CN105742695A - Lithium-ion battery and preparation method thereof - Google Patents
Lithium-ion battery and preparation method thereof Download PDFInfo
- Publication number
- CN105742695A CN105742695A CN201610278020.4A CN201610278020A CN105742695A CN 105742695 A CN105742695 A CN 105742695A CN 201610278020 A CN201610278020 A CN 201610278020A CN 105742695 A CN105742695 A CN 105742695A
- Authority
- CN
- China
- Prior art keywords
- ion battery
- lithium ion
- preparation
- battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 60
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 14
- 239000002904 solvent Substances 0.000 claims description 36
- 238000012360 testing method Methods 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 238000004513 sizing Methods 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 239000011889 copper foil Substances 0.000 claims description 12
- 239000006258 conductive agent Substances 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000005030 aluminium foil Substances 0.000 claims description 7
- 239000007767 bonding agent Substances 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- OVAQODDUFGFVPR-UHFFFAOYSA-N lithium cobalt(2+) dioxido(dioxo)manganese Chemical compound [Li+].[Mn](=O)(=O)([O-])[O-].[Co+2] OVAQODDUFGFVPR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052493 LiFePO4 Inorganic materials 0.000 claims description 4
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- -1 Delanium Substances 0.000 claims description 3
- 229910001290 LiPF6 Inorganic materials 0.000 claims description 3
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000000571 coke Substances 0.000 claims description 3
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 claims description 3
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 7
- 238000000576 coating method Methods 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000003860 storage Methods 0.000 abstract description 5
- 239000003575 carbonaceous material Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 10
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 238000005304 joining Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910008065 Si-SiO Inorganic materials 0.000 description 1
- 229910006405 Si—SiO Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006253 efflorescence Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
The invention discloses a lithium-ion battery and a preparation method thereof. The method comprises the following steps: adding nano SiO2 with a certain mass ratio to a negative carbon material for mixing evenly; and preparing a negative pole piece through homogenizing and coating. By an electrochemical principle, nano SiO2 is reduced into amorphous SiOx (x is smaller than or equal to 1 and greater than or equal to 0) with high lithium storage capacity in the formation charging process of the lithium-ion battery; the reduction potential for reaction is close to an SEI film formation potential; the charged state of a solid-liquid interface and the special composition structure and the apparent porosity of the generated C-SiOx negative material are changed; meanwhile, the composition and the structure of an SEI film are improved; a good battery cell microstructure is constructed for performance development of the high-energy lithium-ion battery; the energy density of the battery is improved; the rate capability of the battery is also improved; and the cycle lifetime of the battery is prolonged.
Description
Technical field
The present invention relates to field of lithium ion battery, particularly relate to a kind of lithium ion battery and preparation method thereof.
Background technology
Along with being widely used of portable electric appts so that high energy lithium ion cell be developed into focus.At present, lithium ion battery negative material therefor mostly is carbon-based material, and capacity is relatively low, can not meet the demand for development of lithium ion battery high-energy, small size.And make the silicon materials with high specific capacity (4200mAh/g) receive much concern, but there is serious change in volume in battery charge and discharge process in pure silicon material, and cause pole piece efflorescence, come off, electrode active material and collector is made to lose electrical contact, affect the cycle performance of battery, time serious, also can affect battery security;And the intrinsic conductivity of silicon is less, it is 6.7 × 10-4s•cm-1, it is difficult to promote the large current density power of lithium ion battery.
There are technical research personnel by carbon negative pole material and silicon based anode material compound use, make material property maximize favourable factors and minimize unfavourable ones, prepare high-performance lithium battery, as patent CN200810154217.2 discloses the Si-SiO of a kind of nucleocapsid structurex-C-material and preparation method thereof, improves material conductivity, improves material circulation performance and specific capacity, but still can not meet and be actually needed;Patent CN201280049685.8 discloses the carbon containing Si oxide of a kind of SiO gas and carbonaceous gas codeposition, although initial charge capacity, but charge and discharge is inefficient first, cycle performance is also only the conservation rate under half-cell small area analysis situation, is unsuitable for actually used, and this reaction is reduced for high-temperature reducing gas, easily generate SiC, affect battery high rate performance, and operation is loaded down with trivial details, be unfavorable for actual production.
Therefore, prior art has yet to be improved and developed.
Summary of the invention
In view of above-mentioned the deficiencies in the prior art, it is an object of the invention to provide a kind of lithium ion battery and preparation method thereof, it is intended to solve existing lithium ion battery be still difficult to meet be actually needed, battery high rate performance is low and cycle performance conservation rate is low problem.
Technical scheme is as follows:
A kind of preparation method of lithium ion battery, wherein, including step:
A, join solvent is sufficiently mixed according to 80~85:5~15:5~10 mass ratios by negative pole carbon, white carbon, bonding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;
B, it is the ratio of 1.01-1.05 according to positive electrode capacity/capacity of negative plates, join solvent is sufficiently mixed according to the mass ratio of 80 ~ 85:5 ~ 10:7 ~ 12 by positive electrode, conductive agent, binding agent and uniformly become anode sizing agent, anode sizing agent is applied on aluminium foil, after drying, obtains anode pole piece;
C, according to different battery core designs, positive pole, cathode pole piece being cut into corresponding size, vacuum drying removes solvent and moisture, standby;
D, positive pole by standby, cathode pole piece, barrier film and electrolyte assemble lithium ion battery, stand 14 ~ 18h;
E, being melted into lithium ion battery, described chemical conversion work step is that 0.01C ~ 0.03C low current charge is charged to 3.8 ~ 4.0V to 3.2 ~ 3.6V, 0.05C ~ 0.1C, is discharged to 2.8 ~ 3.2V with 0.1 ~ 0.3C, and charge and discharge circulates 2 ~ 4 times;
F, the lithium ion battery that has been melted into is stood 5 ~ 9 days, carry out capacity, multiplying power, cycle life test, voltage tester scope 3.0V-4.2V.
The preparation method of described lithium ion battery, wherein, in step A, described negative pole carbon, white carbon, bonding agent join in solvent according to 80:10:10 mass ratio.
The preparation method of described lithium ion battery, wherein, in step A, described negative pole carbon is one or more in native graphite, Delanium, carbon black, coke, carbonaceous mesophase spherules, carbon fiber.
The preparation method of described lithium ion battery, wherein, the solvent in described step A and B is nmp solvent.
The preparation method of described lithium ion battery, wherein, in step B, the ratio of positive electrode capacity/capacity of negative plates is 1.02.
The preparation method of described lithium ion battery, wherein, in step B, positive electrode, conductive agent, binding agent join in solvent according to the mass ratio of 82:8:10.
The preparation method of described lithium ion battery, wherein, in step B, described positive electrode is one or more in cobalt acid lithium, LiMn2O4, nickle cobalt lithium manganate, nickel cobalt lithium aluminate, LiFePO4.
The preparation method of described lithium ion battery, wherein, in step D, described electrolyte is LiPF6/EC-EMC-DMC、LiAsF6/PC-EMC-DMC、LiBF4One in/MPC-EMC-DMC.
The preparation method of described lithium ion battery, wherein, in step E, described chemical conversion work step is that 0.02C low current charge is charged to 4.0V to 3.4V, 0.1C, and charge and discharge circulates 3 times.
A kind of lithium ion battery, wherein, uses the preparation method of arbitrary described lithium ion battery to be prepared from.
Beneficial effect: amorphous Si O of high storage lithium abilityx(0≤X≤1) improves the volume energy of battery, and fine and close, stable SEI film improves the cycle life of battery, rate charge-discharge performance.Compared to existing Si-C composite material, there are higher coulombic efficiency first and cyclical stability.
Detailed description of the invention
The present invention provides a kind of lithium ion battery and preparation method thereof, and for making the purpose of the present invention, technical scheme and effect clearer, clear and definite, the present invention is described in more detail below.Should be appreciated that specific embodiment described herein, only in order to explain the present invention, is not intended to limit the present invention.
Owing to lithium ion battery negative surface solid electrolyte interface film (SEI) not only affects the removal lithium embedded kinetics of electrode, have an effect on the surface stability during charge and discharge cycles, and the pattern of SEI film and composition depend on the composition of electrolyte, solid negative terminal surface composition, structure.The present invention is by Nano carbon white (SiO2) join in negative pole carbon in the cathode blending stage with certain mass ratio, mix homogeneously, coating.It is melted into the stage, by Nano-meter SiO_2 at lithium ion battery2It is reduced to the SiO with high storage lithium abilityx(0≤X≤1), owing to electrode potential and the SEI formation current potential of this reaction are close, change lithium ion battery negative surface charge state, makes the composition of negative terminal surface SEI film, structure be optimized, improve.
