CN107785537A - A kind of method of modifying of new type lithium ion battery anode pole piece, its purposes and pole piece - Google Patents
A kind of method of modifying of new type lithium ion battery anode pole piece, its purposes and pole piece Download PDFInfo
- Publication number
- CN107785537A CN107785537A CN201710771251.3A CN201710771251A CN107785537A CN 107785537 A CN107785537 A CN 107785537A CN 201710771251 A CN201710771251 A CN 201710771251A CN 107785537 A CN107785537 A CN 107785537A
- Authority
- CN
- China
- Prior art keywords
- pole piece
- lithium
- ion battery
- coating
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 44
- 238000000576 coating method Methods 0.000 claims abstract description 44
- 239000007774 positive electrode material Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000002002 slurry Substances 0.000 claims abstract description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 15
- 229910052744 lithium Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 239000011149 active material Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 claims 4
- 239000002253 acid Substances 0.000 claims 4
- 239000010941 cobalt Substances 0.000 claims 4
- 229910017052 cobalt Inorganic materials 0.000 claims 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 4
- OVAQODDUFGFVPR-UHFFFAOYSA-N lithium cobalt(2+) dioxido(dioxo)manganese Chemical compound [Li+].[Mn](=O)(=O)([O-])[O-].[Co+2] OVAQODDUFGFVPR-UHFFFAOYSA-N 0.000 claims 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 3
- 239000005864 Sulphur Substances 0.000 claims 2
- 239000005030 aluminium foil Substances 0.000 claims 2
- 150000001336 alkenes Chemical class 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910001453 nickel ion Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 abstract description 17
- 239000011888 foil Substances 0.000 abstract description 17
- 238000002715 modification method Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 239000011230 binding agent Substances 0.000 description 12
- 239000006258 conductive agent Substances 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 239000011267 electrode slurry Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 5
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 229940116007 ferrous phosphate Drugs 0.000 description 4
- 229910000155 iron(II) phosphate Inorganic materials 0.000 description 4
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 description 1
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种新型锂离子电池正极极片、其用途及极片的修饰方法,该方法包含:步骤1,制备修饰极片:将含有第一材料的浆料涂覆在铝箔一侧形成第一涂层,烘干,得到修饰极片;步骤2,将含有正极活性材料的浆料涂覆在上述修饰极片的第一涂层上形成第二涂层,烘干,得到锂离子电池修饰正极极片;其中,该第一材料的工作电压平台低于正极活性材料。该修饰方法操作简便,具有普适性,易于工业化。采用本发明的修饰正极极片组装的锂离子电池在充放电过程可以缩短锂离子/电子的传输路径,降低界面阻抗,带来较高的充放电效率、放电比容量以及优异的倍率性能。
The invention discloses a novel lithium-ion battery positive pole piece, its use and a method for modifying the pole piece. The method comprises: step 1, preparing a modified pole piece: coating a slurry containing a first material on one side of an aluminum foil to form The first coating is dried to obtain a modified pole piece; step 2, the slurry containing the positive electrode active material is coated on the first coating of the above-mentioned modified pole piece to form a second coating, and dried to obtain a lithium ion battery Modified positive pole piece; wherein, the operating voltage platform of the first material is lower than that of the positive active material. The modification method is simple to operate, universal and easy to industrialize. The lithium ion battery assembled with the modified positive pole piece of the present invention can shorten the transmission path of lithium ions/electrons during the charge and discharge process, reduce the interface impedance, and bring higher charge and discharge efficiency, discharge specific capacity and excellent rate performance.
Description
技术领域technical field
本发明属于电化学领域,涉及一种电池正极制备方法,特别涉及一种对锂离子电池正极极片进行修饰的方法。The invention belongs to the field of electrochemistry, and relates to a method for preparing a positive electrode of a battery, in particular to a method for modifying a positive pole piece of a lithium ion battery.
背景技术Background technique
随着经济与社会的发展,能源短缺已成为全球各国面临的严峻问题,这促使人类不断探寻新型环保能源。与传统的镉镍、氢镍电池相比,锂离子电池具有比能量高、工作电压高、应用温度范围宽、自放电率低、循环寿命长等优点,被广泛应用于移动电话、笔记本电脑和其他便携式电器,并逐步向大功率系统如电动汽车、智能电网、卫星以及分布式能源系统等领域拓展。With the development of economy and society, energy shortage has become a serious problem faced by countries all over the world, which prompts human beings to continuously explore new environmentally friendly energy sources. Compared with traditional nickel-cadmium and nickel-hydrogen batteries, lithium-ion batteries have the advantages of high specific energy, high working voltage, wide application temperature range, low self-discharge rate, long cycle life, etc., and are widely used in mobile phones, notebook computers and Other portable electrical appliances, and gradually expand to high-power systems such as electric vehicles, smart grids, satellites, and distributed energy systems.
从目前国内外发展情况来看,世界各国也都对高比能量化学储能电源提出了中长期发展规划,比如NASA(National Aeronautics and Space Administration, 美国国家航空和宇宙航行局)和法国航空电池制造商Saft公司等都将近期锂离子电池的比能量目标确定为250~300 Wh/kg,日本NEDO(The New Energy and Industrial TechnologyDevelopment Organization,日本新能源·产业技术综合开发机构)电动车动力电池发展规划中也表示到2020年能量型锂离子电池的能量密度将达250Wh/kg。Judging from the current development situation at home and abroad, all countries in the world have also put forward medium and long-term development plans for high specific energy chemical energy storage power sources, such as NASA (National Aeronautics and Space Administration, National Aeronautics and Space Administration) and French aviation battery manufacturing The Saft company and others have determined the specific energy target of lithium-ion batteries to be 250~300 Wh/kg in the near future. Japan's NEDO (The New Energy and Industrial Technology Development Organization, Japan's New Energy and Industrial Technology Development Organization) electric vehicle power battery development plan China also stated that by 2020, the energy density of energy-type lithium-ion batteries will reach 250Wh/kg.
然而,锂离子电池的能量密度主要受限于正极材料,因为商用的负极碳材料比容量在300~350 mAh/g左右,而常见正极材料(包括LiCoO2、LiNiO2、尖晶石型LiMn2O4、层状LiMnO2、LiFePO4、Li[Ni1/3Co1/3Mn1/3]O2等)的比容量为120~165 mAh/g,远低于负极材料的理论容量。However, the energy density of lithium-ion batteries is mainly limited by the positive electrode material, because the specific capacity of commercial negative electrode carbon materials is about 300~350 mAh/g, while common positive electrode materials (including LiCoO 2 , LiNiO 2 , spinel LiMn 2 The specific capacity of O 4 , layered LiMnO 2 , LiFePO 4 , Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 , etc.) is 120~165 mAh/g, which is much lower than the theoretical capacity of negative electrode materials.
随着社会经济的不断发展和其他产业的迅速崛起,市场仍然需要具有更高性能的储能电源面市,而储能电源中电极材料的选用是决定其性能的关键所在。电极材料中正极材料与负极材料容量发展的极度不平衡严重限制了高比能量储能电源的飞速发展,因此从材料的制备、材料的优化、电池设计、制备工艺等角度入手,研制出具有更高容量、更优性能的锂离子电池正极材料至关重要。With the continuous development of social economy and the rapid rise of other industries, the market still needs energy storage power supply with higher performance, and the selection of electrode materials in energy storage power supply is the key to determine its performance. The extreme imbalance in the capacity development of positive electrode materials and negative electrode materials in electrode materials severely limits the rapid development of high specific energy energy storage power supplies. Lithium-ion battery cathode materials with high capacity and better performance are crucial.
发明内容Contents of the invention
本发明的目的是解决常规的锂离子正极材料的比容量低的问题,对锂离子电池的正极材料进行改性修饰,提高锂离子电池正极材料的电化学性能,如充放电效率、放电比容量以及倍率性能。The purpose of the present invention is to solve the problem of low specific capacity of conventional lithium ion positive electrode materials, modify the positive electrode materials of lithium ion batteries, improve the electrochemical performance of lithium ion battery positive electrode materials, such as charge and discharge efficiency, discharge specific capacity and rate performance.
为了达到上述目的,本发明提供了一种新型锂离子电池正极极片修饰方法,该方法包含以下步骤:In order to achieve the above object, the present invention provides a novel method for modifying the positive pole piece of a lithium-ion battery, the method comprising the following steps:
步骤1,制备修饰极片:将含有第一材料的浆料涂覆在铝箔一侧形成第一涂层,烘干,得到修饰极片;Step 1, preparing the modified pole piece: coating the slurry containing the first material on one side of the aluminum foil to form the first coating, and drying to obtain the modified pole piece;
步骤2,将含有正极活性材料的浆料涂覆在上述修饰极片的第一涂层上形成第二涂层,烘干,得到锂离子电池修饰正极极片;Step 2, coating the slurry containing the positive electrode active material on the first coating of the above-mentioned modified pole piece to form a second coating, and drying to obtain the modified positive pole piece of the lithium ion battery;
其中,该第一材料的工作电压平台低于正极活性材料。Wherein, the operating voltage platform of the first material is lower than that of the positive electrode active material.
较佳地,所述的第一材料选择石墨烯、硫单质、钴酸锂、磷酸亚铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂中的任意一种或两种以上的混合物。Preferably, the first material is selected from any one or two or more of graphene, sulfur element, lithium cobaltate, lithium ferrous phosphate, lithium manganate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate mixture.
较佳地,所述的正极活性材料选择钴酸锂、磷酸亚铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、富锂锰基材料、镍锰酸锂中的任意一种或两种以上的混合物。Preferably, the positive electrode active material is selected from any one of lithium cobalt oxide, lithium ferrous phosphate, lithium manganate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium-rich manganese-based materials, and lithium nickel manganate a mixture of two or more.
较佳地,第一涂层的厚度为1μm~10μm。Preferably, the thickness of the first coating is 1 μm˜10 μm.
