[go: up one dir, main page]

CN107796791B - 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法 - Google Patents

一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法 Download PDF

Info

Publication number
CN107796791B
CN107796791B CN201610792885.2A CN201610792885A CN107796791B CN 107796791 B CN107796791 B CN 107796791B CN 201610792885 A CN201610792885 A CN 201610792885A CN 107796791 B CN107796791 B CN 107796791B
Authority
CN
China
Prior art keywords
graphene oxide
small molecule
screening
rev polypeptide
rev
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610792885.2A
Other languages
English (en)
Other versions
CN107796791A (zh
Inventor
张志琪
亓亮
张丹
范瑶瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201610792885.2A priority Critical patent/CN107796791B/zh
Publication of CN107796791A publication Critical patent/CN107796791A/zh
Application granted granted Critical
Publication of CN107796791B publication Critical patent/CN107796791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,该方法以普罗黄素为荧光偏振指示剂,在作用体系中引入氧化石墨烯,可以增大Rev多肽小分子拮抗剂存在与否荧光偏振信号的变化值,建立了基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法。本发明方法操作简单,不必使用荧光标记多肽为指示剂,免去了标记可能带来的大分子构象变化的缺陷,同时,相比传统的荧光偏振方法,该方法对于Rev多肽小分子拮抗剂的识别信号范围更宽,从而更加灵敏,能够实现对Rev多肽小分子拮抗剂的高通量筛选。