Specifically, the preparation method preferred embodiment of a kind of lithium ion battery of the present invention, wherein, including step:
A, join solvent is sufficiently mixed according to 80~85:5~15:5~10 mass ratios by negative pole carbon, white carbon, bonding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;
Preferably, in step A, described negative pole carbon, white carbon, bonding agent join in solvent according to 80:10:10 mass ratio.Wherein, described negative pole carbon can be one or more in native graphite, Delanium, carbon black, coke, carbonaceous mesophase spherules, carbon fiber.Wherein, described solvent can be nmp solvent.
B, it is the ratio of 1.01-1.05 according to positive electrode capacity/capacity of negative plates, join solvent is sufficiently mixed according to the mass ratio of 80 ~ 85:5 ~ 10:7 ~ 12 by positive electrode, conductive agent, binding agent and uniformly become anode sizing agent, anode sizing agent is applied on aluminium foil, after drying, obtains anode pole piece.Wherein, described solvent can be nmp solvent.
Preferably, in step B, the ratio of positive electrode capacity/capacity of negative plates is 1.02.Described positive electrode can be one or more in cobalt acid lithium, LiMn2O4, nickle cobalt lithium manganate, nickel cobalt lithium aluminate, LiFePO4.
C, according to different battery core designs, positive pole, cathode pole piece being cut into corresponding size, vacuum drying removes solvent and moisture, standby;Preferably, at 120 DEG C, vacuum drying removes solvent and moisture.
D, positive pole by standby, cathode pole piece, barrier film and electrolyte assemble lithium ion battery, stand 14 ~ 18h;Preferably, described electrolyte can be but be not limited to LiPF6/EC-EMC-DMC、LiAsF6/PC-EMC-DMC、LiBF4One in/MPC-EMC-DMC.Such as, by standby positive pole, cathode pole piece, with Celgard 2400
For barrier film, the LiPF of 1mol/L6/ EC-EMC-DMC(EC-EMC-DMC volume ratio is 1:1:1) it is electrolyte, assemble lithium ion battery, stand 16h.
E, being melted into lithium ion battery, described chemical conversion work step is that 0.01C ~ 0.03C low current charge is charged to 3.8 ~ 4.0V to 3.2 ~ 3.6V, 0.05C ~ 0.1C, is discharged to 2.8 ~ 3.2V with 0.1 ~ 0.3C, and charge and discharge circulates 2 ~ 4 times;Preferably, described chemical conversion work step is that 0.02C low current charge is charged to 4.0V to 3.4V, 0.1C, and charge and discharge circulates 3 times.
F, the lithium ion battery that has been melted into is stood 5 ~ 9 days, carry out capacity, multiplying power, cycle life test, voltage tester scope 3.0V-4.2V.
The present invention has following technical characteristic: (1) utilizes electrochemical principle, in the formation charging stage, by Nano-meter SiO_22It is reduced to amorphous Si O with high storage lithium abilityx(0≤X≤1);(2) by Nano-meter SiO_22Mix homogeneously according to a certain percentage with conventional carbons negative material, coat cathode pole piece, make amorphous Si O of generationx(0≤X≤1) is evenly distributed in the carbon-based material conductive network with excellent conductive performance, improves material electronics conductivity, slows down SiO simultaneouslyx(0≤X≤1) bulk effect during removal lithium embedded.(3) amorphous Si O is generatedxReduction potential and SEI film to form current potential close, change solid liquid interface state-of-charge, C-SiOxThe apparent structure porosity that composite construction is special, improves the composition of SEI film, structure jointly, for the performance of high energy lithium ion cell, has built good battery core microstructure.(4) using carbon total capacity/positive electrode total capacity more than 1 during conventional cell designs, battery design of the present invention uses positive electrode total capacity/carbon total capacity to be the ratio of 1.01-1.05.(5) present invention is than directly selecting carbon and nano-silicon compound phase ratio, and cost advantage is obvious, and method is simple and easy to operate, is suitable for large-scale industrial production.
The present invention also provides for a kind of lithium ion battery, wherein, uses the preparation method of arbitrary described lithium ion battery to be prepared from.By preparation method of the present invention, prepared lithium ion battery has high battery energy density, has high battery high rate performance and service life cycle simultaneously.
Below by specific embodiment, the present invention is described in detail.
Embodiment 1
By Delanium, white carbon (SiO2), binding agent join nmp solvent is sufficiently mixed according to 80:10:10 mass ratio and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;Joining to be sufficiently mixed in nmp solvent according to the mass ratio of 85:5:10 by LiFePO4, conductive agent, binding agent and uniformly become anode sizing agent, be applied on aluminium foil by anode sizing agent, obtain anode pole piece after drying, positive electrode capacity/capacity of negative plates design proportion is 1.01.Battery core is designed and sized to 8(T) × 34(W) × 50 (H) mm.With Celgard 2400 as barrier film, the LiPF of 1mol/L6/ EC-EMC-DMC(volume ratio is 1:1:1) it is electrolyte, assemble lithium ion battery, stand 16h.Being melted into lithium ion battery, chemical conversion work step is set to 0.02C low current charge and is charged to 3.9V to 3.4V, 0.1C, is discharged to 3.0V with 0.1C, and charge and discharge circulates 3 times.Lithium ion battery after chemical conversion carries out capacity, multiplying power, cycle life test, and voltage tester scope 3.0V-4.2V, test result see table 1.
Embodiment 2
By native graphite, white carbon (SiO2), binding agent join nmp solvent is sufficiently mixed according to 85:10:5 mass ratio and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;Joining to be sufficiently mixed in nmp solvent according to the mass ratio of 85:5:10 by nickle cobalt lithium manganate, conductive agent, binding agent and uniformly become anode sizing agent, be applied on aluminium foil by anode sizing agent, obtain anode pole piece after drying, positive electrode capacity/capacity of negative plates design proportion is 1.03.Being melted into battery, chemical conversion work step is set to 0.03C low current charge and is charged to 4.0V to 3.4V, 0.1C, is discharged to 3.0V with 0.1C, and charge and discharge circulates 2 times.Battery core size, battery assembling condition, test condition are with embodiment 1, and test result see table 1.
Embodiment 3
By carbonaceous mesophase spherules, white carbon (SiO2), binding agent join according to 80:15:5 mass ratio and nmp solvent be sufficiently mixed uniformly, cathode size is applied on Copper Foil, after drying cathode pole piece;Joining to be sufficiently mixed in nmp solvent according to the mass ratio of 85:5:10 by LiMn2O4, conductive agent, binding agent and uniformly become anode sizing agent, be applied on aluminium foil by anode sizing agent, obtain anode pole piece after drying, positive electrode capacity/capacity of negative plates design proportion is 1.05.Being melted into battery, chemical conversion work step is set to 0.01C low current charge and is charged to 3.8V to 3.4V, 0.05C, is discharged to 3.0V with 0.1C, and charge and discharge circulates 4 times.Battery core size, battery assembling condition, test condition are with embodiment 1, and test result see table 1.
Embodiment 4
By carbon black, white carbon (SiO2), binding agent join nmp solvent is sufficiently mixed according to 85:5:10 mass ratio and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;Joining to be sufficiently mixed in nmp solvent according to the mass ratio of 85:5:10 by cobalt acid lithium, conductive agent, binding agent and uniformly become anode sizing agent, be applied on aluminium foil by anode sizing agent, obtain anode pole piece after drying, positive electrode capacity/capacity of negative plates design proportion is 1.02.Battery core size, battery assembling condition, chemical conversion, test condition are with embodiment 1, and test result see table 1.
Comparative example 1:
Join nmp solvent is sufficiently mixed according to 90:10 mass ratio by Delanium, binding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying, obtain cathode pole piece;The coating of iron phosphate lithium positive pole sheet, battery core size, battery assembling condition, chemical conversion, test condition are with embodiment 1, and test result see table 1.
Comparative example 2:
Join solvent is sufficiently mixed according to 90:10 mass ratio by native graphite, binding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying, obtain cathode pole piece;The coating of nickle cobalt lithium manganate positive plate, chemical conversion are with embodiment 2, and battery core size, battery assembling condition, test condition are with embodiment 1, and test result see table 1.
Comparative example 3:
Join solvent is sufficiently mixed according to 95:5 mass ratio by carbonaceous mesophase spherules, binding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying, obtain cathode pole piece;Lithium manganate anode slice coating chemical conversion, with embodiment 3, battery core size, battery assembling condition, test condition are with embodiment 1, and test result see table 1.
Comparative example 4:
Join solvent is sufficiently mixed according to 90:10 mass ratio by carbon black, binding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying, obtain cathode pole piece;Lithium cobaltate cathode sheet is coated with embodiment 4, and battery core size, battery assembling condition, chemical conversion, test condition are with embodiment 1, and test result see table 1.
Comparative example 5:
Join solvent is sufficiently mixed according to 80:10:10 mass ratio by Delanium, nano silica fume, binding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying, obtain cathode pole piece;The coating of iron phosphate lithium positive pole sheet, battery core size, battery assembling condition, chemical conversion, test condition are with embodiment 1, and test result see table 1.
Table 1, test result
1C First capacity ( mAh /g ) | Charge and discharge efficiency first ( % ) | 2C Capacity ( mAh /g ) | 5C Capacity ( mAh /g ) | 1C Circulation 500 Secondary capability retention ( % ) | |
Embodiment 1 | 960 | 96 | 890 | 793 | 87.6 |
Embodiment 2 | 1100 | 97.8 | 1043 | 958 | 84 |
Embodiment 3 | 720 | 94.7 | 623 | 511 | 78 |
Embodiment 4 | 930 | 97 | 876 | 792 | 83 |
Comparative example 1 | 750 | 98.9 | 704 | 648 | 94 |
Comparative example 2 | 800 | 99.6 | 778 | 716 | 89 |
Comparative example 3 | 500 | 98.2 | 463 | 378 | 83 |
Comparative example 4 | 700 | 99.3 | 675 | 615 | 90 |
Comparative example 5 | 987 | 83 | 752 | 569 | 54.8 |
In sum, a kind of lithium ion battery that the present invention provides and preparation method thereof, certain mass is compared Nano-meter SiO_2 by the present invention2Join mix homogeneously in carbon material used as anode, be prepared as cathode pole piece by homogenate, coating.Utilize electrochemical principle, by Nano-meter SiO_2 during lithium ion battery formation charging2It is reduced to amorphous Si O with high storage lithium abilityx(0≤x≤1), it is close that the reduction potential of reaction and SEI film form current potential, changes solid liquid interface state-of-charge, the C-SiO of generationxComposition structure that negative material is special and apparent porosity, improve the composition of SEI film, structure simultaneously, for the performance of high energy lithium ion cell, built good battery core microstructure.The present invention not only increases battery energy density, also improves high rate performance and the service life cycle of battery.
It should be appreciated that the application of the present invention is not limited to above-mentioned citing, for those of ordinary skills, can be improved according to the above description or convert, all these modifications and variations all should belong to the protection domain of claims of the present invention.
Claims (10)
1. the preparation method of a lithium ion battery, it is characterised in that include step:
A, join solvent is sufficiently mixed according to 80~85:5~15:5~10 mass ratios by negative pole carbon, white carbon, bonding agent and uniformly become cathode size, cathode size is applied on Copper Foil, after drying cathode pole piece;
B, it is the ratio of 1.01-1.05 according to positive electrode capacity/capacity of negative plates, join solvent is sufficiently mixed according to the mass ratio of 80 ~ 85:5 ~ 10:7 ~ 12 by positive electrode, conductive agent, binding agent and uniformly become anode sizing agent, anode sizing agent is applied on aluminium foil, after drying, obtains anode pole piece;
C, according to different battery core designs, positive pole, cathode pole piece being cut into corresponding size, vacuum drying removes solvent and moisture, standby;
D, positive pole by standby, cathode pole piece, barrier film and electrolyte assemble lithium ion battery, stand 14 ~ 18h;
E, being melted into lithium ion battery, described chemical conversion work step is that 0.01C ~ 0.03C low current charge is charged to 3.8 ~ 4.0V to 3.2 ~ 3.6V, 0.05C ~ 0.1C, is discharged to 2.8 ~ 3.2V with 0.1 ~ 0.3C, and charge and discharge circulates 2 ~ 4 times;
F, the lithium ion battery that has been melted into is stood 5 ~ 9 days, carry out capacity, multiplying power, cycle life test, voltage tester scope 3.0V-4.2V.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step A, described negative pole carbon, white carbon, bonding agent join in solvent according to 80:10:10 mass ratio.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step A, described negative pole carbon is one or more in native graphite, Delanium, carbon black, coke, carbonaceous mesophase spherules, carbon fiber.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that the solvent in described step A and B is nmp solvent.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step B, the ratio of positive electrode capacity/capacity of negative plates is 1.02.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step B, positive electrode, conductive agent, binding agent join in solvent according to the mass ratio of 82:8:10.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step B, described positive electrode is one or more in cobalt acid lithium, LiMn2O4, nickle cobalt lithium manganate, nickel cobalt lithium aluminate, LiFePO4.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step D, described electrolyte is LiPF6/EC-EMC-DMC、LiAsF6/PC-EMC-DMC、LiBF4One in/MPC-EMC-DMC.
The preparation method of lithium ion battery the most according to claim 1, it is characterised in that in step E, described chemical conversion work step is that 0.02C low current charge is charged to 4.0V to 3.4V, 0.1C, and charge and discharge circulates 3 times.
10. a lithium ion battery, it is characterised in that use the preparation method of the lithium ion battery as described in claim 1 ~ 9 is arbitrary to be prepared from.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610278020.4A CN105742695B (en) | 2016-04-28 | 2016-04-28 | A kind of lithium ion battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610278020.4A CN105742695B (en) | 2016-04-28 | 2016-04-28 | A kind of lithium ion battery and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105742695A true CN105742695A (en) | 2016-07-06 |
CN105742695B CN105742695B (en) | 2018-03-27 |
Family
ID=56287805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610278020.4A Active CN105742695B (en) | 2016-04-28 | 2016-04-28 | A kind of lithium ion battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105742695B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106252717A (en) * | 2016-10-19 | 2016-12-21 | 江苏海四达电源股份有限公司 | High circulation electric vapour vehicle lithium-ion power battery and preparation method thereof |
CN106987926A (en) * | 2017-04-14 | 2017-07-28 | 河北民族师范学院 | Pitch based carbon fiber, preparation method and its application in lithium ion battery |
CN108400025A (en) * | 2018-01-18 | 2018-08-14 | 柔电(武汉)科技有限公司 | A kind of preparation method of ultracapacitor |
CN112599861A (en) * | 2020-12-28 | 2021-04-02 | 长虹三杰新能源有限公司 | Preparation method of lithium cobaltate power battery |
CN113948708A (en) * | 2021-12-22 | 2022-01-18 | 惠州市纬世新能源有限公司 | Fast-charging type high-rate lithium ion battery and preparation method thereof |
CN114784401A (en) * | 2022-05-23 | 2022-07-22 | 中国科学院化学研究所 | Long-cycle-life lithium ion battery and method for prolonging cycle life of lithium ion battery |
WO2023082918A1 (en) * | 2021-11-15 | 2023-05-19 | 宁德时代新能源科技股份有限公司 | Lithium ion battery, battery module, battery pack, and electric apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752547A (en) * | 2008-12-18 | 2010-06-23 | 中国电子科技集团公司第十八研究所 | Li-ion secondary battery cathode material preparation method with nuclear shell structure |
US20110062379A1 (en) * | 2009-09-14 | 2011-03-17 | Satoru Miyawaki | Negative electrode for nonaqueous electrolyte secondary batteries and lithium ion secondary battery |
CN103857623A (en) * | 2011-10-14 | 2014-06-11 | 信越化学工业株式会社 | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor |
CN103985846A (en) * | 2014-05-30 | 2014-08-13 | 西安交通大学 | A carbon-supported nano-silicon particle structure and its preparation method and application |
CN104577085A (en) * | 2014-12-17 | 2015-04-29 | 李震祺 | Lithium ion battery SiO negative electrode material and preparation method thereof |
-
2016
- 2016-04-28 CN CN201610278020.4A patent/CN105742695B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752547A (en) * | 2008-12-18 | 2010-06-23 | 中国电子科技集团公司第十八研究所 | Li-ion secondary battery cathode material preparation method with nuclear shell structure |
US20110062379A1 (en) * | 2009-09-14 | 2011-03-17 | Satoru Miyawaki | Negative electrode for nonaqueous electrolyte secondary batteries and lithium ion secondary battery |
CN103857623A (en) * | 2011-10-14 | 2014-06-11 | 信越化学工业株式会社 | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor |
CN103985846A (en) * | 2014-05-30 | 2014-08-13 | 西安交通大学 | A carbon-supported nano-silicon particle structure and its preparation method and application |
CN104577085A (en) * | 2014-12-17 | 2015-04-29 | 李震祺 | Lithium ion battery SiO negative electrode material and preparation method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106252717A (en) * | 2016-10-19 | 2016-12-21 | 江苏海四达电源股份有限公司 | High circulation electric vapour vehicle lithium-ion power battery and preparation method thereof |
CN106987926A (en) * | 2017-04-14 | 2017-07-28 | 河北民族师范学院 | Pitch based carbon fiber, preparation method and its application in lithium ion battery |
CN108400025A (en) * | 2018-01-18 | 2018-08-14 | 柔电(武汉)科技有限公司 | A kind of preparation method of ultracapacitor |
CN108400025B (en) * | 2018-01-18 | 2019-11-15 | 柔电(武汉)科技有限公司 | A kind of preparation method of supercapacitor |
CN112599861A (en) * | 2020-12-28 | 2021-04-02 | 长虹三杰新能源有限公司 | Preparation method of lithium cobaltate power battery |
WO2023082918A1 (en) * | 2021-11-15 | 2023-05-19 | 宁德时代新能源科技股份有限公司 | Lithium ion battery, battery module, battery pack, and electric apparatus |
CN113948708A (en) * | 2021-12-22 | 2022-01-18 | 惠州市纬世新能源有限公司 | Fast-charging type high-rate lithium ion battery and preparation method thereof |
CN114784401A (en) * | 2022-05-23 | 2022-07-22 | 中国科学院化学研究所 | Long-cycle-life lithium ion battery and method for prolonging cycle life of lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
CN105742695B (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105742695B (en) | A kind of lithium ion battery and preparation method thereof | |
CN103855431B (en) | A kind of chemical synthesizing method improving cycle performance of lithium ion battery | |
CN110120496A (en) | A kind of negative electrode of lithium ion battery and its prelithiation methods and applications | |
CN112490394B (en) | Chemical prelithiation method for graphite electrode of lithium ion battery | |
CN107785537B (en) | Novel lithium ion battery positive pole piece, application thereof and modification method of pole piece | |
CN101567469A (en) | Power polymer lithium ion battery and fabricating process thereof | |
CN110993953B (en) | Positive plate, solid-state chemical power supply and preparation method | |
CN102969509A (en) | Preparation method of lithium ion battery silicon carbon composite material | |
CN114566645A (en) | Lithium supplement material and preparation method thereof, lithium ion battery and lithium supplement method thereof | |
CN104966814A (en) | High-security metallic lithium cathode and preparation method thereof | |
CN107293715B (en) | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material | |
CN103474671B (en) | A kind of lithium-air battery carbon-lithium peroxide anode and preparation method thereof | |
CN101640263A (en) | Lithium ion battery composite cathode material and preparation method thereof | |
CN110444809A (en) | A kind of composite electrolyte piece and preparation method thereof and solid state battery | |
CN109037606A (en) | Carbon-coated porous silicon-iron alloy composite negative electrode material and preparation and application thereof | |
CN105047894A (en) | Preparation method of halogen-doped carbon and silicon nano-material and application thereof | |
CN108364806A (en) | A kind of tree-shaped three-dimensional structure metal material and preparation method thereof and application in the battery | |
CN107785559B (en) | Graphene-lithium titanate composite material, preparation method thereof, lithium-supplementing graphene-lithium titanate film and lithium battery | |
CN117175016B (en) | Negative-electrode-free sodium ion secondary battery, electrolyte and application thereof | |
CN113066988A (en) | Negative pole piece and preparation method and application thereof | |
CN108448095B (en) | Synthesis and Application of KTiOPO4, an Electrode Material for Na-ion Batteries | |
CN106684353A (en) | Preparation method for carbon-coated potassium vanadium phosphate and application of carbon-coated potassium vanadium phosphate | |
CN113659135B (en) | Application of iron sulfide in lithium iron phosphate secondary battery | |
CN106340663A (en) | Single-liquid flow lithium-sulfur battery | |
CN116470003A (en) | Pre-lithiated negative electrode piece and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PP01 | Preservation of patent right |
Effective date of registration: 20190703 Granted publication date: 20180327 |
|
PP01 | Preservation of patent right | ||
PD01 | Discharge of preservation of patent |
Date of cancellation: 20220703 Granted publication date: 20180327 |
|
PD01 | Discharge of preservation of patent |