CN107810530A - Temperature treatment in data storage device - Google Patents
Temperature treatment in data storage device Download PDFInfo
- Publication number
- CN107810530A CN107810530A CN201680036695.6A CN201680036695A CN107810530A CN 107810530 A CN107810530 A CN 107810530A CN 201680036695 A CN201680036695 A CN 201680036695A CN 107810530 A CN107810530 A CN 107810530A
- Authority
- CN
- China
- Prior art keywords
- storage device
- data storage
- temperature
- data
- write
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013500 data storage Methods 0.000 title claims abstract description 141
- 230000015654 memory Effects 0.000 claims abstract description 133
- 239000007787 solid Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 230000000694 effects Effects 0.000 claims description 31
- 238000009987 spinning Methods 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000013523 data management Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 6
- 238000000034 method Methods 0.000 abstract description 64
- 230000008569 process Effects 0.000 description 53
- 230000014759 maintenance of location Effects 0.000 description 21
- 230000007246 mechanism Effects 0.000 description 17
- 108091006146 Channels Proteins 0.000 description 10
- 230000000977 initiatory effect Effects 0.000 description 9
- 230000002028 premature Effects 0.000 description 5
- 238000012913 prioritisation Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- CXOXHMZGEKVPMT-UHFFFAOYSA-N clobazam Chemical compound O=C1CC(=O)N(C)C2=CC=C(Cl)C=C2N1C1=CC=CC=C1 CXOXHMZGEKVPMT-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229940044442 onfi Drugs 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 230000007474 system interaction Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0212—Printed circuits or mounted components having integral heating means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/40—Protective measures on heads, e.g. against excessive temperature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B19/00—Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
- G11B19/02—Control of operating function, e.g. switching from recording to reproducing
- G11B19/04—Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
- G11B19/046—Detection or prevention or problems due to temperature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
- G11B5/09—Digital recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3418—Disturbance prevention or evaluation; Refreshing of disturbed memory data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/349—Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/04—Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10159—Memory
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
本申请公开了用于管理数据存储设备中的温度的系统和方法。数据存储设备包括非易失性固态存储器、温度传感器、加热设备和控制器。该控制器被配置为:接收来自温度传感器的温度信号,该温度信号指示数据存储设备的至少一部分的温度;确定该温度低于第一预定阈值;激活该加热设备,以增加该数据存储设备的至少一部分的温度;以及将与写入到命令相关联的数据写入非易失性固态存储器。
The present application discloses systems and methods for managing temperature in data storage devices. Data storage devices include non-volatile solid-state memory, temperature sensors, heating devices, and controllers. The controller is configured to: receive a temperature signal from a temperature sensor indicative of a temperature of at least a portion of the data storage device; determine that the temperature is below a first predetermined threshold; activate the heating device to increase the temperature of the data storage device a temperature of at least a portion; and writing data associated with the write to command to the non-volatile solid state memory.
Description
技术领域technical field
本公开涉及数据存储系统。更具体地,本公开涉及用于管理数据存储设备中的温度的系统和方法。The present disclosure relates to data storage systems. More specifically, the present disclosure relates to systems and methods for managing temperature in data storage devices.
背景技术Background technique
在数据编程期间,某些数据存储设备可能受到高设备温度的不利影响。数据存储设备中的低温度可能导致对物理设备硬件的损坏和/或数据保留/讹误问题。Some data storage devices may be adversely affected by high device temperatures during data programming. Low temperatures in data storage devices can lead to damage to the physical device hardware and/or data retention/corruption issues.
附图说明Description of drawings
为了说明性的目的,在附图中描绘各种实施例,并且决不应将各种实施例解释为限制本公开的范围。此外,不同的公开实施例的各种特征可以被组合以形成附加实施例,这些附加实施例也是本公开的一部分。Various embodiments are depicted in the drawings for illustrative purposes and should in no way be construed as limiting the scope of the present disclosure. Furthermore, various features of different disclosed embodiments may be combined to form additional embodiments which are also a part of this disclosure.
图1是根据一个或多个实施例的表示数据存储系统的框图。Figure 1 is a block diagram representing a data storage system in accordance with one or more embodiments.
图2是示出根据一个或多个实施例的相对于编程/擦除循环计数在数据存储设备中的性能的曲线图。FIG. 2 is a graph illustrating performance in a data storage device with respect to program/erase cycle count, according to one or more embodiments.
图3是示出根据一个或多个实施例的相对于编程/擦除循环计数在数据存储设备中的性能的曲线图。FIG. 3 is a graph illustrating performance in a data storage device with respect to program/erase cycle count, according to one or more embodiments.
图4是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程的流程图。Figure 4 is a flow diagram illustrating a process for managing temperature in a data storage system, according to one or more embodiments.
图5是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程的流程图。Figure 5 is a flow diagram illustrating a process for managing temperature in a data storage system, according to one or more embodiments.
图6是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程的流程图。Figure 6 is a flowchart illustrating a process for managing temperature in a data storage system, according to one or more embodiments.
具体实施方式Detailed ways
虽然描述了某些实施例,但是这些实施例仅以示例的方式呈现,并且不旨在限制保护的范围。实际上,本文所描述的新颖的方法和系统可以以各种其他形式来体现。此外,在不脱离保护范围的情况下,可以对本文所描述的方法和系统的形式进行各种省略、替代和改变。While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the scope of protection.
本文所提供的标题仅是为了方便,并且不一定影响权利要求的范围或含义。本文所公开的是与数据存储设备中的管理温度有关的示例构造和实施例。Headings are provided herein for convenience only and do not necessarily affect the scope or meaning of the claims. Disclosed herein are example configurations and embodiments related to managing temperature in data storage devices.
概述overview
数据存储设备可能遭受各种与温度有关的限制。例如,关于固态存储器(诸如NAND闪存),在相对低的温度下被写入的存储器的数据保留能力可能固有地低于在相对高的温度下或在最佳温度范围内被写入的相似存储器的数据保留能力,这可能与设备规范一致。为了提高在存储系统中使用的固态存储器的数据保留能力,因而可能期望仅当存储器不是非期望地那么冷时对存储器写入。此外,关于同时包括硬盘部件和固态存储部件的硬盘存储设备和/或混合存储设备,低于相关的热规范范围的温度可能引起存储设备以某种方式发生故障和/或引发过早磨损。为了简单起见,通常存在于硬盘存储设备中的旋转磁部件将被称为硬盘部件、存储器/介质部件和/或设备。因而,在某些数据存储环境中,热稳定性可能是一种顾虑。Data storage devices may be subject to various temperature-related limitations. For example, with respect to solid-state memory, such as NAND flash memory, memory written at relatively low temperatures may have inherently lower data retention than similar memory written at relatively high temperatures or within an optimal temperature range data retention capabilities, which may be consistent with device specifications. In order to improve the data retention capabilities of solid-state memory used in storage systems, it may thus be desirable to only write to the memory when the memory is not undesirably so cold. Furthermore, with respect to hard disk storage devices and/or hybrid storage devices including both hard disk components and solid state storage components, temperatures below the relevant thermal specification range may cause the storage device to fail in some manner and/or induce premature wear. For simplicity, the rotating magnetic components commonly found in hard disk storage devices will be referred to as hard disk components, memory/media components and/or devices. Thus, thermal stability may be a concern in certain data storage environments.
作为温度问题可能是一种顾虑的示例环境,设置在某些环境冷却数据中心中的数据存储设备可经历可能相对较低的温度,这可能进而导致减少的数据保留能力和/或其他问题。例如,某些数据中心可能实施各种措施以节约电力,诸如通过使用环境空气或外部空气以冷却该数据中心;当这些数据中心位于非常冷的气候中时,环境温度可能相对较冷;数据存储设备可能位于数据中心内的“冷藏器”或断电区域中。可以存在某些其他应用,其中数据存储设备可在冷于数据存储设备的热规范的低端的环境中加电。数据存储设备的热规范可能指定例如在25-85℃之间的操作温度。在数据存储设备在其热规范之外操作时,当数据存储设备被通电时,可能导致对存储设备的损坏和/或其某些存储器部件(诸如所装配的NAND设备)的过早磨损。As an example environment where temperature issues may be a concern, data storage devices located in certain environmentally cooled data centers may experience temperatures that may be relatively low, which may in turn lead to reduced data retention and/or other issues. For example, some data centers may implement various measures to conserve power, such as by using ambient air or outside air to cool the data center; when these data centers are located in very cold climates, the ambient temperature may be relatively cold; data storage The equipment may be located in a "refrigerated cooler" or de-energized area within the data center. There may be certain other applications where a data storage device may be powered in an environment that is cooler than the low end of the data storage device's thermal specification. A thermal specification for a data storage device may specify an operating temperature, for example, between 25-85°C. When a data storage device is operated outside of its thermal specifications, damage to the storage device and/or premature wear of some of its memory components, such as the assembled NAND device, may result when the data storage device is powered on.
关于固态数据存储,为了允许固态存储设备或混合数据存储设备的固态存储器部件受益于在可能寒冷的环境中提高的数据保留能力,在允许写入到存储器(例如,NAND)之前增加此类设备中的温度可能是有益的,并且可能在某些条件下提高性能。此外,本文公开的数据存储设备的某些实施例被配置为感测设备温度,并且至少部分地限制存储器写入访问(例如,NAND访问),直到达到适当的存储器温度。某些实施例通过各种手段或机制提供设备和/或存储器温度的增加。例如,为了实现用于编程的适当温度范围,可以通过执行设备硬件和/或固件的某些功能来实施设备预热。在某些实施例中,可以以产生热增加的方式实行目标存储器(例如,固态存储器,诸如NAND)的一个或多个通信接口(诸如(多个)ONFI/TOGGLE接口)的激活。例如,一个或多个块或其他存储器段可以被保留以作为用于激励存储器电子器件的机制被擦除、编程和/或读取,从而消耗附加电力并且在设备内产生附加热能。With respect to solid-state data storage, in order to allow solid-state storage devices or the solid-state memory components of hybrid data storage devices to benefit from increased data retention in potentially cold environments, adding The temperature may be beneficial and may improve performance under certain conditions. Additionally, certain embodiments of the data storage devices disclosed herein are configured to sense device temperature and at least partially limit memory write access (eg, NAND access) until an appropriate memory temperature is reached. Certain embodiments provide for device and/or memory temperature increases through various means or mechanisms. For example, device warm-up may be implemented by performing certain functions of device hardware and/or firmware in order to achieve an appropriate temperature range for programming. In some embodiments, activation of one or more communication interfaces (such as ONFI/TOGGLE interface(s)) of a target memory (eg, solid state memory such as NAND) may be performed in a thermally increasing manner. For example, one or more blocks or other memory segments may be reserved to be erased, programmed and/or read as a mechanism for energizing the memory electronics, thereby consuming additional power and generating additional thermal energy within the device.
关于硬盘数据存储,为了允许硬盘存储设备或混合数据存储设备的硬盘存储器部件正确地运行,可能期望的是在完整的数据/系统交互之前将设备温度提升到最佳操作温度(例如,在热规范内)。本文公开的某些实施例提供了对主机访问的温度监测和/或限制,直到达到适当的设备温度。为了增加硬盘存储设备温度,可以经由固件和/或专门的硬件执行预热或热生成模式,以促进更快速地达到操作温度范围。在某些实施例中,除了用于激励电子器件的其他机制和/或方法之外,也可以利用提供可引起多个读取信道迭代以增加热能的一个或多个“脏”磁道(具有许多特别引入的数据错误的磁道),从而有可能在存储设备内提供增加的电力消耗和/或热能。With regard to hard disk data storage, in order to allow a hard disk storage device or the hard disk memory component of a hybrid data storage device to function properly, it may be desirable to bring the device temperature up to an optimal operating temperature prior to a complete data/system interaction (e.g., within thermal specification Inside). Certain embodiments disclosed herein provide for temperature monitoring and/or throttling of host access until an appropriate device temperature is reached. To increase hard disk storage temperature, a preheat or heat generation mode may be implemented via firmware and/or dedicated hardware to facilitate more rapid reaching of the operating temperature range. In some embodiments, providing one or more "dirty" tracks (with many especially introduced data error tracks), thereby potentially providing increased power consumption and/or thermal energy within the storage device.
本文公开的某些实施例提供了用于管理数据存储设备中的温度的过程。该过程可以包含接收来自与数据存储设备相关联的温度传感器的温度信号,该温度信号指示该数据存储设备的至少一部分的温度。该过程还可以包含确定该温度低于第一预定阈值,激活数据存储设备的加热设备以增加该数据存储设备的至少一部分的温度,以及将与写入命令相关联的数据写入到非易失性固态存储器。Certain embodiments disclosed herein provide a process for managing temperature in a data storage device. The process may include receiving a temperature signal from a temperature sensor associated with the data storage device, the temperature signal indicative of a temperature of at least a portion of the data storage device. The process may also include determining that the temperature is below a first predetermined threshold, activating a heating device of the data storage device to increase the temperature of at least a portion of the data storage device, and writing data associated with the write command to the non-volatile permanent solid-state memory.
在某些实施例中,至少部分地通过所述激活加热设备,来实现将数据存储设备的至少一部分的温度增加到第一预定阈值以上。该过程还可以包含在将数据写入到非易失性固态存储器之前确定数据存储设备的至少一部分的温度已升高到第二预定阈值以上。第一预定阈值和第二预定阈值可以相同。In some embodiments, increasing the temperature of at least a portion of the data storage device above a first predetermined threshold is accomplished at least in part by said activating the heating device. The process may also include determining that a temperature of at least a portion of the data storage device has risen above a second predetermined threshold prior to writing the data to the non-volatile solid-state memory. The first predetermined threshold and the second predetermined threshold may be the same.
加热设备可包括电阻加热设备。数据存储设备可包括印刷电路板(PCB),其中非易失性固态存储器被安装到PCB的第一侧。在某些实施例中,加热设备被安装到与第一侧相对的PCB的第二侧。可替代地,该加热设备可被安装到邻近非易失性固态存储器的PCB的第一侧。在某些实施例中,第一预定阈值是大约25℃。The heating device may comprise a resistive heating device. The data storage device may include a printed circuit board (PCB), with non-volatile solid-state memory mounted to a first side of the PCB. In some embodiments, the heating device is mounted to a second side of the PCB opposite the first side. Alternatively, the heating device may be mounted to the first side of the PCB adjacent to the non-volatile solid state memory. In certain embodiments, the first predetermined threshold is about 25°C.
本文公开的某些实施例提供了管理包括非易失性介质的数据存储设备中的温度的过程。该过程可以包含接收来自数据存储设备的温度传感器的温度信号,该温度信号指示该数据存储设备的至少一部分的温度。该过程还可以包含确定该温度低于阈值,启动数据存储设备的一个或多个部件中的活动以增加该数据存储设备的至少一部分的温度,以及处理写入命令以将与该写入命令相关联的数据写入到非易失性介质。Certain embodiments disclosed herein provide processes for managing temperature in data storage devices including non-volatile media. The process may include receiving a temperature signal from a temperature sensor of the data storage device, the temperature signal indicating a temperature of at least a portion of the data storage device. The process may also include determining that the temperature is below a threshold, initiating activity in one or more components of the data storage device to increase the temperature of at least a portion of the data storage device, and processing a write command to associate Linked data is written to non-volatile media.
在某些实施例中,启动一个或多个部件中的活动包括读取存储在非易失性介质中的数据。附加地或可替代地,启动一个或多个部件中的活动可以包括将错误引入到从非易失性介质中读取的数据中,以增加数据存储设备中的纠错活动。In some embodiments, initiating activity in one or more components includes reading data stored in non-volatile media. Additionally or alternatively, initiating activity in one or more components may include introducing errors into data read from the non-volatile medium to increase error correction activity in the data storage device.
非易失性介质可包括磁头和旋转磁盘,其中启动一个或多个部件中的活动包含使旋转磁盘转动。非易失性介质可以包括磁头和旋转磁盘,其中启动一个或多个部件中的活动包含寻找磁头。在某些实施例中,该非易失性介质包括非易失性固态存储器,其中启动一个或多个部件中的活动包括在没有用于存储主机数据的非易失性固态存储器的保留区上执行一个或多个数据操作。启动一个或多个部件中的活动可以包含在非易失性介质上执行数据管理活动。在启动一个或多个部件中的活动之后,该过程还可以包含确定该温度是否处于或高于阈值,并且如果是这样,则通知主机设备它已准备好接收写入命令。Non-volatile media may include magnetic heads and spinning disks, where initiating activity in one or more components includes spinning the spinning disk. Non-volatile media may include magnetic heads and spinning disks, where initiating activity in one or more components involves seeking the magnetic head. In some embodiments, the non-volatile medium includes non-volatile solid-state memory, wherein initiating activity in one or more components includes on a reserved area of the non-volatile solid-state memory that is not used to store host data Perform one or more data operations. Initiating activities in one or more components may include performing data management activities on non-volatile media. After initiating activity in one or more components, the process may also include determining whether the temperature is at or above a threshold, and if so, notifying the host device that it is ready to receive write commands.
本文公开的某些实施例提供了管理数据存储设备中的温度的过程,该过程包含将与写入命令相关联的数据写入到数据存储设备的非易失性固态存储器,存储由该数据存储设备的温度传感器指示的写入温度数据,确定数据存储设备的至少一部分的温度已升高到预定阈值以上,以及至少部分地基于该写入温度数据将该数据重写到非易失性固态存储器。Certain embodiments disclosed herein provide a process for managing temperature in a data storage device that includes writing data associated with a write command to the non-volatile solid-state memory of the data storage device, stored by the data storage device. writing temperature data indicated by a temperature sensor of the device, determining that the temperature of at least a portion of the data storage device has risen above a predetermined threshold, and rewriting the data to the non-volatile solid-state memory based at least in part on the writing temperature data .
在某些实施例中,至少部分地基于写入温度数据重写数据可以包含基于写入温度数据对数据存储设备的垃圾收集操作进行优先级排序。响应于确定数据存储设备的至少一部分的温度已升高到预定阈值以上,可以执行重写数据。当数据存储设备的至少一部分低于预定阈值时,该写入温度数据可以指示是否写入了与写入命令相关联的数据。In some embodiments, rewriting data based at least in part on the write temperature data may include prioritizing garbage collection operations for the data storage device based on the write temperature data. Rewriting data may be performed in response to determining that a temperature of at least a portion of the data storage device has risen above a predetermined threshold. The write temperature data may indicate whether data associated with the write command was written when at least a portion of the data storage device is below a predetermined threshold.
系统概述System Overview
本文公开的某些实施例提供了用于在低温以及原始BER(例如,大于0.5)下至少部分地延长数据储存器(例如,固态NAND存储器)的寿命的新颖的方法和系统。例如,本文提供的系统和方法可以使得数据存储设备能够在低温下加热固态和/或硬盘存储器部件,和/或保护在低温下记录的数据,从而提高可靠性和/或延长存储器的使用寿命。因此,某些实施例可以至少部分地解决与在相对较低温度下某些存储器部件/设备易受编程/擦除循环或其他交互的侵害相关联的问题,以及数据保留问题。例如,在低温下记录数据且随后在高温下保留数据的情况下,在某些实施例中,数据保留可能是一种顾虑。Certain embodiments disclosed herein provide novel methods and systems for at least partially extending the lifetime of data storage (eg, solid-state NAND memory) at low temperatures and raw BER (eg, greater than 0.5). For example, the systems and methods provided herein may enable data storage devices to heat solid-state and/or hard disk memory components at low temperatures, and/or protect data recorded at low temperatures, thereby increasing reliability and/or extending the useful life of the memory. Accordingly, certain embodiments may at least partially address issues associated with the vulnerability of certain memory components/devices to program/erase cycles or other interactions at relatively low temperatures, as well as data retention issues. For example, where data is recorded at low temperatures and subsequently retained at high temperatures, data retention may be a concern in certain embodiments.
在固态设备中,为了增加设备的至少一部分内的温度的目的,可以实施各种机制以增加设备活动。例如,本文公开的实施例通过以下机制或过程中的一个或多个来通过增加的设备活动而提供设备加热:用高数据速率随机活动给设备控制器加电;随机读取页面;附加低密度奇偶校验(LDPC)信道迭代;以及除了当前的工作循环之外,执行附加处理器计算。此类活动可以将设备的至少一部分中的设备温度提升高达5-15℃。关于磁盘/硬盘介质,可以通过以下机制中的一个或多个来实现温度增加:磁头悬架装配件的操作;激活主轴马达和/或致动器马达,或其他活动。可以实施各种其他机制以提升硬盘设备或包括硬盘存储器的混合数据存储设备中的温度。In solid state devices, various mechanisms may be implemented to increase device activity for the purpose of increasing the temperature within at least a portion of the device. For example, embodiments disclosed herein provide device heating through increased device activity through one or more of the following mechanisms or processes: powering up the device controller with high data rate random activity; random page reads; additional low density parity check (LDPC) channel iteration; and performing additional processor computations in addition to the current duty cycle. Such activity may raise the temperature of the device by as much as 5-15°C in at least a portion of the device. With respect to disk/hard disk media, the temperature increase may be achieved by one or more of the following mechanisms: operation of the head suspension assembly; activation of the spindle motor and/or actuator motor, or other activity. Various other mechanisms may be implemented to increase the temperature in hard disk devices or hybrid data storage devices that include hard disk storage.
混合数据存储系统是可以包括一个或多个数据存储子系统的数据存储系统,例如,包括磁存储介质的一个或多个硬盘驱动器(HDD),以及包括非易失性固态介质(诸如NAND闪存)的一个或多个固态存储驱动器(SSD)。在单一设备的背景下,混合数据存储设备可以包括旋转磁储存器和固态储存器。本文公开的各种实施例可以应用于硬盘存储设备/系统、固态存储设备/系统和/或混合存储设备/系统。为了描述简单起见,本文可能将通用单一混合数据存储设备描述为指代数据存储设备/系统的前面提及的变体中的任一个的示例。A hybrid data storage system is a data storage system that may include one or more data storage subsystems, for example, one or more hard disk drives (HDDs) including magnetic storage media, and non-volatile solid-state media such as NAND flash memory One or more solid-state storage drives (SSDs). In the context of a single device, a hybrid data storage device may include rotating magnetic storage and solid-state storage. Various embodiments disclosed herein may be applied to hard disk storage devices/systems, solid state storage devices/systems, and/or hybrid storage devices/systems. For simplicity of description, a generic single hybrid data storage device may be described herein as an example referring to any of the aforementioned variations of data storage devices/systems.
图1是示出根据本文公开的一个或多个实施例的主机系统110与并入温度管理功能的数据存储设备120的组合的实施例的框图。如图所示,数据存储设备120包括控制器130,控制器130被配置为接收数据命令,并且在非易失性固态存储器140(其可以包括非易失性固态存储器单元)中和/或在磁存储设备160(其可以包括磁介质164,诸如一个或多个磁盘)中执行此类命令。磁储存器160可以包括用于在介质160中执行读取/写入的致动器/磁头装配件162。非易失性固态储存器140和/或磁储存器160还可以包括高速缓冲存储器(未示出)。1 is a block diagram illustrating an embodiment of a combination of a host system 110 and a data storage device 120 incorporating temperature management functionality according to one or more embodiments disclosed herein. As shown, the data storage device 120 includes a controller 130 configured to receive data commands, and to store data in non-volatile solid-state memory 140 (which may include non-volatile solid-state memory cells) and/or Such commands are executed in magnetic storage device 160 (which may include magnetic media 164, such as one or more magnetic disks). The magnetic storage 160 may include an actuator/head assembly 162 for performing reading/writing in the medium 160 . Nonvolatile solid state storage 140 and/or magnetic storage 160 may also include cache memory (not shown).
由控制器130从主机系统110接收到的主机命令可以包括数据读取/写入命令等。控制器130可以被配置为从驻留在主机系统110上的存储接口(例如,设备驱动器)112接收数据命令。可以基于此类命令来访问/转移数据。主机的存储接口112可以使用任何已知的通信协议(诸如,SATA、SCSI、SAS、USB、光纤信道、PCIe、eMMC等)与数据存储设备120通信。The host commands received by the controller 130 from the host system 110 may include data read/write commands and the like. Controller 130 may be configured to receive data commands from storage interface (eg, device driver) 112 residing on host system 110 . Data can be accessed/transferred based on such commands. The host's storage interface 112 may communicate with the data storage device 120 using any known communication protocol, such as SATA, SCSI, SAS, USB, Fiber Channel, PCIe, eMMC, and the like.
如在本申请中所使用,“非易失性固态存储器”、“NVSM”、“非易失性存储器”、“NVM”或其变体可以指代诸如NAND闪存的固态存储器。然而,本公开的系统和方法也可以在更常规的硬盘驱动器以及包括固态和硬盘驱动器部件的混合驱动器中是有用的。固态存储器可以包括各种各样的技术,诸如闪存集成电路、相变存储器(PC-RAM或PRAM)、可编程金属化单元RAM(PMC-RAM或PMCm)、双向统一存储器(OUM)、电阻RAM(RRAM)、NAND存储器、NOR存储器、EEPROM、铁电存储器(FeRAM)、MRAM或其他分立NVM(非易失性固态存储器)芯片。如本领域中已知的,非易失性固态存储器阵列或存储设备可以被物理地划分为平面、块、页面和/或扇区。可附加地或可替代地使用其他形式的储存器(例如,电池备份易失性DRAM或SRAM设备、磁盘驱动器等)。As used in this application, "non-volatile solid-state memory," "NVSM," "non-volatile memory," "NVM," or variations thereof may refer to solid-state memory such as NAND flash memory. However, the systems and methods of the present disclosure may also be useful in more conventional hard disk drives, as well as hybrid drives that include solid state and hard disk drive components. Solid state memory can include a wide variety of technologies such as flash integrated circuits, phase change memory (PC-RAM or PRAM), programmable metallization cell RAM (PMC-RAM or PMCm), bidirectional unified memory (OUM), resistive RAM (RRAM), NAND memory, NOR memory, EEPROM, ferroelectric memory (FeRAM), MRAM or other discrete NVM (non-volatile solid-state memory) chips. As is known in the art, non-volatile solid state memory arrays or storage devices may be physically divided into planes, blocks, pages and/or sectors. Other forms of storage (eg, battery-backed volatile DRAM or SRAM devices, disk drives, etc.) may additionally or alternatively be used.
数据存储设备120可以存储从主机系统110接收的数据,使得数据存储设备120充当主机系统110的数据储存器。为了有助于该功能,控制器130可以实施逻辑接口。该逻辑接口可以作为可存储数据的一组逻辑地址(例如,顺序的/连续的地址)呈现给主机系统存储器。在内部,控制器130可以将逻辑地址映射到非易失性固态储存器140和/或磁存储模块160中的各种物理存储器地址。Data storage device 120 may store data received from host system 110 such that data storage device 120 acts as a data store for host system 110 . To facilitate this functionality, controller 130 may implement a logical interface. The logical interface can be presented to host system memory as a set of logical addresses (eg, sequential/contiguous addresses) at which data can be stored. Internally, controller 130 may map logical addresses to various physical memory addresses in nonvolatile solid state storage 140 and/or magnetic storage module 160 .
可以在数据存储设备120中保持指示逻辑地址到物理存储器地址的映射的映射数据。例如,为了允许在电力循环之后重新创建映射表,映射表数据可以被存储在非易失性固态储存器140和/或磁存储模块160中。在某些实施例中,控制器130可以保持映射表以对固态存储映射进行寻址,然而存储设备120的磁储存器160部分可以被直接寻址。此外,控制器130可以保持特定的映射表以确定数据是存储在固态储存器140中还是存储在磁储存器160中。Mapping data indicating the mapping of logical addresses to physical memory addresses may be maintained in the data storage device 120 . For example, to allow the map to be recreated after a power cycle, map data may be stored in non-volatile solid-state storage 140 and/or magnetic storage module 160 . In some embodiments, controller 130 may maintain a map to address solid-state memory maps, whereas the magnetic storage 160 portion of storage device 120 may be directly addressable. Additionally, controller 130 may maintain a specific mapping table to determine whether data is stored in solid-state storage 140 or magnetic storage 160 .
控制器130可以包括一个或多个存储器模块,诸如非易失性存储器(例如,ROM)和/或易失性固态储存器138(例如,DRAM的RAM)。在某些实施例中,控制器130可以被配置为将信息(包括例如操作系统代码、应用程序代码、系统表和/或其他数据)存储在(多个)此类存储器模块中。在加电时,控制器130可以被配置为加载用于在数据存储设备120的操作中使用的数据。在一个实施例中,在SoC(片上系统)上实施控制器130,但是本领域技术人员将认识到其他硬件/固件实施方式是可能的。Controller 130 may include one or more memory modules, such as non-volatile memory (eg, ROM) and/or volatile solid-state storage 138 (eg, RAM of DRAM). In some embodiments, controller 130 may be configured to store information (including, for example, operating system code, application code, system tables, and/or other data) in such memory module(s). Upon power up, the controller 130 may be configured to load data for use in the operation of the data storage device 120 . In one embodiment, the controller 130 is implemented on a SoC (system on chip), although those skilled in the art will recognize that other hardware/firmware implementations are possible.
如上面所讨论,当在此类条件(数据存储设备120中的低温)下将数据写入到固态储存器140和/或磁储存器160时,数据存储设备120中的低温可能导致增加的错误率和/或过早磨损。通常,对于固态存储器,错误率的增加量可能与和存储器相关联的温度下降到阈值(诸如25℃)以下的程度成比例。为了防止或减少存储设备120或其一部分中低温的影响,混合数据存储设备120可以包括一个或多个温度传感器150,一个或多个温度传感器150可以被设置在存储设备的外壳内。例如,一个或多个温度传感器可以被设置为物理接近磁储存器160和固态储存器140中的任一个或两者,磁储存器160诸如在磁储存器的盘头和/或悬挂结构中或者与磁储存器的盘头和/或悬挂结构相关联。(多个)温度传感器150可以被配置为检测与混合数据存储设备120的至少一部分相关联的温度水平。As discussed above, low temperatures in data storage device 120 may lead to increased errors when writing data to solid-state storage 140 and/or magnetic storage 160 under such conditions (low temperatures in data storage device 120) rate and/or premature wear. Typically, for solid-state memory, the error rate may increase in proportion to the degree to which the temperature associated with the memory drops below a threshold, such as 25°C. To prevent or reduce the effects of low temperatures in storage device 120 or a portion thereof, hybrid data storage device 120 may include one or more temperature sensors 150, which may be disposed within the storage device's housing. For example, one or more temperature sensors may be located in physical proximity to either or both of magnetic storage 160, such as in a disk head and/or suspension structure of the magnetic storage, and solid-state storage 140 or Associated with the disk head and/or suspension structure of the magnetic storage. Temperature sensor(s) 150 may be configured to detect a temperature level associated with at least a portion of hybrid data storage device 120 .
在某些实施例中,控制器130被配置为保持历史数据,该历史数据指示与写入到非易失性固态储存器140和磁储存器160中的一者或两者的数据相关联的写入时间(例如,时间戳数据)和/或温度。此类数据可以用于确定何时和/或如何执行各种驱动器维护操作,诸如磨损均衡、垃圾收集等。在某些实施例中,历史写入时间和/或温度数据可以依赖于设定用于固态存储器读取的读取阈值水平。在某些实施例中,在较低温度下写入的数据可以与相对较强的错误率相关联,其中数据被记录具有增加的纠错码/数据量。写入时间和/或温度数据的此类跟踪和利用可以相对于设备120的至少一个部件或模块提高数据存储设备120的耐用性。例如,通过保管此类历史数据,当数据存储设备稍后经历较高的温度时,在低温时写入的数据可以被识别并且被优先用于垃圾收集。在一个实施例中,写入的温度越低,写入数据的垃圾收集的优先级将会越高。In some embodiments, controller 130 is configured to maintain historical data indicating the Write time (eg, timestamp data) and/or temperature. Such data can be used to determine when and/or how to perform various drive maintenance operations, such as wear leveling, garbage collection, and the like. In some embodiments, historical write time and/or temperature data may be dependent on a read threshold level set for solid state memory reads. In some embodiments, data written at lower temperatures may be associated with relatively stronger error rates where data is recorded with increased error correction code/data volume. Such tracking and utilization of write time and/or temperature data may increase the durability of data storage device 120 relative to at least one component or module of device 120 . For example, by vaulting such historical data, when the data storage device later experiences higher temperatures, data written at low temperatures can be identified and prioritized for garbage collection. In one embodiment, the lower the write temperature, the higher the garbage collection priority of the written data.
控制器130可以包括一个或多个加热器设备152,一个或多个加热器设备152在本地设置于存储设备120内或与存储设备120相邻。(多个)加热器152可以被实施以使存储设备120的一个或多个部分或部件达到用于将数据写入到固态储存器140和磁储存器160中的任一者或两者的可接受温度。The controller 130 may include one or more heater devices 152 disposed locally within or adjacent to the storage device 120 . Heater(s) 152 may be implemented to make one or more portions or components of storage device 120 accessible for writing data to either or both solid-state storage 140 and magnetic storage 160 . Accept the temperature.
图2是示出根据一个或多个实施例的相对于编程/擦除循环计数的数据存储设备中的性能的曲线图。图2的曲线图可以对应于数据保留特性,该数据保留特性与在被认为是低温的约0℃下写入到固态存储器(例如,NAND)的数据相关联。该曲线图中反映的主体存储器可以是例如20nm cMLC。短虚线曲线201可以表示在大约1周的数据保留下检测到的存储器的误码率,而中虚线曲线202和长虚线曲线203可以分别表示在大约1天的数据保留和基本上无数据保留下的类似数据。如曲线图中所表明的,在编程/擦除(P/E)循环期间,固态存储器在低温下可以具有较低的数据保留能力,并且当存储器被磨损时,此类较低的能力更加恶化,如随着增加的P/E循环而恶化的误码率(RBER)所指示。此外,对于存储器来说保留在低温下编程的数据可能尤其困难。曲线图中的水平直线可以表示信道的纠错能力,该水平直线指示误码的阈值数量,高于该数量的误码将导致不可纠正的和/或不可恢复的错误。FIG. 2 is a graph illustrating performance in a data storage device versus program/erase cycle count, according to one or more embodiments. The graph of FIG. 2 may correspond to data retention characteristics associated with data written to solid-state memory (eg, NAND) at about 0° C., which is considered low temperature. The bulk memory reflected in this graph may be, for example, 20nm cMLC. The short dashed curve 201 may represent the bit error rate of the memory detected at about 1 week of data retention, while the middle dashed curve 202 and the long dashed curve 203 may represent at about 1 day of data retention and substantially no data retention, respectively. similar data. As indicated in the graph, solid-state memory can have low data retention at low temperatures during program/erase (P/E) cycles, and this low capacity is exacerbated when the memory is worn , as indicated by the deteriorating bit error rate (RBER) with increasing P/E cycles. Furthermore, it can be especially difficult for memories to retain data programmed at low temperatures. The error correction capability of the channel can be represented by a horizontal line in the graph that indicates a threshold number of bit errors above which uncorrectable and/or unrecoverable errors will result.
图3是与图2类似的曲线图,该曲线图代替示出根据一个或多个实施例的相对于编程/擦除循环计数的数据存储设备中的性能。图3的曲线图可以对应于与图2中所表示的相比在更高的温度下(例如,在大约85℃的温度下)写入的数据。如图所示,在最佳范围内的温度下写入的数据可以表现出对数据保留问题的显著较低的敏感性,即使存储器已经经历了大量的磨损。全部三条曲线(1周间隔301,1天间隔302,或无时间间隔303)示出在信道的纠错能力内的错误量。FIG. 3 is a graph similar to FIG. 2 , which instead shows performance in a data storage device versus program/erase cycle count in accordance with one or more embodiments. The graph of FIG. 3 may correspond to data written at a higher temperature (eg, at a temperature of about 85° C.) than represented in FIG. 2 . As shown, data written at temperatures within the optimal range can exhibit significantly lower susceptibility to data retention issues, even though the memory has experienced significant wear and tear. All three curves (1-week interval 301, 1-day interval 302, or no time interval 303) show the amount of errors within the channel's error-correcting capabilities.
局部加热器local heater
图4是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程400的流程图。过程400可以被实施以将设备的至少一部分中的设备温度(例如,与写入主机数据的非易失性存储器相关联的温度)有效地维持在目标温度(诸如25℃)或目标温度(诸如25℃)附近,或目标温度(诸如25℃)以上。FIG. 4 is a flowchart illustrating a process 400 for managing temperature in a data storage system, according to one or more embodiments. Process 400 may be implemented to effectively maintain a device temperature in at least a portion of the device (e.g., a temperature associated with non-volatile memory to which host data is written) at a target temperature (such as 25° C.) or a target temperature (such as 25°C), or above a target temperature (such as 25°C).
在框404处,过程400包含检测数据存储设备的至少一部分的温度。例如,可以利用一个或多个温度传感器来确定邻近存储器模块的存储设备的至少一个区域中的温度,其中与写入命令相关联的数据可以被写入到该存储器模块。如上所述,低温可能不利地影响固态存储器设备中的数据保留,并且可能导致硬盘存储器设备中的某些设备故障和/或过早磨损。可以结合系统加电触发检测温度,和/或可以周期性地或偶发性地执行检测温度。在某些实施例中,可以通过收到写入命令或其他主机命令来触发温度检测。At block 404, process 400 includes detecting a temperature of at least a portion of the data storage device. For example, one or more temperature sensors may be utilized to determine a temperature in at least one region of a memory device adjacent to a memory module to which data associated with a write command may be written. As noted above, low temperatures may adversely affect data retention in solid-state memory devices and may cause some device failure and/or premature wear in hard disk memory devices. Temperature sensing may be triggered in conjunction with system power-on, and/or may be performed periodically or sporadically. In some embodiments, temperature detection may be triggered by receipt of a write command or other host command.
关于固态存储器,与高温(例如,85℃)相比,当在低温(例如,0℃)下写入数据时,各种数据保留间隔处的错误率可能相对较差。甚至在短持续时间的后写入之后,冷写入数据可能具有高于示出信道的纠错能力的图2和图3中的水平线的错误率。Regarding solid-state memory, error rates at various data retention intervals may be relatively poor when data is written at low temperatures (eg, 0° C.) compared to high temperatures (eg, 85° C.). Even after a short duration of post-writing, cold-written data may have an error rate higher than the horizontal lines in Figures 2 and 3 showing the error-correcting capabilities of the channel.
在判断框405处,过程400包含确定检测的温度是否低于某个阈值水平。在某些实施例中,当设备固件检测到该设备的至少一部分中的温度低于阈值水平(例如,低于25℃)时,过程400可以包含在框406处进一步确定是否存在临界写入条件,其中不管非易失性存储器的低温状态如何,都有必要或期望执行到非易失性存储器的数据写入。如果是这样,则该过程可以继续进行到框418,其中可以根据数据重写优先化方案允许继续进行到非易失性存储器的数据写入。下面结合图6更详细地描述数据重写优先化。在某些实施例中,不执行框406处的确定,并且框405处的肯定确定促使该过程直接继续进行到框407。在框407处,鉴于低检测温度,可以至少部分地抑制到非易失性存储器的数据写入。如上所述,此类抑制可以充分防止用户数据在低温条件下被写入到非易失性存储器,此种写入可能导致各种不利影响。At decision block 405, process 400 includes determining whether the detected temperature is below a certain threshold level. In some embodiments, when the device firmware detects that the temperature in at least a portion of the device is below a threshold level (e.g., below 25° C.), process 400 may include further determining whether a critical write condition exists at block 406 , wherein it is necessary or desirable to perform data writing to the nonvolatile memory regardless of the low temperature state of the nonvolatile memory. If so, the process may continue to block 418 where data writes to non-volatile memory may be allowed to proceed according to a data rewrite prioritization scheme. Data rewrite prioritization is described in more detail below in conjunction with FIG. 6 . In some embodiments, the determination at block 406 is not performed, and an affirmative determination at block 405 causes the process to proceed directly to block 407 . At block 407, data writing to the non-volatile memory may be at least partially inhibited in view of the low detection temperature. As noted above, such suppression may sufficiently prevent user data from being written to non-volatile memory under low temperature conditions, which could lead to various adverse effects.
为了避免数据在低于温度阈值的温度下被不必要地写入到非易失性存储器,某些实施例提供了利用一个或多个局部加热器以在允许数据写入之前使与非易失性存储器相关联的温度达到安全水平。在框408处,可以启用一个或多个加热器以产生用于加热(多个)相关存储器部件的热能。产生的热能量可以与检测到的设备温度成比例。在某些实施例中,加热机制可以基于某个温度范围之间(例如,在25℃和-40℃之间)的检测温度产生对应于基本线性响应的热能输出。在一些实施例中,可以进入并执行框404、框405和框406,而不一定取决于收到写入命令。To prevent data from being unnecessarily written to nonvolatile memory at temperatures below a temperature threshold, some embodiments provide for the use of one or more localized heaters to deactivate the nonvolatile memory before allowing data to be written. The temperature associated with the nonvolatile memory reaches a safe level. At block 408, one or more heaters may be enabled to generate thermal energy for heating the associated memory component(s). The thermal energy generated can be proportional to the detected device temperature. In some embodiments, the heating mechanism may generate a thermal energy output corresponding to a substantially linear response based on detected temperatures between a certain temperature range (eg, between 25°C and -40°C). In some embodiments, blocks 404, 405, and 406 may be entered and performed without necessarily depending on receipt of a write command.
如果检测的温度不低于相关阈值水平,也就是说,如果设备的至少一部分的温度大于相关阈值且因此在令人满意的操作温度范围内,则过程400继续进行到框416,其中与写入命令相关联的写入数据被写入到数据存储设备的非易失性存储器。If the detected temperature is not below the relevant threshold level, that is, if the temperature of at least a portion of the device is greater than the relevant threshold and is therefore within a satisfactory operating temperature range, then process 400 proceeds to block 416, where it is associated with the write The write data associated with the command is written to the non-volatile memory of the data storage device.
本文公开的某些实施例提供了使用一个或多个加热器设备,该一个或多个加热器设备被设置成热靠近(in thermal proximity to)一个或多个存储器模块(诸如(多个)固态存储器模块(例如,NAND))。(多个)此类加热器设备可以包括一个或多个电阻加热器设备和/或一个或多个其他类型的加热器。如果在框406处确定温度低于相关阈值,则过程400继续进行到框408,其中在存储设备内或与存储设备相关联或邻近存储设备的一个或多个加热器可以被激活,以便加热数据存储设备的至少一部分。Certain embodiments disclosed herein provide for the use of one or more heater devices disposed in thermal proximity to one or more memory modules, such as solid state(s) memory modules (eg, NAND)). Such heater device(s) may include one or more resistive heater devices and/or one or more other types of heaters. If at block 406 it is determined that the temperature is below the relevant threshold, process 400 proceeds to block 408 where one or more heaters within or associated with or adjacent to the storage device may be activated to heat the data at least a portion of the storage device.
在目标存储器包括固态存储器的某些实施例中,固态存储器模块(例如,NAND)可以被设置在印刷电路板(PCB)上。为了实施如本文所述的加热功能,可以将一个或多个电阻加热器印刷和/或设置在PCB上,其中此类加热器被设计成从在其中流动的电流生成热能。某些实施例实施一个或多个镍铬合金、钨和/或其他类型的电阻器。In some embodiments where the target memory includes solid-state memory, the solid-state memory module (eg, NAND) may be provided on a printed circuit board (PCB). To implement the heating function as described herein, one or more resistive heaters may be printed and/or provided on the PCB, wherein such heaters are designed to generate thermal energy from electrical current flowing therethrough. Certain embodiments implement one or more nichrome, tungsten, and/or other types of resistors.
一个或多个温度传感器可以驻留在设备中,诸如在与固态存储器模块相关联的印刷电路板(PCB)上。当检测到低于阈值水平(例如,25℃)的温度时,可以启用(多个)加热器以将固态存储器的温度维持在阈值温度或约阈值温度,或者在阈值温度以上或在阈值温度的范围内的温度处。One or more temperature sensors may reside in the device, such as on a printed circuit board (PCB) associated with the solid state memory module. When a temperature below a threshold level (e.g., 25°C) is detected, the heater(s) may be enabled to maintain the temperature of the solid-state memory at or about the threshold temperature, or above or within the threshold temperature temperature within the range.
加热设备可以为一个或多个存储器模块提供局部加热,并且可以具有任何期望的或合适的构造、数量和/或布置。在某些实施例中,一个或多个加热器可以被设置在基本与目标存储器模块相对的PCB的下侧上。在某些实施例中,一个或多个加热器至少部分地设置在存储器模块(诸如管芯)下面,在PCB上与存储器模块相同的一侧上。附加地或可替代地,一个或多个加热器可以至少部分地设置在存储器模块上方或在存储器模块的顶部上。在某些实施例中,一个或多个加热器可以被设置在存储器模块的一侧或多侧上或与存储器模块的一侧或多侧相邻,诸如在PCB上的存储器模块之间。加热设备的构造可以有利地运用现有电路系统。在某些实施例中,诸如在混合存储设备实施例中,一个或多个加热器可以与用于磁盘介质的读取/写入的磁头装配件相关联。The heating devices may provide localized heating to one or more memory modules and may be of any desired or suitable configuration, number and/or arrangement. In some embodiments, one or more heaters may be disposed on the underside of the PCB substantially opposite the target memory module. In some embodiments, one or more heaters are disposed at least partially under a memory module (such as a die), on the same side of the PCB as the memory module. Additionally or alternatively, one or more heaters may be disposed at least partially above or on top of the memory module. In some embodiments, one or more heaters may be disposed on or adjacent to one or more sides of a memory module, such as between memory modules on a PCB. The construction of the heating device can advantageously utilize existing electrical systems. In some embodiments, such as hybrid storage device embodiments, one or more heaters may be associated with a head assembly for reading/writing to disk media.
在框410处,过程400包含再次检测数据存储设备的至少一部分的温度。在判断框412处,过程400包含确定数据存储设备的温度在激活一个或多个加热器之后是否已升高到阈值水平以上。如果数据存储设备或其一部分的温度仍然低于相关阈值,则过程400返回到框410,其中对于(多个)激活的加热器,可以允许更多的时间来增加设备的温度。如果确定温度已升高到阈值以上,则过程400继续进行到框414,在此处可以去激活一个或多个加热器。过程400可以在基本安全的温度下提供设备操作,即使当设备遭受包含相对较低的温度(诸如低于0℃的温度)的环境条件时。在此类条件下,对于混合存储设备,可以限制磁盘储存器的使用,使得仅(多个)固态存储器部件被用于写入新的数据。At block 410, process 400 includes again detecting a temperature of at least a portion of the data storage device. At decision block 412, process 400 includes determining whether the temperature of the data storage device has risen above a threshold level after activating one or more heaters. If the temperature of the data storage device or a portion thereof is still below the relevant threshold, process 400 returns to block 410 where, for activated heater(s), more time may be allowed to increase the temperature of the device. If it is determined that the temperature has risen above the threshold, process 400 proceeds to block 414 where one or more heaters may be deactivated. Process 400 may provide for device operation at substantially safe temperatures even when the device is subjected to environmental conditions that include relatively low temperatures, such as temperatures below 0°C. Under such conditions, for hybrid storage devices, the use of disk storage can be limited such that only the solid state memory component(s) are used to write new data.
在数据存储设备或其一部分处于令人满意的操作热范围内的情况下,在框416处,过程400包含允许将数据写入到数据存储设备的非易失性存储器。In the event that the data storage device or a portion thereof is within a satisfactory operating thermal range, at block 416 the process 400 includes allowing data to be written to the non-volatile memory of the data storage device.
用于在低于期望操作温度的基于例如固态存储器(例如,NAND)的设备中相对快速地增加温度的过程400的实施方式可以提供固态存储器的提高的数据保留能力。当设备或局部存储器温度为不期望地冷时,过程400可以至少部分地防止固态存储器的(多个)用户数据区被写入,如上所述,此时写入可能显著降低某些固态存储器的数据保留能力。Embodiments of the process 400 for relatively rapidly increasing temperature in devices based on, for example, solid-state memory (eg, NAND) below desired operating temperatures may provide enhanced data retention capabilities of solid-state memory. Process 400 may at least partially prevent user data area(s) of solid-state storage from being written to when the device or local storage temperature is undesirably cold, which, as noted above, may significantly degrade the performance of some solid-state storage. Data retention capabilities.
通过增加的活动加热Heated by increased activity
如本文所描述的,可能期望数据存储设备的部件(诸如磁介质、磁头、电子器件和/或固态存储器)在指定范围内有效且可靠地操作。在某些环境中,当首次施加电力时,存在数据存储设备在操作温度范围之外的可能性。在数据存储设备(诸如盘驱动器)“预热”到适当温度所花费的时间期间,对部件造成损坏(例如,磁头在不适当的高度处浮动、过早的NAND磨损)的可能性可引起不利的结果。除了磁盘存储器之外,固态存储器(例如,NAND)可以有利地被加热,以便避免存储器的数据保留能力的显著降低;在将数据写入到固态存储器之前,可以有利地使固态存储器的温度达到具有更好的数据保留能力的范围。As described herein, components of a data storage device, such as magnetic media, heads, electronics, and/or solid-state memory, may be expected to operate efficiently and reliably within specified ranges. In some environments, there is a possibility that the data storage device is outside of the operating temperature range when power is first applied. During the time it takes a data storage device (such as a disk drive) to "warm up" to the proper temperature, the potential for damage to components (e.g., heads floating at inappropriate heights, premature NAND wear) can cause disadvantages the result of. In addition to disk storage, solid-state storage (e.g., NAND) may advantageously be heated in order to avoid a significant reduction in the data retention capabilities of the storage; prior to writing data to the solid-state storage, it may be advantageous to bring the temperature of the solid-state storage to a temperature with Scope for better data retention.
本文公开的某些实施例提供了用于相对快速地加热数据存储设备或其一部分的硬件和/或软件/固件系统和机制。在某些实施例中,主机操作可以被延迟以允许数据存储设备或其一部分更迅速地进入期望的热操作范围,从而潜在地增加可靠性。本文公开的加热机制可以包含启动数据存储设备内的活动,诸如通过执行软件/固件例程和/或激发特定硬件以使设备的至少一部分变暖。当温度在期望的操作范围内时,主机可以被准许接受命令。Certain embodiments disclosed herein provide hardware and/or software/firmware systems and mechanisms for relatively quickly heating a data storage device or a portion thereof. In some embodiments, host operations may be delayed to allow the data storage device, or a portion thereof, to more quickly enter a desired thermal operating range, potentially increasing reliability. The heating mechanisms disclosed herein may involve initiating activity within a data storage device, such as by executing software/firmware routines and/or energizing specific hardware to warm at least a portion of the device. When the temperature is within the desired operating range, the host may be permitted to accept commands.
关于硬盘存储器设备和/或部件,某些实施例提供了保留/创建包括有意引入的错误的一个或多个“脏”磁道,并且读取“脏”磁道以便引起读取信道的多次迭代以正确地读取数据。某些实施例通过执行针对存储器(诸如双倍数据速率(DDR)存储器模块)的读取和/或写入命令来提供增加的活动。某些实施例通过从存储介质的附加顺序读取来提供增加的设备活动。某些实施例通过执行随机寻找操作来提供增加的设备活动。With respect to hard disk memory devices and/or components, certain embodiments provide for reserving/creating one or more "dirty" tracks including intentionally introduced errors, and reading the "dirty" tracks to cause multiple iterations of the read channel to Read data correctly. Certain embodiments provide increased activity by executing read and/or write commands to memory, such as double data rate (DDR) memory modules. Certain embodiments provide increased device activity through additional sequential reads from storage media. Certain embodiments provide increased device activity by performing random seek operations.
关于固态存储器设备和/或部件,可以利用特定例程或硬件机制来增加固态设备的热温度,同时推迟主机写入操作。此类过程可以允许固态存储器进入安全的热操作范围,从而增加存储器的数据保留能力。热能生成设备活动可以包含多个可能的过程和/或机制中的任一个。某些实施例提供了使用存储器的特定保留块(例如,NAND存储器的块),存储器的特定保留块(例如,NAND存储器的块)专用于或主要用于预热设备的操作。某些实施例提供了由设备加热例程和/或激发特定硬件所引起的ONFI和/或固态存储器块活动,这可以引起存储设备中期望的加热。当温度达到期望的操作范围时,设备可以被允许写入到NAND。某些实施例通过从固态存储器读取数据且将数据从固态存储器转移到存储器控制器来提供设备加热。某些实施例通过将良性存储器管理命令发布到固态存储器来提供设备加热。With respect to solid state memory devices and/or components, specific routines or hardware mechanisms may be utilized to increase the thermal temperature of the solid state device while deferring host write operations. Such processes can allow solid-state memory to enter a safe thermal operating range, thereby increasing the memory's data retention capabilities. Thermal energy generating device activities may comprise any of a number of possible processes and/or mechanisms. Certain embodiments provide for the use of certain reserved blocks of memory (eg, blocks of NAND memory) that are dedicated or primarily used for operations that pre-warm the device. Certain embodiments provide for ONFI and/or solid state memory block activity caused by device heating routines and/or triggering specific hardware, which can cause desired heating in the storage device. When the temperature reaches the desired operating range, the device can be allowed to write to the NAND. Certain embodiments provide device heating by reading data from solid state memory and transferring data from solid state memory to a memory controller. Certain embodiments provide device heating by issuing benign memory management commands to solid-state memory.
某些实施例提供了保留和/或专用将由预热机制/算法使用的固态存储器的一个或多个块。此类块可以仅用于用户数据;由于过度使用而造成的对此类块的损坏可能是可接受的。例如,加热算法可以包含重复擦除保留的块,重复地对保留的块进行编程,和/或重复读取保留的块。Certain embodiments provide for reserving and/or dedicating one or more blocks of solid-state memory to be used by the warm-up mechanism/algorithm. Such blocks may be used for user data only; damage to such blocks due to overuse may be acceptable. For example, a heating algorithm may include repeatedly erasing reserved blocks, repeatedly programming reserved blocks, and/or repeatedly reading reserved blocks.
虽然某些机制被描述用于通过数据存储设备中的增加的活动来增加温度,但是应当理解,可以在本公开的范围内实施本文公开的机制的任何组合。此外,通过增加的活动来增加温度的其他机制(诸如算法)目的在于激励某些设备电子器件,以便在相对较短的时间段内增加热能。While certain mechanisms are described for increasing temperature through increased activity in a data storage device, it should be understood that any combination of the mechanisms disclosed herein may be implemented within the scope of the present disclosure. Additionally, other mechanisms, such as algorithms, that increase temperature through increased activity are aimed at energizing certain device electronics to increase thermal energy in a relatively short period of time.
图5是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程500的流程图。在框502处,过程500包含检测与数据存储设备的至少一部分相关联的温度(例如,与写入主机数据的数据存储设备的非易失性存储器相关联的温度)。可以结合系统加电来触发检测温度,和/或可以周期性地或偶发性地执行检测温度。在某些实施例中,可以通过收到写入命令或其他主机命令来触发温度检测。FIG. 5 is a flowchart illustrating a process 500 for managing temperature in a data storage system, according to one or more embodiments. At block 502, process 500 includes detecting a temperature associated with at least a portion of a data storage device (eg, a temperature associated with non-volatile memory of the data storage device writing host data). Temperature sensing may be triggered in conjunction with system power-up, and/or may be performed periodically or sporadically. In some embodiments, temperature detection may be triggered by receipt of a write command or other host command.
在框506处,确定数据存储设备或其一部分的温度是否低于某个阈值温度。如果温度不低于阈值温度,则过程500可继续进行到框514,在此处与所接收的写入命令相关联的写入数据可以被写入到数据存储设备的非易失性存储器。At block 506, it is determined whether the temperature of the data storage device or a portion thereof is below a certain threshold temperature. If the temperature is not below the threshold temperature, process 500 may proceed to block 514 where the write data associated with the received write command may be written to the non-volatile memory of the data storage device.
如果确定温度低于相关阈值水平,则过程500可以包含在框506处进一步确定是否存在临界写入条件,其中不管非易失性存储器和/或数据存储设备的低温状态如何都有必要或期望对非易失性存储器执行数据写入。如果是这样,则该过程500可以继续进行到框516,其中可以根据数据重写优先化方案允许继续进行对非易失性存储器的数据写入。下面结合图6更详细地描述数据重写优先化。在某些实施例中,不执行框506处的确定,并且框504处的肯定确定促使该过程直接继续进行到框507。在框507处,鉴于低检测温度,可以至少部分地抑制对非易失性存储器的数据写入。如上所述,此类抑制可以充分防止用户数据在低温条件下被写入到非易失性存储器,这种写入可能导致各种不利影响。If it is determined that the temperature is below an associated threshold level, process 500 may include further determining at block 506 whether a critical write condition exists where it is necessary or desirable to The nonvolatile memory performs data writing. If so, the process 500 may proceed to block 516 where data writes to the non-volatile memory may be allowed to proceed according to a data rewrite prioritization scheme. Data rewrite prioritization is described in more detail below in conjunction with FIG. 6 . In some embodiments, the determination at block 506 is not performed, and an affirmative determination at block 504 causes the process to proceed directly to block 507 . At block 507, data writing to the non-volatile memory may be at least partially inhibited in view of the low detection temperature. As noted above, such suppression may sufficiently prevent user data from being written to non-volatile memory under low temperature conditions, which could lead to various adverse effects.
为了避免数据在低于温度阈值的温度下不必要地写入到非易失性存储器,某些实施例提供了执行某些增加的设备活动,以在允许数据写入之前使与非易失性存储器相关联的温度达到安全水平。在框508处,可以执行某些驱动操作以作为增加数据存储设备的至少一部分或区域中的温度的机制。过程500可以包含用相对高的数据速率随机活动使设备控制器加电。例如,可以随机读取页面和/或可以有意地引入错误,使得信道(例如,针对低密度奇偶校验(LDPC)实施例)经受除了当前的工作周期之外的附加迭代、处理器计算等。可以通过反转读取数据的数位(bit)来实现有意的错误引入,这可以导致错误信道中增加的活动。在某些实施例中,读取参考模式并执行操作(诸如具有随机模式的异或门(XOR)),并且将其馈送到信道,从而产生增加的错误信道活动。在混合数据存储设备的情况下,即使当数据仅被写入到设备的固态部件时,也可以使磁盘加快转动,以便增加设备温度。In order to prevent data from being unnecessarily written to non-volatile memory at temperatures below a temperature threshold, some embodiments provide for performing certain incremental device The temperature associated with the memory reaches a safe level. At block 508, certain drive operations may be performed as a mechanism to increase the temperature in at least a portion or region of the data storage device. Process 500 may involve powering up a device controller with relatively high data rate random activity. For example, pages may be read randomly and/or errors may be intentionally introduced such that the channel (eg, for a Low Density Parity Check (LDPC) embodiment) is subjected to additional iterations, processor computations, etc. beyond the current duty cycle. Intentional error introduction can be achieved by inverting the bits of the read data, which can lead to increased activity in the error channel. In some embodiments, the reference pattern is read and an operation is performed, such as an exclusive OR gate (XOR) with a random pattern, and fed to the channel, resulting in increased erroneous channel activity. In the case of hybrid data storage devices, even when data is being written only to the solid-state parts of the device, the disks can be spun up to increase the temperature of the device.
在低于操作规范的磁盘驱动器中快速加热存储设备部件可以提供提高的可靠性,因为可以存在机制在设备规范之外操作的更短时间。此外,用户数据可能不会由于在热规范条件之外对用户数据的主机访问而受到损害。Rapid heating of storage device components in disk drives below operating specifications may provide increased reliability because there may be a shorter time for the mechanism to operate outside of device specifications. Additionally, user data may not be compromised due to host access to user data outside of thermal specification conditions.
在框510处,过程500可以包含再次检测数据存储设备的至少一部分的温度,以便确定温度是否已升高到阈值水平以上。过程500的系统框512包含确定温度是否已升高到阈值以上。如果不是,则过程500可以返回到框508,在此处可以执行附加驱动操作,以便继续提升数据存储设备的温度。如果温度已升高到阈值以上,则过程500可以继续进行到框514,在此处可以允许将数据写入到数据存储设备的非易失性存储器。At block 510, process 500 may include re-sensing the temperature of at least a portion of the data storage device to determine whether the temperature has risen above a threshold level. System block 512 of process 500 includes determining whether the temperature has risen above a threshold. If not, process 500 may return to block 508 where additional drive operations may be performed to continue raising the temperature of the data storage device. If the temperature has risen above the threshold, process 500 may proceed to block 514 where data may be allowed to be written to the non-volatile memory of the data storage device.
数据重写调度Data Rewrite Scheduling
对于某些存储设备维护操作(诸如垃圾收集、磨损均衡等),可以在确定用于执行此类操作的优先级/正时中考虑写入温度。在某些实施例中,除了其他可能的因素诸如P/E循环计数、数据的寿命、无效数据量等之外,写入温度可以被视为用于确定维护调度的主要因素。For certain storage device maintenance operations (such as garbage collection, wear leveling, etc.), write temperature may be considered in determining the priority/timing for performing such operations. In some embodiments, write temperature may be considered a primary factor for determining maintenance schedules, among other possible factors such as P/E cycle count, age of data, amount of invalid data, and the like.
在某些情况下,在低温下记录数据可能是必要的或期望的。例如,公共交通工具中的监视设备或在高海拔操作的设备(例如,无人机)可能必须在相对冷的环境(例如,在某些条件下,-20℃或更低)中记录数据。本文公开的某些实施例提供了当数据存储设备随后经历温度增加时优先重写在低温下记录的数据。在低温下写入的数据的重写可以帮助扩展设备能力的范围。In some cases, it may be necessary or desirable to record data at low temperatures. For example, surveillance equipment in public transport or equipment operating at high altitudes (eg, drones) may have to record data in relatively cold environments (eg, -20°C or lower under certain conditions). Certain embodiments disclosed herein provide for preferential overwriting of data recorded at low temperatures when the data storage device subsequently experiences a temperature increase. Rewriting of data written at low temperatures can help expand the range of device capabilities.
图6是示出根据一个或多个实施例的用于管理数据存储系统中的温度的过程的流程图。虽然本文呈现的温度管理解决方案的某些其他实施例本质上可能主要是预防性的,但是过程600本质上可能主要是纠正性的。当在低温下记录数据时,最初,错误率可能类似于在较高温度下记录的数据。然而,随着设备温度升高,在较低温度下记录的数据可能更迅速地显著劣化。因而,重写此类数据的优先化可能是期望的。Figure 6 is a flowchart illustrating a process for managing temperature in a data storage system, according to one or more embodiments. While certain other embodiments of temperature management solutions presented herein may be primarily preventive in nature, process 600 may be primarily corrective in nature. When data is recorded at low temperatures, initially, the error rate may be similar to data recorded at higher temperatures. However, data recorded at lower temperatures may degrade significantly more rapidly as the temperature of the device increases. Thus, prioritization of rewriting such data may be desirable.
在框602处,过程600可以包含接收写入命令。例如,可以由数据存储设备从主机设备或系统接收写入命令。在框604处,过程600包含检测数据存储设备的至少一部分的温度低于阈值水平。在框606处,过程600包含将与写入命令相关联的数据写入到数据存储设备的非易失性固态存储器。某些实施例在块级(block-level)下实施写入温度数据记录;块的所有数据可以与相同的温度元数据相关联。在某些实施例中,使用块内的数据的页面或段的最低记录温度来确定块的垃圾收集的调度。在某些实施例中,周期性地(例如,每天)实施完整性扫描,其中背景活动包含分析存储器(例如,NAND)的健康状况,识别在低温下被写入的块,以及当设备处于高于阈值(例如25℃)的温度时调度将被重写的块。At block 602, process 600 may include receiving a write command. For example, a write command may be received by a data storage device from a host device or system. At block 604, process 600 includes detecting that a temperature of at least a portion of the data storage device is below a threshold level. At block 606, process 600 includes writing data associated with the write command to the non-volatile solid-state memory of the data storage device. Certain embodiments implement writing temperature data records at the block-level; all data for a block may be associated with the same temperature metadata. In some embodiments, the schedule for garbage collection of a block is determined using the lowest recorded temperature of a page or segment of data within the block. In some embodiments, an integrity scan is performed periodically (e.g., daily), where background activities include analyzing the health of the memory (e.g., NAND), identifying blocks that were written at low temperatures, and Blocks are scheduled to be rewritten at a temperature of a threshold (eg, 25° C.).
也可以记录与写入温度相关联的温度数据。在框608处,过程600包含检测数据存储设备或其一部分的温度已升高到该阈值水平或其他阈值水平以上。在某些实施例中,存储设备被配置为执行固件,所述固件在相关数据被写入时记录指示设备的至少一部分的温度的写入温度数据。Temperature data associated with the write temperature may also be recorded. At block 608, process 600 includes detecting that a temperature of the data storage device, or a portion thereof, has risen above the threshold level or other threshold levels. In some embodiments, the storage device is configured to execute firmware that records written temperature data indicative of a temperature of at least a portion of the device when the associated data is written.
在框610处,过程600包含在温度已升高到该阈值或其他阈值以上之后,将先前写入到数据存储设备的非易失性固态存储器的数据重写到非易失性存储器的不同块或位置。At block 610, the process 600 includes rewriting data previously written to the non-volatile solid-state memory of the data storage device to a different block of the non-volatile memory after the temperature has risen above the threshold or other threshold or location.
在某些实施例中,在稍后的时间,可以执行背景活动以扫描包含在低温下编程的数据的块,以便当温度处于可接受范围(例如,高于25℃)时调度此类块用于垃圾收集。背景数据完整性扫描也可以启用该特征。可以通过记录温度对垃圾收集活动进行优先级排序;温度越低,优先级可以越高。In some embodiments, at a later time, a background activity may be performed to scan blocks containing data programmed at low temperatures to schedule such blocks for use when the temperature is within an acceptable range (e.g., above 25°C). for garbage collection. Background data integrity scans can also enable this feature. Garbage collection activity can be prioritized by recording temperature; the lower the temperature, the higher the priority can be.
附加实施例Additional embodiments
本领域的技术人员应当了解,在一些实施例中,可以实施其他类型的温度管理系统,同时保持在本公开的范围内。此外,本文讨论的过程中采取的实际步骤可以不同于图中所描述或示出的这些步骤。取决于实施例,上述步骤的某些步骤可以被去除,和/或可以添加其他步骤。Those skilled in the art will appreciate that in some embodiments, other types of temperature management systems may be implemented while remaining within the scope of the present disclosure. In addition, the actual steps taken in the processes discussed herein may differ from those steps described or illustrated in the figures. Depending on the embodiment, some of the steps described above may be removed, and/or other steps may be added.
虽然已描述了某些实施例,但是仅以示例的方式呈现这些实施例,并且这些实施例不旨在限制保护范围。实际上,本文所描述的新颖的方法和系统可以以各种其他形式来体现。此外,可以对本文所描述的方法和系统的形式进行各种省略、替代和改变。所附权利要求及其等同物旨在覆盖如将落入保护范围和精神内的此类形式或修改。例如,图中示出的各种部件可以被实施为处理器上的软件和/或固件、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或专用硬件。再者,上面公开的特定实施例的特征和属性可以以不同的方式组合以形成附加实施例,所有附加实施例都落入本公开的范围内。虽然本公开提供了某些优选的实施例和应用,但对于本领域普通技术人员来说显而易见的是,其他实施例(包括没有提供本文阐述的所有特征和优点的实施例)也在本公开的范围内。因此,本公开的范围旨在仅通过参考所附权利要求来限定。While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. The appended claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of protection. For example, the various components shown in the figures may be implemented as software and/or firmware on a processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), or dedicated hardware. Furthermore, the features and attributes of the particular embodiments disclosed above may be combined in various ways to form additional embodiments, all of which fall within the scope of the present disclosure. While this disclosure provides certain preferred embodiments and applications, it will be apparent to those of ordinary skill in the art that other embodiments, including embodiments that do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. within range. Accordingly, it is intended that the scope of the present disclosure be limited only by reference to the appended claims.
上面描述的所有过程可以体现为由一个或多个通用或专用计算机或处理器执行的软件代码模块,并且上面描述的所有过程可以经由这些软件代码模块完全自动化。这些代码模块可以存储在任何类型的计算机可读介质或其他计算机存储设备或存储设备集合中。这些方法中的一些或全部可以可替代地体现为专门的计算机硬件。All the processes described above can be embodied as software code modules executed by one or more general or special purpose computers or processors, and all the processes described above can be fully automated via these software code modules. These code modules can be stored on any type of computer readable medium or other computer storage device or collection of storage devices. Some or all of these methods may alternatively be embodied in specialized computer hardware.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911117519.7A CN110853681B (en) | 2015-09-08 | 2016-08-29 | Temperature Management in Data Storage Devices |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/848,158 US9668337B2 (en) | 2015-09-08 | 2015-09-08 | Temperature management in data storage devices |
US14/848,158 | 2015-09-08 | ||
PCT/US2016/049297 WO2017044339A1 (en) | 2015-09-08 | 2016-08-29 | Temperature management in data storage devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911117519.7A Division CN110853681B (en) | 2015-09-08 | 2016-08-29 | Temperature Management in Data Storage Devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107810530A true CN107810530A (en) | 2018-03-16 |
CN107810530B CN107810530B (en) | 2019-12-06 |
Family
ID=58190900
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680036695.6A Active CN107810530B (en) | 2015-09-08 | 2016-08-29 | Temperature Management in Data Storage Devices |
CN201911117519.7A Active CN110853681B (en) | 2015-09-08 | 2016-08-29 | Temperature Management in Data Storage Devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911117519.7A Active CN110853681B (en) | 2015-09-08 | 2016-08-29 | Temperature Management in Data Storage Devices |
Country Status (4)
Country | Link |
---|---|
US (2) | US9668337B2 (en) |
EP (2) | EP3557578A1 (en) |
CN (2) | CN107810530B (en) |
WO (1) | WO2017044339A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109324832A (en) * | 2018-09-06 | 2019-02-12 | 深圳忆联信息系统有限公司 | A kind of solid state hard disk is in starting method and its system under low temperature condition |
TWI670716B (en) * | 2018-09-26 | 2019-09-01 | 群聯電子股份有限公司 | Data access method,memory storage device and memory control circuit unit |
CN110489055A (en) * | 2018-05-14 | 2019-11-22 | 慧荣科技股份有限公司 | Data storage system and non-volatile formula memory operating method |
CN110825196A (en) * | 2018-08-07 | 2020-02-21 | 西部数据技术公司 | Method and apparatus for reducing temperature increase in solid state devices (SSD) |
CN111737034A (en) * | 2020-05-28 | 2020-10-02 | 广东浪潮大数据研究有限公司 | Method, device and equipment for calculating data retention time |
CN112527199A (en) * | 2020-12-07 | 2021-03-19 | 深圳大普微电子科技有限公司 | Method and device for prolonging service life of flash memory medium and electronic equipment |
CN112887641A (en) * | 2019-11-29 | 2021-06-01 | 佳能株式会社 | Recording apparatus, control method thereof, and storage medium |
CN113330387A (en) * | 2019-01-15 | 2021-08-31 | 微软技术许可有限责任公司 | Method and apparatus for improving removable storage performance |
WO2021189887A1 (en) * | 2020-03-25 | 2021-09-30 | 长鑫存储技术有限公司 | Semiconductor structure and preheating method therefor |
CN113515239A (en) * | 2021-07-27 | 2021-10-19 | 珠海美佳音科技有限公司 | Battery-powered temperature recording method, device, equipment and storage medium |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9668337B2 (en) * | 2015-09-08 | 2017-05-30 | Western Digital Technologies, Inc. | Temperature management in data storage devices |
US10452596B2 (en) * | 2015-10-29 | 2019-10-22 | Micron Technology, Inc. | Memory cells configured in multiple configuration modes |
US9886440B2 (en) | 2015-12-08 | 2018-02-06 | International Business Machines Corporation | Snapshot management using heatmaps in a large capacity disk environment |
US9891859B1 (en) * | 2016-08-09 | 2018-02-13 | Apple Inc. | Systems and methods for managing non-volatile memory based on temperature |
KR102621467B1 (en) * | 2016-09-05 | 2024-01-05 | 삼성전자주식회사 | Nonvolatile memory device and temperature throttling method thereof |
US10373656B2 (en) * | 2016-09-26 | 2019-08-06 | Toshiba Memory Corporation | Memory system that carries out temperature-based access to a memory chip |
JP6841106B2 (en) * | 2017-03-16 | 2021-03-10 | カシオ計算機株式会社 | Wireless communication devices, electronic clocks, wireless communication methods, and programs |
CN109298833B (en) | 2017-07-24 | 2021-05-04 | 三星电子株式会社 | Storage device and temperature control of electronic device including the same |
TWI656609B (en) * | 2017-07-28 | 2019-04-11 | 華邦電子股份有限公司 | Memory storage apparatus and forming method of resistive memory device |
US10573388B2 (en) * | 2018-04-04 | 2020-02-25 | Western Digital Technologies, Inc. | Non-volatile storage system with adjustable select gates as a function of temperature |
KR102568896B1 (en) * | 2018-04-19 | 2023-08-21 | 에스케이하이닉스 주식회사 | Memory controller and memory system having the same |
US10678449B2 (en) * | 2018-05-03 | 2020-06-09 | Microsoft Technology, LLC | Increasing flash memory retention time using waste heat |
US10990497B2 (en) * | 2018-05-14 | 2021-04-27 | Silicon Motion, Inc. | Data storage system and method for operating non-volatile memory |
US10839886B2 (en) | 2018-06-11 | 2020-11-17 | Western Digital Technologies, Inc. | Method and apparatus for adaptive data retention management in non-volatile memory |
JP2020035501A (en) * | 2018-08-28 | 2020-03-05 | キオクシア株式会社 | Memory system and storage system |
US11238917B2 (en) * | 2018-10-23 | 2022-02-01 | Micron Technology, Inc. | Mode-dependent heating of a memory device |
US11281401B2 (en) | 2018-10-23 | 2022-03-22 | Micron Technology, Inc. | Controlled heating of a memory device |
US11042208B2 (en) | 2019-03-08 | 2021-06-22 | Micron Technology, Inc. | Thermal leveling |
US11017864B2 (en) | 2019-06-26 | 2021-05-25 | Seagate Technology Llc | Preemptive mitigation of cross-temperature effects in a non-volatile memory (NVM) |
US10956064B2 (en) | 2019-06-28 | 2021-03-23 | Seagate Technology Llc | Adjusting code rates to mitigate cross-temperature effects in a non-volatile memory (NVM) |
US11017850B2 (en) | 2019-08-22 | 2021-05-25 | Seagate Technology Llc | Master set of read voltages for a non-volatile memory (NVM) to mitigate cross-temperature effects |
DE102020115136A1 (en) * | 2019-09-26 | 2021-04-01 | Samsung Electronics Co., Ltd. | STORAGE DEVICE AND METHOD OF CONTROLLING THE SAME |
US11385984B2 (en) | 2020-02-24 | 2022-07-12 | Western Digital Technologies, Inc. | Variable read scan for solid-state storage device quality of service |
US11762585B2 (en) * | 2020-03-23 | 2023-09-19 | Micron Technology, Inc. | Operating a memory array based on an indicated temperature |
CN113945293B (en) * | 2020-06-30 | 2023-04-18 | 长鑫存储技术有限公司 | Semiconductor device with a plurality of semiconductor chips |
JP7352750B2 (en) * | 2020-06-30 | 2023-09-28 | チャンシン メモリー テクノロジーズ インコーポレイテッド | semiconductor equipment |
US11442833B2 (en) * | 2020-10-30 | 2022-09-13 | Micron Technology, Inc. | Memory sub-system temperature control |
EP3995933B1 (en) * | 2020-11-05 | 2023-01-25 | Axis AB | Method and system for controlling data storage device temperature |
CN112328454A (en) * | 2020-11-11 | 2021-02-05 | 北京泽石科技有限公司 | Monitoring method and device for storage equipment |
US11705203B2 (en) | 2021-06-18 | 2023-07-18 | Sandisk Technologies Llc | Digital temperature compensation filtering |
US11704047B2 (en) * | 2021-06-18 | 2023-07-18 | Micron Technology, Inc. | Temperature readings for memory devices to reduce temperature compensation errors |
US11797190B2 (en) | 2021-12-03 | 2023-10-24 | Western Digital Technologies, Inc. | Data storage device and method for providing a temperature-driven variable storage capacity point |
US12067253B2 (en) * | 2022-02-07 | 2024-08-20 | Micron Technology, Inc. | Opportunistic background data integrity scans |
US20240126237A1 (en) * | 2022-10-17 | 2024-04-18 | Dell Products L.P. | Storage device self-heating system |
KR20240057078A (en) * | 2022-10-24 | 2024-05-02 | 삼성전자주식회사 | A storage device and a storage system capable of controlling humidity, and an operating method thereof |
US12055996B2 (en) * | 2022-10-25 | 2024-08-06 | Dell Products L.P. | Storage device write-read error reduction system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6405277B1 (en) * | 1998-11-06 | 2002-06-11 | International Business Machines Corporation | Method and system for writing data to a magnetic storage device in a relatively cold or hot environment |
CN101118778A (en) * | 2006-08-01 | 2008-02-06 | 株式会社电装 | Storage apparatus, in-vehicle navigation system, and method for controlling temperature of storage apparatus |
US8095851B2 (en) * | 2007-09-06 | 2012-01-10 | Siliconsystems, Inc. | Storage subsystem capable of adjusting ECC settings based on monitored conditions |
US20140082255A1 (en) * | 2012-09-20 | 2014-03-20 | Clinton Allen Powell | Method and System for Preventing Unreliable Data Operations at Cold Temperatures |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8027194B2 (en) * | 1988-06-13 | 2011-09-27 | Samsung Electronics Co., Ltd. | Memory system and method of accessing a semiconductor memory device |
US6735035B1 (en) | 2000-11-20 | 2004-05-11 | International Business Machines Corporation | Method and apparatus for enabling cold temperature performance of a disk |
JP2003132676A (en) * | 2001-10-29 | 2003-05-09 | Mitsubishi Electric Corp | Semiconductor memory |
US6856556B1 (en) | 2003-04-03 | 2005-02-15 | Siliconsystems, Inc. | Storage subsystem with embedded circuit for protecting against anomalies in power signal from host |
US6934107B2 (en) | 2003-09-30 | 2005-08-23 | Hitachi Global Storage Technologies Netherlands B.V. | Hard disk drive having drive temperature self-adjustment for temperature-sensitive measurements |
US7136247B2 (en) * | 2003-09-30 | 2006-11-14 | Hitachi Global Storage Technologies Netherlands B.V. | Drive temperature self-adjustment for temperature-sensitive measurements |
US6865506B1 (en) | 2003-09-30 | 2005-03-08 | Hitachi Global Storage Technologies Netherlands B.V. | Computer system having drive temperature self-adjustment for temperature-sensitive measurements |
JP4237109B2 (en) * | 2004-06-18 | 2009-03-11 | エルピーダメモリ株式会社 | Semiconductor memory device and refresh cycle control method |
US7502256B2 (en) | 2004-11-30 | 2009-03-10 | Siliconsystems, Inc. | Systems and methods for reducing unauthorized data recovery from solid-state storage devices |
KR100604932B1 (en) | 2005-01-21 | 2006-07-28 | 삼성전자주식회사 | Method and device for improving performance of hard disk drive at low temperature |
US7203021B1 (en) * | 2005-11-15 | 2007-04-10 | Western Digital Technologies, Inc. | Self-heating disk drive |
KR20070096122A (en) | 2006-01-06 | 2007-10-02 | 삼성전자주식회사 | Internal temperature control method of hard disk drive and hard disk drive |
US8773804B2 (en) | 2006-01-10 | 2014-07-08 | HGST Netherlands B.V. | Disk drive internal temperature control system |
US7653778B2 (en) | 2006-05-08 | 2010-01-26 | Siliconsystems, Inc. | Systems and methods for measuring the useful life of solid-state storage devices |
US8108692B1 (en) | 2006-06-27 | 2012-01-31 | Siliconsystems, Inc. | Solid-state storage subsystem security solution |
US7765373B1 (en) | 2006-06-27 | 2010-07-27 | Siliconsystems, Inc. | System for controlling use of a solid-state storage subsystem |
US7447807B1 (en) | 2006-06-30 | 2008-11-04 | Siliconsystems, Inc. | Systems and methods for storing data in segments of a storage subsystem |
US7509441B1 (en) | 2006-06-30 | 2009-03-24 | Siliconsystems, Inc. | Systems and methods for segmenting and protecting a storage subsystem |
US8161227B1 (en) | 2006-10-30 | 2012-04-17 | Siliconsystems, Inc. | Storage subsystem capable of programming field-programmable devices of a target computer system |
US8549236B2 (en) | 2006-12-15 | 2013-10-01 | Siliconsystems, Inc. | Storage subsystem with multiple non-volatile memory arrays to protect against data losses |
US7596643B2 (en) | 2007-02-07 | 2009-09-29 | Siliconsystems, Inc. | Storage subsystem with configurable buffer |
US7685337B2 (en) | 2007-05-24 | 2010-03-23 | Siliconsystems, Inc. | Solid state storage subsystem for embedded applications |
US7685338B2 (en) | 2007-05-24 | 2010-03-23 | Siliconsystems, Inc. | Solid state storage subsystem for embedded applications |
US7685374B2 (en) | 2007-07-26 | 2010-03-23 | Siliconsystems, Inc. | Multi-interface and multi-bus structured solid-state storage subsystem |
US8078918B2 (en) | 2008-02-07 | 2011-12-13 | Siliconsystems, Inc. | Solid state storage subsystem that maintains and provides access to data reflective of a failure risk |
US7962792B2 (en) | 2008-02-11 | 2011-06-14 | Siliconsystems, Inc. | Interface for enabling a host computer to retrieve device monitor data from a solid state storage subsystem |
US8117480B2 (en) * | 2008-04-17 | 2012-02-14 | Teradyne, Inc. | Dependent temperature control within disk drive testing systems |
US7733712B1 (en) * | 2008-05-20 | 2010-06-08 | Siliconsystems, Inc. | Storage subsystem with embedded circuit for protecting against anomalies in power signal from host |
US8375151B1 (en) | 2009-02-12 | 2013-02-12 | Siliconsystems, Inc. | Command portal for securely communicating and executing non-standard storage subsystem commands |
US8583835B1 (en) | 2008-08-06 | 2013-11-12 | Siliconsystems, Inc. | Command portal for executing non-standard storage subsystem commands |
EP2359371A1 (en) * | 2008-11-11 | 2011-08-24 | Nokia Corporation | Method and device for temperature-based data refresh in non-volatile memories |
US9176859B2 (en) | 2009-01-07 | 2015-11-03 | Siliconsystems, Inc. | Systems and methods for improving the performance of non-volatile memory operations |
US8090899B1 (en) | 2009-03-04 | 2012-01-03 | Western Digital Technologies, Inc. | Solid state drive power safe wear-leveling |
US10079048B2 (en) | 2009-03-24 | 2018-09-18 | Western Digital Technologies, Inc. | Adjusting access of non-volatile semiconductor memory based on access time |
US8358145B1 (en) * | 2009-06-19 | 2013-01-22 | Western Digital Technologies, Inc. | Self-heating integrated circuit |
US8254172B1 (en) | 2009-09-30 | 2012-08-28 | Western Digital Technologies, Inc. | Wear leveling non-volatile semiconductor memory based on erase times and program times |
US8243525B1 (en) | 2009-09-30 | 2012-08-14 | Western Digital Technologies, Inc. | Refreshing non-volatile semiconductor memory by reading without rewriting |
US9753847B2 (en) | 2009-10-27 | 2017-09-05 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory segregating sequential, random, and system data to reduce garbage collection for page based mapping |
US8135903B1 (en) | 2009-10-30 | 2012-03-13 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory compressing data to improve performance |
US8261012B2 (en) | 2009-10-30 | 2012-09-04 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory comprising power fail circuitry for flushing write data in response to a power fail signal |
US8397107B1 (en) | 2009-12-11 | 2013-03-12 | Western Digital Technologies, Inc. | Data storage device employing data path protection using both LBA and PBA |
US8443167B1 (en) | 2009-12-16 | 2013-05-14 | Western Digital Technologies, Inc. | Data storage device employing a run-length mapping table and a single address mapping table |
US8316176B1 (en) | 2010-02-17 | 2012-11-20 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory segregating sequential data during garbage collection to reduce write amplification |
US8407449B1 (en) | 2010-02-26 | 2013-03-26 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory storing an inverse map for rebuilding a translation table |
US8725931B1 (en) | 2010-03-26 | 2014-05-13 | Western Digital Technologies, Inc. | System and method for managing the execution of memory commands in a solid-state memory |
US8713066B1 (en) | 2010-03-29 | 2014-04-29 | Western Digital Technologies, Inc. | Managing wear leveling and garbage collection operations in a solid-state memory using linked lists |
US8782327B1 (en) | 2010-05-11 | 2014-07-15 | Western Digital Technologies, Inc. | System and method for managing execution of internal commands and host commands in a solid-state memory |
US9026716B2 (en) | 2010-05-12 | 2015-05-05 | Western Digital Technologies, Inc. | System and method for managing garbage collection in solid-state memory |
US8341339B1 (en) | 2010-06-14 | 2012-12-25 | Western Digital Technologies, Inc. | Hybrid drive garbage collecting a non-volatile semiconductor memory by migrating valid data to a disk |
US8612669B1 (en) | 2010-06-28 | 2013-12-17 | Western Digital Technologies, Inc. | System and method for performing data retention in solid-state memory using copy commands and validity and usage data |
US8447920B1 (en) | 2010-06-29 | 2013-05-21 | Western Digital Technologies, Inc. | System and method for managing data access in non-volatile memory |
US8521972B1 (en) | 2010-06-30 | 2013-08-27 | Western Digital Technologies, Inc. | System and method for optimizing garbage collection in data storage |
US8639872B1 (en) | 2010-08-13 | 2014-01-28 | Western Digital Technologies, Inc. | Hybrid drive comprising write cache spanning non-volatile semiconductor memory and disk |
US8775720B1 (en) | 2010-08-31 | 2014-07-08 | Western Digital Technologies, Inc. | Hybrid drive balancing execution times for non-volatile semiconductor memory and disk |
US8638602B1 (en) | 2010-09-10 | 2014-01-28 | Western Digital Technologies, Inc. | Background selection of voltage reference values for performing memory read operations |
US8769190B1 (en) | 2010-09-15 | 2014-07-01 | Western Digital Technologies, Inc. | System and method for reducing contentions in solid-state memory access |
US8788779B1 (en) | 2010-09-17 | 2014-07-22 | Western Digital Technologies, Inc. | Non-volatile storage subsystem with energy-based performance throttling |
US8612804B1 (en) | 2010-09-30 | 2013-12-17 | Western Digital Technologies, Inc. | System and method for improving wear-leveling performance in solid-state memory |
US8656086B2 (en) * | 2010-12-08 | 2014-02-18 | Avocent Corporation | System and method for autonomous NAND refresh |
US8601313B1 (en) | 2010-12-13 | 2013-12-03 | Western Digital Technologies, Inc. | System and method for a data reliability scheme in a solid state memory |
US8601311B2 (en) | 2010-12-14 | 2013-12-03 | Western Digital Technologies, Inc. | System and method for using over-provisioned data capacity to maintain a data redundancy scheme in a solid state memory |
US8615681B2 (en) | 2010-12-14 | 2013-12-24 | Western Digital Technologies, Inc. | System and method for maintaining a data redundancy scheme in a solid state memory in the event of a power loss |
US8458435B1 (en) | 2010-12-20 | 2013-06-04 | Western Digital Technologies, Inc. | Sequential write thread detection |
US8868892B2 (en) | 2010-12-21 | 2014-10-21 | Psion Inc. | Method and apparatus for selective heating for electronic components of a handheld device |
US8392635B2 (en) | 2010-12-22 | 2013-03-05 | Western Digital Technologies, Inc. | Selectively enabling a host transfer interrupt |
US8683113B2 (en) | 2011-02-04 | 2014-03-25 | Western Digital Technologies, Inc. | Concurrently searching multiple devices of a non-volatile semiconductor memory |
US8700950B1 (en) | 2011-02-11 | 2014-04-15 | Western Digital Technologies, Inc. | System and method for data error recovery in a solid state subsystem |
US8700951B1 (en) | 2011-03-09 | 2014-04-15 | Western Digital Technologies, Inc. | System and method for improving a data redundancy scheme in a solid state subsystem with additional metadata |
US8769232B2 (en) | 2011-04-06 | 2014-07-01 | Western Digital Technologies, Inc. | Non-volatile semiconductor memory module enabling out of order host command chunk media access |
US8862804B2 (en) | 2011-04-29 | 2014-10-14 | Western Digital Technologies, Inc. | System and method for improved parity determination within a data redundancy scheme in a solid state memory |
US8751728B1 (en) | 2011-04-29 | 2014-06-10 | Western Digital Technologies, Inc. | Storage system bus transfer optimization |
US8542537B2 (en) * | 2011-04-29 | 2013-09-24 | Spansion Llc | Method and apparatus for temperature compensation for programming and erase distributions in a flash memory |
US9021178B2 (en) | 2011-05-02 | 2015-04-28 | Western Digital Technologies, Inc. | High performance path for command processing |
US8503237B1 (en) | 2011-05-18 | 2013-08-06 | Western Digital Technologies, Inc. | System and method for data recovery in a solid state storage device |
US8793429B1 (en) | 2011-06-03 | 2014-07-29 | Western Digital Technologies, Inc. | Solid-state drive with reduced power up time |
US8719531B2 (en) | 2011-06-14 | 2014-05-06 | Western Digital Technologies, Inc. | System and method for performing data retention that incorporates environmental conditions |
CN102956252B (en) | 2011-08-16 | 2015-09-02 | 神讯电脑(昆山)有限公司 | The startup method of discrimination of electronic installation and its electronic installation |
US8423722B1 (en) | 2011-08-26 | 2013-04-16 | Western Digital Technologies, Inc. | System and method for high performance command processing in solid state drives |
US8713357B1 (en) | 2011-09-06 | 2014-04-29 | Western Digital Technologies, Inc. | Systems and methods for detailed error reporting in data storage systems |
US8700834B2 (en) | 2011-09-06 | 2014-04-15 | Western Digital Technologies, Inc. | Systems and methods for an enhanced controller architecture in data storage systems |
US8707104B1 (en) | 2011-09-06 | 2014-04-22 | Western Digital Technologies, Inc. | Systems and methods for error injection in data storage systems |
US8719668B2 (en) * | 2011-11-01 | 2014-05-06 | Hitachi, Ltd. | Non-volatile storage system compensating prior probability for low-density parity check codes |
US8977803B2 (en) | 2011-11-21 | 2015-03-10 | Western Digital Technologies, Inc. | Disk drive data caching using a multi-tiered memory |
US8724422B1 (en) | 2012-02-29 | 2014-05-13 | Western Digital Technologies, Inc. | System and method for charging back-up charge storage element for data storage device using spindle phase switching elements |
US9003224B2 (en) | 2012-04-25 | 2015-04-07 | Western Digital Technologies, Inc. | Managing unreliable memory in data storage systems |
US8788778B1 (en) | 2012-06-04 | 2014-07-22 | Western Digital Technologies, Inc. | Garbage collection based on the inactivity level of stored data |
US8966343B2 (en) | 2012-08-21 | 2015-02-24 | Western Digital Technologies, Inc. | Solid-state drive retention monitor using reference blocks |
US8788880B1 (en) | 2012-08-22 | 2014-07-22 | Western Digital Technologies, Inc. | Efficient retry mechanism for solid-state memory failures |
US8929066B2 (en) * | 2012-08-28 | 2015-01-06 | Skyera, Inc. | Chassis with separate thermal chamber for solid state memory |
US8922928B2 (en) * | 2012-09-20 | 2014-12-30 | Dell Products L.P. | Method and system for preventing unreliable data operations at cold temperatures |
US9268682B2 (en) | 2012-10-05 | 2016-02-23 | Skyera, Llc | Methods, devices and systems for physical-to-logical mapping in solid state drives |
US8972826B2 (en) | 2012-10-24 | 2015-03-03 | Western Digital Technologies, Inc. | Adaptive error correction codes for data storage systems |
US9177638B2 (en) | 2012-11-13 | 2015-11-03 | Western Digital Technologies, Inc. | Methods and devices for avoiding lower page corruption in data storage devices |
US8954694B2 (en) | 2012-11-15 | 2015-02-10 | Western Digital Technologies, Inc. | Methods, data storage devices and systems for fragmented firmware table rebuild in a solid state drive |
US9021339B2 (en) | 2012-11-29 | 2015-04-28 | Western Digital Technologies, Inc. | Data reliability schemes for data storage systems |
US9059736B2 (en) | 2012-12-03 | 2015-06-16 | Western Digital Technologies, Inc. | Methods, solid state drive controllers and data storage devices having a runtime variable raid protection scheme |
US20140223255A1 (en) | 2012-12-18 | 2014-08-07 | Western Digital Technologies, Inc. | Decoder having early decoding termination detection |
US9430376B2 (en) | 2012-12-26 | 2016-08-30 | Western Digital Technologies, Inc. | Priority-based garbage collection for data storage systems |
US20150043266A1 (en) * | 2013-08-09 | 2015-02-12 | Samsung Electronics Co., Ltd. | Enhanced temperature range for resistive type memory circuits with pre-heat operation |
CN104424987B (en) * | 2013-08-23 | 2017-07-21 | 群联电子股份有限公司 | Connecting interface unit and memory storage device |
US9668337B2 (en) * | 2015-09-08 | 2017-05-30 | Western Digital Technologies, Inc. | Temperature management in data storage devices |
-
2015
- 2015-09-08 US US14/848,158 patent/US9668337B2/en active Active
-
2016
- 2016-08-29 WO PCT/US2016/049297 patent/WO2017044339A1/en active Application Filing
- 2016-08-29 CN CN201680036695.6A patent/CN107810530B/en active Active
- 2016-08-29 EP EP19178767.0A patent/EP3557578A1/en active Pending
- 2016-08-29 EP EP16844892.6A patent/EP3295458B1/en active Active
- 2016-08-29 CN CN201911117519.7A patent/CN110853681B/en active Active
-
2017
- 2017-05-23 US US15/602,725 patent/US10021777B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6405277B1 (en) * | 1998-11-06 | 2002-06-11 | International Business Machines Corporation | Method and system for writing data to a magnetic storage device in a relatively cold or hot environment |
CN101118778A (en) * | 2006-08-01 | 2008-02-06 | 株式会社电装 | Storage apparatus, in-vehicle navigation system, and method for controlling temperature of storage apparatus |
US8095851B2 (en) * | 2007-09-06 | 2012-01-10 | Siliconsystems, Inc. | Storage subsystem capable of adjusting ECC settings based on monitored conditions |
US20140082255A1 (en) * | 2012-09-20 | 2014-03-20 | Clinton Allen Powell | Method and System for Preventing Unreliable Data Operations at Cold Temperatures |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110489055A (en) * | 2018-05-14 | 2019-11-22 | 慧荣科技股份有限公司 | Data storage system and non-volatile formula memory operating method |
CN110825196A (en) * | 2018-08-07 | 2020-02-21 | 西部数据技术公司 | Method and apparatus for reducing temperature increase in solid state devices (SSD) |
CN110825196B (en) * | 2018-08-07 | 2023-06-02 | 西部数据技术公司 | Method and apparatus for reducing temperature increase in a solid state device (SSD) |
CN109324832A (en) * | 2018-09-06 | 2019-02-12 | 深圳忆联信息系统有限公司 | A kind of solid state hard disk is in starting method and its system under low temperature condition |
TWI670716B (en) * | 2018-09-26 | 2019-09-01 | 群聯電子股份有限公司 | Data access method,memory storage device and memory control circuit unit |
CN113330387A (en) * | 2019-01-15 | 2021-08-31 | 微软技术许可有限责任公司 | Method and apparatus for improving removable storage performance |
CN112887641A (en) * | 2019-11-29 | 2021-06-01 | 佳能株式会社 | Recording apparatus, control method thereof, and storage medium |
CN112887641B (en) * | 2019-11-29 | 2024-06-07 | 佳能株式会社 | Recording apparatus, control method thereof, and storage medium |
WO2021189887A1 (en) * | 2020-03-25 | 2021-09-30 | 长鑫存储技术有限公司 | Semiconductor structure and preheating method therefor |
US11862223B2 (en) | 2020-03-25 | 2024-01-02 | Changxin Memory Technologies, Inc. | Semiconductor structure and preheating method thereof |
CN111737034A (en) * | 2020-05-28 | 2020-10-02 | 广东浪潮大数据研究有限公司 | Method, device and equipment for calculating data retention time |
CN112527199A (en) * | 2020-12-07 | 2021-03-19 | 深圳大普微电子科技有限公司 | Method and device for prolonging service life of flash memory medium and electronic equipment |
CN112527199B (en) * | 2020-12-07 | 2024-05-28 | 深圳大普微电子科技有限公司 | Method and device for prolonging service life of flash memory medium and electronic equipment |
CN113515239A (en) * | 2021-07-27 | 2021-10-19 | 珠海美佳音科技有限公司 | Battery-powered temperature recording method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
US20170257940A1 (en) | 2017-09-07 |
EP3557578A1 (en) | 2019-10-23 |
US20170071056A1 (en) | 2017-03-09 |
WO2017044339A1 (en) | 2017-03-16 |
EP3295458A1 (en) | 2018-03-21 |
US10021777B2 (en) | 2018-07-10 |
CN110853681B (en) | 2021-05-04 |
EP3295458B1 (en) | 2019-08-14 |
US9668337B2 (en) | 2017-05-30 |
EP3295458A4 (en) | 2018-06-06 |
CN110853681A (en) | 2020-02-28 |
CN107810530B (en) | 2019-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107810530B (en) | Temperature Management in Data Storage Devices | |
US11854612B1 (en) | Lifetime mixed level non-volatile memory system | |
US10564861B2 (en) | Parity relocation for reducing temperature throttling | |
CN102831067B (en) | Include the system and method that the data of environmental condition are kept for performing | |
US9923562B1 (en) | Data storage device state detection on power loss | |
US8554983B2 (en) | Devices and methods for operating a solid state drive | |
US11748223B2 (en) | Method of operating storage device, storage device performing the same and storage system including the same | |
US9396755B2 (en) | Temperature-defined data-storage policy for a hybrid disk drive | |
US20100180068A1 (en) | Storage device | |
US9423960B2 (en) | Methods of operating memory devices within a communication protocol standard timeout requirement | |
CN111400200A (en) | Controller and operation method thereof | |
US10839886B2 (en) | Method and apparatus for adaptive data retention management in non-volatile memory | |
CN112035060B (en) | Error detection method and system for storage medium and storage system | |
CN115249497A (en) | Determining duration of memory device temperature | |
US12164372B2 (en) | Data retention (DR) warning system | |
US11681599B2 (en) | Storage device, method of operating the same, and method of providing a plurality of performance tables | |
US11593242B2 (en) | Method of operating storage device for improving reliability, storage device performing the same and method of operating storage using the same | |
JP2017130043A (en) | Memory device, computer system, memory controller, and rising temperature prevention method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240828 Address after: California, USA Patentee after: SanDisk Technology Co. Country or region after: U.S.A. Address before: California, USA Patentee before: Western Digital Technologies, Inc. Country or region before: U.S.A. |
|
TR01 | Transfer of patent right |