Description

一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法
技术领域
本发明属于药物筛选技术领域,具体涉及一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法。
背景技术
艾滋病又称获得性免疫综合症(AIDS),目前尚无有效根治的药物。艾滋病的病原体为人类免疫缺陷病毒(HIV),HIV是一种感染人类免疫系统细胞的慢病毒。临床使用的治疗HIV-I的药物主要是蛋白酶抑制剂和逆转录酶抑制剂,这两类药物容易产生变异性、耐药性和毒性,因此探索发现具有新的作用机制而不易产生耐药性的药物成为当今抗艾滋病药物研究的热点。HIV-I转录过程主要受一些转录因子的调控,如病毒颗粒蛋白表达调节因子(regulator of virion protein expression,Rev)等。Rev能够影响输出到细胞质的未剪接和部分剪接信使RNA数量,从而调节病毒的基因表达,Rev一个富含精氨酸的区域能够与HIV-I RRE(rev response element)RNA富含腺嘌呤核苷酸的IIB茎环部分相互识别并特异性结合,其中RRE RNA是由大约300个碱基组成的茎环结构。Rev与RRE RNA的相互作用形成Rev-RRE复合物,能够介导mRNA的核转运过程,在HIV-Ι复制周期中起着十分重要的作用。
小分子普罗黄素被发现可以竞争性的结合到Rev结合位点上,抑制Rev与RRE RNA的相互作用;常用氨基糖苷类抗生素如新霉素B、巴龙霉素和庆大霉素,则主要结合到RRERNA的下游茎环部分,通过构象抑制作用阻碍Rev多肽与RRE RNA的结合。
目前对Rev多肽小分子拮抗剂筛选主要是采用荧光标记的Rev多肽为指示剂,该传统方法所产生的偏振变化信号范围较小,灵敏度不高,且对Rev多肽进行荧光标记,可能使多肽链产生不规则折叠或构象变化。
发明内容
本发明所要解决的技术问题在于提供一种操作简单、灵敏度高的筛选Rev多肽小分子拮抗剂的方法。
解决上述技术问题所采用的技术方案是:将普罗黄素与含IIB茎环部分的HIV-IRRE RNA片段加入pH=6.5~8.0的缓冲液中,在37℃下孵育1~5分钟,然后加入待测药物,继续在37℃下孵育1~5分钟,再加入氧化石墨烯,充分混匀,测试加入待测药物前后反应体系的荧光偏振度,若待测药物具有拮抗作用,则荧光偏振度显著降低,据此即可进行Rev多肽小分子拮抗剂的筛选。
上述反应体系中,优选普罗黄素的浓度为200~500nmol/L,其中普罗黄素与含IIB茎环部分的HIV-I RRE RNA片段的摩尔比为2:1。
上述含IIB茎环部分的HIV-I RRE RNA片段优选由34~67个核苷酸组成。
上述反应体系中,待测药物的浓度优选为1~2μmol/L。
上述反应体系中,优选氧化石墨烯的浓度为6~11μg/mL,进一步优选氧化石墨烯的浓度为8~9μg/mL。
上述缓冲液的浓度优选为10~50mmol/L,进一步优选缓冲液的pH=7.0。
上述缓冲液优选为PBS缓冲液、醋酸铵缓冲液、Tris-HCl缓冲液中的任意一种。
本发明以普罗黄素为荧光偏振指示剂,在作用体系中引入氧化石墨烯,可以增大Rev多肽小分子拮抗剂存在与否荧光偏振信号的变化值,建立了基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法。本发明方法操作简单,不必使用荧光标记多肽为指示剂,免去了标记可能带来的大分子构象变化的缺陷,同时,相比传统的荧光偏振方法,该方法对于Rev多肽小分子拮抗剂的识别信号范围更宽,从而更加灵敏,能够实现对Rev多肽小分子拮抗剂的高通量筛选。
附图说明
图1是氧化石墨烯用量对加入新霉素B前后荧光偏振度的影响。
图2是氧化石墨烯加入前后对体系荧光偏振度的影响。
图3是不同浓度Rev多肽对体系荧光偏振度的影响。
图4是分别加入巴龙霉素、庆大霉素对体系荧光偏振度的影响。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将普罗黄素与含IIB茎环部分的HIV-I RRE RNA片段(核苷酸序列为:5’-UG GUCUGGGCGCAGCGCAAGCUGACGGUACAGGCC-3’)加入100μL 20mmol/L pH=7.0的醋酸铵缓冲液中,在37℃下孵育5分钟,然后加入待测药物,继续在37℃下孵育5分钟,再加入氧化石墨烯,充分混匀后,所得反应体系中普罗黄素的浓度为200nmol/L、含IIB茎环部分的HIV-I RRE RNA片段的浓度为100nmol/L、待测药物的浓度为1μmol/L、氧化石墨烯的浓度为8.9μg/mL,采用LS55荧光分光光度计(激发与发射波长分别为455nm和505nm,入射狭缝与出射狭缝均为10nm,间隔时间为1秒)测试加入待测药物前后体系的荧光偏振度,若待测药物具有拮抗作用,则荧光偏振度显著降低,据此即可进行Rev多肽小分子拮抗剂的筛选。
为了确定本发明的工艺条件和可行性,发明人进行了大量的实验室研究试验,具体试验情况如下:
1、确定氧化石墨烯用量
以新霉素B为待测药物,按照实施例1的方法,考察反应体系中氧化石墨烯的浓度分别为0、2.2、4.4、6.7、8.9、11.0μg/mL时,加入新霉素B前后体系的荧光偏振度变化,结果见图1和图2。
由图1可见,随着氧化石墨烯浓度的不断增大,加入新霉素B前后体系的荧光偏振度(FP)降低幅度不断增大,其中氧化石墨烯的浓度为6~11μg/mL时,体系的荧光偏振度降低幅度较大,即荧光偏振度变化值(ΔFP)较大,已经完全可以满足检测要求。由图2可见,与未加氧化石墨烯相比,当体系中加入8.9μg/mL氧化石墨烯时,荧光偏振度降低幅度大约增加了30倍,荧光偏振度变化明显提高。
2、普罗黄素与Rev多肽竞争作用的验证
将普罗黄素与含IIB茎环部分的HIV-I RRE RNA片段(核苷酸序列与实施例1相同)加入100μL 20mmol/L pH=7.0的醋酸铵缓冲液中,在37℃下孵育5分钟,然后分别加入不同浓度的Rev多肽(氨基酸序列为DTRQARRNRRRRWRERQRAA AAR),继续在37℃下孵育5分钟,再加入氧化石墨烯,充分混匀后,所得反应体系中普罗黄素的浓度为200nmol/L、含IIB茎环部分的HIV-I RRE RNA片段的浓度为100nmol/L、氧化石墨烯的浓度为8.9μg/mL、Rev多肽的浓度分别为0、100、200、300、400、500、600、700nmol/L,采用LS55荧光分光光度计(激发与发射波长分别为455nm和505nm,入射狭缝与出射狭缝均为10nm,间隔时间为1秒)测试加入Rev多肽前后体系的荧光偏振度,结果见图3。
由图3可见,随着Rev多肽浓度增大,体系的荧光偏振度降低,说明Rev多肽将普罗黄素从RRE RNA上取代下来,从而证明了普罗黄素与Rev多肽之间的竞争作用。
3、评价体系用于药物筛选的可行性
分别以巴龙霉素、庆大霉素为待测药物,按照实施例1的方法,测试加入巴龙霉素、庆大霉素前后体系的荧光偏振度,结果见图4。
由图4可见,分别加入巴龙霉素、庆大霉素后,体系荧光偏振度均降低了约60%,证明了本发明方法用于Rev多肽小分子拮抗剂的筛选是可行的。

Claims (5)

1.一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,其特征在于:将普罗黄素与含IIB茎环部分的HIV-I RRE RNA片段加入pH=6.5~8.0的缓冲液中,在37℃下孵育1~5分钟,然后加入待测药物,继续在37℃下孵育1~5分钟,再加入氧化石墨烯,充分混匀,测试加入待测药物前后反应体系的荧光偏振度,若待测药物具有拮抗作用,则荧光偏振度显著降低,据此即可进行Rev多肽小分子拮抗剂的筛选;
上述反应体系中普罗黄素的浓度为200~500 nmol/L、待测药物的浓度为1~2 μmol/L、氧化石墨烯的浓度为6~11 μg/mL,普罗黄素与含IIB茎环部分的HIV-I RRE RNA片段的摩尔比为2:1,所述含IIB茎环部分的HIV-I RRE RNA片段由34~67个核苷酸组成。
2.根据权利要求1所述的基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,其特征在于:所述反应体系中氧化石墨烯的浓度为8~9 μg/mL。
3.根据权利要求1所述的基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,其特征在于:所述缓冲液的浓度为10~50 mmol/L。
4.根据权利要求1~3任意一项所述的基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,其特征在于:所述缓冲液的pH=7.0。
5.根据权利要求4所述的基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法,其特征在于:所述缓冲液为PBS缓冲液、醋酸铵缓冲液、Tris-HCl缓冲液中的任意一种。
CN201610792885.2A 2016-08-31 2016-08-31 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法 Active CN107796791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610792885.2A CN107796791B (zh) 2016-08-31 2016-08-31 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610792885.2A CN107796791B (zh) 2016-08-31 2016-08-31 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法

Publications (2)

Publication Number Publication Date
CN107796791A CN107796791A (zh) 2018-03-13
CN107796791B true CN107796791B (zh) 2020-08-25

Family

ID=61529548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610792885.2A Active CN107796791B (zh) 2016-08-31 2016-08-31 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法

Country Status (1)

Country Link
CN (1) CN107796791B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL145922A0 (en) * 1999-04-28 2002-07-25 Aventis Pharma Gmbh Di-aryl acid derivatives as ppar receptor ligands
CA2411261A1 (en) * 2000-06-01 2001-12-06 Robert C. Kevorkian Use of ace inhibitors for treatment of patients suffering from behavioral disorders
CN102321757A (zh) * 2008-09-07 2012-01-18 苏州爱生基因有限公司 一种筛选治疗或预防癌症的药物的方法
CN102621297A (zh) * 2012-03-12 2012-08-01 南开大学 一种沙拉沙星的荧光偏振免疫分析检测方法
CN102636467B (zh) * 2012-04-19 2015-04-29 湖南大学 基于双层磷脂膜修饰石墨烯的复合纳米材料定量检测磷脂酶的生物传感方法
CN103145777B (zh) * 2013-03-04 2015-07-15 华东理工大学 罗丹明糖类化合物及其用途
CN103110957B (zh) * 2013-03-04 2014-12-03 福州大学 一种氧化石墨烯药物载体及其制备方法和应用
CN105136755A (zh) * 2015-08-11 2015-12-09 中国农业大学 一种用于检测红霉素的荧光偏振免疫分析方法
CN107279545A (zh) * 2017-08-23 2017-10-24 郑州外思创造力文化传播有限公司 一种饲料添加剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fluorescence-based methods for evaluating the RNA affinity and specificity of HIV Rev-RRE inhibitors;Nathan W.;《Biopolymers》;20030913;第70卷(第1期);第103-119页 *

Also Published As

Publication number Publication date
CN107796791A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
Yu et al. Deletion of the SARS-CoV-2 spike cytoplasmic tail increases infectivity in pseudovirus neutralization assays
Greenwood et al. Promiscuous targeting of cellular proteins by Vpr drives systems-level proteomic remodeling in HIV-1 infection
Kemp et al. Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation
Sanchez-Vazquez et al. Shorter telomere lengths in patients with severe COVID-19 disease
Liu et al. Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120
Liu et al. HIV gp41 C-terminal heptad repeat contains multifunctional domains: relation to mechanisms of action of anti-HIV peptides
Bala et al. Aptamers in HIV research diagnosis and therapy
Tawaratsumida et al. Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor
Warrilow et al. Maturation of the HIV reverse transcription complex: putting the jigsaw together
Young et al. HIV-1 infection of primary CD4+ T cells regulates the expression of specific human endogenous retrovirus HERV-K (HML-2) elements
Lu et al. A single polymorphism in HIV-1 subtype C SP1 is sufficient to confer natural resistance to the maturation inhibitor bevirimat
Hmila et al. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR
Bhat Influenza B infections in children: A review
Sun et al. Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging
Cieniková et al. Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing
CN111662900B (zh) 一种磺胺二甲嘧啶核酸适配体筛选方法、试剂盒及应用
Miyazaki et al. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus
Martin et al. New assay reveals vast excess of defective over intact HIV-1 transcripts in antiretroviral therapy-suppressed individuals
Bondet et al. Differential levels of IFNα subtypes in autoimmunity and viral infection
Geretz et al. Single-cell transcriptomics identifies prothymosin α restriction of HIV-1 in vivo
Graham et al. Functional recognition of the modified human tRNALys3UUU anticodon domain by HIV's nucleocapsid protein and a peptide mimic
CN100441698C (zh) 基于环介导的等温扩增技术的血液病毒核酸筛查方法
Qi et al. Peptide-RNA complexation-induced fluorescence “turn on” displacement assay for the recognition of small ligands targeting HIV-1 RNA
CN107796791B (zh) 一种基于氧化石墨烯筛选Rev多肽小分子拮抗剂的方法
JP2012100636A (ja) 新型インフルエンザウイルスのヘマグルチニンに結合するアプタマー

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant