CN107768670A - Positive electrode material, preparation method and application, positive electrode preparation method - Google Patents
Positive electrode material, preparation method and application, positive electrode preparation method Download PDFInfo
- Publication number
- CN107768670A CN107768670A CN201710991254.8A CN201710991254A CN107768670A CN 107768670 A CN107768670 A CN 107768670A CN 201710991254 A CN201710991254 A CN 201710991254A CN 107768670 A CN107768670 A CN 107768670A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- polyimide
- polyimides
- water
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000007774 positive electrode material Substances 0.000 title abstract description 48
- 229920001721 polyimide Polymers 0.000 claims abstract description 126
- 239000004642 Polyimide Substances 0.000 claims abstract description 122
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002105 nanoparticle Substances 0.000 claims abstract description 17
- 239000002270 dispersing agent Substances 0.000 claims abstract description 10
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 8
- 125000003118 aryl group Chemical group 0.000 claims abstract description 5
- 125000003107 substituted aryl group Chemical group 0.000 claims abstract description 4
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000000839 emulsion Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000011734 sodium Substances 0.000 claims description 10
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 7
- 239000006258 conductive agent Substances 0.000 claims description 7
- 239000000661 sodium alginate Substances 0.000 claims description 7
- 235000010413 sodium alginate Nutrition 0.000 claims description 7
- 229940005550 sodium alginate Drugs 0.000 claims description 7
- 229910001415 sodium ion Inorganic materials 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 6
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical group [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 6
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 5
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 238000000498 ball milling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 125000005396 acrylic acid ester group Chemical group 0.000 claims 1
- 239000005030 aluminium foil Substances 0.000 claims 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims 1
- 150000003949 imides Chemical class 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 239000010406 cathode material Substances 0.000 abstract description 10
- 238000004146 energy storage Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 230000005476 size effect Effects 0.000 abstract description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- -1 naphthalene tetracarboxylic anhydride Chemical class 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- AQLLBJAXUCIJSR-UHFFFAOYSA-N OC(=O)C[Na] Chemical compound OC(=O)C[Na] AQLLBJAXUCIJSR-UHFFFAOYSA-N 0.000 description 1
- VRDIULHPQTYCLN-UHFFFAOYSA-N Prothionamide Chemical compound CCCC1=CC(C(N)=S)=CC=N1 VRDIULHPQTYCLN-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002587 enol group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000005543 phthalimide group Chemical group 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂离子二次电池领域,尤其涉及一种聚酰亚胺正极材料及制备方法与应用、聚酰亚胺正极的制备方法。The invention relates to the field of lithium-ion secondary batteries, in particular to a polyimide positive electrode material, its preparation method and application, and the preparation method of the polyimide positive electrode.
背景技术Background technique
聚酰亚胺是重要的工程塑料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。根据重复单元的化学结构,聚酰亚胺可以分为脂肪族、半芳香族和芳香族聚酰亚胺三种。根据热性质,可分为热塑性和热固性聚酰亚胺。聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。Polyimide is one of the important engineering plastics, with a high temperature resistance of over 400°C, a long-term use temperature range of -200 to 300°C, no obvious melting point, high insulation performance, a dielectric constant of 4.0 at 103 Hz, and a dielectric loss of only 0.004 ~0.007, it belongs to F to H class insulating materials. According to the chemical structure of the repeating unit, polyimide can be divided into three types: aliphatic, semi-aromatic and aromatic polyimide. According to thermal properties, it can be divided into thermoplastic and thermosetting polyimides. Polyimide refers to a class of polymers containing imide rings (-CO-NH-CO-) on the main chain, among which polymers containing phthalimide structures are the most important. As a special engineering material, polyimide has been widely used in aviation, aerospace, microelectronics, nanometer, liquid crystal, separation membrane, laser and other fields. Because of its outstanding characteristics in performance and synthesis, whether it is used as a structural material or as a functional material, its huge application prospects have been fully recognized, and it is known as a "protion solver". It is believed that "without polyimide, there would be no microelectronics technology today".
近来的研究表明,聚酰亚胺材料可以用作锂离子电池或钠离子电池的活性材料,因为聚酰亚胺的主链上具有均苯四酸酐、萘四甲酸酐和苝四甲酸酐等基团,这些基团可以发生可逆的氧化还原电化学反应,如亚胺基团可以氧化成烯醇式结构,伴随着羰基氧原子结合或解离锂离子或钠离子。理论上,每个四甲酸酐基团可以转移4个电子,对应300mAh/g的理论容量,但是实验中实际的容量一般不超过200mAh/g。Recent studies have shown that polyimide materials can be used as active materials for lithium-ion batteries or sodium-ion batteries, because the main chain of polyimide has pyromellitic anhydride, naphthalene tetracarboxylic anhydride and perylene tetracarboxylic anhydride. These groups can undergo reversible redox electrochemical reactions, such as imine groups can be oxidized to enol structures, accompanied by the carbonyl oxygen atoms bond or dissociate lithium ions or sodium ions. In theory, each tetraformic anhydride group can transfer 4 electrons, corresponding to a theoretical capacity of 300mAh/g, but the actual capacity in the experiment generally does not exceed 200mAh/g.
聚酰亚胺作为锂离子电池或钠离子电池的正极材料时实际比容量距离其理论容量相差甚远,这主要是受限由于所采用的正极制备方法。以前所报道的聚酰亚胺正极材料都是大块状或薄膜状,再加上聚酰亚胺都是绝缘的,内部的活性位点都被包裹了,导致比容量活化周期长或整体比容量低。而且传统的聚酰亚胺正极材料制备方法大多采用有机溶剂来分散,大量有机溶剂容易造成环境污染,危害生产人员身体健康,而且大量溶剂处理和回收还会增加制造成本。When polyimide is used as a positive electrode material for lithium-ion batteries or sodium-ion batteries, the actual specific capacity is far from its theoretical capacity, which is mainly limited due to the positive electrode preparation method used. The previously reported polyimide cathode materials are all in the form of bulk or film, and polyimide is insulating, and the internal active sites are all wrapped, resulting in a longer specific capacity activation cycle or overall ratio. low capacity. Moreover, the traditional preparation methods of polyimide cathode materials mostly use organic solvents to disperse. A large amount of organic solvents is likely to cause environmental pollution and endanger the health of production personnel, and the processing and recycling of large amounts of solvents will increase manufacturing costs.
因此,现有技术仍有待于改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Contents of the invention
鉴于上述现有技术的不足,本发明的目的在于提供一种聚酰亚胺正极材料及制备方法与应用、聚酰亚胺正极的制备方法,旨在解决现有制备方法采用有机溶剂来分散,容易造成环境污染,危害生产人员身体健康,而且大量溶剂处理和回收还会增加制造成本的问题。In view of the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a polyimide positive electrode material and its preparation method and application, and a preparation method of the polyimide positive electrode, aiming at solving the problem that the existing preparation method uses an organic solvent to disperse, It is easy to cause environmental pollution, endanger the health of production personnel, and a large amount of solvent treatment and recycling will also increase the problem of manufacturing costs.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种聚酰亚胺正极材料,其中,按质量百分比计,包括:5-40%的聚酰亚胺纳米粒子、0-4%的辅助分散剂和60-95%的水;A polyimide positive electrode material, wherein, by mass percentage, comprising: 5-40% polyimide nanoparticles, 0-4% auxiliary dispersant and 60-95% water;
所述聚酰亚胺纳米粒子具有如下结构式:The polyimide nanoparticles have the following structural formula:
其中,A1和A2独立地为芳基、取代芳基、杂芳基、取代杂芳基中的一种。Wherein, A1 and A2 are independently one of aryl, substituted aryl, heteroaryl and substituted heteroaryl.
所述的聚酰亚胺正极材料,其中,所述n为50-10000。Said polyimide cathode material, wherein said n is 50-10000.
所述的聚酰亚胺正极材料,其中,所述A1具有如下结构式中的一种:The polyimide positive electrode material, wherein, the A1 has one of the following structural formulas:
所述的聚酰亚胺正极材料,其中,所述A2具有如下结构式中的一种:The polyimide positive electrode material, wherein, the A2 has one of the following structural formulas:
所述的聚酰亚胺正极材料,其中,所述聚酰亚胺纳米粒子的平均尺寸范围为50-800纳米。The polyimide positive electrode material, wherein the polyimide nanoparticles have an average size range of 50-800 nanometers.
所述的聚酰亚胺正极材料,其中,所述辅助分散剂为羧甲基纤维素钠、海藻酸钠和聚丙烯酸钠中的一种或两种。The polyimide cathode material, wherein the auxiliary dispersant is one or both of sodium carboxymethylcellulose, sodium alginate and sodium polyacrylate.
一种如上所述的聚酰亚胺正极材料的制备方法,其中,包括步骤:A kind of preparation method of polyimide positive electrode material as above, wherein, comprise step:
首先将聚酰亚胺纳米粒子球磨6~10小时;Firstly, ball mill the polyimide nanoparticles for 6-10 hours;
然后取出球磨后的聚酰亚胺纳米粒子,与辅助分散剂和水混合,接着研磨6~10小时,制备得到聚酰亚胺正极材料。Then the ball-milled polyimide nanoparticles are taken out, mixed with an auxiliary dispersant and water, and then ground for 6-10 hours to prepare a polyimide positive electrode material.
一种如上所述的聚酰亚胺正极材料制备聚酰亚胺正极的方法,其中,包括步骤:A method for preparing a polyimide positive electrode as described above, comprising the steps of:
将如上所述聚酰亚胺正极材料、导电剂和水性粘结剂混合,并搅拌均匀;Mix the above-mentioned polyimide positive electrode material, conductive agent and water-based binder, and stir evenly;
然后涂布在铝箔上,最后烘干水分,制备得到聚酰亚胺正极。Then it is coated on an aluminum foil, and finally the water is dried to prepare a polyimide positive electrode.
所述的制备聚酰亚胺正极的方法,其中,按质量百分比为(50%-70%):(20%-40%):(5%-15%),将所述聚酰亚胺正极材料、导电剂和水性粘结剂混合;The method for preparing the polyimide positive electrode, wherein, by mass percentage (50%-70%): (20%-40%): (5%-15%), the polyimide positive electrode Mixing of materials, conductive agents and water-based binders;
和/或所述水性粘合剂为羧甲基纤维素钠、海藻酸钠、聚丙烯酸钠、丙烯酸酯乳液、聚四氟乙烯乳液和聚偏氟乙烯乳液中的一种。And/or the water-based binder is one of sodium carboxymethylcellulose, sodium alginate, sodium polyacrylate, acrylate emulsion, polytetrafluoroethylene emulsion and polyvinylidene fluoride emulsion.
一种如上所述的聚酰亚胺正极材料的应用,其中,将所述聚酰亚胺正极材料应用于锂离子二次电池或钠离子二次电池中。An application of the above-mentioned polyimide positive electrode material, wherein the polyimide positive electrode material is applied to a lithium ion secondary battery or a sodium ion secondary battery.
有益效果:本发明提供一种水性分散的聚酰亚胺正极材料,使用该水性纳米的聚酰亚胺正极材料,除了具有环保无污染的优点外,纳米尺寸效应显著提高了聚酰亚胺正极材料的比容量和充放电倍率性能。因而本发明提供的水性纳米的聚酰亚胺正极材料特别适用于制备高能量密度和高功率密度的柔性储能电池或可穿戴的储能电池。Beneficial effects: the invention provides a water-based dispersed polyimide positive electrode material, using the water-based nano-polyimide positive electrode material, in addition to the advantages of environmental protection and pollution-free, the nano-size effect significantly improves the polyimide positive electrode material. The specific capacity and charge-discharge rate performance of the material. Therefore, the water-based nano-polyimide positive electrode material provided by the present invention is particularly suitable for preparing flexible energy storage batteries or wearable energy storage batteries with high energy density and high power density.
附图说明Description of drawings
图1为实施例1中所制备的纳米聚酰亚胺正极材料的扫描电子显微镜照片。Fig. 1 is the scanning electron micrograph of the nanometer polyimide cathode material prepared in embodiment 1.
图2为实施例5中纳米聚酰亚胺正极材料组装成扣式电池的循环容量变化图。FIG. 2 is a graph showing the change in cycle capacity of a button battery assembled from the nano-polyimide positive electrode material in Example 5. FIG.
具体实施方式Detailed ways
本发明提供一种聚酰亚胺正极材料及制备方法与应用、聚酰亚胺正极的制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention provides a polyimide positive electrode material, its preparation method and application, and the preparation method of the polyimide positive electrode. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明提供的一种聚酰亚胺正极材料,其中,按质量百分比计,包括:5-40%的聚酰亚胺纳米粒子、0-4%的辅助分散剂和60-95%的水;A polyimide cathode material provided by the present invention, wherein, by mass percentage, comprises: 5-40% of polyimide nanoparticles, 0-4% of auxiliary dispersant and 60-95% of water;
所述聚酰亚胺纳米粒子具有如下结构式:The polyimide nanoparticles have the following structural formula:
其中,A1和A2独立地为芳基、取代芳基、杂芳基、取代杂芳基中的一种。Wherein, A1 and A2 are independently one of aryl, substituted aryl, heteroaryl and substituted heteroaryl.
优选地,所述A1具有如下结构式中的一种:Preferably, the A1 has one of the following structural formulas:
优选地,所述A2具有如下结构式中的一种:Preferably, the A2 has one of the following structural formulas:
本发明上述聚合度n为50-10000,特性粘数为1.0-3.0分升/克,所述聚酰亚胺纳米粒子的热分解温度为420℃以上。In the present invention, the degree of polymerization n is 50-10000, the intrinsic viscosity is 1.0-3.0 dl/g, and the thermal decomposition temperature of the polyimide nanoparticles is above 420°C.
优选地,所述聚酰亚胺纳米粒子的平均尺寸范围为50-800纳米。Preferably, the polyimide nanoparticles have an average size in the range of 50-800 nm.
优选地,所述辅助分散剂可以为羧甲基纤维素钠、海藻酸钠和聚丙烯酸钠等中的一种或两种。Preferably, the auxiliary dispersant may be one or both of sodium carboxymethyl cellulose, sodium alginate and sodium polyacrylate.
本发明提供的水性分散的聚酰亚胺正极材料,除了具有环保无污染的优点外,纳米尺寸效应显著提高了聚酰亚胺正极材料的比容量和充放电倍率性能。The water-based dispersed polyimide positive electrode material provided by the invention has the advantages of environmental protection and pollution-free, and the nano size effect significantly improves the specific capacity and charge-discharge rate performance of the polyimide positive electrode material.
本发明还提供一种如上所述的聚酰亚胺正极材料的制备方法,其中,包括步骤:The present invention also provides a kind of preparation method of polyimide positive electrode material as above, wherein, comprise steps:
首先将聚酰亚胺纳米粒子球磨6~10小时(如8小时);First, ball mill the polyimide nanoparticles for 6 to 10 hours (such as 8 hours);
然后取出球磨后的聚酰亚胺纳米粒子,与辅助分散剂和水混合,接着研磨6~10小时(如8小时),制备得到聚酰亚胺正极材料。Then the ball-milled polyimide nanoparticles are taken out, mixed with an auxiliary dispersant and water, and then ground for 6-10 hours (eg, 8 hours) to prepare a polyimide positive electrode material.
本发明采用先球磨,后砂磨两段工艺,即可制备得到所述聚酰亚胺正极材料。本发明制备工艺简单,制备成本低,且对环境无污染。In the present invention, the polyimide cathode material can be prepared by adopting a two-stage process of first ball milling and then sand milling. The preparation process of the invention is simple, the preparation cost is low, and there is no pollution to the environment.
本发明还提供一种利用如上所述的聚酰亚胺正极材料制备聚酰亚胺正极的方法,其中,包括步骤:The present invention also provides a method for preparing a polyimide positive electrode using the above-mentioned polyimide positive electrode material, wherein, comprising steps:
将如上所述聚酰亚胺正极材料、导电剂和水性粘结剂混合,并搅拌均匀;Mix the above-mentioned polyimide positive electrode material, conductive agent and water-based binder, and stir evenly;
然后涂布在铝箔上,最后烘干水分,制备得到聚酰亚胺正极。Then it is coated on an aluminum foil, and finally the water is dried to prepare a polyimide positive electrode.
优选地,按质量百分比为(50%-70%):(20%-40%):(5%-15%),将所述聚酰亚胺正极材料、导电剂和水性粘结剂混合;Preferably, the polyimide positive electrode material, conductive agent and water-based binder are mixed according to the mass percentage of (50%-70%): (20%-40%): (5%-15%);
优选地,所述水性粘合剂可以为羧甲基纤维素钠、海藻酸钠、聚丙烯酸钠、丙烯酸酯乳液、聚四氟乙烯乳液和聚偏氟乙烯乳液等中的一种。Preferably, the water-based binder may be one of sodium carboxymethylcellulose, sodium alginate, sodium polyacrylate, acrylate emulsion, polytetrafluoroethylene emulsion and polyvinylidene fluoride emulsion.
本发明还提供一种如上所述的聚酰亚胺正极材料的应用,其中,将所述聚酰亚胺正极材料应用于锂离子二次电池或钠离子二次电池中。本发明使用该水性纳米的聚酰亚胺正极材料,除了具有环保无污染的优点外,纳米尺寸效应显著提高了聚酰亚胺正极材料的比容量和充放电倍率性能。因而本发明提供的水性纳米的聚酰亚胺正极材料特别适用于制备高能量密度和高功率密度的柔性储能电池或可穿戴的储能电池。The present invention also provides an application of the above-mentioned polyimide positive electrode material, wherein the polyimide positive electrode material is applied to a lithium ion secondary battery or a sodium ion secondary battery. The invention uses the water-based nanometer polyimide positive electrode material, in addition to the advantages of environmental protection and pollution-free, the nano size effect significantly improves the specific capacity and charge-discharge rate performance of the polyimide positive electrode material. Therefore, the water-based nano-polyimide positive electrode material provided by the present invention is particularly suitable for preparing flexible energy storage batteries or wearable energy storage batteries with high energy density and high power density.
本发明的聚酰亚胺正极在锂离子二次电池和钠离子电池中的充放电性能,倍率性能以及循环性能等以本领域常规的方法,即组装成扣式电池(2032型)进行充放电测试。制备及测试过程如下:The charge-discharge performance of the polyimide positive electrode of the present invention in the lithium-ion secondary battery and the sodium-ion battery, the rate performance and the cycle performance etc. are charged and discharged by being assembled into a button battery (type 2032) by a conventional method in the art. test. The preparation and testing process is as follows:
首先将聚酰亚胺正极材料(指水性正极浆料中固体有效含量),导电剂(如乙炔黑)混合均匀,接着再加入水性粘合剂溶液(指水性正极浆料中固体有效含量),搅拌形成均匀的聚酰亚胺正极料浆。将该料浆均匀涂布在铝箔上,然后烘干,辊压,冲片制得圆形聚酰亚胺正极片。在120℃的温度下真空干燥后,置于干燥氩气氛的手套箱中,分别与金属锂电极配对组装成锂/聚酰亚胺扣式电池,与金属钠电极配对组装成钠/聚酰亚胺扣式电池,电解液分别为1M LiPF6/EC/DMC和1M NaPF6/EC/DMC,隔膜采用玻璃纤维隔膜,电池充放电为恒流法,充电条件为:0.3-1.1mA/cm2;放电电流为0.3-1.1mA/cm2;截至电压范围为1.50-3.50V(对Li/Li+);或截至电压范围为1.50-3.50V(对Na/Na+)。由电脑控制的LAND充放电仪进行测试。电池循环性能测试,将电池进行0.5C充放电实验,观察电池容量随充放电次数发生的变化。First, mix the polyimide positive electrode material (referring to the effective content of solids in the aqueous positive electrode slurry) and conductive agent (such as acetylene black), and then add the aqueous binder solution (referring to the effective content of solids in the aqueous positive electrode slurry), Stir to form a uniform polyimide cathode slurry. The slurry is uniformly coated on an aluminum foil, then dried, rolled, and punched to prepare a circular polyimide positive electrode sheet. After drying in vacuum at a temperature of 120°C, place them in a glove box in a dry argon atmosphere, pair with metal lithium electrodes to form a lithium/polyimide button cell, and pair with a metal sodium electrode to form a sodium/polyimide battery. Amine button battery, the electrolyte is 1M LiPF 6 /EC/DMC and 1M NaPF 6 /EC/DMC respectively, the diaphragm is made of glass fiber diaphragm, the battery is charged and discharged by constant current method, the charging condition is: 0.3-1.1mA/cm 2 ; The discharge current is 0.3-1.1mA/cm 2 ; the cut-off voltage range is 1.50-3.50V (for Li/Li + ); or the cut-off voltage range is 1.50-3.50V (for Na/Na + ). It is tested by a computer-controlled LAND charge and discharge instrument. For the battery cycle performance test, the battery is charged and discharged at 0.5C to observe the change of the battery capacity with the number of charge and discharge times.
下面通过实施例对本发明进行详细说明。The present invention will be described in detail below by way of examples.
实施例1Example 1
在行星球磨机中加入30份聚酰亚胺树脂原料(对苯二酐-对二胺二苯醚型)粗磨8小时,然后再加入0.6克羧甲基纤维素钠和269.4克蒸馏水混合到砂磨机中继续研磨8小时,制得固体含量为10.2%的水性纳米聚酰亚胺正极材料,平均激光法粒度为480纳米。将水性纳米聚酰亚胺正极材料、导电炭黑和水性丙烯酸酯粘结剂LA133按60:30:10质量比例(指各组分有效含量的质量百分比)搅拌混合均匀并涂布在铝箔上,然后120度真空烘干水分,制备得到纳米聚酰亚胺正极片。图1为本实施例中所制备的纳米聚酰亚胺正极材料的扫描电子显微镜照片。Add 30 parts of polyimide resin raw materials (terephthalic anhydride-p-diamine diphenyl ether type) to the planetary ball mill for rough grinding for 8 hours, then add 0.6 gram of carboxymethylcellulose sodium and 269.4 gram of distilled water to mix into sand Continue grinding in the mill for 8 hours to obtain a water-based nano-polyimide positive electrode material with a solid content of 10.2%, and an average laser particle size of 480 nanometers. Stir and mix the water-based nano-polyimide positive electrode material, conductive carbon black and water-based acrylate binder LA133 in a mass ratio of 60:30:10 (referring to the mass percentage of the effective content of each component) and coat them on the aluminum foil. Then dry the moisture in a vacuum at 120 degrees to prepare a nanometer polyimide positive electrode sheet. FIG. 1 is a scanning electron micrograph of the nano-polyimide positive electrode material prepared in this example.
实施例2Example 2
实施例2与实施例1的步骤大体一致,在行星球磨机中加入20份聚酰亚胺树脂原料(对苯二酐-对苯二胺型)粗磨8小时,然后再加入0.6克羧甲基纤维素钠和269.4克蒸馏水混合到砂磨机中继续研磨8小时,制得固体含量为7.1%的水性纳米聚酰亚胺正极材料,平均激光法粒度为450纳米。将水性纳米聚酰亚胺正极材料、导电炭黑和聚四氟乙烯乳液粘结剂按60:30:10质量比例(指各组分有效含量的质量百分比)搅拌混合均匀并涂布在铝箔上,然后120度真空烘干水分,制备得到纳米聚酰亚胺正极片。Embodiment 2 is roughly the same as the steps of Embodiment 1. Add 20 parts of polyimide resin raw materials (terephthalic anhydride-p-phenylenediamine type) in a planetary ball mill for rough grinding for 8 hours, and then add 0.6 gram of carboxymethyl Sodium cellulose and 269.4 grams of distilled water were mixed into a sand mill and continued to grind for 8 hours to obtain a water-based nano-polyimide positive electrode material with a solid content of 7.1%, and an average laser particle size of 450 nanometers. Stir and mix the water-based nano-polyimide positive electrode material, conductive carbon black and polytetrafluoroethylene emulsion binder in a mass ratio of 60:30:10 (referring to the mass percentage of the effective content of each component) and coat it on the aluminum foil , and then vacuum-dry the water at 120 degrees to prepare a nano-polyimide positive electrode sheet.
实施例3Example 3
实施例3与实施例1的步骤大体一致,在行星球磨机中加入30份聚酰亚胺树脂原料(萘二酐-对苯二胺型)粗磨8小时,然后再加入0.6克海藻酸钠和269.4克蒸馏水混合到砂磨机中继续研磨8小时,制得固体含量为10.2%的水性纳米聚酰亚胺正极材料,平均激光法粒度为470纳米。将水性纳米聚酰亚胺正极材料、导电炭黑和聚偏氟乙烯乳液粘结剂按60:30:10质量比例(指各组分有效含量的质量百分比)搅拌混合均匀并涂布在铝箔上,然后120度真空烘干水分,制备得到纳米聚酰亚胺正极片。Embodiment 3 is substantially consistent with the steps of Embodiment 1. In a planetary ball mill, add 30 parts of polyimide resin raw materials (naphthalene dianhydride-p-phenylenediamine type) for rough grinding for 8 hours, then add 0.6 gram of sodium alginate and 269.4 grams of distilled water was mixed into a sand mill and continued to grind for 8 hours to obtain a water-based nano-polyimide positive electrode material with a solid content of 10.2%, and an average particle size of 470 nanometers by laser method. Stir and mix the water-based nano-polyimide positive electrode material, conductive carbon black and polyvinylidene fluoride emulsion binder in a mass ratio of 60:30:10 (referring to the mass percentage of the effective content of each component) and coat it on the aluminum foil , and then vacuum-dry the water at 120 degrees to prepare a nano-polyimide positive electrode sheet.
实施例4Example 4
实施例4与实施例1的步骤大体一致,在行星球磨机中加入30份聚酰亚胺树脂原料(苝二酐-对二胺二苯醚型)粗磨10小时,然后再加入0.6克海藻酸钠和269.4克蒸馏水混合到砂磨机中继续研磨10小时,制得固体含量为10.2%的水性纳米聚酰亚胺正极材料,平均激光法粒度为410纳米。将水性纳米聚酰亚胺正极材料、导电炭黑和水性丙烯酸酯粘结剂LA133按60:30:10质量比例(指各组分有效含量的质量百分比)搅拌混合均匀并涂布在铝箔上,然后120度真空烘干水分,制备得到纳米聚酰亚胺正极片。Embodiment 4 is roughly consistent with the steps of Embodiment 1. Add 30 parts of polyimide resin raw materials (perylene dianhydride-p-diamine diphenyl ether type) to the planetary ball mill for rough grinding for 10 hours, and then add 0.6 gram of alginic acid Sodium and 269.4 grams of distilled water were mixed into a sand mill and continued to grind for 10 hours to obtain a water-based nano-polyimide positive electrode material with a solid content of 10.2%, and an average laser particle size of 410 nanometers. Stir and mix the water-based nano-polyimide positive electrode material, conductive carbon black and water-based acrylate binder LA133 in a mass ratio of 60:30:10 (referring to the mass percentage of the effective content of each component) and coat them on the aluminum foil. Then dry the moisture in a vacuum at 120 degrees to prepare a nanometer polyimide positive electrode sheet.
实施例5Example 5
实施例1中纳米聚酰亚胺正极片,辊压冲片成12毫米圆形正极片,其中含有5.6毫克活性成分纳米聚酰亚胺。在120度的温度下真空干燥后,置于干燥氩气氛的手套箱中,分别与金属锂电极配对组装成锂/聚酰亚胺扣式电池,与金属钠电极配对组装成钠/聚酰亚胺扣式电池,电解液分别为1MLiPF6/EC/DMC和1M NaPF6/EC/DMC,隔膜采用玻璃纤维隔膜,电池充放电为恒流法,充电条件为:0.3-1.1mA/cm2;放电电流为0.3-1.1mA/cm2;截至电压范围为1.50-3.50V(对Li/Li+);或截至电压范围为1.50-3.50V(对Na/Na+)。由电脑控制的LAND充放电仪进行测试。电池循环性能测试,将电池进行0.5C充放电实验,观察电池容量随充放电次数发生的变化,测试结果见图2。The nano-polyimide positive electrode sheet in Example 1 was rolled and punched into a 12 mm circular positive electrode sheet, which contained 5.6 mg of active ingredient nano-polyimide. After vacuum drying at a temperature of 120 degrees, place it in a glove box with a dry argon atmosphere, and assemble it with a metal lithium electrode to form a lithium/polyimide button battery, and pair it with a metal sodium electrode to form a sodium/polyimide battery. Amine button battery, the electrolyte is 1MLiPF 6 /EC/DMC and 1M NaPF 6 /EC/DMC respectively, the diaphragm is made of glass fiber diaphragm, the battery is charged and discharged by constant current method, and the charging condition is: 0.3-1.1mA/cm 2 ; The discharge current is 0.3-1.1mA/cm 2 ; the cut-off voltage range is 1.50-3.50V (for Li/Li + ); or the cut-off voltage range is 1.50-3.50V (for Na/Na + ). It is tested by a computer-controlled LAND charge and discharge instrument. For the battery cycle performance test, the battery is charged and discharged at 0.5C to observe the change of battery capacity with the number of charge and discharge times. The test results are shown in Figure 2.
综上所述,本发明提供的聚酰亚胺正极材料及制备方法与应用、聚酰亚胺正极的制备方法。本发明提供一种水性分散的聚酰亚胺正极材料,使用该水性纳米的聚酰亚胺正极材料,除了具有环保无污染的优点外,纳米尺寸效应显著提高了聚酰亚胺正极材料的比容量和充放电倍率性能。因而本发明提供的水性纳米的聚酰亚胺正极材料特别适用于制备高能量密度和高功率密度的柔性储能电池或可穿戴的储能电池。In summary, the present invention provides the polyimide positive electrode material, its preparation method and application, and the preparation method of the polyimide positive electrode. The invention provides a water-based dispersed polyimide positive electrode material. Using the water-based nano-polyimide positive electrode material, in addition to the advantages of environmental protection and pollution-free, the nano-size effect significantly improves the ratio of the polyimide positive electrode material. Capacity and charge-discharge rate performance. Therefore, the water-based nano-polyimide positive electrode material provided by the present invention is particularly suitable for preparing flexible energy storage batteries or wearable energy storage batteries with high energy density and high power density.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (10)
- A kind of 1. polyimides positive electrode, it is characterised in that by mass percentage, including:5-40% polyimides is received The water of rice corpuscles, 0-4% auxiliary dispersants and 60-95%;The polyimide nano particle has following structural formula:Wherein, A1 and A2 independently is one kind in aryl, substituted aryl, heteroaryl, substituted heteroaryl.
- 2. polyimides positive electrode according to claim 1, it is characterised in that the n is 50-10000.
- 3. polyimides positive electrode according to claim 1, it is characterised in that the A1 has in following structural formula It is a kind of:
- 4. polyimides positive electrode according to claim 1, it is characterised in that the A2 has in following structural formula It is a kind of:
- 5. polyimides positive electrode according to claim 1, it is characterised in that the polyimide nano particle is put down Equal size range is 50-800 nanometers.
- 6. polyimides positive electrode according to claim 1, it is characterised in that the auxiliary dispersants are that carboxymethyl is fine Tie up one or both of plain sodium, sodium alginate and Sodium Polyacrylate.
- A kind of 7. preparation method of the polyimides positive electrode described in any one of claim 1~6, it is characterised in that including Step:First by polyimide nano particle ball milling 6~10 hours;The polyimide nano particle after ball milling is then taken out, is mixed with auxiliary dispersants and water, is then ground 6~10 hours, Polyimides positive electrode is prepared.
- 8. a kind of method that polyimides positive electrode using described in any one of claim 1~6 prepares polyimides positive pole, It is characterised in that it includes step:Any one of the claim 1~6 polyimides positive electrode, conductive agent and aqueous binders are mixed, and stirred equal It is even;Then it is coated on aluminium foil, finally dries moisture, polyimides positive pole is prepared.
- 9. the method according to claim 8 for preparing polyimides positive pole, it is characterised in that by mass percentage for (50%-70%):(20%-40%):(5%-15%), by polyimides positive electrode, conductive agent and the aqueous binders Mixing;And/or the aqueous binder is sodium carboxymethylcellulose, sodium alginate, Sodium Polyacrylate, acrylic acid ester emulsion, poly- four One kind in PVF emulsion and polyvinylidene fluoride emulsion.
- 10. the application of the polyimides positive electrode described in a kind of any one of claim 1~6, it is characterised in that will be described poly- Acid imide positive electrode is applied in lithium rechargeable battery or sodium ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710991254.8A CN107768670A (en) | 2017-10-23 | 2017-10-23 | Positive electrode material, preparation method and application, positive electrode preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710991254.8A CN107768670A (en) | 2017-10-23 | 2017-10-23 | Positive electrode material, preparation method and application, positive electrode preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107768670A true CN107768670A (en) | 2018-03-06 |
Family
ID=61269995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710991254.8A Pending CN107768670A (en) | 2017-10-23 | 2017-10-23 | Positive electrode material, preparation method and application, positive electrode preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107768670A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110993944A (en) * | 2019-11-08 | 2020-04-10 | 宁波锋成先进能源材料研究院 | Aqueous ion battery and application thereof |
CN111244418A (en) * | 2020-01-17 | 2020-06-05 | 上海应用技术大学 | Two-dimensional carbide crystal-based polyimide sodium electrical composite material and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103178239A (en) * | 2011-12-26 | 2013-06-26 | 株式会社半导体能源研究所 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
CN103531810A (en) * | 2013-11-05 | 2014-01-22 | 南京工业大学 | Lithium ion secondary battery anode material of aromatic heterocyclic ketone compound and application |
CN103746085A (en) * | 2013-11-07 | 2014-04-23 | 深圳市星源材质科技股份有限公司 | Coating composite separation membrane and preparation method thereof |
CN104795566A (en) * | 2014-06-04 | 2015-07-22 | 中国科学院物理研究所 | Battery negative electrode active material based on quinone structure and preparation method and application thereof |
CN106920967A (en) * | 2015-12-27 | 2017-07-04 | 深圳市沃特玛电池有限公司 | A kind of organic method for preparing anode material of high power capacity nanometer |
-
2017
- 2017-10-23 CN CN201710991254.8A patent/CN107768670A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103178239A (en) * | 2011-12-26 | 2013-06-26 | 株式会社半导体能源研究所 | Positive electrode for secondary battery and manufacturing method of positive electrode for secondary battery |
CN103531810A (en) * | 2013-11-05 | 2014-01-22 | 南京工业大学 | Lithium ion secondary battery anode material of aromatic heterocyclic ketone compound and application |
CN103746085A (en) * | 2013-11-07 | 2014-04-23 | 深圳市星源材质科技股份有限公司 | Coating composite separation membrane and preparation method thereof |
CN104795566A (en) * | 2014-06-04 | 2015-07-22 | 中国科学院物理研究所 | Battery negative electrode active material based on quinone structure and preparation method and application thereof |
CN106920967A (en) * | 2015-12-27 | 2017-07-04 | 深圳市沃特玛电池有限公司 | A kind of organic method for preparing anode material of high power capacity nanometer |
Non-Patent Citations (1)
Title |
---|
ZHIPING SONG ET.AL: "Polyimides: Promising Energy-Storage Materials", 《ANGEW. CHEM. INT. ED.》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110993944A (en) * | 2019-11-08 | 2020-04-10 | 宁波锋成先进能源材料研究院 | Aqueous ion battery and application thereof |
CN110993944B (en) * | 2019-11-08 | 2023-07-25 | 宁波锋成先进能源材料研究院 | Water-based ion battery and application thereof |
CN111244418A (en) * | 2020-01-17 | 2020-06-05 | 上海应用技术大学 | Two-dimensional carbide crystal-based polyimide sodium electrical composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102832379B (en) | Preparation method of positive material for lithium-sulfur battery | |
CN103208618B (en) | Carbon in lithium ion battery sulphur composite positive pole and preparation method thereof | |
CN102760883B (en) | Novel chitosan used for lithium ion cell and derivative water-based binder of chitosan | |
CN103078092B (en) | A kind of method preparing silicon-carbon composite cathode material of lithium ion battery | |
CN109411713B (en) | Mechanical co-coating method of silicon-containing base material, silicon-containing base material and lithium ion battery | |
CN104466142B (en) | A kind of silicon/silica carbon/composite cathode material of silicon/carbon/graphite for lithium ion battery | |
CN101577323A (en) | Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof | |
CN106684389A (en) | Sulfur-nitrogen dual-doped graphene nano material and preparation method and application thereof | |
CN103500813B (en) | A kind of secondary lithium-sulfur battery elemental sulfur positive pole and preparation method thereof | |
CN105374991A (en) | Metal lithium-framework carbon composite material and preparation method thereof, negative electrode and secondary battery | |
CN103396500A (en) | Natural polymer derivative-conducting polymer aqueous composite binder and application thereof | |
CN103074007B (en) | The preparation method of lithium ion battery silicium cathode use tackiness agent and silicium cathode | |
CN104916825A (en) | Preparation method of lithium battery high-voltage modified cathode material | |
CN107887594A (en) | A kind of compound lithium-rich manganese-based anode material and preparation method for lithium ion battery | |
CN105186003A (en) | Preparation method of high-capacity lithium-ion battery anode material | |
CN108598414A (en) | Amorphous zinc oxide/carbon composition lithium ion battery cathode material and preparation method thereof | |
CN103296257A (en) | Preparation method of modified lithium titanate negative material of lithium-ion battery | |
CN106992299A (en) | A kind of water-based binder and the lithium battery comprising the binding agent | |
CN105047875B (en) | A kind of preparation method of lithium sulfur battery anode material | |
CN103326010A (en) | Process for preparing nano-silicon-doped composite-lithium-titanate anode materials | |
CN105006555A (en) | Preparation method of compound lithium titanate anode material doped with metallic tin | |
CN105244474A (en) | High-specific capacity lithium-sulfur secondary battery composite cathode and preparation method thereof | |
CN104183836B (en) | A kind of cathode composite material for lithium-sulfur battery | |
CN106684340A (en) | Lithium ion battery positive paste and preparation method thereof | |
CN107887590A (en) | One kind carries sulphur composite positive pole and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180306 |