CN107787231B - 检测两个流体容纳系统之间的流体连接的中断的系统和方法 - Google Patents
检测两个流体容纳系统之间的流体连接的中断的系统和方法 Download PDFInfo
- Publication number
- CN107787231B CN107787231B CN201680036625.0A CN201680036625A CN107787231B CN 107787231 B CN107787231 B CN 107787231B CN 201680036625 A CN201680036625 A CN 201680036625A CN 107787231 B CN107787231 B CN 107787231B
- Authority
- CN
- China
- Prior art keywords
- signal
- monitoring
- pressure
- monitoring system
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3653—Interfaces between patient blood circulation and extra-corporal blood circuit
- A61M1/3656—Monitoring patency or flow at connection sites; Detecting disconnections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
- A61B5/02152—Measuring pressure in heart or blood vessels by means inserted into the body specially adapted for venous pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/17—General characteristics of the apparatus with redundant control systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- External Artificial Organs (AREA)
Abstract
监测系统(9)执行检测第一流体容纳系统和第二流体容纳系统之间的流体连接的中断的方法。监测系统产生监测信号(M1)和跟踪信号(T1),监测信号(M1)表示关于第一流体容纳系统的流体压力并响应于流体连接的中断,跟踪信号(T1)对应监测信号(M1)并比监测信号(M1)随时间更平滑。监测系统(9)还设置与跟踪信号(T1)成给定关系的检测范围(M1L,M1H),使检测范围(M1L,M1H)跟随跟踪信号(T1)的变化,并通过将监测信号(M1)的当前压力值与检测范围(M1L,M1H)比较来检测指示中断的状况。监测系统(9)可连接到血液处理设备,或成为其一部分,可操作以检测体外血液回路与例如在体外血液回路中的血液泵下游的病人血管系统的断开。
Description
技术领域
本发明涉及一种基于至少一个表示流体容纳系统之一中的流体压力的压力信号来检测两个流体容纳系统之间的流体连接的中断的技术。可以在用于血液处理的体外循环回路和人类对象的血管系统之间建立流体连接。
背景技术
在体外血液处理中,将血液从人类对象体中取出,进行处理(例如治疗),然后通过作为血液处理系统一部分的体外血流回路(“EC回路”)重新引入对象体中。通常,血液通过血液泵循环通过EC回路。在某些类型的体外血液处理中,EC回路包括用于抽取血液的接入装置(例如,动脉针或动脉导管)和用于再次引入血液的接入装置(例如,静脉针或静脉导管),其插入对象专用血管入口(例如,瘘、移植体或导管)。接入装置在EC回路和对象的心血管系统之间形成流体连接。这种类型的EC回路例如用于体外血液治疗,例如血液透析、血液透析滤过、血液滤过、血浆置换、血库、供体血液的血液分离(例如细胞)、血液分离术、体外血氧饱和、辅助血液循环、体外肝支持/透析、超滤、心脏充血失效治疗等。
至关重要的是尽可能减少流体连接中的故障风险,因为这可能导致对象潜在的威胁生命的状况。如果在血液泵运行期间EC回路在血液泵的下游中断(例如,用于再次引入血液的接入装置从血管通道入口松脱),则可能出现特别严重的情况。这种通常称为静脉针移位(VND)的静脉侧中断可能会在数分钟内导致对象流干血液。动脉侧的中断,例如从血管通路入口松脱的用于抽取血液的接入装置,由于空气被吸入EC回路并被运送到心血管系统中导致空气栓塞,因此也可能存在病人风险。
用于体外血液治疗的机器通常包括安全系统,其监测在EC回路和对象之间的流体连接的状态,并且每当检测到潜在的危险情况时触发报警和/或适当的安全动作。这种安全系统可以基于来自EC回路中的压力传感器的压力信号而操作,其中由压力传感器测量的流体压力响应于EC回路与血管通路入口的断开。例如,压力传感器可以被布置成测量EC回路的静脉侧的压力水平。静脉侧断开导致静脉侧压力改变,其可以通过将测量的压力水平与限定预定义的允许压力范围的一个或多个报警阈值进行比较来检测。
通常情况下,报警阈值由机器自动设置,或由操作者手动设置,随后在治疗进程开始时由操作人员确认,并可在整个进程期间保持固定。机器可以允许操作者手动改变报警阈值,并且当EC回路中的血流改变时,机器可以自动改变报警阈值。
通常,设置报警阈值主要是为了避免VND检测中的假阴性,即错过的报警状况。同时,重要的是避免频繁的假阳性,即虚假报警,这是因为每次虚假报警都需要透析人员的注意。在这种情况下的困难在于,在治疗进程期间,测量的压力水平可能因非VND的原因而改变,例如,由于病人的移动,通过EC回路的血流速度的变化,接入装置中的压降的变化,血液组成(例如血细胞比容)的变化,血液泵中的磨损,进入的压力变化等。
因此,设置报警阈值以捕获所有VND事件同时减少虚假报警的数量是一个挑战。
US7575562公开了一种旨在在将静脉压力信号与VND检测的报警阈值进行比较时减少虚假报警的技术。基于在定义好的时间间隔的静脉压力信号中的当前信号电平来更新报警阈值。因此,至少在理论上,可以使报警阈值跟随静脉压力信号的自然变化,同时确保准确地检测到VND事件。时间间隔可以是固定的和预定义的,例如每2分钟。可替代地,可以基于静脉压力信号的变化水平来动态地计算时间间隔,这样,变化性越高,则时间间隔越短。在这种技术中,至关重要的是需要非常谨慎地选择或计算时间间隔,否则监测可能导致假阳性数量增加或假阴性数量增加,或两者都有。
JP2010-136745公开了为了减少虚假报警而更新在VND检测中使用的报警阈值的另一种技术。与用于VND检测的静脉压力信号进行比较的报警阈值是基于由EC回路抽出侧的压力传感器产生的动脉压力信号的同时变化而更新的。具体地说,JP2010-136745提出了基于动脉压力信号的时间变化的趋势(移动方向)和变化(移动幅度)来更新报警阈值。假设静脉压力信号和动脉压力信号同样受到病人移动的影响,所提出的技术可能有助于抑制由病人移动引起的虚假报警的数量,但是可能不能补偿静脉压力信号中的其他自然变化,例如在用于血液回流的接入装置的压降中的变化,血液组成(例如血细胞比容)的变化和血液泵中的磨损。静脉压力信号中的这些其他自然变化不必然在动脉压力信号中成比例地出现,这意味着所提出的技术可能无法补偿这些变化,甚至可能增加假阳性和/或假阴性的风险。所提出的技术还可能需要高级校准程序来确定静脉压力信号变化与动脉压力信号变化之间的关系。
在US2011/0034814中公开了一种用于减少病人移动影响的替代技术,其提出了产生表示静脉压力信号和动脉压力信号之间的压力差的差分信号,并将差分信号与VND检测的预定阈值进行比较。产生差分信号,使得在体外血液回路中不存在来自血液泵和其他循环脉冲发生器的循环干扰。即使这种技术对病人移动的敏感度降低,它仍然对仅影响静脉压力信号和动脉压力信号之一或对这些信号具有显著不同影响的自然变化敏感。
即使前述描述在体外血液处理的上下文中给出,然而,应当理解,在其他技术领域中可能会出现检测两个流体容纳系统之间的流体连接中断的相应需要。
发明内容
本发明的目的是至少部分克服现有技术的一个或多个限制。
另一个目的是提供一种替代技术,用于通常基于在其中一个流体容纳系统中的流体压力的测量来检测两个流体容纳系统之间的流体连接的中断。
另一个目的是提供这样一种替代技术,其相对不受与中断无关的流体压力变化的影响。
另一个目的是提供这样一种替代技术,其具有鲁棒性且易于实现。
进一步的目的是提供这样一种替代技术,其可用于检测体外血液回路与对象的血管系统的返回侧断开。
这些目的中的一个或多个,以及从下面的描述可能出现的进一步的目的至少部分地通过根据本公开实施例的监测系统、方法、计算机可读介质和用于体外血液处理的设备来实现。
本发明的第一方面是一种用于检测第一流体容纳系统和第二流体容纳系统之间的流体连接的中断的监测系统。所述监测系统包括:信号产生装置,被配置为产生表示关于第一流体容纳系统的流体压力并且响应于流体连接的中断的监测信号;以及中断检测器,被配置为通过将监测信号的当前压力值与检测范围进行比较来检测指示中断的状况。所述信号产生装置还被配置为产生与监测信号相对应并且比所述监测信号随时间更平滑的跟踪信号,以及所述中断检测器还被配置为将所述检测范围设置为与跟踪信号成给定的关系,使得所述检测范围跟随跟踪信号的变化。
第一个方面是基于以下认识:流体连接的中断导致监测信号中偏离参考信号电平的信号变化,该参考信号电平表示紧接在中断之前的平均流体压力,并且该信号变化发生在比可能影响参考信号电平的趋势短得多的时间尺度。通过产生对应于监测信号但比监测信号随时间更平滑的跟踪信号,跟踪信号将是参考信号电平的足够精确的近似值,而监测信号将表示更快的流体压力变化,包括中断造成的变化。通过将检测范围设置为与跟踪信号成给定关系,确保检测范围大致跟随并相对于参考电平而设置。这允许使用相对小的检测范围,这是因为检测范围可以相对于当流体连接中断时在监测信号中发生的预期信号变化而设置。通过使用相对小的检测范围,可以降低中断检测中的假阴性的风险,并且还可以减少假阳性的数量。
因此,第一方面的监测系统被配置为相对不受与流体连接中断无关的流体压力的这种变化(至少这种在比流体连接中断更长的时间尺度上出现的这种变化)的影响。如将在下面进一步描述的那样,可以修改第一方面,以进一步减少由在监测信号中发生的与中断相同时间尺度上的变化引起的假阳性,例如通过在产生报警之前应用附加的检测规则,或通过智能选择监测信号来实现。
第一方面的监测系统具有鲁棒性,这是因为检测范围基于监测信号的平滑版本设置,其确保检测范围缓慢变化并且对监测信号中或用于产生监测信号的一个或多个压力信号中的噪声和其他短期干扰相对不敏感。监测系统也易于实现,因为它只需要一个或多个传统压力传感器的一个或多个压力信号作为输入。此外,监测系统可以被配置为在特定环境中使用而不需要大量校准。监测系统只需要设置一个检测范围,该检测范围与流体连接中断时监测信号中的预期信号变化充分匹配。这种预期的信号变化可以通过简单的准备性测试或测量来估计。
在监测系统的正常操作期间,检测范围可以具有相对于跟踪信号的固定范围和位置。检测范围可以具有开放端,并且因此由单个阈值定义,或者是闭合的并且因此被限定在两个阈值之间。可以将每个阈值作为跟踪信号的相应预设偏移量给出。
在一个变型例中,检测范围的范围(或大小)可以在监测系统的操作期间变化。如果检测范围由跟踪信号的一个或两个偏移定义,则可以改变一个或两个偏移以改变检测范围的范围。
检测范围可以定义指示不存在中断的信号值,并且可以由中断检测器定位以包括跟踪信号的当前信号值。
监测系统的另外的实施例在下面被定义,并且可以用于减少假阳性的数量,改进鲁棒性,便于实现或本领域技术人员所理解的另外的目的。
在一个实施例中,信号产生装置被配置为将监测信号和跟踪信号两者产生为连续信号。如果它们是数字信号,则信号产生装置可以以相同或相似的速率产生监测和跟踪信号的压力值。中断检测器可以以任何速率来设置检测范围,例如,以跟踪信号中的压力值的发生速率或更慢的速率来设置。
在一个实施例中,信号产生装置包括用于产生监测信号的第一信号滤波器和用于产生跟踪信号的第二信号滤波器。在一个实现方式中,第一和第二信号滤波器可以定义在下限频率和上限频率之间延伸的相应的最低频率通带,第二信号滤波器的上限频率在频率上低于第一信号滤波器的上限频率。第一和第二信号滤波器的上限频率的比率可以至少为2,至少为5,至少为 10,或至少为20。
在一个实施例中,第一和第二信号滤波器包括相应的低通滤波器,其中上限频率是相应低通滤波器的截止频率。
在一个实施例中,第一和第二信号滤波器中的至少一个包括移动平均滤波器,所述移动平均滤波器被配置为基于输入信号的信号值产生滤波值的时间序列,其中每个滤波值被计算为在输入信号中的时间窗口内的信号值的平均值,所述移动平均滤波器被配置为基于指示第一流体容纳系统或第二流体容纳系统中的重复脉冲发生器的当前工作频率的参考信号设置时间窗口的长度以有效地匹配由重复脉冲发生器产生的整个脉冲数。在一个实现方式中,移动平均滤波器包括在第一信号滤波器和第二信号滤波器中,并且其中所述第一信号滤波器中的移动平均滤波器被配置为设置时间窗口的长度以有效地匹配第一数量的脉冲,并且第二信号滤波器中的移动平均滤波器被配置为设置时间窗口的长度以有效地匹配第二数量的脉冲,并且其中第二数量大于第一数量。所述第二数量与所述第一数量的比率至少为2,至少为5,至少为 10,或者至少为20。
在一个实施例中,第一和第二信号滤波器被配置为有效地去除与第一流体容纳系统和第二流体容纳系统中的一个或多个重复脉冲发生器的工作频率相对应的频率分量。如在本文中所用,“有效去除”与“充分抑制”同义使用,意味着频率分量被抑制到不干扰中断检测的程度。在一个实施例中,当相对于检测范围的程度的脉冲的峰-峰幅度小于50%,优选小于25%,最优选小于10%时,来自相应脉冲发生器的脉动被有效地去除。
在一个实施例中,信号产生装置包括至少一个压力传感器,并且被配置为基于由至少一个压力传感器产生的至少一个压力信号产生监测信号。在这样的实施例中,信号产生装置可以被配置为基于至少一个压力信号或监测信号产生跟踪信号。此外,信号产生装置还可以包括信号调节器,其被配置为处理监测信号和/或跟踪信号,并且将如此处理的监测信号和/或跟踪信号提供给中断检测器,所述信号调节器被配置为检测监测信号和/或跟踪信号中的不期望的峰值,并且通过用将相应不期望的峰值的起始点与相应不期望的峰值的结束点连接的信号段替换相应的不期望峰值来有效地去除相应的不期望的峰值。
在一个实施例中,监测系统还被配置为当检测到指示中断的状况时,产生控制信号用于禁用第一流体容纳系统中的一个或多个脉冲发生器,分析至少一个压力信号用于检测源自第二流体容纳系统中一个或多个脉冲发生器的至少一个压力脉动,并且如果认为在所述至少一个压力信号中不存在所述至少一个压力脉动,则产生报警信号。
在一个实施例中,中断检测器还被配置为接收指示所述监测信号中的预测或实际干扰的时间点的干扰信号,并基于所述干扰信号,采取预防措施以减少预测或实际干扰对指示中断的状况的检测的影响。所述中断检测器可以被配置为基于所述预测或实际干扰的时间点来确定干扰时间段,并且在相应的干扰时间段期间禁用对指示中断的状况的检测。所述监测系统还可以被配置成在相应干扰时间段之后使得所述信号产生装置基于监测信号或至少一个压力信号重新开始产生跟踪信号,同时排除来自相应干扰时间段期间的数据样本。替代地或另外地,所述中断检测器可以被配置为通过以下之一来禁用所述状况的检测:在相应的干扰时间段期间使得所述监测信号被设置为等于所述跟踪信号,并且增加所述检测范围。
在一个实施例中,中断检测器被配置为应用要求在预定义的监测时间段期间所述监测信号落在所述检测范围之外的干扰检测规则,并且其中所述中断检测器被配置为通过在相应的预测或实际干扰期间增加延长时间段来增加所述预定义的检测时间段。
在一个实施例中,所述信号产生装置还被配置为产生所述监测信号,以表示来自第一压力传感器和第二压力传感器的第一压力信号和第二压力信号的功能组合,所述第一压力信号响应于所述流体连接的中断,并且所述第二压力信号不响应于所述流体连接的中断,其中所述监测信号被产生为表示存在于第一压力传感器和第二压力传感器两者中的流体压力的变化,同时抑制存在于第一压力传感器和第二压力传感器两者中的流体压力的变化。在一个示例中,所述功能组合是第一压力信号和第二压力信号的乘积或产生为表示第一压力信号和第二压力信号的第一中间信号和第二中间信号的乘积。在另一示例中,所述功能组合是第一压力信号和第二压力信号之间的差或第一中间信号和第二中间信号之间的差。
在一个实施例中,所述信号发生装置还被配置为产生辅助监测信号以及辅助跟踪信号,所述辅助监测信号表示相对于所述第一流体容纳系统的第二流体压力并且不响应于流体连接的中断,所述辅助跟踪信号对应于所述辅助监测信号并且比所述辅助监测信号随时间更平滑,并且将辅助检测范围设置为与所述辅助跟踪信号成给定的关系,使得所述辅助检测范围跟随辅助跟踪信号的变化,其中中断检测被配置为了检测指示中断的状况,联合分析与检测范围相关的监测信号和与辅助检测范围相关的辅助监测信号。
在一个实施例中,所述信号产生装置还被配置为产生监测信号和跟踪信号,以便显著地抑制源自第一和第二流体容纳系统中的一个或多个重复脉冲发生器的脉动。
本发明的第二方面是一种用于检测第一流体容纳系统和第二流体容纳系统之间的流体连接的中断的监测系统。所述监测系统包括:用于产生表示关于第一流体容纳系统的流体压力并且响应于流体连接中断的监测信号的装置;以及用于通过将监测信号的当前压力值与检测范围进行比较来检测指示中断的状况的装置。所述监测系统还包括:用于产生与所述监测信号相对应并且比所述监测信号随时间更平滑的跟踪信号的装置;以及用于将检测范围设置为与跟踪信号成给定的关系,使得检测范围跟随跟踪信号的变化的装置。
本发明的第三方面是一种检测第一流体容纳系统和第二流体容纳系统之间的流体连接的中断的方法。所述方法包括:产生表示关于第一流体容纳系统的流体压力并且响应于流体连接的中断的监测信号;以及通过将监测信号的当前压力值与检测范围进行比较来检测指示中断的状况。所述方法还包括:产生与所述监测信号相对应并且比所述监测信号随时间更平滑的跟踪信号;将所述检测范围设置为与跟踪信号成给定的关系,使得所述检测范围跟随跟踪信号的变化。
本发明的第四方面是一种计算机可读介质,包括用于使数据处理器执行第三方面的方法的处理指令。
本发明的第五方面是一种监测系统,包括:信号产生装置,被配置为产生表示关于体外血液回路的流体压力的监测信号,所述体外血液回路具有第一端和第二端,用于与病人的血管系统流体连通并且包括用于使来自第一端的血液通过血液处理装置循环到第二端的血液泵,所述监测信号被产生为响应于所述体外血液回路与所述血液泵下游的病人的血管系统的断开;以及断开检测器,被配置为通过将监测信号的当前压力值与检测范围进行比较来检测指示断开的状况。所述信号产生装置还被配置为产生与所述监测信号相对应并且比所述监测信号随时间而更平滑的跟踪信号;以及所述断开检测器还被配置为将所述检测范围设置为与所述跟踪信号成给定的关系,使得所述检测范围跟随所述跟踪信号的变化。
在一个实施例中,所述信号产生装置被配置为产生所述监测信号以包括表示以下之一的压力值的时间序列:在血液泵和第二端之间的位置处的体外血液回路中的返回侧流体压力;在血液泵和第二端之间的位置处的体外血液回路中的返回侧流体压力与在第一端和血液泵之间的位置处的抽出侧流体压力的乘积;以及在血液泵和第二端之间的位置处的体外血液回路中的返回侧流体压力与第一端和血液泵之间的位置处的抽出侧流体压力之间的差。
本发明的第六方面是一种用于体外血液处理的设备,包括:用于在第一端和第二端处与病人的血管系统流体连通的体外血液回路,并且该体外血液回路包括用于使来自第一端的血液通过血液处理装置循环到第二端的血液泵;信号产生装置,被配置为产生表示关于体外血液回路的流体压力并且响应于所述体外血液回路与所述血液泵下游的病人的血管系统的断开的监测信号;以及断开检测器,被配置为通过将监测信号的当前压力值与检测范围进行比较来检测指示断开的状况;其中所述信号产生装置被配置为产生与所述监测信号相对应并且比所述监测信号随时间而更平滑的跟踪信号;以及其中所述断开检测器还被配置为将所述检测范围设置为与所述跟踪信号成给定的关系,使得所述检测范围跟随所述跟踪信号的变化。
作为第二至第六方面的实施例,可以对第一方面的上述实施例中的任何一个进行调整和实现。
本发明的其他目的、特征、方面和优点将从以下详细描述,从所附权利要求以及附图中看出。
附图说明
现在将参照附图更详细地描述本发明的实施例。
图1是附接至人体并且包括断开检测系统的体外血液处理设备的示意图。
图2示出了在将设备从人体对象断开期间图1中测量的压力信号。
图3是根据实施例的断开检测系统执行的监测处理的流程图。
图4是在执行图3的监测处理期间在图1的设备中获得的信号的曲线图。
图5是根据实施例的断开检测系统的框图。
图6A至图6B示出了可以在图5的断开检测系统中实现的信号滤波器的滤波器特性。
图7示出了使用移动平均滤波器来消除输入信号中的重复脉动。
图8A至图8F是根据其他实施例的断开检测系统的框图。
图9示出了在图8B的实施例中应用于监测信号的峰值消除技术。
图10示出了图8B的实施例中的干扰信号的使用。
图11示出了在图8E的实施例中获得的信号。
图12A至图12B示出了在图8F的实施例中获得的信号。
具体实施方式
在整个说明书中,使用相同的附图标记来标识相应的元件。
将参考图1中示意性描绘的用于血液治疗的设备来举例说明本发明的实施例。在下面的示例中,假定该设备是透析系统,其由附接到透析机或监测器上的血液管线形成,如本领域中公知的。图1示出了通过插入病人的专用血管通路入口3(也称为“血管通路入口”)中的接入装置2'、2″连接到体外血流回路1a的人体对象或病人100。体外血流回路1a(以下称为“EC回路”) 被配置为将血液传递到病人的心血管系统和从病人的心血管系统送出血液。在所示示例中,血液泵4经由用于抽取血液的接入装置2'从血管通路入口3 抽取血液,并且通过血液治疗单元5泵送血液并且经由用于血液返回的接入装置2″返回到血管通路入口3。因此,当两个接入装置2'、2″连接到血管通路入口3时,EC回路1a限定在血管通路入口3处开始和结束的血液通路。 EC回路1a可以被看作包括作为血液泵4下游的血液路径的一部分的“静脉侧”,以及作为血液泵4上游的血液路径的一部分的“动脉侧”。血液泵4可以是任何类型,例如旋转蠕动泵、线性蠕动泵、隔膜泵或离心泵。
血液治疗单元5可以是任何类型的血液过滤装置,例如线圈透析器、平行板式透析器、中空纤维透析器等。为了简单起见,以下将血液治疗单元5 表示为“透析器”。透析器5具有由半透膜5'分离的血液侧和治疗流体侧。血液侧作为EC回路1a的一部分连接,治疗流体侧作为治疗流体的供给系统1b (以下称为“TF回路”)的一部分被连接。TF回路1b布置成通过透析器5 的治疗流体侧泵送治疗流体,由此由于浓度梯度透过膜5'传送溶质和/或由于压力梯度透过膜5'传送超滤液。技术人员理解,TF回路1b可以包括多个功能部件,例如新鲜治疗流体源、废治疗流体的容器/排出口、一个或多个泵、平衡室、阀门、加热器、电导率传感器等。为了简单起见,这些部件由图1 中的通用框6共同表示。
在图1的例子中,在EC回路1a的静脉侧布置有夹具7。尽管未示出,但也可以在动脉侧布置相应的夹具。(多个)夹具7可以被操作以阻止流过血液管线的流体(例如,在治疗进程之前和之后),或者被操作为在检测到报警状况之后进入安全状态的设备的一部分。
应当理解,EC回路1a和TF回路1b构成上述用于血液治疗的设备的一部分,其由附图标记1示意性地表示。设备1中的控制单元(未示出)控制并同步例如血液泵4、部件6、夹具7以及其他部件(例如泵、传感器、阀门、用户界面等)的操作。
EC回路1a包括在透析器5下游的在EC回路1a静脉侧的压力传感器或换能器8a(表示为“静脉压力传感器”或“静脉传感器”),在EC回路1a 的动脉侧的压力传感器或换能器8b(表示为“动脉压力传感器”或“动脉传感器”)。静脉和动脉传感器8a、8b分别提供表示静脉侧血液压力的相应时变信号(“静脉信号”)和动脉侧血液压力的相应时变信号(“动脉信号”)。在下文中,将静脉信号表示为VP,将动脉信号表示为AP。在图1中,在TF回路1b中还布置有压力传感器或换能器8c(表示为“TF压力传感器”或“TF 传感器”),以提供表示治疗流体中的压力的时变信号。可以将TF传感器8c 布置在TF回路1b中的任何位置,例如,透析器5的下游(如图1所示)或上游。
监测装置9通过相应的数据线连接到传感器8a、8b、8c,以获取和处理时变电压力信号。装置9可以被包括为用于血液治疗的设备1的一部分,并且可以连接到上述控制单元或作为其一部分。可替代地,装置9与设备1分离。从动脉传感器8b和TF传感器8c到装置9的虚线数据线表明,来自这些传感器的信号的使用是可选的,如下面进一步描述的。
具体地,监测装置9包括:信号接口10,用于在进行中的血液治疗期间至少接收静脉信号VP;以及处理回路11、12,用于处理该信号以用于检测 EC回路1a的静脉侧中断(通常称为VND)。该中断对应于EC回路1a与心血管系统的断开,并且可能例如由于接入装置2″从血管通路入口3的移位、 EC回路1a静脉侧上的血液管线断裂、或可以安装在接入装置2″和血液管线之间的连接器(未示出)的断开而导致。监测装置9还可操作以用于检测EC 回路1a的其他故障,例如,血液管线扭曲,或者接入装置2″位置太靠近或插入血管通道入口的壁(称为“渗透”)。当检测到(潜在的)故障时,装置9可以发出报警或警告信号和/或提醒设备1的控制单元采取适当的动作。本发明的实施例可以例如至少部分地由在计算机可读介质上提供的软件指令来实现,以由处理器11结合装置9中的电子存储器12来执行。
通常,可以认为EC回路1a和TF回路1b限定了第一流体容纳系统,其连接到由病人100的心血管系统构成的第二流体连接系统。监测装置9被配置为检测第一和第二流体容纳系统之间的流体连接的断开。在VND检测中,通过用于血液返回的接入装置2″连接到血管通路入口3而形成流体连接。
监测装置9的工作原理是,静脉侧中断(“VND事件”)导致由静脉传感器8a测量的静脉侧压力的压力变化。如果接入装置2″没有改变接入装置2″的竖直位置(高度)而从血管通路入口3脱离,则压降等于进入压力,即等于血管通路入口3中的压力。这个原理示于图2,其中在时间点td发生VND 事件。静脉侧压力由监测信号M1表示,该监测信号通过对静脉信号VP进行滤波而产生,用于去除或抑制来自血液泵4和其他泵、开关、阀门等的诸如压力变化(脉动)等干扰。滤波还可以消除源自病人100(图1)体中的脉冲发生器PH(例如,心脏或呼吸系统)的压力变化。即使在滤波之后,监测信号M1仍然可能呈现相对较大的变化,如图2所示。在VND事件发生之前,监测信号M1围绕参考压力水平(由R1表示)波动。VND事件导致压力下降,使得围绕第二参考压力水平R1-ΔP波动。将下限M1L设置在用于检测VND事件的第一和第二参考压力水平之间,并且还可以设置上限值 M1H,以检测导致静脉侧压力增加的故障(诸如渗透)。此外,可以设置上限值M1H来检测当接入装置2″从血管通路入口3分离时监测信号M1增加的情况。这种情况可能在例如分离的接入装置2″卡在床单或病人的衣服上,或者分离的接入装置2″落在高于血管通路入口3的高度处(从而增加静脉侧的静水压力)时发生。极限值M1L、M1H限定压力范围,在下文中表示为“检测范围”。检测范围由此定义由监测信号M1表示的压力水平的可接受压力范围(“接受范围”)。包括VND事件的设备1的故障可以在当检测信号M1超出检测范围时检测到。应该注意的是,检测范围可以由单一极限值来定义,以包括高于或低于该极限值的所有压力值。
从上述可以理解,监测信号M1可以呈现出不应该触发报警的变化。这种变化可以是间歇性的,并且导致监测信号M1围绕第一压力参考水平R1 波动,如图2所示,例如由于病人移动、血液管线的移动、通过滤波不能充分除去的与机器有关的干扰等。检测范围被设置为尽可能地适应这些短期波动,以便将虚假报警保持为最少。
然而,也可能在治疗进程期间改变第一压力参考水平R1。如果第一压力参考水平R1与检测范围相关地变化,则虚假报警的风险增加,特别是对于具有相对低的进入压力(即,ΔP相对较小)的病人。第一参考压力水平R1 可以例如由于病人的姿势的变化(例如从坐到卧位或反之亦然)、通过EC回路1a的血流速度的变化、通过透析器5的水去除率的变化、向EC回路1a 添加置换流体、血液泵4中的磨损、治疗期间血液浓度(血细胞比容)的逐渐变化等而变化。
本发明的实施例旨在通过在治疗进程期间连续或间歇地估计第一压力参考水平R1并相应地调整检测范围来减少对第一压力参考水平R1的变化的影响。具体地,本发明的实施例基于以下认识:通过产生跟踪信号(参见下面的T1),可以以足够的精度估计第一压力参考电平R1,跟踪信号和监测信号 M1一样,表示静脉侧压力但是比监测信号M1随时间更平滑。
图3示出了在图1的背景下由装置9执行的监测处理的实施例。在所示示例中,监测过程通过重复执行步骤301-305实时操作以获取和处理用于 VND检测的静脉信号VP中的数据样本。在步骤301中,通过对静脉信号VP 进行操作的第一滤波器来产生监测信号M1的当前数据样本Mc。在步骤302 中,由对监测信号M1进行操作的第二滤波器产生跟踪信号T1的当前数据样本Tc。可替代地,如虚线箭头所示,第二滤波器可以直接在静脉信号VP上操作,以产生当前数据样本Tc。当前数据样本Mc、Tc均表示压力传感器8a 的静脉侧压力,尽管时间尺度不同。作为示例,图4是通过针对静脉信号VP 的步骤301和302的连续迭代产生的监测信号M1和跟踪信号T1的曲线图。从图中可以看出,在静脉信号VP由来自血液泵4的泵送冲程的强脉动(“泵脉冲”)支配时,监测和跟踪信号M1、T1被产生为基本上没有这些脉动。还如图4所示,产生监测信号M1以接近静脉信号VP的“DC水平”,即瞬时平均压力,而产生跟踪信号T1以表示长期压力水平(对应于图2中的R1)。因此,产生监测信号M1以表示比跟踪信号T1更快的静脉信号VP的变化。换句话说,产生监测跟踪信号M1、T1,以表示不同时间尺度的静脉信号VP 的变化,其中跟踪信号T1的时间尺度比监测信号M1的时间尺度长。
回到图3,步骤303操作以相对于当前数据样本Tc设置检测范围。因此,自动调整检测范围,以跟随跟踪信号T1的变化。例如,可以将检测范围给出为当前数据样本Tc的相应偏移值,例如,表示下限M1L的一个偏移值和表示上限M1H的一个偏移值。图4示出了通过从跟踪信号T1减去偏移值 O1而设置的下限M1L。可替代地,可以将极限值M1L、M1H给出为与当前数据样本Tc相乘的相应权重值。在另一替代方案中,检测范围具有映射到当前数据样本Tc的预定义范围,例如,通过使检测范围围绕当前数据样本Tc 居中。检测范围的范围或大小(例如由偏移值给出)可以在监测过程中固定。然而,也可以想到,在监测过程期间选择性地修改检测范围的范围,例如,以减少信号M1、T1中的干扰对VND检测的影响。
回到图3,步骤304操作以将当前数据样本Mc与检测范围进行比较,然后进行到步骤305,在步骤305中基于步骤304的结果来确定是否发生了潜在的VND事件。步骤305可以在宣告潜在的VND事件之前应用检测规则,该检测规则要求在给定的检测时间段(即在步骤301-304的给定次数的连续重复中)内监测信号M1超出检测范围。这可以用于减少由监测信号M1中的短偏差压力值或杂散偏差压力值引起的虚假报警。通常,检测时间段可以是2-15秒,例如10秒。如果步骤305指示没有发生VND事件,则处理返回到步骤301。如果步骤305宣告潜在的VND事件,则处理进行到步骤306,步骤306可以操作以产生报警,并且还可以触发设备1进入安全状态,例如通过关闭血液泵4并关闭夹具7。在一个变型例中,步骤306可以在产生报警之前执行潜在的VND事件的验证。该验证涉及使设备1关闭血液泵4同时保持夹具7打开,然后分析静脉信号VP是否存在来自病人100体中的生理脉冲发生器PH(例如,心脏或呼吸系统)的脉动。如果不存在脉动,则步骤306可以断定VND事件确实已经发生并且产生报警。另一方面,如果发现脉冲存在,则步骤306可以进行到步骤301。
图4例举了步骤304-306的操作。在时间点td发生VND事件,步骤304 检测到监测信号M1在时间点te下降到低于下限M1L。由于监测信号M1在从时间点te延伸到时间点tf的给定检测时间段内保持低于下限M1L,所以步骤305在时间点tf处宣告潜在的VND事件,于是步骤306使血液泵停止。因此,信号VP中的泵脉动停止。在时间点tg,步骤306得出结论表明信号 VP中不存在心脏脉动并发出报警。
在前述示例中,监测过程在步骤301-305的连续重复(迭代)中操作,直到步骤305宣告潜在的VND事件。
可以想象的是,步骤304将监测信号M1与在整个监测过程中固定的一个或多个附加报警限值进行比较,或者至少不相对于跟踪信号T1由步骤303 设置。这种“全局”报警极限值可以由操作者或设备1在治疗进程开始时预定义或设置。如果监测信号M1超出这样的全局报警极限值,则步骤305可以被配置为宣告故障,促使步骤306发出报警。可以设置全局报警极限值以检测导致监测信号M1中的压力增加或减小的缓慢趋势的故障。这种故障可以包括导致EC回路1a中静脉侧压力缓慢增加的接入装置2″的逐渐堵塞,或 EC回路1a中的小的但增长的血液泄漏(例如,在接入装置2″到血管通路入口3的连接处),其导致病人的血压逐渐降低,因此导致EC回路1a中的进入压力ΔP从而导致静脉侧压力逐渐降低。
图5是用于在监测装置9中实现图4的方法的结构框图。在所示实施例中,装置9包括信号接口10、滤波器块21、22、范围设置块24、比较块25 和报警信号发生器26。虽然未示出,但是可以设置控制块以使块21-26的操作同步,并且块21-26可以经由电子存储器交换数据(参见图1中的附图标记12)。
在所示实施例中,信号接口10可以具有用于输入和输出信号的任何合适的类型,并且可以被实现为单个物理单元或多个单元(如图5所示)。如果装置9集成在设备1中,则信号接口10可以是设备1或其控制单元的一部分。信号接口10被配置为连接到静脉传感器8a以接收静脉信号VP。尽管图5 中未示出,但装置也可以包括被配置为预处理静脉信号VP(以及可能的一个或多个其他输入信号,例如参考信号REF)的块,例如用于AD转换、信号放大、去除高频噪声和电源电压干扰等。
实现图3中的步骤301的第一滤波器块21被布置为接收信号VP并产生作为信号VP的滤波后的版本的监测信号M1。实现图3中的步骤302的第二滤波器块22被布置为接收监测信号M1,并且产生作为信号M1的滤波后的版本的信号T1。在替代方案(未示出)中,块22被布置为从信号接口10接收静脉信号VP,并直接产生作为信号VP的滤波后的版本的信号T1。滤波器块21、22中的每一个可以具有固定(预定义)或可调整的滤波器特性,例如相对于作为由第一和第二滤波器块21、22有效去除的强脉动(泵脉冲)的源的血液泵4的泵送速率进行调整。如图5所示,块21、22基于指示血液泵4 的泵送速率的参考信号REF来调整其滤波器特性。如图5所示,装置9可以包括被配置为将参考信号REF处理成表示静脉信号VP中的泵脉冲的速率的当前频率值的块。参考信号REF可以例如作为血液泵4的速度或由血液泵4 产生的血液流量4的速度,来自与血液泵4的转子相关联的转速计等的脉冲信号,或来自设备1中的压力传感器8a、8b、8c之一的压力信号的控制信号。因此,甚至可以使用静脉信号VP作为参考信号REF。只要泵脉冲支配压力信号(或者说在压力信号中占据主导),可以基于压力信号中的参考点之间的时间差(例如具有最大/最小斜率值的时间点、或最大值、最小值)来估计泵脉冲的速率。
滤波器块21、22可以包括模拟滤波器(由硬件组件实现)或数字滤波器(由处理器执行的软件实现)或其组合。在一个实施例中,每个滤波器块21、 22限定至少一个通带。如本领域已知的,滤波器的通带是通过滤波器的相干的频率范围。通带在下限截止频率和上限截止频率之间延伸,其通常被定义为滤波器的输出为标称的通带值-3dB时的频率。滤波器块21、22可以限定多个通带,但是下面的讨论涉及频率方面的最低通带。如上所述,滤波器块 21、22可以具有固定滤波器特性或相对于泵脉冲速率可调整的滤波器特性。
图6A示出了第一滤波器块21(虚线)和第二滤波器块22(实线)的滤波器特性的示例。如图所示,第一滤波器块21的通带Δf1在下限截止频率 fL1和上限截止频率fU1之间延伸,第二滤波器块22的通带Δf2在下限截止频率fL2和上限截止频率fU2之间延伸。上限截止频率fU1被设置(固定的或基于REF调整的)以显著地抑制或去除泵脉冲,并且可以抑制诸如心脏脉冲之类的其他干扰。为了相对于监测信号M1获得跟踪信号T1的期望特性,设计标准是fU2应该小于fU1,例如,fU2≤0.5·fU1,fU2≤0.2·fU1,fU2≤ 0.1·fU1或fU2≤·0.05fU1。该设计标准对于滤波器块21、22的所有实现方式都是有效的。在图6A中,fU1=0.1·fU2。如果基于REF调整上限截止频率 fU1,则也可以调整上限截止频率fU2以保持fU2和fU1之间的特定比例或差异。然而,也可以设想仅fU1是可调整的。在一个具体实施例中,fU1设置在0.1-1.0Hz的范围内。下限截止频率fL1、fL2不是关键的,但可以处于或略高于零。技术人员认识到,图6A中的滤波器特性可以由任何类型的常规低通(LP)滤波器来实现,以定义上限截止频率fU1、fU2,可选地与传统的高通(HP)滤波器结合以定义下限截止频率fL1、fL2(如果不为零的话)。 LP滤波器的示例包括巴特沃斯滤波器(Butterworthfilters)、切比雪夫滤波器 (Chebyshev filter)、贝塞尔滤波器(Bessel filter)、椭圆滤波器和波滤波器。
图6B示出了当由根据泵脉冲的速率而定制的特定类型的数字LP滤波器、移动平均滤波器实现时的第一滤波器块21(虚线)和第二滤波器块22 (实线)的滤波器特性。因此,这样的滤波器基于REF进行调整。图6B中的示例示出了适用于1Hz脉冲速率的滤波器,并且示出了所得到的通带Δf1、Δf2。移动平均滤波器的工作原理参考静脉信号VP,如图7所示。为了产生电流滤波的采样,滤波器计算信号VP的时间窗内的最近期数据样本的平均值,时间窗口的长度被设置为对应于整个泵脉冲数。在实践中,泵脉冲的数量可能与整数稍微偏离,例如,如果信号VP的采样率与泵脉冲的速率不匹配,如果由REF给出的泵脉冲的速率存在不准确性,或者泵脉冲的速率在时间窗口长度被调整时在时间点之间变化。在本公开的上下文中,如果时间窗口内的脉冲数量偏离小于±10%,优选小于±5%,更优选小于±2%的整数,则时间窗口被认为是有效对应于整个泵脉冲数。在图7的例子中,滤波器块 21、22以相应的时间窗口ΔT1、ΔT2工作,这两个窗口都对应于信号VP中的整个泵脉冲数。如果第二滤波器块22对监测信号M1进行操作,例如,如图5所示,时间窗口ΔT2将代替地在监测信号M1中定义要平均的数据样本。为了相对于监测信号M1得到跟踪信号T1的期望特性,ΔT2应该大于ΔT1,例如,ΔT2≥2·ΔT1,ΔT2≥5·ΔT1,ΔT2≥10·ΔT1或ΔT2≥20·ΔT1。
应当理解,滤波器块21、22可以包括设计成去除静脉信号VP中的其他干扰(例如心脏脉冲)的附加滤波器。
回到图5,装置9还包括范围设置块24,其实现图3中的步骤303,并且被布置为接收由滤波器块22产生的跟踪信号T1。因此,块24被配置为调整检测范围以跟随信号T1中的变化。实现图3中的步骤304的比较块25被布置为接收由块24设置的检测范围和由块21产生的监测信号M1。因此,块25被配置为将信号M1的当前值与检测范围进行比较,并提供当前值是否超出检测范围的指示。实现图3中的步骤305-306的报警信号发生器26接收到该指示,并且可能产生报警信号AS以宣告VND事件发生。报警信号AS 经由信号接口10输出,并且可使设备1的控制单元进入上述安全状态。
如图5中虚线框所示,装置9和静脉传感器8a的组合可以看做包括产生监测和跟踪信号M1、T1的信号产生设备30。在所示实施例中,信号产生设备30包括静脉传感器8a和滤波器块21、22。还可以看到装置9包括断开或中断检测器40,其接收监测和跟踪信号M1、T1并宣布VND事件。在所示实施例中,中断发生器40包括范围设置块24、比较块25和报警信号发生器 26。
图8A至图8F示出了替代实施例。为了简洁起见,以下描述将集中在与图5中的实施例相比的差异上。因此,可以假定图5的描述同样适用于图8A 至图8F中的每一个,除非另有说明。
在图8A的实施例中,监测信号M1和跟踪信号T1都由压力传感器8a 产生,压力传感器8a因此包括滤波器块21、22。在本实施例中,滤波器块 21、22的滤波器特性是固定的。监测和跟踪信号M1、T1经由信号接口10 被装置9接收。在一个变型例(未示出)中,压力传感器8a仅包括第一滤波器块21,从而产生监测信号M1。第二滤波器块22布置在装置9中,以接收和处理用于产生跟踪信号T1的监测信号M1。
图8B中的实施例包括后处理块或信号调节器23,其被配置为提供由第一滤波器块21产生的监测信号M1的清洁版本。具体地,信号调节器23对监测信号M1进行操作以去除或抑制可能没有被块21充分去除的间歇性的干扰。这些干扰可能具有足够的幅值而导致由中断检测器40产生虚假报警。如果跟踪信号T1是通过监测信号M1的滤波产生的,则可能加剧虚假报警的风险,如图8B所示,这是因为监测信号M1中的干扰也可以迁移到跟踪信号 T1中,并且最终影响由块24设置的检测范围。因此,干扰可能对监测信号 M1和与之比较的检测范围都有影响。
信号调节器23可以被配置为检测和抑制监测信号M1中的有效幅度和/ 或特定持续时间的峰值。例如,监测信号M1的强间歇性峰值或波动可能由 EC回路1a的血流的短期意外堵塞引起,例如在扭结或夹紧血液管线之后。这种干扰通常具有短的持续时间,例如小于2秒,对病人、操作者或机器不构成任何重大风险,因此不会产生报警状况。信号调节器23可以被配置为使用任何常规的峰值检测技术来检测监测信号M1中的这种干扰。当检测到峰值时,信号调节器23可以通过基本上消除峰值的计算的数据样本段来替换峰值。图9中给出了一个例子,其示出了监测信号M1中的峰值pk。信号调节器23可以被配置为识别峰值pk的最大值pkmax并且估计峰值pk的开始时间点t1和结束时间点t2。例如,信号调节器23可以通过从pkmax的时间点减去和加上相应的固定时间来获得时间点t1、t2。然后,信号调节器23可以通过替换由任何合适的数学函数给出的计算的数据样本段替换t1和t2之间的数据样本来消除峰值pk。在所示示例中,计算出的段是连接t1和t2处的压力值的线性斜坡信号rs。可以想到,信号调节器23被配置为仅检测和去除具有特定持续时间的峰值,例如,少于2或5秒。信号调节器23不需要搜索监测信号M1中的最大值,而是可以可选地在正侧面和负侧面之间的特定持续时间内搜索足够陡峭的正侧面(flank)和负侧面(例如足够的绝对幅度的导数)。在这种变型例中,信号调节器23可以分别相对于正侧面和负侧面限定起始点和结束点t1、t2。
信号调节器23还可以被配置为去除或抑制监测信号M1中的预期的干扰。预期的干扰与设备1的操作有关。例如,透析机中预期的干扰可以源自血液或治疗流体的流速的变化,通过切换阀的重定向或限制或堵塞流体流动、对治疗流体的脱气、UF校准、透析机的操作模式的改变等。可以基于由设备1提供的一个或多个信号或附接到设备1的传感器来检测或预测干扰的起始点和结束点。这样的信号被统称为“干扰信号”,并在下面由DS表示。信号调节器23可以从信号接口10接收干扰信号DS,并且在干扰信号DS中识别监测信号M1中的干扰的至少一个时间点。如果干扰的原点是已知的并且干扰的形状是可重现的,则信号调节器23可以被配置为(从存储器12)检索用于干扰的模板并从监测信号M1中减去该模板。这种过滤技术从 WO2009/156174中可知,其通过引用并入本文。可替代地,可以以与上述相同的方式为计算出的数据样本段替换干扰。
在替代方式中,第二滤波器块22被配置为通过对静脉信号VP进行滤波来产生跟踪信号T1,装置9可以包括用于清洁监测信号M1的一个信号调节器23和用于清洁跟踪信号T1的一个信号调节器23,其中两个信号调节器 23如上所述操作,但是对不同的信号进行操作。
图8B中的实施例和图5中的实施例之间的进一步区别在于,为了降低虚假报警的风险的目的,中断检测器40被配置为基于干扰信号DS修改其操作。这可以通过禁用VND检测或通过降低发出报警信号AS的可能性来完成。如图8B所示,干扰信号DS可以被信号范围发生器24、比较模块25和报警信号发生器26中的任何一个使用。
在第一实现方式中,比较模块25被配置为在期望干扰的发生期间修改检测范围。这可以通过增大检测范围来实现,例如通过增大定义检测范围的偏移值来实现。检测范围可以在干扰后重置为其默认值,或者逐渐减小到默认值。
在第二实现方式中,信号范围发生器24被配置为在干扰期间将跟踪信号 T1设置为等于监测信号M1。这将有效地禁用VND检测,因为检测范围将跟随监测信号M1,使得监测信号M1不能落在检测范围之外。第二实现方式在图10中示例性示出,其示出了表示两个干扰开始的干扰信号DS,一个在干扰信号DS变高时,一个在干扰信号DS变低时。图10还示出了包括干扰 (粗线表示)的监测信号M1,以及通过从跟踪信号(未示出)中减去固定偏移值而设置的下限M1L。信号范围发生器24被配置为基于干扰信号DS确定相应干扰的起始时间t1。信号DS中的每个干扰指示与相应的预期持续时间ΔD1、ΔD2相关联,以允许信号范围发生器24估计相应干扰的结束时间 t2。可替代地,如果干扰信号DS允许,则信号范围发生器24可以直接从干扰信号DS确定结束时间t2。然后,当在t1和t2之间的时间段中产生检测范围时,信号范围发生器24将跟踪信号T1设置成等于监测信号M1,使得极限值M1L在相应干扰期间偏离监测信号M1,如图10所示。
在第三实现方式中,报警信号发生器26被配置为通过忽略由比较模块 25产生的任何数据来禁用在干扰期间对潜在VND事件的检测。
在第四实现方式中,报警信号发生器26被配置为延长检测时间段,在此期间监测信号M1必须落在检测范围之外后才可宣告潜在的VND事件。因此,在干扰期间,报警信号发生器26将延长时间段添加到在正常操作期间(在没有干扰的情况下)由报警信号发生器26使用的预定检测时间段。
在图8B的实施例中,可以在相应干扰的结束时间t2在第二滤波器块22 中重新开始产生跟踪信号T1,使得产生跟踪信号T1以表示干扰后的静脉信号VP。这将进一步减轻干扰对VND监测准确性的影响。
图8C的实施例包括控制信号发生器27,其被配置为产生通过信号接口 10输出的控制信号CS,并使设备1的控制单元停止血液泵4。当报警信号发生器26指示潜在的VND事件时控制信号发生器27可以产生控制信号CS,以便开始验证,如参照图3中的步骤306所讨论的。在产生控制信号CS之后,激活验证块28以在预定的检测时间段期间监测静脉信号VP以确定心脏脉冲的存在。在检测时间段之后,验证块28输出验证结果信号VR。如果信号VR指示在检测时间段期间没有心脏脉冲,则报警信号发生器26产生报警信号AS,否则操作控制信号发生器27被操作以产生控制信号CS以启动血液泵4,并且报警信号发生器26恢复对比较块25的输出的分析。
在图8B和图8C实施例的组合中,在具有由块23检测到的干扰的时间段期间或在由干扰信号DS指示的干扰的时间段期间,特别是在具有频繁干扰的时间段中,装置9可以被配置为产生控制信号CS,从而使设备1的控制单元降低血液泵4的速度,从而降低EC回路1a中的血液流速。这在装置9 由于干扰而未注意到VND事件的情况下将降低病人的风险。
图8D中的实施例包括静脉传感器8a和动脉传感器8b,并且组合块20 被配置为将静脉信号VP和动脉信号AP功能地组合成中间信号IS,然后以与图5的实施例中的静脉信号VP相同的方式进行处理。在一个实现方式中,组合块20产生中间信号IS以表示静脉信号VP和动脉信号AP之间的差(加权或非加权)。已经发现这样的中间信号IS减少了由病人移动引起的监测信号M1中的干扰的发生。病人移动将导致静脉信号VP和动脉信号AP中的类似干扰,因此这些干扰在中间信号IS中被取消或至少显著降低。动脉信号 AP基本上不受VND事件的影响,因此可以在中间信号IS中检测到VND事件。在一个变型例中,组合块20被配置为产生中间信号IS以表示静脉信号 VP和动脉信号AP中的相应数据样本的乘积(加权或非加权)。可以看出,这样的中间信号IS响应于VND事件,同时对静脉信号VP和动脉信号AP 中类似出现的干扰的敏感性降低。
图8E示出了图8D中的实施例的变型。装置9包括分别对静脉信号VP 和动脉信号AP进行操作的两个第一滤波器块21、21',以产生静脉中间信号 IS1和动脉中间信号IS2。块21、21'可以相同但不是必须相同。组合块20被配置为将中间信号IS1、IS2功能地组合为差或乘积,其可以加权,也可以不加权,并且输出监测信号M1,然后以与图5的实施例中的监测信号M1相同的方式处理该监测信号。目前认为图8E中的实施例具有提高提供给块24和 25的信号的质量的优点。
图11示出了在图8E的实施例中产生的监测信号M1和跟踪信号T1。图 11还示出了由图8E中的块21产生的静脉中间信号IS1。。信号IS1的大幅波动是病人移动的结果。如所看到的,监测信号M1中基本上不存在这些波动,因此监测信号M1保持在由限值M1L,M1H表示的检测范围内。
图8F的实施例包括静脉传感器8a和动脉传感器8b。类似于图8E的实施例,装置9包括辅助第一滤波器块21',该辅助第一滤波器块21'除了由第一滤波器块21产生的静脉监测信号M1之外还对动脉信号AP操作以产生辅助或动脉监测信号M2。辅助第二滤波器块22'除了由第二滤波器块22产生的静脉跟踪信号T1之外,还对动脉监测信号M2上操作以产生辅助或动脉跟踪信号T2。范围设置块24被配置为除了相对于静脉跟踪信号T1设置静脉检测范围M1L、M1H之外,还相对于动脉跟踪信号T2设置辅助或动脉检测范围M2L、M2H。比较块25被配置为除了将静脉监测信号M1与静脉检测范围M1L进行比较之外,还将动脉监测信号M2与动脉检测范围M2L、M2H 进行比较。报警信号发生器26被配置为对静脉和动脉监测信号M1、M2进行联合分析,以检测潜在的VND事件。例如,如果在检测时间段期间静脉监测信号M1落在静脉检测范围之外,只要在检测时间段期间动脉监测信号 M2没有也落在动脉检测范围之外,则发生器26可以宣告潜在的VND事件。如果两个监测信号M1、M2都在其各自的检测范围之外,特别是如果两个监测信号M1、M2在各自的检测范围内沿相同的方向移动,那么信号变化很可能是由两个压力信号VP、AP而不是VND事件引起的,并且不应产生报警信号AS。如参照图8D所述,这种干扰可能由病人移动引起。
图12A示出了图8F的实施例中由块21、21'产生的静脉和动脉监测信号 M1、M2。VND事件发生在时间点td。在时间点te,块25检测到静脉监测信号M1低于下限值M1L,下限值M1L由块24相对于由块22产生的静脉跟踪信号(未示出)设置,以表示静脉信号VP的长期变化。同时,块25确定动脉监测信号M2保持在下限值M2L之上,该下限值M2L由块24'相对于由块22'产生的动脉跟踪信号(未示出)设置,以表示动脉信号AP的长期变化。块26对块25的输出进行联合分析,并得出结论:发生了潜在的VND。图 12B示出了在图8F的实施例中病人移动期间产生的静脉和动脉监测信号 M1、M2,具体地,当病人的手臂(具有血管通路入口3,参见图1))从较高的高度移动到较低的高度时。在类似的时间点,病人移动使得监测信号 M1、M2两者都下降到相应的下限值M1L、M2L以下。在图12B中,监测信号M1、M2中的这个下降在时间点te被块22、22'检测到。由于在信号M1、 M2两者中都出现下降,所以块26忽略潜在的报警状态。
本领域技术人员认识到,关于图8A-8E描述的实施例及其变型例的一个或多个区别特征可以与图5中的实施例及其变型组合。
监测装置9可以由在一个或多个通用或专用计算设备上运行的专用软件 (或固件)来实现。在这种情况下,应当理解,这种计算设备的“元件”或“装置”是指方法步骤的概念等价物;元件/装置和特定的硬件或软件例程之间并不一定一一对应。一块硬件有时包括不同的装置/元件。例如,当执行一个指令时,处理单元用作一个元件/装置,但是当执行另一个指令时用作另一个元件/装置。此外,在某些情况下,可以通过一个指令来实现一个元件/装置,但是在一些其他情况下可以通过多个指令来实现。这样的软件控制计算设备可以包括一个或多个处理单元(参见图1中的附图标记11),例如CPU (“中央处理单元”)、DSP(“数字信号处理器”)、ASIC(“专用集成电路”)、分立模拟和/或数字组件或一些其他可编程逻辑设备、诸如FPGA(“现场可编程门阵列”)。装置9还可以包括系统存储器和系统总线,其将包括系统存储器(参见图1中的附图标记12)的各种系统组件耦合到处理单元。系统总线可以是包括使用各种总线架构中的任何一种的存储器总线或存储器控制器、外围总线和本地总线的几种类型的总线结构中的任何一种。系统存储器可以包括诸如只读存储器(ROM)、随机存取存储器(RAM)和闪速存储器之类的易失性和/或非易失性存储器形式的计算机存储介质。专用软件可以存储在系统存储器中,或存储在计算设备中包括或可访问的其他可移动/不可移动的易失性/非易失性计算机存储介质中,例如磁性介质、光学介质、闪存卡、数字磁带、固态RAM、固态ROM等。装置9可以包括一个或多个通信接口 (参见图5和图8A至图8F中的附图标记10),诸如串行接口、并行接口、 USB接口、无线接口、网络适配器等,以及一个或多个数据采集设备,例如 A/D转换器。专用软件可以在任何合适的计算机可读介质(暂时性或非暂时性的,包括记录介质或只读存储器)上提供给装置9。
还可以想到,一些(或全部)元件/装置由专用硬件(例如FPGA、ASIC 或离散电子部件的组装件(电阻器、电容器、运算放大器、晶体管、滤波器等))完全或部分地实现,如本领域众所周知的。
应当强调,本发明不限于数字信号处理,而是完全可以通过模拟设备的组合来实现。
虽然已经结合目前被认为是最实际和优选的实施例描述了本发明,但是应当理解,本发明不限于所公开的实施例,相反,本发明旨在覆盖包括在所附权利要求的精神和范围内的各种修改和等效布置。
例如,本发明的监测技术也适用于基于动脉信号AP(可选地与静脉信号 VP组合)来检测用于血液移除的接入装置2'从血管通路入口3的断开,完全类似于前面的描述。
此外,本发明的技术同样适用于单针透析。
本发明的监测技术还可应用于含有非血液的其他液体并连接到人或动物对象的心血管系统的流体系统,包括用于静脉内治疗的系统、输注系统、自动腹膜透析(APD)系统等。这种流体包括医疗溶液、透析液、输液、水等。
应该强调,含有流体的系统(或流体容纳系统)不需要涉及人或动物对象。例如,本发明的监测技术可用于检测两台机器之间或机器与容器之间的流体连接的中断。
通常,本发明的监测技术适用于检测任何类型的第一和第二流体容纳系统之间的流体连接的中断,只要在其中一个流体容纳系统中测量的流体压力在如下的意义上响应于中断:即中断引起测量到的流体压力的可检测变化。
本发明的技术不需要对实时数据进行操作,而是可以用于处理诸如先前记录的压力信号之类的离线数据。
Claims (35)
1.一种用于检测第一流体容纳系统(1a,1b)和第二流体容纳系统(100)之间的流体连接的中断的监测系统,所述监测系统包括:
信号产生装置(30),被配置为产生表示关于第一流体容纳系统(1a,1b)的流体压力并且响应于流体连接的中断的监测信号M1,以及
中断检测器(40),被配置为通过将监测信号M1的当前压力值与检测范围进行比较来检测指示中断的状况,
其中所述信号产生装置(30)还被配置为产生与监测信号M1相对应并且比所述监测信号M1随时间更平滑的跟踪信号T1,以及
其中所述中断检测器(40)还被配置为将所述检测范围设置为与所述跟踪信号T1成给定的关系,使得所述检测范围跟随所述跟踪信号T1的变化。
2.根据权利要求1所述的监测系统,其中所述信号产生装置(30)被配置为产生所述监测信号M1以表示比所述跟踪信号T1更快的流体压力变化。
3.根据权利要求1或2所述的监测系统,其中所述信号产生装置(30)包括用于产生所述监测信号M1的第一信号滤波器(21)和用于产生所述跟踪信号T1的第二信号滤波器(22)。
4.根据权利要求3所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)限定在下限频率和上限频率之间延伸的相应的最低频率通带,其中所述第二信号滤波器(22)的上限频率在频率上比所述第一信号滤波器(21)的上限频率低。
5.根据权利要求4所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)包括相应的低通滤波器,其中所述上限频率是相应低通滤波器的截止频率。
6.根据权利要求4所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)的上限频率的比率至少为2。
7.根据权利要求6所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)的上限频率的比率至少为5。
8.根据权利要求7所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)的上限频率的比率至少为10。
9.根据权利要求8所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)的上限频率的比率至少为20。
10.根据权利要求3所述的监测系统,其中所述第一信号滤波器(21)和所述第二信号滤波器(22)中的至少一个包括移动平均滤波器,所述移动平均滤波器被配置为基于输入信号的信号值产生滤波后的值的时间序列,其中每个滤波后的值被计算为在输入信号中的时间窗口内的信号值的平均值,所述移动平均滤波器被配置为基于指示所述第一流体容纳系统(1a,1b)或所述第二流体容纳系统(100)中的重复脉冲发生器的当前工作频率的参考信号设置时间窗口的长度,以有效地匹配由所述重复脉冲发生器产生的整个脉冲数。
11.根据权利要求10所述的监测系统,其中所述移动平均滤波器包括在所述第一信号滤波器(21)和所述第二信号滤波器(22)中,并且其中所述第一信号滤波器(21)中的移动平均滤波器被配置为设置时间窗口的长度以有效地匹配第一数量的脉冲,并且所述第二信号滤波器(22)中的移动平均滤波器被配置为设置时间窗口的长度以有效地匹配第二数量的脉冲,并且其中第二数量大于第一数量。
12.根据权利要求11所述的监测系统,其中所述第二数量与所述第一数量的比率至少为2。
13.根据权利要求12所述的监测系统,其中所述第二数量与所述第一数量的比率至少为5。
14.根据权利要求13所述的监测系统,其中所述第二数量与所述第一数量的比率至少为10。
15.根据权利要求14所述的监测系统,其中所述第二数量与所述第一数量的比率至少为20。
16.根据权利要求4所述的监测系统,其中所述第一信号滤波器(21)和第二信号滤波器(22)被配置为有效地去除与所述第一流体容纳系统(1a,1b)和所述第二流体容纳系统(100)中的一个或多个重复脉冲发生器的工作频率相对应的频率分量。
17.根据前述权利要求1或2所述的监测系统,其中所述信号产生装置(30)包括至少一个压力传感器,并且被配置为基于由所述至少一个压力传感器产生的至少一个压力信号产生所述监测信号M1。
18.根据权利要求17所述的监测系统,其中所述信号产生装置(30)被配置为基于所述至少一个压力信号或所述监测信号M1产生所述跟踪信号T1。
19.根据权利要求17所述的监测系统,其中所述信号产生装置(30)还包括信号调节器(23),所述信号调节器(23)被配置为处理所述监测信号M1和/或所述跟踪信号T1,将如此处理的监测信号M1和/或跟踪信号T1供应到中断检测器(40),所述信号调节器(23)被配置为检测所述监测信号M1和/或所述跟踪信号T1中的不期望的峰值,并且通过用将相应不期望的峰值的起始点与相应不期望的峰值的结束点连接的信号段替换相应的不期望峰值来有效地去除相应的不期望的峰值。
20.根据前述权利要求1或2所述的监测系统,其中所述中断检测器(40)还被配置为接收指示所述监测信号M1中的预测或实际干扰的时间点的干扰信号,并基于所述干扰信号,采取预防措施以减少预测或实际干扰对指示中断的状况检测的影响。
21.根据权利要求20所述的监测系统,其中所述中断检测器(40)被配置为基于所述预测或实际干扰的时间点来确定干扰时间段,并且在相应的干扰时间段期间禁用对指示中断的状况的检测。
22.根据权利要求21所述的监测系统,其被配置为在相应的干扰时间段之后使得所述信号产生装置(30)基于所述监测信号M1或至少一个压力信号重新开始产生所述跟踪信号T1,同时排除来自相应的干扰时间段期间的数据样本。
23.根据权利要求21所述的监测系统,其中所述中断检测器(40)被配置为通过以下之一来禁用所述状况的检测:在相应的干扰时间段期间使得所述监测信号M1被设置为等于所述跟踪信号T1,并且增大所述检测范围。
24.根据权利要求20所述的监测系统,其中所述中断检测器(40)被配置为应用中断检测规则,所述中断检测规则要求在预定义的检测时间段期间所述监测信号M1落在所述检测范围之外,并且其中所述中断检测器(40)被配置为通过在相应的预测或实际干扰期间增加延长时间段来增大所述预定义的检测时间段。
25.根据权利要求1或2所述的监测系统,其中所述信号产生装置(30)还被配置为产生所述监测信号M1,以表示来自第一压力传感器和第二压力传感器的第一压力信号和第二压力信号的功能组合,所述第一压力信号响应于所述流体连接的中断,并且所述第二压力信号不响应于所述流体连接的中断,其中所述监测信号M1被产生以表示存在于所述第一压力传感器和所述第二压力传感器两者中的流体压力的变化,同时抑制存在于所述第一压力传感器和所述第二压力传感器两者中的流体压力的变化。
26.根据权利要求25所述的监测系统,其中所述功能组合是以下之一:所述第一压力信号和所述第二压力信号的乘积或被产生为表示所述第一压力信号的第一中间信号和被产生为表示所述第二压力信号的第二中间信号的乘积,所述第一压力信号和所述第二压力信号之间的差或被产生为表示所述第一压力信号的第一中间信号和被产生为表示所述第二压力信号的第二中间信号之间的差。
27.根据权利要求1或2所述的监测系统,其中所述信号产生装置(30)还被配置为产生辅助监测信号M2以及辅助跟踪信号T2,所述辅助监测信号M2表示相对于所述第一流体容纳系统(1a,1b)的第二流体压力并且不响应于流体连接的中断,所述辅助跟踪信号T2对应于所述辅助监测信号M2并且比所述辅助监测信号M2随时间更平滑,并且将辅助检测范围设置为与所述辅助跟踪信号T2成给定的关系,使得所述辅助检测范围跟随所述辅助跟踪信号T2的变化,其中中断检测器(40)被配置为:为了检测指示中断的状况,联合分析与检测范围相关的监测信号M1和与辅助检测范围相关的辅助监测信号M2。
28.根据权利要求17所述的监测系统,其还被配置为当检测到指示中断的状况时,产生控制信号,所述控制信号用于禁用所述第一流体容纳系统(1a,1b)中的一个或多个脉冲发生器,分析至少一个压力信号以检测源自所述第二流体容纳系统(100)中的一个或多个脉冲发生器的至少一个压力脉动,并且认为如果至少一个压力信号中不存在所述至少一个压力脉动,则产生报警信号。
29.根据前述权利要求1或2所述的监测系统,其中所述信号产生装置(30)还被配置为产生所述监测信号M1和所述跟踪信号T1,以显著地抑制源自所述第一流体容纳系统(1a,1b)和所述第二流体容纳系统(100)中的一个或多个重复脉冲发生器的脉动。
30.一种用于检测第一流体容纳系统(1a,1b)和第二流体容纳系统(100)之间的流体连接的中断的监测系统,所述监测系统包括:
用于产生表示关于第一流体容纳系统(1a,1b)的流体压力并且响应于流体连接中断的监测信号M1的装置,以及
用于通过将监测信号M1的当前压力值与检测范围进行比较来检测指示中断的状况的装置,所述监测系统还包括:
用于产生与监测信号M1相对应并比所述监测信号M1随时间更平滑的跟踪信号T1的装置,以及
用于将所述检测范围设置为与所述跟踪信号T1成给定的关系,使得所述检测范围跟随所述跟踪信号T1的变化的装置。
31.一种检测第一流体容纳系统(1a,1b)和第二流体容纳系统(100)之间的流体连接的中断的方法,所述方法包括:
产生表示关于第一流体容纳系统(1a,1b)的流体压力并且响应于流体连接的中断的监测信号M1,以及
通过将监测信号M1的当前压力值与检测范围进行比较来检测指示中断的状况,所述方法还包括:
产生与监测信号M1相对应并比所述监测信号M1随时间更平滑的跟踪信号T1,
将所述检测范围设置为与所述跟踪信号T1成给定的关系,使得所述检测范围跟随所述跟踪信号T1的变化。
32.一种计算机可读介质,包括用于使得数据处理器(11)执行权利要求31所述的方法的处理指令。
33.一种监测系统,包括:
信号产生装置(30),被配置为产生表示关于体外血液回路的流体压力的监测信号M1,所述体外血液回路具有第一端(2')和第二端(2”),用于与病人的血管系统流体连通并且包括用于使来自第一端(2')的血液通过血液处理装置(5)循环到第二端(2”)的血液泵(4),所述监测信号M1被产生为响应于所述体外血液回路与所述血液泵(4)下游的病人的血管系统的断开,以及
中断检测器(40),被配置为通过将监测信号M1的当前压力值与检测范围进行比较来检测指示断开的状况,
其中所述信号产生装置(30)还被配置为产生与所述监测信号M1相对应并且比所述监测信号M1随时间而更平滑的跟踪信号T1,以及
其中所述中断检测器(40)还被配置为将所述检测范围设置为与所述跟踪信号T1成给定的关系,使得所述检测范围跟随所述跟踪信号T1的变化。
34.根据权利要求33所述的监测系统,其中所述信号产生装置(30)被配置为产生所述监测信号M1以包括表示以下之一的压力值的时间序列:
在血液泵(4)和第二端(2”)之间的位置处的体外血液回路中的返回侧流体压力;
在血液泵(4)和第二端(2”)之间的位置处的体外血液回路中的返回侧流体压力与在第一端(2')和血液泵(4)之间的位置处的抽出侧流体压力的乘积;以及
在血液泵(4)和第二端(2”)之间的位置处的体外血液回路中的返回侧流体压力与第一端(2')和血液泵(4)之间的位置处的抽出侧流体压力之间的差。
35.一种用于体外血液处理的设备,包括:
用于在第一端(2')和第二端(2”)处与病人的血管系统流体连通的体外血液回路,所述体外血液回路包括用于使来自第一端(2')的血液通过血液处理装置(5)循环到第二端(2”)的血液泵(4);
信号产生装置(30),被配置为产生表示关于所述体外血液回路的流体压力并且响应于所述体外血液回路与所述血液泵(4)下游的病人的血管系统的断开的监测信号M1;以及
中断检测器(40),被配置为通过将所述监测信号M1的当前压力值与检测范围进行比较来检测指示断开的状况;
其中所述信号产生装置(30)还被配置为产生与所述监测信号M1相对应并且比所述监测信号M1随时间更平滑的跟踪信号T1;以及
其中所述中断检测器(40)还被配置为将所述检测范围设置为与所述跟踪信号T1成给定的关系,使得所述检测范围跟随所述跟踪信号T1的变化。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1550881-5 | 2015-06-25 | ||
SE1550881 | 2015-06-25 | ||
PCT/EP2016/062617 WO2016206946A1 (en) | 2015-06-25 | 2016-06-03 | Detection of a disruption of a fluid connection between two fluid containing systems |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107787231A CN107787231A (zh) | 2018-03-09 |
CN107787231B true CN107787231B (zh) | 2020-12-29 |
Family
ID=56097141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680036625.0A Active CN107787231B (zh) | 2015-06-25 | 2016-06-03 | 检测两个流体容纳系统之间的流体连接的中断的系统和方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11077240B2 (zh) |
EP (1) | EP3313473B1 (zh) |
KR (1) | KR102584051B1 (zh) |
CN (1) | CN107787231B (zh) |
AU (1) | AU2016284617B2 (zh) |
CA (1) | CA2985526A1 (zh) |
ES (1) | ES2794750T3 (zh) |
WO (1) | WO2016206946A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10089443B2 (en) | 2012-05-15 | 2018-10-02 | Baxter International Inc. | Home medical device systems and methods for therapy prescription and tracking, servicing and inventory |
US11529449B2 (en) * | 2019-04-15 | 2022-12-20 | Medtronic, Inc. | Medical device dislodgment detection |
US11160503B2 (en) * | 2019-04-23 | 2021-11-02 | Fresenius Medical Care Holdings, Inc. | Wearable continuous vascular access monitor |
EP4205778A1 (en) * | 2021-12-30 | 2023-07-05 | Gambro Lundia AB | Apparatus for extracorporeal blood treatment |
DE102022102274A1 (de) * | 2022-02-01 | 2023-08-03 | B.Braun Avitum Ag | Restless Button Zugangshämorrhagien |
EP4249011A1 (en) * | 2022-03-24 | 2023-09-27 | Nipro Corporation | Method and apparatus for blood vessel needle dislodgement detection |
US11931501B2 (en) | 2022-07-07 | 2024-03-19 | Evan T. Neville | Dialysis sheath for use in accessing a dialysis arteriovenous graft or fistula and methods of use |
WO2024154629A1 (ja) * | 2023-01-18 | 2024-07-25 | ニプロ株式会社 | 血液浄化装置 |
EP4417115A1 (en) * | 2023-02-17 | 2024-08-21 | Koninklijke Philips N.V. | Blood pressure signal processing |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328162B1 (en) | 1983-04-11 | 1993-02-10 | Ivac Corporation | Fault detection apparatus for parenteral infusion system and method of detecting a fault in a parenteral infusion system |
DE60035474T2 (de) | 1999-12-22 | 2008-03-13 | Gambro Inc., Lakewood | Vorrichtung zur extrakorporalen Blutbehandlung |
DE10201109C1 (de) * | 2002-01-15 | 2003-01-23 | Fresenius Medical Care De Gmbh | Verfahren und Vorrichtung zur Detektion einer Leckage in einem Flüssigkeitssystem einer Blutbehandlungsvorrichtung |
US6796955B2 (en) * | 2002-02-14 | 2004-09-28 | Chf Solutions, Inc. | Method to control blood and filtrate flowing through an extracorporeal device |
JP4094600B2 (ja) * | 2004-10-06 | 2008-06-04 | 日機装株式会社 | 血液浄化装置 |
DE102006032815A1 (de) | 2006-07-14 | 2008-01-17 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Überwachung eines extrakorporalen Blutkreislaufs |
WO2008057478A2 (en) * | 2006-11-03 | 2008-05-15 | The Regents Of The University Of Michigan | Method and system for determining volume flow in a blood conduit |
US7938792B2 (en) | 2007-10-01 | 2011-05-10 | Baxter International Inc. | Adaptive algorithm for access disconnect detection |
DE102008015832B4 (de) | 2008-03-27 | 2013-08-22 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Überwachung eines Gefäßzugangs sowie extrakorporale Blutbehandlungsvorrichtung mit einer Vorrichtung zur Überwachung eines Gefäßzugangs |
CN102076369B (zh) * | 2008-06-26 | 2014-04-23 | 甘布罗伦迪亚股份公司 | 用于监控流体连接的完整性的方法和装置 |
RU2525369C2 (ru) | 2008-06-27 | 2014-08-10 | ЭкссонМобил Рисерч энд Энджиниринг Компани | Способ и устройство для повышения в реальном времени эффективности работы трубопровода для транспортировки текучей среды |
JP5231964B2 (ja) | 2008-12-09 | 2013-07-10 | 日機装株式会社 | 血液浄化装置 |
JP5231967B2 (ja) | 2008-12-11 | 2013-07-10 | 日機装株式会社 | 血液浄化装置 |
US8457908B2 (en) | 2009-06-11 | 2013-06-04 | University Of Washington | Sensing events affecting liquid flow in a liquid distribution system |
DE102009054395A1 (de) | 2009-11-24 | 2011-06-01 | Fresenius Medical Care Deutschland Gmbh | Verfahren zum Anpassen von Grenzwertfenstern, Steuervorrichtung, medizinische Behandlungsvorrichtung und medizinische Überwachungsvorrichtung |
US10980431B2 (en) * | 2009-12-28 | 2021-04-20 | Gambro Lundia Ab | Apparatus and method for prediction of rapid symptomatic blood pressure decrease |
US9632018B2 (en) | 2009-12-28 | 2017-04-25 | Gambro Lundia Ab | Method and device for monitoring the integrity of a connection system |
EP2519278B1 (en) * | 2009-12-28 | 2015-01-28 | Gambro Lundia AB | Method and device for detecting a fault condition |
ES2442875T3 (es) | 2010-04-28 | 2014-02-14 | Gambro Lundia Ab | Método y dispositivo para monitorizar un estado de un conducto de sangre en una máquina para tratamiento de sangre extracorpóreo |
ES2479618T3 (es) * | 2010-12-22 | 2014-07-24 | Gambro Lundia Ab | Método y sistema para detectar o verificar un circuito de sangre conectado a una consola de tratamiento de sangre extracorpóreo |
JP2013085635A (ja) * | 2011-10-17 | 2013-05-13 | Alps Electric Co Ltd | 針抜け検知装置 |
EP2941282B1 (en) | 2013-01-07 | 2019-07-31 | Henry Ford Health System | Device for detecting irregular placement of an extracorporeal vascular access needle |
CA2949987C (en) * | 2014-05-27 | 2023-01-10 | Deka Products Limited Partnership | Systems and methods for detecting vascular access disconnection |
US9864952B2 (en) * | 2014-05-27 | 2018-01-09 | Genesys Telecommunications Laboratories, Inc. | Controlled question and answer knowledge system management confirming customer does not want to terminate/cancel service/relationship |
-
2016
- 2016-06-03 CN CN201680036625.0A patent/CN107787231B/zh active Active
- 2016-06-03 KR KR1020187002172A patent/KR102584051B1/ko active Active
- 2016-06-03 AU AU2016284617A patent/AU2016284617B2/en active Active
- 2016-06-03 EP EP16726605.5A patent/EP3313473B1/en active Active
- 2016-06-03 US US15/573,285 patent/US11077240B2/en active Active
- 2016-06-03 WO PCT/EP2016/062617 patent/WO2016206946A1/en active Application Filing
- 2016-06-03 CA CA2985526A patent/CA2985526A1/en active Pending
- 2016-06-03 ES ES16726605T patent/ES2794750T3/es active Active
-
2021
- 2021-07-22 US US17/383,091 patent/US12144916B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107787231A (zh) | 2018-03-09 |
US20180126062A1 (en) | 2018-05-10 |
KR20180026464A (ko) | 2018-03-12 |
US11077240B2 (en) | 2021-08-03 |
AU2016284617B2 (en) | 2020-05-07 |
US20210346586A1 (en) | 2021-11-11 |
CA2985526A1 (en) | 2016-12-29 |
US12144916B2 (en) | 2024-11-19 |
EP3313473A1 (en) | 2018-05-02 |
AU2016284617A1 (en) | 2017-11-23 |
WO2016206946A1 (en) | 2016-12-29 |
ES2794750T3 (es) | 2020-11-19 |
KR102584051B1 (ko) | 2023-09-27 |
EP3313473B1 (en) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107787231B (zh) | 检测两个流体容纳系统之间的流体连接的中断的系统和方法 | |
US9612182B2 (en) | Method and device for detecting a fault condition | |
KR101647850B1 (ko) | 혈관 엑세스를 모니터링하는 방법 및 장치, 및 혈관 엑세스를 모니터링하는 장치를 포함하는 체외 혈액 처리 장치 | |
JP5587289B2 (ja) | フロー回路をモニタリングするための方法およびデバイス | |
US9632018B2 (en) | Method and device for monitoring the integrity of a connection system | |
US9427513B2 (en) | Detecting blood path disruption in extracorpreal blood processing | |
US10569005B2 (en) | Device and method for disruption detection | |
US20090292236A1 (en) | Method and device for monitoring an extracorporeal blood circuit | |
US9474846B2 (en) | System and method for detecting venous needle dislodgement | |
KR20150047133A (ko) | 주기적 펄스들의 억제를 위한 압력 신호들의 필터링 | |
AU2014234479A1 (en) | Monitoring of cardiac arrest in a patient connected to an extracorporeal blood processing apparatus | |
US10625013B2 (en) | Detection of a disruption of a fluid connection between two fluid containing systems | |
US11058810B2 (en) | Detection of a disruption of a fluid connection between two fluid containing systems | |
CN108136101B (zh) | 用于以基于压力的方式识别血块的设备、系统和方法 | |
WO2023126315A1 (en) | Apparatus for extracorporeal blood treatment. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |