。Compared with the traditional Al-Cu alloy, the present invention has the advantage that: the rapid coarsening of the room temperature strengthening phase θ′-Al 2 Cu of the traditional Al-Cu alloy under high temperature environment greatly limits its high temperature application. Composite materials with high-temperature stable particles are not only difficult to manufacture and high in cost, but also have poor ductility and fracture toughness due to the instability of the interface between the added particles and the matrix, making it difficult to meet the requirements of industrial applications. The alloy composition and heat treatment process of the present invention can regulate the aging precipitation of θ′-Al 2 Cu precipitates in the matrix, and suppress the θ′-Al 2 Cu precipitates in the θ′-Al 2 Cu/matrix interface through Sc segregation The rapid coarsening in high temperature environment improves the high temperature performance while ensuring the room temperature strength of the alloy material. Compared with composite materials, it can greatly improve the ductility of materials and expand the application space of Al-Cu alloys.
附图说明Description of drawings
图1为传统Al-2.3Cu合金T6处理及含Sc的Al-2.3Cu-0.22Sc合金时效处理后的合金样品的工程应力-工程应变曲线;Fig. 1 is the engineering stress-engineering strain curve of the alloy sample after the traditional Al-2.3Cu alloy T6 treatment and the Al-2.3Cu-0.22Sc alloy aging treatment containing Sc;
图2为传统Al-2.3Cu合金T6处理及含Sc的Al-2.3Cu-0.22Sc合金时效处理后的TEM组织照片;Figure 2 is the TEM micrograph of the traditional Al-2.3Cu alloy T6 treatment and the aging treatment of the Al-2.3Cu-0.22Sc alloy containing Sc;
图3为传统Al-2.3Cu合金T6处理及含Sc的Al-2.3Cu-0.22Sc合金时效处理后的合金样品在250℃50Mpa条件下进行拉伸蠕变测试的时间-应变曲线;Figure 3 is the time-strain curve of the tensile creep test of the alloy sample after the traditional Al-2.3Cu alloy T6 treatment and the aging treatment of the Al-2.3Cu-0.22Sc alloy containing Sc at 250 ° C and 50 Mpa;
具体实施方式Detailed ways
实施实例1Implementation example 1
一种高强抗蠕变含Sc铸造Al-Cu系合金及其时效热处理工艺,包括以下步骤:(1)该合金的制备方法是在将纯Al置于熔炼炉中加热升温至730℃至熔化,随后加入规定配比的Al-50wt.%Cu中间合金,Al-2wt.%Sc中间合金,持续搅拌至全部熔化。随后控温至730℃,加入2%精炼剂进行精炼,静置30min后,在金属模具中浇铸,制得Al-2.5wt.%Cu-0.1wt.%Sc(以下简称为Al-2.5Cu-0.1Sc)铝合金。(2)将合金铸锭在450℃下进行4小时的均匀化处理;(3)对步骤(2)均匀化处理完成的样品在590℃下进行3小时的固溶处理,随后在冷水中淬火;(4)对步骤(3)固溶处理完成的样品在250℃下进行8小时的时效处理.A high-strength creep-resistant Sc-containing cast Al-Cu alloy and its aging heat treatment process include the following steps: (1) the preparation method of the alloy is to place pure Al in a melting furnace and heat it up to 730 ° C to melt, Then add Al-50wt.%Cu master alloy and Al-2wt.%Sc master alloy in specified ratio, and keep stirring until they are completely melted. Then control the temperature to 730°C, add 2% refining agent for refining, let it stand for 30 minutes, and cast it in a metal mold to obtain Al-2.5wt.%Cu-0.1wt.%Sc (hereinafter referred to as Al-2.5Cu- 0.1Sc) aluminum alloy. (2) Homogenize the alloy ingot at 450°C for 4 hours; (3) Perform solution treatment at 590°C for 3 hours on the sample that has been homogenized in step (2), and then quench in cold water (4) Carry out aging treatment for 8 hours at 250 ℃ to the sample that step (3) solid solution treatment is completed.
实施实例2Implementation example 2
一种高强抗蠕变含Sc铸造Al-Cu系合金及其时效热处理工艺,包括以下步骤:(1)该合金的制备方法是在将纯Al置于熔炼炉中加热升温至730℃至熔化,随后加入规定配比的Al-50wt.%Cu中间合金,Al-2wt.%Sc中间合金,持续搅拌至全部熔化,随后控温至730℃,加入2%精炼剂进行精炼,静置30min后,在金属模具中浇铸,制得Al-2.3wt.%Cu-0.22wt.%Sc(以下简称为Al-2.3Cu-0.22Sc)铝合金。(2)将合金铸锭在450℃下进行4小时的均匀化处理;(3)对步骤(2)均匀化处理完成的样品在590℃下进行3小时的固溶处理,随后在冷水中淬火;(4)对步骤(3)固溶处理完成的样品在250℃下进行8小时的时效处理.A high-strength creep-resistant Sc-containing cast Al-Cu alloy and its aging heat treatment process include the following steps: (1) the preparation method of the alloy is to place pure Al in a melting furnace and heat it up to 730 ° C to melt, Then add Al-50wt.%Cu master alloy and Al-2wt.%Sc master alloy in specified ratio, keep stirring until completely melted, then control the temperature to 730°C, add 2% refining agent for refining, and let stand for 30min, Cast in a metal mold to prepare Al-2.3wt.%Cu-0.22wt.%Sc (hereinafter referred to as Al-2.3Cu-0.22Sc) aluminum alloy. (2) Homogenize the alloy ingot at 450°C for 4 hours; (3) Perform solution treatment at 590°C for 3 hours on the sample that has been homogenized in step (2), and then quench in cold water (4) Carry out aging treatment for 8 hours at 250 ℃ to the sample that step (3) solid solution treatment is completed.
实施实例3Implementation example 3
高强抗蠕变含Sc铸造Al-Cu系合金及其时效热处理工艺,包括以下步骤:(1)该合金的制备方法是在将纯Al置于熔炼炉中加热升温至730℃至熔化,随后加入规定配比的Al-50wt.%Cu中间合金,Al-2wt.%Sc中间合金,持续搅拌至全部熔化,之后控温至730℃,加入2%精炼剂进行精炼,静置30min后,在金属模具中浇铸,制得Al-2.5wt.%Cu-0.6wt.%Sc(以下简称为Al-2.5Cu-0.6Sc)铝合金。(2)将合金铸锭在450℃下进行4小时的均匀化处理;(3)对步骤(2)均匀化处理完成的样品在590℃下进行3小时的固溶处理,随后在冷水中淬火;(4)对步骤(3)固溶处理完成的样品在250℃下进行8小时的时效处理.The high-strength, creep-resistant, Sc-containing cast Al-Cu alloy and its aging heat treatment process include the following steps: (1) The alloy is prepared by heating pure Al in a melting furnace to 730°C until melting, and then adding The specified ratio of Al-50wt.% Cu master alloy and Al-2wt.% Sc master alloy is continuously stirred until it is completely melted, and then the temperature is controlled to 730°C, and 2% refining agent is added for refining. After standing for 30 minutes, the metal Casting in a mold to prepare an Al-2.5wt.%Cu-0.6wt.%Sc (hereinafter referred to as Al-2.5Cu-0.6Sc) aluminum alloy. (2) Homogenize the alloy ingot at 450°C for 4 hours; (3) Perform solution treatment at 590°C for 3 hours on the sample that has been homogenized in step (2), and then quench in cold water (4) Carry out aging treatment for 8 hours at 250 ℃ to the sample that step (3) solid solution treatment is completed.
对比例1Comparative example 1
铸造Al-Cu系合金及T6时效热处理工艺,包括以下步骤:(1)该合金的制备方法是在将纯Al置于熔炼炉中加热升温至730℃至熔化,随后加入规定配比的Al-50wt.%Cu中间合金,持续搅拌至全部熔化,之后控温至730℃,加入2%精炼剂进行精炼,静置30min后,在金属模具中浇铸,制得Al-2.3wt.%Cu(以下简称为Al-2.3Cu)铝合金。(2)将合金铸锭在450℃下进行4小时的均匀化处理;(3)对步骤(2)均匀化处理完成的样品在590℃下进行3小时的固溶处理,随后在冷水中淬火;(4)对步骤(3)固溶处理完成的样品在250℃下进行8小时的预时效处理。Casting Al-Cu alloy and T6 aging heat treatment process, including the following steps: (1) The preparation method of the alloy is to heat pure Al in a smelting furnace to 730 ° C until melting, and then add a specified ratio of Al- 50wt.% Cu intermediate alloy, keep stirring until it is completely melted, then control the temperature to 730°C, add 2% refining agent for refining, let it stand for 30 minutes, and cast it in a metal mold to obtain Al-2.3wt.% Cu (below Referred to as Al-2.3Cu) aluminum alloy. (2) Homogenize the alloy ingot at 450°C for 4 hours; (3) Perform solution treatment at 590°C for 3 hours on the sample that has been homogenized in step (2), and then quench in cold water (4) Perform pre-aging treatment for 8 hours at 250° C. on the sample after solution treatment in step (3).
参照附图所示,对实施实例2所得合金Al-2.3Cu-0.22Sc合金与对比例1所得合金Al-2.3Cu合金按照GB/T228.1-2010进行拉伸测试,工程应力应变曲线如图1所示,测试结果表明Al-2.3Cu-0.3Sc的强度要远高于Al-2.3Cu,对比结果如表1所示。由表1可知示Al-2.3Cu-0.22Sc的强度不仅高于Al-2.3Cu而且高于其他铸造Al-Cu系合金(比如ZL203,ZL207)。为了研究Sc对Al-Cu合金强度提高的作用,对Al-2.3Cu-0.22Sc合金与Al-2.3Cu合金分别进行了TEM观察,图2分别为Al-2.3Cu合金(图2(a))与Al-2.3Cu-0.22Sc合金(图2(b))的TEM组织照片,对比图2(a)和(b)显然Sc的添加明显提高了基体中θ′-Al2Cu析出相的密度,减小了θ′-Al2Cu的尺寸。其主要原因主要有两方面:一方面Sc的加入会在时效阶段促进θ′-Al2Cu的形核;另一方面,Sc原子易于偏聚在θ′-Al2Cu析出相与基体界面,在时效过程中抑制了θ′-Al2Cu析出相的长大和粗化。因此Al-2.3Cu-0.22Sc合金中θ′-Al2Cu的尺寸更小,密度更高。因此在Al-Cu合金中添加少量Sc元素可以有效提高了Al-Cu合金的强度。为了对比两种合金的高温抗蠕变性能,对Al-2.3Cu-0.22Sc合金与Al-2.3Cu合金按照进行GB/T2039进行了高温拉伸蠕变测试,测试温度为250℃,测试拉力为50Mpa。测试结果如图3所示,图3(a)为Al-2.3Cu合金在250℃/50MPa测试条件下的时间-应变曲线,图3(b)为Al-2.3Cu-0.22Sc合金在250℃/50MPa测试条件下的时间-应变曲线。对应的两种合金的最小蠕变速率(稳态蠕变速率)如表2所示,可以看出Al-2.3Cu-0.22Sc合金的最小蠕变速率要低于Al-2.3Cu合金2个量级,实验结果表明Al-2.3Cu-0.22Sc合金的高温抗蠕变性能要明显优于Al-2.3Cu合金。Referring to the accompanying drawings, the alloy Al-2.3Cu-0.22Sc alloy obtained in Example 2 and the alloy Al-2.3Cu alloy obtained in Comparative Example 1 are subjected to tensile testing according to GB/T228.1-2010, and the engineering stress-strain curve is shown in the figure 1, the test results show that the strength of Al-2.3Cu-0.3Sc is much higher than that of Al-2.3Cu, and the comparison results are shown in Table 1. It can be seen from Table 1 that the strength of Al-2.3Cu-0.22Sc is not only higher than Al-2.3Cu but also higher than other cast Al-Cu alloys (such as ZL203, ZL207). In order to study the effect of Sc on the strength improvement of Al-Cu alloy, TEM observations were carried out on Al-2.3Cu-0.22Sc alloy and Al-2.3Cu alloy respectively. Figure 2 shows Al-2.3Cu alloy respectively (Figure 2(a)) Compared with the TEM structure photo of Al-2.3Cu-0.22Sc alloy (Fig. 2(b)), comparing Fig. 2(a) and (b), it is obvious that the addition of Sc significantly increases the density of θ′-Al 2 Cu precipitates in the matrix , reducing the size of θ′-Al 2 Cu. There are two main reasons for this: on the one hand, the addition of Sc will promote the nucleation of θ′-Al 2 Cu during the aging stage; on the other hand, Sc atoms tend to segregate at the interface between the θ′-Al 2 Cu precipitate and the matrix. The growth and coarsening of θ′-Al 2 Cu precipitates are suppressed during the aging process. Therefore, the size of θ′-Al 2 Cu in Al-2.3Cu-0.22Sc alloy is smaller and the density is higher. Therefore, adding a small amount of Sc element to Al-Cu alloy can effectively improve the strength of Al-Cu alloy. In order to compare the high temperature creep resistance of the two alloys, the Al-2.3Cu-0.22Sc alloy and the Al-2.3Cu alloy were subjected to a high temperature tensile creep test according to GB/T2039. The test temperature was 250°C, and the test tensile force was 50Mpa. The test results are shown in Figure 3, Figure 3(a) is the time-strain curve of Al-2.3Cu alloy under the test condition of 250℃/50MPa, Figure 3(b) is the time-strain curve of Al-2.3Cu-0.22Sc alloy at 250℃ /50MPa time-strain curve under test conditions. The corresponding minimum creep rates (steady-state creep rates) of the two alloys are shown in Table 2. It can be seen that the minimum creep rate of the Al-2.3Cu-0.22Sc alloy is lower than that of the Al-2.3Cu alloy by 2 quantities The experimental results show that the high temperature creep resistance of Al-2.3Cu-0.22Sc alloy is obviously better than that of Al-2.3Cu alloy.
表1.部分铸造Al-Cu合金国家标准(GB/T1173-1995)力学性能与本发明含Table 1. Part of the cast Al-Cu alloy national standard (GB/T1173-1995) mechanical properties and the present invention
Sc的铸造Al-Cu铝合金的性能对比Performance comparison of Sc cast Al-Cu aluminum alloys
表2.本含Sc的铸造Al-Cu铝合金的T6状态与回归再时效状态蠕变性能对比Table 2. Comparison of the creep properties of the cast Al-Cu aluminum alloy containing Sc in the T6 state and the regression reaging state
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810074489.5A CN108048716A (en) | 2018-01-25 | 2018-01-25 | High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810074489.5A CN108048716A (en) | 2018-01-25 | 2018-01-25 | High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108048716A true CN108048716A (en) | 2018-05-18 |
Family
ID=62124876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810074489.5A Pending CN108048716A (en) | 2018-01-25 | 2018-01-25 | High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108048716A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022969A (en) * | 2018-08-03 | 2018-12-18 | 西安交通大学 | Casting Al-Cu alloys and its preparation and regression and re-ageing heat treatment method containing Sc |
CN110523791A (en) * | 2019-08-13 | 2019-12-03 | 韶关市欧莱高新材料有限公司 | A kind of manufacturing method of aluminium copper pipe fitting |
CN111411275A (en) * | 2020-04-23 | 2020-07-14 | 西安交通大学 | Scandium-iron-silicon composite micro-alloyed creep-resistant Al-Cu alloy and heat treatment process thereof |
CN111455241A (en) * | 2020-04-23 | 2020-07-28 | 西安交通大学 | A high-strength and heat-resistant low-scandium composite microalloyed Al-Cu alloy and its heat treatment process |
CN113403513A (en) * | 2021-06-17 | 2021-09-17 | 山东吕美熔体技术有限公司 | Hypereutectic Al-Cu alloy and preparation method thereof |
CN114875285A (en) * | 2022-04-11 | 2022-08-09 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy component of mining equipment |
CN115261690A (en) * | 2022-07-20 | 2022-11-01 | 重庆大学 | Al-Cu-Mn series heat-resistant aluminum alloy containing trace Sc element and deformation heat treatment process thereof |
CN115821130A (en) * | 2022-12-01 | 2023-03-21 | 西安交通大学 | High-temperature-resistant Al-Cu-Mg-Ag-Sc alloy and preparation method thereof |
CN116287910A (en) * | 2023-01-17 | 2023-06-23 | 西安交通大学 | Cerium-containing high-strength creep-resistant aluminum-copper-scandium alloy and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101407876A (en) * | 2008-09-17 | 2009-04-15 | 北京有色金属研究总院 | Aluminum alloy material for manufacturing large cross section main load-carrying structure member and preparation thereof |
CN101613822A (en) * | 2009-06-23 | 2009-12-30 | 中南大学 | An aluminum-copper-magnesium alloy sheet microalloyed with a trace amount of zirconium or a trace amount of scandium and zirconium and its preparation |
-
2018
- 2018-01-25 CN CN201810074489.5A patent/CN108048716A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101407876A (en) * | 2008-09-17 | 2009-04-15 | 北京有色金属研究总院 | Aluminum alloy material for manufacturing large cross section main load-carrying structure member and preparation thereof |
CN101613822A (en) * | 2009-06-23 | 2009-12-30 | 中南大学 | An aluminum-copper-magnesium alloy sheet microalloyed with a trace amount of zirconium or a trace amount of scandium and zirconium and its preparation |
Non-Patent Citations (2)
Title |
---|
L. JIANG ET AL.: "Experiment and modeling of ultrafast precipitation in an ultrafine-grained Al–Cu–Sc alloy", 《MATERIALS SCIENCE & ENGINEERING A》 * |
陈保安等: "Sn对Al -Cu合金微观组织与力学性能的影响", 《特种铸造及有色合金》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022969A (en) * | 2018-08-03 | 2018-12-18 | 西安交通大学 | Casting Al-Cu alloys and its preparation and regression and re-ageing heat treatment method containing Sc |
CN110523791A (en) * | 2019-08-13 | 2019-12-03 | 韶关市欧莱高新材料有限公司 | A kind of manufacturing method of aluminium copper pipe fitting |
CN111455241B (en) * | 2020-04-23 | 2021-11-19 | 西安交通大学 | High-strength heat-resistant low-scandium composite microalloyed Al-Cu alloy and heat treatment process thereof |
CN111411275A (en) * | 2020-04-23 | 2020-07-14 | 西安交通大学 | Scandium-iron-silicon composite micro-alloyed creep-resistant Al-Cu alloy and heat treatment process thereof |
CN111455241A (en) * | 2020-04-23 | 2020-07-28 | 西安交通大学 | A high-strength and heat-resistant low-scandium composite microalloyed Al-Cu alloy and its heat treatment process |
CN113403513B (en) * | 2021-06-17 | 2022-02-25 | 山东吕美熔体技术有限公司 | Hypereutectic Al-Cu alloy and its preparation method |
CN113403513A (en) * | 2021-06-17 | 2021-09-17 | 山东吕美熔体技术有限公司 | Hypereutectic Al-Cu alloy and preparation method thereof |
CN114875285A (en) * | 2022-04-11 | 2022-08-09 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy component of mining equipment |
CN114875285B (en) * | 2022-04-11 | 2023-10-03 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy parts of mining equipment |
CN115261690A (en) * | 2022-07-20 | 2022-11-01 | 重庆大学 | Al-Cu-Mn series heat-resistant aluminum alloy containing trace Sc element and deformation heat treatment process thereof |
CN115821130A (en) * | 2022-12-01 | 2023-03-21 | 西安交通大学 | High-temperature-resistant Al-Cu-Mg-Ag-Sc alloy and preparation method thereof |
CN115821130B (en) * | 2022-12-01 | 2024-05-03 | 陕西躬行智慧信息咨询合伙企业(有限合伙) | A high temperature resistant Al-Cu-Mg-Ag-Sc alloy and preparation method thereof |
CN116287910A (en) * | 2023-01-17 | 2023-06-23 | 西安交通大学 | Cerium-containing high-strength creep-resistant aluminum-copper-scandium alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108048716A (en) | High-strength creep resistant Al-Cu containing scandium line aluminium alloys and casting and heat treatment process | |
WO2021008428A1 (en) | Ultrahigh-strength aluminum-lithium alloy and preparation method therefor | |
CN106399776A (en) | 800MPa-level ultrahigh-strength aluminum alloy and preparing method thereof | |
CN111455241B (en) | High-strength heat-resistant low-scandium composite microalloyed Al-Cu alloy and heat treatment process thereof | |
CN114086040B (en) | A kind of aluminum magnesium silicon scandium zirconium alloy and preparation method thereof | |
CN104561702B (en) | A kind of Al-Zn-Mg-Cu alloy with trace addition of Er and Zr and its preparation process | |
CN104651683A (en) | Aluminum alloy subjected to composite microalloying of Sc and Zr and preparation method thereof | |
CN110157962A (en) | A kind of Al-Zn-Mg-Cu system ultra-high-strength aluminum alloy and preparation method | |
CN111424200B (en) | A kind of Al-Cu-Mg alloy with high strength, high heat resistance and low scandium silver addition and its heat treatment process | |
EP4541915A1 (en) | Method for manufacturing al-zn-mg-cu series aluminum alloy plate, and aluminum alloy plate | |
CN110846599A (en) | A kind of heat treatment method for improving the corrosion performance of 800MPa grade aluminum alloy | |
CN109022969A (en) | Casting Al-Cu alloys and its preparation and regression and re-ageing heat treatment method containing Sc | |
CN105369084A (en) | Homogenizing annealing and extruding deforming process for high-magnesium aluminum alloy with trace amount of Er added | |
CN116770132A (en) | Creep-resistant titanium alloy | |
CN115747590B (en) | A damage-resistant aluminum-lithium alloy and its preparation method and application | |
CN110093537A (en) | A kind of high-fracture toughness Al-Mg-Sc alloy bar and preparation method thereof | |
CN108754257A (en) | A kind of high-strength/tenacity aluminum alloy forging and preparation method thereof | |
CN103146972B (en) | A kind of Multielement rare-earth magnesium alloy and preparation method thereof | |
CN110172624A (en) | A kind of high tough aluminum alloy forge piece and preparation method thereof | |
CN108034874B (en) | A kind of rare earth magnesium alloy containing molybdenum rhenium and preparation method thereof | |
CN103074531B (en) | Heat resistant alloy of rare earth and magnesium and preparation method thereof | |
CN110791688B (en) | High-strength high-fracture-toughness aluminum alloy bar and preparation method thereof | |
CN108570587A (en) | A kind of heat-proof corrosion-resistant magnesium alloy and preparation method thereof | |
CN110616356A (en) | Er-containing magnesium alloy and preparation method thereof | |
CN116219240A (en) | Ultra-high-strength Al-Zn-Mg-Cu alloy with compound addition of Er and Zr and its preparation process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180518 |