较佳地,第二涂层的厚度为10μm~100μm。Preferably, the thickness of the second coating is 10 μm˜100 μm.
本发明还提供了一种上述的修饰方法制备的锂离子电池正极极片,该正极极片包含集流体,该集流体是由铝箔与涂覆在其一侧的第一涂层构成,在第一涂层上还涂覆有第二涂层,该第一涂层包含第一材料,该第二涂层包含活性物质材料,其中,第一材料的工作电压平台低于正极活性材料。The present invention also provides a lithium-ion battery positive pole piece prepared by the above-mentioned modification method. The positive pole piece contains a current collector, and the current collector is composed of an aluminum foil and a first coating coated on one side thereof. The first coating is further coated with a second coating, the first coating includes a first material, and the second coating includes an active material material, wherein the operating voltage platform of the first material is lower than that of the positive electrode active material.
本发明还提供了一种上述的修饰方法制备的锂离子电池正极极片的用途,其中,该正极极片用于锂离子电池。The present invention also provides an application of the lithium-ion battery positive pole piece prepared by the modification method above, wherein the positive pole piece is used in the lithium-ion battery.
本发明具有以下优点:采用本发明修饰正极极片组装的锂离子电池在充放电过程可以缩短锂离子/电子的传输路径,降低界面阻抗,带来较高的充放电效率、放电比容量以及优异的倍率性能。例如,采用磷酸铁锂修饰过的镍钴铝酸锂电极在0.1C时的放电比容量可达194.6mAh/g,而未加修饰的电极放电比容量只有184.6mAh/g ;修饰电极在5C时的放电比容量可达150.2mAh/g,而未加修饰的电极放电比容量只有136.2mAh/g。该锂离子电池正极极片修饰方法具有普适性,也适合工程化应用。The present invention has the following advantages: the lithium ion battery assembled with the modified positive pole piece of the present invention can shorten the transmission path of lithium ions/electrons in the charge and discharge process, reduce the interface impedance, bring higher charge and discharge efficiency, discharge specific capacity and excellent rate performance. For example, the discharge specific capacity of the nickel-cobalt-aluminate lithium electrode modified by lithium iron phosphate can reach 194.6mAh/g at 0.1C, while the discharge specific capacity of the unmodified electrode is only 184.6mAh/g; the modified electrode is at 5C The discharge specific capacity of the electrode can reach 150.2mAh/g, while the discharge specific capacity of the unmodified electrode is only 136.2mAh/g. The method for modifying the cathode sheet of the lithium-ion battery is universal and suitable for engineering applications.
附图说明Description of drawings
图1是采用本发明实施例1所制备的修饰极片作为正极的锂离子电池的首次充放电曲线。Fig. 1 is the first charge and discharge curve of a lithium-ion battery using the modified pole piece prepared in Example 1 of the present invention as the positive electrode.
图2是采用本发明实施例1所制备的修饰极片作为正极的锂离子电池的倍率性能曲线。Fig. 2 is a rate performance curve of a lithium-ion battery using the modified pole piece prepared in Example 1 of the present invention as the positive electrode.
图3是采用本发明实施例1所制备的修饰极片作为正极的锂离子电池循环前的阻抗曲线。Fig. 3 is the impedance curve before cycling of the lithium-ion battery using the modified pole piece prepared in Example 1 of the present invention as the positive electrode.
图4是采用本发明实施例2所制备的修饰极片作为正极的锂离子电池的首次充放电曲线。Fig. 4 is the first charge and discharge curve of a lithium-ion battery using the modified pole piece prepared in Example 2 of the present invention as the positive electrode.
图5是本发明实施例3所制备的修饰正极极片的SEM扫描电镜图。FIG. 5 is a SEM image of the modified positive electrode sheet prepared in Example 3 of the present invention.
图6是采用本发明实施例3所制备的修饰极片作为正极的锂离子电池的首次充放电曲线。Fig. 6 is the first charge and discharge curve of a lithium-ion battery using the modified pole piece prepared in Example 3 of the present invention as the positive electrode.
图7是采用本发明实施例4所制备的修饰极片作为正极的锂离子电池的首次充放电曲线。Fig. 7 is the first charge and discharge curve of a lithium-ion battery using the modified pole piece prepared in Example 4 of the present invention as the positive electrode.
具体实施方式Detailed ways
本发明提供的一种新型锂离子电池正极极片修饰方法包含以下步骤:A kind of novel lithium-ion battery cathode sheet modification method provided by the invention comprises the following steps:
步骤1,制备修饰极片:将含有第一材料的浆料涂覆在铝箔一侧形成第一涂层,烘干,得到修饰极片;Step 1, preparing the modified pole piece: coating the slurry containing the first material on one side of the aluminum foil to form the first coating, and drying to obtain the modified pole piece;
步骤2,将含有正极活性材料的浆料涂覆在上述修饰极片的第一涂层上形成第二涂层,烘干,得到锂离子电池修饰正极极片;Step 2, coating the slurry containing the positive electrode active material on the first coating of the above-mentioned modified pole piece to form a second coating, and drying to obtain the modified positive pole piece of the lithium ion battery;
其中,该第一材料的工作电压平台低于正极活性材料。Wherein, the operating voltage platform of the first material is lower than that of the positive electrode active material.
所述的第一材料选择石墨烯、硫单质、钴酸锂、磷酸亚铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂中的任意一种或两种以上的混合物。The first material is selected from any one of graphene, sulfur element, lithium cobalt oxide, lithium ferrous phosphate, lithium manganate, nickel cobalt lithium manganate, nickel cobalt lithium aluminate, or a mixture of two or more.
所述的正极活性材料选择钴酸锂、磷酸亚铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、富锂锰基材料、镍锰酸锂中的任意一种或两种以上的混合物。The positive electrode active material is selected from any one or two of lithium cobalt oxide, lithium ferrous phosphate, lithium manganate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium-rich manganese-based materials, and lithium nickel manganese oxide a mixture of the above.
所述第一涂层的厚度为1μm~10μm。The thickness of the first coating is 1 μm˜10 μm.
所述第二涂层的厚度为10μm~100μm。The thickness of the second coating is 10 μm˜100 μm.
所述的第一材料与正极活性材料的用量比例通过调节第一涂层与第二涂层的厚度实现。The ratio of the first material to the positive electrode active material is achieved by adjusting the thicknesses of the first coating and the second coating.
以下结合附图和实施例对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the drawings and embodiments.
实施例1Example 1
(1)按质量比为8:1:1称取磷酸铁锂材料(LiFePO4, LFP)、导电剂以及粘结剂,以NMP(N-Methyl pyrrolidone,N-甲基吡咯烷酮)作为溶剂湿法混合,涂敷在铝箔上,烘干后得到铝箔一侧含有低电压正极材料的极片作为修饰极片;所述导电剂为乙炔黑,所述粘结剂为PVDF(Polyvinylidene Fluoride,聚偏氟乙烯);(1) Weigh lithium iron phosphate material (LiFePO 4 , LFP), conductive agent and binder according to the mass ratio of 8:1:1, and use NMP (N-Methyl pyrrolidone, N-methyl pyrrolidone) as the solvent wet method mixed, coated on aluminum foil, and dried to obtain a pole piece containing a low-voltage positive electrode material on one side of the aluminum foil as a modified pole piece; the conductive agent is acetylene black, and the binder is PVDF (Polyvinylidene Fluoride, polyvinylidene fluoride) vinyl);
(2)按质量比为8:1:1称取正极活性材料镍钴铝酸锂 (LiNi0.8Co0.15Al0.05O2, NCA)、导电剂以及粘结剂,以NMP作为溶剂湿法混合后得到正极浆料;(2) Weigh the positive electrode active material lithium nickel cobalt aluminate (LiNi 0.8 Co 0.15 Al 0.05 O 2 , NCA), conductive agent and binder according to the mass ratio of 8:1:1, and use NMP as the solvent after wet mixing Obtain positive electrode slurry;
(3)以步骤(1)制成的修饰极片作为集流体,在其表面涂覆一层步骤(2)制成的正极浆料,烘干后即得到锂离子电池修饰正极极片Al-LFP-NCA。(3) Use the modified pole piece made in step (1) as a current collector, coat a layer of positive electrode slurry made in step (2) on its surface, and obtain the modified positive pole piece Al- LFP-NCA.
其中,铝箔一侧含有低电压正极材料的涂层,厚度为5μm。Among them, one side of the aluminum foil contains a coating of low-voltage positive electrode material with a thickness of 5 μm.
正极活性材料的涂层,厚度为50μm。The coating of the positive electrode active material has a thickness of 50 μm.
采用本实施例1所制备的修饰极片作为正极的锂离子电池的首次充放电曲线如图1所示,以0.1C的电流进行充放电,可以看出采用Al-LFP-NCA修饰正极的电池其首周放电比容量为194.6mAh/g,高于Al-NCA未修饰电极的184.6mAh/g。采用修饰正极的电池其首次库仑效率为85.0%,高于未修饰电极的81.6%。The first charge and discharge curve of the lithium-ion battery using the modified pole piece prepared in Example 1 as the positive electrode is shown in Figure 1, and the charge and discharge are carried out at a current of 0.1C. It can be seen that the battery using Al-LFP-NCA modified positive electrode Its specific discharge capacity in the first week is 194.6mAh/g, which is higher than 184.6mAh/g of Al-NCA unmodified electrode. The first coulombic efficiency of the battery with the modified positive electrode was 85.0%, which was higher than that of the unmodified electrode, which was 81.6%.
采用本实施例1所制备的修饰极片作为正极的锂离子电池的倍率性能曲线如图2所示,可以看出采用Al-LFP-NCA修饰正极的电池在5C大倍率电流下,其放电比容量150.2mAh/g,高于Al-NCA未修饰电极的136.2mAh/g。The rate performance curve of the lithium-ion battery using the modified pole piece prepared in Example 1 as the positive electrode is shown in Figure 2. It can be seen that the battery using the Al-LFP-NCA modified positive electrode has a high discharge rate of 5C at a high rate current. The capacity is 150.2mAh/g, which is higher than the 136.2mAh/g of Al-NCA unmodified electrode.
采用本实施例1所制备的修饰极片作为正极的锂离子电池循环前的阻抗图如图3所示,可以看出采用Al-LFP-NCA修饰正极的电池具有更小的阻抗值,更加有利于离子和电子的传输。The impedance diagram of the lithium-ion battery before the cycle using the modified pole piece prepared in Example 1 as the positive electrode is shown in Figure 3. It can be seen that the battery using the Al-LFP-NCA modified positive electrode has a smaller impedance value and is more efficient. Facilitate the transport of ions and electrons.
实施例2Example 2
(1)按质量比为8:1:1称取石墨烯材料(grapheme,GR)、导电剂以及粘结剂,以NMP作为溶剂湿法混合,涂敷在铝箔上,烘干后得到铝箔一侧含有低电压正极材料的极片作为修饰极片;所述导电剂为乙炔黑,所述粘结剂为PVDF即聚偏氟乙烯;(1) Weigh the graphene material (grapheme, GR), conductive agent and binder according to the mass ratio of 8:1:1, use NMP as the solvent to wet mix, coat on the aluminum foil, and obtain the aluminum foil after drying. A pole piece containing a low-voltage positive electrode material is used as a modified pole piece; the conductive agent is acetylene black, and the binder is PVDF or polyvinylidene fluoride;
(2)按质量比为8:1:1称取正极活性材料镍钴铝酸锂 (LiNi0.8Co0.15Al0.05O2,NCA)、导电剂以及粘结剂,以NMP作为溶剂湿法混合后得到正极浆料;(2) Weigh the positive electrode active material lithium nickel cobalt aluminate (LiNi 0.8 Co 0.15 Al 0.05 O 2 , NCA), conductive agent and binder according to the mass ratio of 8:1:1, and use NMP as the solvent after wet mixing Obtain positive electrode slurry;
(3)以步骤(1)制成的修饰极片作为集流体,在其表面涂覆一层步骤(2)制成的正极浆料,烘干后即得到锂离子电池修饰正极极片Al-GR-NCA。(3) Use the modified pole piece made in step (1) as a current collector, coat a layer of positive electrode slurry made in step (2) on its surface, and obtain the modified positive pole piece Al- GR-NCA.
铝箔一侧含有低电压正极材料的涂层,厚度为5μm。One side of the aluminum foil contains a coating of low-voltage cathode material with a thickness of 5 μm.
正极活性材料的涂层,厚度为50μm。The coating of the positive electrode active material has a thickness of 50 μm.
该锂离子电池修饰正极极片Al-GR-NCA的电化学性能测试结果如图4所示,以0.1C的电流进行充放电,可以看出采用Al-GR-NCA修饰正极的电池其放电比容量为197.6mAh/g,高于Al-NCA未修饰电极的184.6mAh/g。同时,Al-GR-NCA修饰正极的电池在2C倍率下,其放电比容量165.7mAh/g,高于Al-NCA未修饰电极的148.7mAh/g。该种极片修饰方法使原材料的容量性能和倍率性能都得到明显改善。The electrochemical performance test results of Al-GR-NCA modified positive electrode sheet of the lithium-ion battery are shown in Figure 4. Charge and discharge with a current of 0.1C, it can be seen that the discharge ratio of the battery modified with Al-GR-NCA positive electrode is The capacity is 197.6mAh/g, which is higher than 184.6mAh/g of Al-NCA unmodified electrode. At the same time, the battery with Al-GR-NCA modified positive electrode has a specific discharge capacity of 165.7mAh/g at 2C rate, which is higher than that of the Al-NCA unmodified electrode of 148.7mAh/g. The pole piece modification method significantly improves the capacity performance and rate performance of the raw material.
实施例3Example 3
(1)按质量比为8:1:1称取硫材料(S)、导电剂以及粘结剂,以NMP作为溶剂湿法混合,涂敷在铝箔上,烘干后得到铝箔一侧含有低电压正极材料的极片作为修饰极片;所述导电剂为乙炔黑,所述粘结剂为PVDF即聚偏氟乙烯;(1) Weigh the sulfur material (S), conductive agent and binder at a mass ratio of 8:1:1, wet mix them with NMP as a solvent, coat them on aluminum foil, and dry them to obtain low The pole piece of voltage positive electrode material is used as a modified pole piece; the conductive agent is acetylene black, and the binder is PVDF or polyvinylidene fluoride;
(2)按质量比为8:1:1称取正极活性材料磷酸铁锂 (LiFePO4, LFP)、导电剂以及粘结剂,以NMP作为溶剂湿法混合后得到正极浆料;(2) Weigh the positive electrode active material lithium iron phosphate (LiFePO 4 , LFP), conductive agent and binder according to the mass ratio of 8:1:1, and use NMP as the solvent to wet mix to obtain the positive electrode slurry;
(3)以步骤(1)制成的修饰极片作为集流体,在其表面涂覆一层步骤(2)制成的正极浆料,烘干后即得到锂离子电池修饰正极极片Al-S-LFP。(3) Use the modified pole piece made in step (1) as a current collector, coat a layer of positive electrode slurry made in step (2) on its surface, and obtain the modified positive pole piece Al- S-LFP.
铝箔一侧含有低电压正极材料的涂层,厚度为5μm。One side of the aluminum foil contains a coating of low-voltage cathode material with a thickness of 5 μm.
正极活性材料的涂层,厚度为100μm。The coating of the positive electrode active material has a thickness of 100 μm.
采用本实施例3所制备的修饰正极极片的SEM图如图5所示,可以看出,小颗粒的磷酸铁锂活性材料覆盖在硫材料表面。The SEM image of the modified positive electrode sheet prepared in Example 3 is shown in FIG. 5 . It can be seen that the small particle lithium iron phosphate active material covers the surface of the sulfur material.
采用本实施例3所制备的修饰极片作为正极的锂离子电池的首次充放电曲线如图6所示,以0.1C的电流进行充放电,采用Al-S-LFP修饰正极的电池其首次放电比容量为247.2mAh/g。The first charge and discharge curve of the lithium-ion battery using the modified pole piece prepared in Example 3 as the positive electrode is shown in Figure 6, and the charge and discharge are carried out at a current of 0.1C, and the first discharge of the battery using the Al-S-LFP modified positive electrode The specific capacity is 247.2mAh/g.
实施例4:Example 4:
(1)按8:1:1称取磷酸铁锂材料(LiFePO4, LFP)、导电剂以及粘结剂,以NMP作为溶剂湿法混合,涂敷在铝箔上,烘干后得到铝箔一侧含有低电压正极材料的极片作为修饰极片;所述导电剂为乙炔黑,所述粘结剂为PVDF即聚偏氟乙烯;(1) Weigh lithium iron phosphate material (LiFePO 4 , LFP), conductive agent and binder according to 8:1:1, wet mix with NMP as solvent, coat on aluminum foil, and get one side of aluminum foil after drying A pole piece containing a low-voltage positive electrode material is used as a modified pole piece; the conductive agent is acetylene black, and the binder is PVDF or polyvinylidene fluoride;
(2)按8:1:1称取正极活性材料镍钴铝酸锂 (LiNi0.8Co0.15Al0.05O2, NCA)、导电剂以及粘结剂,以NMP作为溶剂湿法混合后得到正极浆料;(2) Weigh the positive electrode active material lithium nickel cobalt aluminate (LiNi 0.8 Co 0.15 Al 0.05 O 2 , NCA), conductive agent and binder according to 8:1:1, and use NMP as solvent to wet mix to obtain the positive electrode slurry material;
(3)以步骤(1)制成的修饰极片作为集流体,在其表面涂覆一层步骤(2)制成的正极浆料,烘干后即得到锂离子电池修饰正极极片Al-LFP-NCA。(3) Use the modified pole piece made in step (1) as a current collector, coat a layer of positive electrode slurry made in step (2) on its surface, and obtain the modified positive pole piece Al- LFP-NCA.
铝箔一侧含有低电压正极材料的涂层,厚度为2μm。One side of the aluminum foil contains a coating of low-voltage cathode material with a thickness of 2 μm.
正极活性材料的涂层,厚度为10μm。The coating of the positive electrode active material has a thickness of 10 μm.
该锂离子电池修饰正极极片Al-LFP-NCA的电化学性能测试结果如图7所示,以0.1C的电流进行充放电,可以看出采用Al-LFP-NCA修饰正极的电池其放电比容量为190.6mAh/g,高于Al-NCA未修饰电极的184.6mAh/g。The electrochemical performance test results of Al-LFP-NCA modified positive electrode sheet of the lithium-ion battery are shown in Figure 7. Charge and discharge with a current of 0.1C, it can be seen that the discharge ratio of the battery modified with Al-LFP-NCA positive electrode is The capacity is 190.6mAh/g, which is higher than 184.6mAh/g of Al-NCA unmodified electrode.
综上所述,本发明提供的锂离子电池正极极片修饰方法,将工作电压平台低于正极活性材料的低电压材料涂敷在铝箔上,以该修饰极片作为集流体,再在其表面涂敷一层锂离子电池正极活性材料。采用本发明修饰正极极片组装的锂离子电池由于阶梯电势的存在,在充放电过程可以缩短锂离子/电子的传输路径,降低界面阻抗,带来较高的充放电效率、放电比容量以及优异的倍率性能。各实施例得到的经修饰电极的容量及首效都要高于未做修饰的电极容量及首效,由此可证明,本发明有效地提高了锂离子电池正极的电化学性能。In summary, the method for modifying the positive electrode sheet of a lithium ion battery provided by the present invention is to apply a low-voltage material with a working voltage platform lower than that of the positive electrode active material on the aluminum foil, use the modified electrode sheet as a current collector, and then apply the modified electrode sheet on the surface of the aluminum foil Coating a layer of lithium ion battery cathode active material. Due to the existence of the step potential, the lithium ion battery assembled with the modified positive electrode sheet of the present invention can shorten the transmission path of lithium ions/electrons during the charge and discharge process, reduce the interface impedance, and bring higher charge and discharge efficiency, discharge specific capacity and excellent rate performance. The capacity and first effect of the modified electrode obtained in each embodiment are higher than the capacity and first effect of the unmodified electrode, which proves that the present invention effectively improves the electrochemical performance of the positive electrode of the lithium ion battery.
另外,该锂离子电池正极极片修饰方法具有普适性,制备方法简单,适合工程化应用。In addition, the method for modifying the cathode sheet of the lithium ion battery is universal, the preparation method is simple, and it is suitable for engineering applications.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710771251.3A CN107785537B (en) | 2017-08-31 | 2017-08-31 | Novel lithium ion battery positive pole piece, application thereof and modification method of pole piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710771251.3A CN107785537B (en) | 2017-08-31 | 2017-08-31 | Novel lithium ion battery positive pole piece, application thereof and modification method of pole piece |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107785537A true CN107785537A (en) | 2018-03-09 |
CN107785537B CN107785537B (en) | 2021-04-06 |
Family
ID=61437836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710771251.3A Active CN107785537B (en) | 2017-08-31 | 2017-08-31 | Novel lithium ion battery positive pole piece, application thereof and modification method of pole piece |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107785537B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109560249A (en) * | 2018-11-30 | 2019-04-02 | 中国科学院过程工程研究所 | A kind of double-layer structure anode pole piece, and its preparation method and application |
CN111554879A (en) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | Positive plate, manufacturing method of positive plate and battery |
CN112751074A (en) * | 2019-10-29 | 2021-05-04 | 北京小米移动软件有限公司 | Lithium ion battery, preparation method thereof and electronic equipment |
US12148920B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Positive electrode material and preparation method therefor, and lithium ion battery |
US12145859B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Positive electrode material and preparation method therefor, lithium ion battery and vehicle |
US12145860B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Cathode material and manufacturing method thereof, lithium ion battery, and vehicle |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1658413A (en) * | 2004-02-17 | 2005-08-24 | 比亚迪股份有限公司 | Lithium cell plus plate and its preparation method and lithium ion secondary battery |
CN201153140Y (en) * | 2008-02-20 | 2008-11-19 | 东莞市迈科新能源有限公司 | A high safety polymer battery positive electrode |
CN102208598A (en) * | 2011-05-12 | 2011-10-05 | 中国科学院宁波材料技术与工程研究所 | Electrode plate of graphene coating modified lithium secondary battery and manufacturing method thereof |
CN103378352A (en) * | 2012-04-25 | 2013-10-30 | 协鑫动力新材料(盐城)有限公司 | Lithium ion battery positive pole piece and preparation method thereof |
CN203746972U (en) * | 2014-01-03 | 2014-07-30 | 邓韵 | a positive electrode |
CN103972464A (en) * | 2013-01-24 | 2014-08-06 | 华为技术有限公司 | Positive electrode of all-solid-state lithium battery and manufacturing method thereof, and all-solid-state lithium battery |
CN104600242A (en) * | 2014-12-26 | 2015-05-06 | 深圳市贝特瑞新能源材料股份有限公司 | Lithium ion battery composite positive material, positive plate and lithium ion battery |
CN105591073A (en) * | 2014-10-23 | 2016-05-18 | 深圳华粤宝电池有限公司 | A cathode material used for secondary lithium batteries and a preparing method thereof |
CN106560943A (en) * | 2016-08-17 | 2017-04-12 | 深圳市优特利电源有限公司 | Silicon-carbon negative electrode and preparation method thereof, and lithium ion battery |
CN106654169A (en) * | 2016-12-31 | 2017-05-10 | 山东精工电子科技有限公司 | Positive electrode plate of lithium ion battery and preparation method for positive electrode plate |
CN106848326A (en) * | 2017-02-15 | 2017-06-13 | 深圳市沃特玛电池有限公司 | Anode pole piece and lithium ion battery |
CN107112143A (en) * | 2014-11-14 | 2017-08-29 | 牛津大学科技创新有限公司 | Electrode structure and its manufacture method |
-
2017
- 2017-08-31 CN CN201710771251.3A patent/CN107785537B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1658413A (en) * | 2004-02-17 | 2005-08-24 | 比亚迪股份有限公司 | Lithium cell plus plate and its preparation method and lithium ion secondary battery |
CN201153140Y (en) * | 2008-02-20 | 2008-11-19 | 东莞市迈科新能源有限公司 | A high safety polymer battery positive electrode |
CN102208598A (en) * | 2011-05-12 | 2011-10-05 | 中国科学院宁波材料技术与工程研究所 | Electrode plate of graphene coating modified lithium secondary battery and manufacturing method thereof |
CN103378352A (en) * | 2012-04-25 | 2013-10-30 | 协鑫动力新材料(盐城)有限公司 | Lithium ion battery positive pole piece and preparation method thereof |
CN103972464A (en) * | 2013-01-24 | 2014-08-06 | 华为技术有限公司 | Positive electrode of all-solid-state lithium battery and manufacturing method thereof, and all-solid-state lithium battery |
CN203746972U (en) * | 2014-01-03 | 2014-07-30 | 邓韵 | a positive electrode |
CN105591073A (en) * | 2014-10-23 | 2016-05-18 | 深圳华粤宝电池有限公司 | A cathode material used for secondary lithium batteries and a preparing method thereof |
CN107112143A (en) * | 2014-11-14 | 2017-08-29 | 牛津大学科技创新有限公司 | Electrode structure and its manufacture method |
CN104600242A (en) * | 2014-12-26 | 2015-05-06 | 深圳市贝特瑞新能源材料股份有限公司 | Lithium ion battery composite positive material, positive plate and lithium ion battery |
CN106560943A (en) * | 2016-08-17 | 2017-04-12 | 深圳市优特利电源有限公司 | Silicon-carbon negative electrode and preparation method thereof, and lithium ion battery |
CN106654169A (en) * | 2016-12-31 | 2017-05-10 | 山东精工电子科技有限公司 | Positive electrode plate of lithium ion battery and preparation method for positive electrode plate |
CN106848326A (en) * | 2017-02-15 | 2017-06-13 | 深圳市沃特玛电池有限公司 | Anode pole piece and lithium ion battery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12148920B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Positive electrode material and preparation method therefor, and lithium ion battery |
US12145859B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Positive electrode material and preparation method therefor, lithium ion battery and vehicle |
US12145860B2 (en) | 2018-07-10 | 2024-11-19 | Byd Company Limited | Cathode material and manufacturing method thereof, lithium ion battery, and vehicle |
CN109560249A (en) * | 2018-11-30 | 2019-04-02 | 中国科学院过程工程研究所 | A kind of double-layer structure anode pole piece, and its preparation method and application |
CN112751074A (en) * | 2019-10-29 | 2021-05-04 | 北京小米移动软件有限公司 | Lithium ion battery, preparation method thereof and electronic equipment |
CN111554879A (en) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | Positive plate, manufacturing method of positive plate and battery |
Also Published As
Publication number | Publication date |
---|---|
CN107785537B (en) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112151764A (en) | Electrode plate and preparation method and application thereof | |
CN107785537B (en) | Novel lithium ion battery positive pole piece, application thereof and modification method of pole piece | |
CN102074692B (en) | Preparation method for similar graphene doped lithium ion battery positive electrode material | |
CN110034275A (en) | A kind of sulfide solid state battery buffer layer and preparation method thereof and solid state battery | |
CN111081982A (en) | Lithium ion battery lithium supplementing method | |
CN108039463A (en) | A kind of solid state battery of the preparation and application of solid electrolyte/electrode composite material material | |
CN101262078A (en) | Rapidly chargeable lithium-ion battery and preparation method thereof | |
CN105789596A (en) | Hypervolume lithium ion battery positive electrode material, and preparation method and application thereof | |
CN102427123A (en) | Lithium ion secondary battery and positive plate thereof | |
CN102956874B (en) | Positive electrode film and lithium ion power battery, and preparation method thereof | |
CN111628154A (en) | Lithium battery positive active material, preparation method thereof and lithium battery | |
WO2018059180A1 (en) | High-power, high-energy chemical power supply and preparation method therefor | |
CN107293715B (en) | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material | |
CN105742695A (en) | Lithium-ion battery and preparation method thereof | |
CN106654276A (en) | Preparation method of solid-state lithium ion battery electrode taking PEO (Polyethylene Oxide) as binding agent | |
CN116864624A (en) | An integrated sulfide all-solid-state battery electrode plate and its preparation method | |
CN115036444A (en) | A kind of pre-lithiated, pre-sodiumized composite negative electrode material and its preparation method and application | |
CN106450280A (en) | Preparation method of oxide-coated lithium ion battery material | |
CN111883765A (en) | Lithium battery positive active material, preparation method thereof and lithium battery | |
CN116154100A (en) | Lithium supplementing positive electrode, preparation method thereof and lithium ion secondary battery | |
CN100466343C (en) | Positive electrode active material composition, positive electrode sheet and lithium ion battery | |
CN104466236A (en) | Energy and power compatible lithium ion battery and preparation method thereof | |
CN104979534B (en) | A kind of iodine sulphur/carbon composite and preparation method and application | |
CN109638233A (en) | A kind of solid state ionic conductor and lithium-rich manganese base material combination electrode and lithium ion battery | |
CN103904362A (en) | Preparation method and application of ionic liquid electrolyte of safety-type lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |