CN107731542B - A kind of solid state battery capacitor - Google Patents
A kind of solid state battery capacitor Download PDFInfo
- Publication number
- CN107731542B CN107731542B CN201710961344.2A CN201710961344A CN107731542B CN 107731542 B CN107731542 B CN 107731542B CN 201710961344 A CN201710961344 A CN 201710961344A CN 107731542 B CN107731542 B CN 107731542B
- Authority
- CN
- China
- Prior art keywords
- solid
- lithium
- battery capacitor
- state battery
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 34
- 239000007787 solid Substances 0.000 title claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 13
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 13
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 13
- 239000007770 graphite material Substances 0.000 claims abstract description 11
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- 239000011149 active material Substances 0.000 claims description 16
- 239000002033 PVDF binder Substances 0.000 claims description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- -1 lithium hexafluorophosphate Chemical group 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 9
- 239000011118 polyvinyl acetate Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000006258 conductive agent Substances 0.000 claims description 5
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 5
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000007774 positive electrode material Substances 0.000 claims description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 4
- 239000011357 graphitized carbon fiber Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 3
- 239000004005 microsphere Substances 0.000 claims description 3
- 229910021382 natural graphite Inorganic materials 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 2
- 229910012513 LiSbF 6 Inorganic materials 0.000 claims description 2
- 239000007983 Tris buffer Substances 0.000 claims description 2
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 2
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 claims description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- 229910021384 soft carbon Inorganic materials 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- JFZKOODUSFUFIZ-UHFFFAOYSA-N trifluoro phosphate Chemical compound FOP(=O)(OF)OF JFZKOODUSFUFIZ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000006104 solid solution Substances 0.000 abstract description 2
- 230000014759 maintenance of location Effects 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012983 electrochemical energy storage Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- MBAKFIZHTUAVJN-UHFFFAOYSA-I hexafluoroantimony(1-);hydron Chemical compound F.F[Sb](F)(F)(F)F MBAKFIZHTUAVJN-UHFFFAOYSA-I 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种固态电池电容器,该固态电池电容器包括正极、负极、固态电解质,其特征在于固态电解质为锂盐、聚偏氟乙烯与聚醋酸乙烯酯复合膜,正负极活性材料均为石墨质材料,其中负极石墨材料要经预锂化处理。本发明的固态电池电容器,在充放电循环过程中固态电解质可以与正负极形成良好的固溶体,可以产生稳定的界面效应,大大提高了首次充放电效率、循环过程中的库伦效率、降低阻抗,并且负极采用预锂化石墨质电极,可以明显减小充放电过程中锂盐的损耗,循环寿命大大提高,同时漏电流减小。该固态电池电容器工作电压可达5.35V,极大提高了能量密度。另外采用固态电解质,安全性能得到保障。The invention discloses a solid-state battery capacitor. The solid-state battery capacitor includes a positive electrode, a negative electrode, and a solid electrolyte. Graphite material, wherein the negative electrode graphite material should be pre-lithiated. In the solid battery capacitor of the present invention, the solid electrolyte can form a good solid solution with the positive and negative electrodes during the charging and discharging cycle, and can produce a stable interface effect, greatly improving the first charge and discharge efficiency, Coulombic efficiency during the cycle, and reducing impedance. And the negative electrode adopts pre-lithiated graphite electrode, which can significantly reduce the loss of lithium salt during charging and discharging, greatly improve the cycle life, and reduce the leakage current. The working voltage of the solid-state battery capacitor can reach 5.35V, which greatly improves the energy density. In addition, solid electrolyte is used to ensure safety performance.
Description
技术领域technical field
本发明属于动力/储能电池领域,具体地涉及一种固态电池电容器。The invention belongs to the field of power/energy storage batteries, in particular to a solid-state battery capacitor.
背景技术Background technique
能源危机以及环境问题的日趋加重,加速了新能源产业的快速发展。当前形势下将绿色能源供给与低碳节能减排发挥到极致的环境友好型电化学储能技术日益受到重视。近来,国家提出建立基于能源互联网的近零碳排放工程,其中核心内容就包括可再生能源发电、分布式储能技术等,这对新型高效储能技术提出了更高的要求,另外,新能源电动汽车、低温启动电源、高铁/城市轨道交通制动能量回收、海洋船舶平台、水下潜器电源、UPS不间断电源等领域对高能量密度、高功率密度电化学储能器件也提出深刻要求。The increasing energy crisis and environmental problems have accelerated the rapid development of the new energy industry. Under the current situation, the environment-friendly electrochemical energy storage technology that maximizes green energy supply and low-carbon energy conservation and emission reduction has attracted more and more attention. Recently, the state has proposed to establish a near-zero carbon emission project based on the Energy Internet, the core content of which includes renewable energy power generation, distributed energy storage technology, etc., which puts forward higher requirements for new and efficient energy storage technologies. In addition, new energy Electrochemical energy storage devices with high energy density and high power density are also required in fields such as electric vehicles, low-temperature starting power supplies, high-speed rail/urban rail transit braking energy recovery, marine ship platforms, underwater submersible power supplies, and UPS uninterruptible power supplies. .
目前,商业化最成熟的两种电化学储能技术,一种是锂离子电池,正极采用含锂金属氧化物作为活性材料,负极采用石墨作为活性炭材料,通过正负极电化学嵌锂储存能量,单体能量密度可达150 Wh/kg以上,然而其功率密度仅为100~500 W/kg,功率性能差,循环寿命仅~500次,低温性能差;另外一种是双电层超级电容器,该器件采用高比表面积活性炭为正负极活性材料,通过物理吸附电荷储存能量,因此其功率密度可达5000 W/kg以上,循环寿命达10000次以上,2~5Wh/kg,续航能力受限,不能长时间供电。兼具上述两者优点的锂离子电容器,即电池电容器,成为人们研究热点。At present, there are two most mature commercialized electrochemical energy storage technologies, one is lithium-ion battery, the positive electrode uses lithium-containing metal oxide as the active material, and the negative electrode uses graphite as the activated carbon material, through which the positive and negative electrodes electrochemically intercalate lithium to store energy , the energy density of a single cell can reach more than 150 Wh/kg, but its power density is only 100~500 W/kg, the power performance is poor, the cycle life is only ~500 times, and the low temperature performance is poor; the other is the electric double layer supercapacitor , the device uses activated carbon with high specific surface area as the positive and negative active materials, and stores energy through physical adsorption of charges, so its power density can reach more than 5000 W/kg, cycle life can reach more than 10000 times, 2~5Wh/kg, battery life is limited Limit, can not supply power for a long time. Lithium-ion capacitors, that is, battery capacitors, which have the advantages of both of the above, have become a research hotspot.
常规的电池电容器原理上采用了负极通过电化学嵌Li+、正极采用物理吸附PF6 -等阴离子进行储能,电解液为液态有机体系,工作电压在3.8V,能量密度为10~20Wh/kg,功率密度在3000~5000W/kg,另外一种电池电容器依靠负极物理吸附Li+阳离子、正极通过电化学嵌入PF6 -等进行储能,上述两种电池电容器电解液均采用液体有机电解液,嵌入活性材料为石墨类材料,吸附材料为多孔炭,采用有机电解液的缺点在于安全性能差,在滥用条件下很容易起火爆炸;一极采用物理吸附电荷存储能量,使得漏电流大;另外,对于后一种电池电容器,在液体电解液体系下,PF6 -在反复嵌入/脱出过程中,活性材料表面会不断剥落,界面遭到破坏,反复产生不可逆反应,从而不可逆容量不断产生,首次充放电效率及长期循环过程中的库伦效率低下。In principle, conventional battery capacitors use the negative electrode to electrochemically intercalate Li + , and the positive electrode uses physical adsorption of PF 6 - and other anions to store energy. The electrolyte is a liquid organic system with a working voltage of 3.8V and an energy density of 10~20Wh/kg. , the power density is 3000~5000W/kg, another battery capacitor relies on the physical adsorption of Li + cations on the negative electrode, and the electrochemical embedding of PF 6 - on the positive electrode to store energy. The electrolytes of the above two battery capacitors are liquid organic electrolytes. The embedded active material is graphite material, and the adsorption material is porous carbon. The disadvantage of using organic electrolyte is that the safety performance is poor, and it is easy to catch fire and explode under abuse conditions; one pole uses physical adsorption to store energy, which makes the leakage current large; in addition, For the latter type of battery capacitor, under the liquid electrolyte system, during the repeated intercalation/extraction process of PF 6 - , the surface of the active material will continue to peel off, the interface will be destroyed, and irreversible reactions will occur repeatedly, so that the irreversible capacity will continue to be generated. Discharge efficiency and Coulombic efficiency during long-term cycling are low.
发明内容Contents of the invention
本发明为了解决上述存在的问题,提供了一种固态电池电容器。In order to solve the above existing problems, the present invention provides a solid battery capacitor.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, technical scheme of the present invention is:
一种固态电池电容器,该固态电池电容器包括正极、负极、固态电解质,固态电解质为锂盐、聚偏氟乙烯与聚醋酸乙烯酯复合膜,正负极活性材料均为石墨质材料,其中负极石墨质材料要经预锂化处理。A solid-state battery capacitor, the solid-state battery capacitor includes a positive electrode, a negative electrode, and a solid electrolyte, the solid electrolyte is lithium salt, polyvinylidene fluoride and polyvinyl acetate composite film, the positive and negative electrode active materials are graphite materials, and the negative electrode graphite The base material should be pre-lithiated.
所述聚偏氟乙烯与聚醋酸乙烯酯的质量比例为0.5:9.5~9.5:0.5之间可调。The mass ratio of polyvinylidene fluoride to polyvinyl acetate is adjustable between 0.5:9.5-9.5:0.5.
所述锂盐为六氟磷酸锂(LiPF6)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)、四氟硼酸锂 (LiBF4)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、二(三氟甲基磺酰)亚胺锂(LiTFSI)、双氟磺酰亚胺锂 (LiFSI)、三氟甲磺酸锂(LiCF3SO3)、六氟锑酸锂(LiSbF6)、三(五氟乙基)三氟磷酸锂 (LiFAP)中的一种或多种。The lithium salt is lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bisoxalate borate (LiBOB), difluorooxalic acid Lithium borate (LiDFOB), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), lithium bisfluorosulfonylimide (LiFSI), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), hexafluoroantimonic acid One or more of lithium (LiSbF 6 ) and lithium tris(pentafluoroethyl)trifluorophosphate (LiFAP).
所述的负极石墨质材料的预锂量为100~150 mAh/g。The lithium content of the negative electrode graphite material is 100-150 mAh/g.
所述正负极活性材料为石墨质材料,石墨质材料为天然石墨、人造石墨、石墨化中间相炭微球、石墨化碳纤维、软碳中的一种或多种。The positive and negative active materials are graphite materials, and the graphite materials are one or more of natural graphite, artificial graphite, graphitized mesocarbon microspheres, graphitized carbon fibers, and soft carbon.
所述的复合膜成膜方法为:将锂盐、聚偏氟乙烯与聚醋酸乙烯酯按质量比例溶于溶剂中,形成溶液,将此溶液采用刮涂法涂覆于聚四氟乙烯平板基体上,室温下将溶剂挥发,形成厚度5~100μm的薄膜,烘干之后裁切成固定形状,得到含有锂盐的复合膜。The method for forming the composite film is as follows: dissolving lithium salt, polyvinylidene fluoride and polyvinyl acetate in a solvent according to the mass ratio to form a solution, and applying the solution to the polytetrafluoroethylene plate substrate by scraping Above, the solvent is evaporated at room temperature to form a film with a thickness of 5-100 μm, which is cut into a fixed shape after drying to obtain a composite film containing lithium salt.
所述正负极极片制作方法是,将活性材料、导电剂、粘结剂按照质量比90:1~5:1~5的比例混合成浆料,正极涂覆于铝箔上,负极涂覆于铜箔上,120℃真空烘箱中保持24h,裁切成固定形状。The preparation method of the positive and negative pole pieces is as follows: the active material, the conductive agent, and the binder are mixed into a slurry according to a mass ratio of 90:1~5:1~5, the positive electrode is coated on the aluminum foil, and the negative electrode is coated with Put it on copper foil, keep it in a vacuum oven at 120°C for 24 hours, and cut it into a fixed shape.
所述粘结剂为丙烯腈多元共聚物、聚四氟乙烯、聚偏氟乙烯、羟丙基甲基纤维素、羧甲基纤维素钠和丁苯橡胶中的一种或多种。The binder is one or more of acrylonitrile multi-polymer, polytetrafluoroethylene, polyvinylidene fluoride, hydroxypropylmethylcellulose, sodium carboxymethylcellulose and styrene-butadiene rubber.
所述导电剂为炭黑、石墨、石墨化碳纤维、碳纳米管中的一种或多种。The conductive agent is one or more of carbon black, graphite, graphitized carbon fiber, and carbon nanotube.
本发明采用该固态电解质固态电池电容器,在充放电循环过程中固态电解质可以与正负极形成良好的固溶体,可以产生稳定的界面效应,有效避免在反复充放电过程中阴离子共嵌入正极过程中对固体材料界面的破坏,大大提高了首次充放电效率、循环过程中的库伦效,抑制了充放电过程中由于电极界面破坏带来的阻抗增加,保证了功率性能发挥,并且负极采用预锂化石墨质电极,可以明显减小充放电过程中对固体电解质中锂盐的损耗,循环寿命得到大大提高,同时漏电流减小,另外,该固态电池电容器的工作电压可达5.35V,极大提高了能量密度,且采用固态电解质,安全性能得到保障。The present invention adopts the solid electrolyte solid battery capacitor, and the solid electrolyte can form a good solid solution with the positive and negative electrodes during the charging and discharging cycle, and can produce a stable interface effect, effectively avoiding the anion co-embedded into the positive electrode during repeated charging and discharging. The destruction of the solid material interface greatly improves the first charge and discharge efficiency and the Coulomb effect during the cycle, suppresses the increase in impedance caused by the destruction of the electrode interface during the charge and discharge process, and ensures the power performance, and the negative electrode uses pre-lithiated graphite The high-quality electrode can significantly reduce the loss of lithium salt in the solid electrolyte during charging and discharging, greatly improve the cycle life, and reduce the leakage current. In addition, the working voltage of the solid-state battery capacitor can reach 5.35V, which greatly improves the battery life. Energy density, and the use of solid electrolytes, the safety performance is guaranteed.
具体实施方式Detailed ways
下面通过实施例,对本发明作进一步的说明。Below by embodiment, the present invention will be further described.
实施例1Example 1
将0.6聚偏氟乙烯、0.4g聚醋酸乙烯酯粉末和一定质量锂盐LiPF6溶于25ml丙酮中形成溶液,将此溶液采用刮涂法,涂覆于聚四氟平板基体上,室温下将溶剂丙酮挥发,形成厚度30μm的薄膜,在真空60℃烘干12h,将剩余丙酮彻底除尽。冲成直径为18mm圆形隔膜,待用。Dissolve 0.6 polyvinylidene fluoride, 0.4 g polyvinyl acetate powder and a certain mass of lithium salt LiPF 6 in 25 ml acetone to form a solution, and apply this solution on a polytetrafluoro flat substrate by scraping method, and place it at room temperature The solvent acetone volatilizes to form a film with a thickness of 30 μm, and it is dried in vacuum at 60° C. for 12 hours to completely remove the remaining acetone. Punch into a circular diaphragm with a diameter of 18mm, and set aside.
将活性材料石墨化中间相炭微球、粘结剂丙烯腈多元共聚物、导电炭黑按照质量比90:5:5充分搅拌混合成浆料,分别涂覆与铝箔和铜箔集流体上,120℃真空烘烤24h后,冲切成直径为14mm的圆形电极。将负极片与上述得到的固态电解质组装成扣式电池,采用0.02C倍率电流在充放电仪中进行预锂化,预锂量为150 mAh/g,之后拆解取出,与正极片、固态电解质组装成扣式固态电池电容器,采用0.5 C首次效率达95.2%,经过2C循环5000次,容量保持率达97%,循环过程中库伦效率~99.97%,基于活性物质的能量密度为120Wh/kg,功率密度可达3500W/kg,而采用普通玻璃纤维隔膜、1M LiPF6/EMC+SL(溶剂体积比1:4)电解液时,0.5 C首次充放电首次可逆容量为95 mAh/g,首次效率达67%,经过2C循环5000次,容量保持率63%,循环过程中库伦效率~92%。The active material graphitized mesophase carbon microspheres, the binder acrylonitrile multi-polymer, and the conductive carbon black are fully stirred and mixed into a slurry according to the mass ratio of 90:5:5, and coated on the aluminum foil and copper foil current collectors respectively. After vacuum baking at 120°C for 24 hours, it was punched into circular electrodes with a diameter of 14 mm. Assemble the negative electrode sheet and the solid electrolyte obtained above into a button battery, and use a 0.02C rate current to perform pre-lithiation in a charge-discharge instrument. Assembled into a button-type solid-state battery capacitor, the initial efficiency reached 95.2% at 0.5 C. After 5000 cycles at 2C, the capacity retention rate reached 97%. The Coulombic efficiency during the cycle was ~99.97%. The energy density based on the active material was 120Wh/kg. The power density can reach 3500W/kg, and when ordinary glass fiber separators and 1M LiPF 6 /EMC+SL (solvent volume ratio 1:4) electrolyte are used, the first reversible capacity of 0.5 C for the first charge and discharge is 95 mAh/g, and the first efficiency After 5000 2C cycles, the capacity retention rate is 63%, and the Coulombic efficiency during the cycle is ~92%.
实施例2Example 2
将实施例1中,聚偏氟乙烯、聚醋酸乙烯酯称取的质量分别变为0.4g和0.6g,组装成的扣式电池电容器采用0.5 C首次效率达92.5%,经过2C循环5000次,容量保持率达96.7%,循环过程中库伦效率99.96%,基于活性物质的能量密度为119.6Wh/kg,功率密度可达3450W/kg。In Example 1, the weights of polyvinylidene fluoride and polyvinyl acetate were changed to 0.4g and 0.6g respectively, and the assembled button battery capacitor was used at 0.5 C. The efficiency reached 92.5% for the first time, and after 5000 cycles at 2C, The capacity retention rate reaches 96.7%, the coulombic efficiency in the cycle process is 99.96%, the energy density based on the active material is 119.6Wh/kg, and the power density can reach 3450W/kg.
实施例3Example 3
将实施例1中,聚偏氟乙烯、聚醋酸乙烯酯称取的质量分别变为0.8g和0.2g,组装成的扣式电池电容器采用0.5 C首次效率达90.3%,经过2C循环5000次,容量保持率达93.7%,循环过程中库伦效率99.93%,基于活性物质的能量密度为119.4Wh/kg,功率密度可达3425W/kg。In Example 1, the weights of polyvinylidene fluoride and polyvinyl acetate were changed to 0.8g and 0.2g respectively, and the assembled button battery capacitor was used at 0.5 C for the first time. The efficiency reached 90.3%, and after 5000 cycles at 2C, The capacity retention rate reaches 93.7%, the coulombic efficiency in the cycle process is 99.93%, the energy density based on the active material is 119.4Wh/kg, and the power density can reach 3425W/kg.
实施例4Example 4
将实施例1中,锂盐换为LiBF4,组装成的扣式电池电容器采用0.5 C首次效率达91.2%,经过2C循环5000次,容量保持率达94.8%,循环过程中库伦效率99.91%,基于活性物质的能量密度为119.5Wh/kg,功率密度可达3455W/kg。In Example 1, the lithium salt was replaced by LiBF 4 , and the assembled button battery capacitor was used at 0.5 C. The efficiency reached 91.2% for the first time. After 5000 cycles at 2C, the capacity retention rate reached 94.8%, and the Coulombic efficiency during the cycle was 99.91%. Based on the energy density of the active material is 119.5Wh/kg, the power density can reach 3455W/kg.
实施例5Example 5
将实施例1中,将固态电解质复合膜厚度变为60μm,组装成的扣式电池电容器采用0.5 C首次效率达89.2%,经过2C循环5000次,容量保持率达87.9%,循环过程中库伦效率99.6%,基于活性物质的能量密度为118.2Wh/kg,功率密度可达3058W/kg。In Example 1, the thickness of the solid electrolyte composite film was changed to 60 μm, and the assembled button battery capacitor was used at 0.5 C. The efficiency reached 89.2% for the first time. After 5000 cycles at 2C, the capacity retention rate reached 87.9%, and the Coulombic efficiency during the cycle 99.6%, the energy density based on the active material is 118.2Wh/kg, and the power density can reach 3058W/kg.
实施例6Example 6
将实施例1中,将活性材料变为球形天然石墨,组装成的扣式电池电容器采用0.5C首次效率达88.2%,经过2C循环5000次,容量保持率达85.9%,循环过程中库伦效率99.1%,基于活性物质的能量密度为119.2Wh/kg,功率密度可达3460W/kg。In Example 1, the active material is changed into spherical natural graphite, and the assembled button battery capacitor adopts 0.5C for the first time with an efficiency of 88.2%, after 5000 cycles at 2C, the capacity retention rate reaches 85.9%, and the Coulombic efficiency during the cycle is 99.1% %, the energy density based on the active material is 119.2Wh/kg, and the power density can reach 3460W/kg.
实施例7Example 7
将实施例1中,将粘结剂变为聚偏氟乙烯的N-甲基吡咯烷酮溶液,组装成的扣式电池电容器采用0.5 C首次效率达92.5%,经过2C循环5000次,容量保持率达90.6%,循环过程中库伦效率99.4%,基于活性物质的能量密度为119.7Wh/kg,功率密度可达3470W/kg。In Example 1, the binder was changed to N-methylpyrrolidone solution of polyvinylidene fluoride, and the assembled button battery capacitor was used at 0.5 C. The first efficiency reached 92.5%. After 5000 cycles at 2C, the capacity retention rate reached 90.6%, the coulombic efficiency in the cycle process is 99.4%, the energy density based on the active material is 119.7Wh/kg, and the power density can reach 3470W/kg.
实施例8Example 8
将实施例1中,将锂盐换成LiTFSI,组装成的扣式电池电容器采用0.5 C首次效率达93.5%,经过2C循环5000次,容量保持率达94.6%,循环过程中库伦效率99.5%,基于活性物质的能量密度为119.9Wh/kg,功率密度可达3480W/kg。In Example 1, the lithium salt was replaced with LiTFSI, and the assembled button battery capacitor was used at 0.5 C. The efficiency reached 93.5% for the first time. After 5000 cycles at 2C, the capacity retention rate reached 94.6%, and the coulombic efficiency during the cycle was 99.5%. Based on the energy density of the active material is 119.9Wh/kg, the power density can reach 3480W/kg.
实施例9Example 9
将实施例1中,将导电剂变为碳纳米管,组装成的扣式电池电容器采用0.5 C首次效率达94.7%,经过2C循环5000次,容量保持率达96.8%,循环过程中库伦效率99.7%,基于活性物质的能量密度为120.1Wh/kg,功率密度可达3600W/kg。In Example 1, the conductive agent was changed to carbon nanotubes, and the assembled button battery capacitor was used at 0.5 C. The efficiency reached 94.7% for the first time. After 5000 cycles at 2C, the capacity retention rate reached 96.8%, and the Coulombic efficiency during the cycle was 99.7%. %, the energy density based on the active material is 120.1Wh/kg, and the power density can reach 3600W/kg.
以上所述实施例仅代表本发明中的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several implementation modes in the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710961344.2A CN107731542B (en) | 2017-10-17 | 2017-10-17 | A kind of solid state battery capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710961344.2A CN107731542B (en) | 2017-10-17 | 2017-10-17 | A kind of solid state battery capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107731542A CN107731542A (en) | 2018-02-23 |
CN107731542B true CN107731542B (en) | 2019-12-03 |
Family
ID=61210606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710961344.2A Active CN107731542B (en) | 2017-10-17 | 2017-10-17 | A kind of solid state battery capacitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107731542B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107069921A (en) * | 2017-01-23 | 2017-08-18 | 中国科学院青岛生物能源与过程研究所 | The long long-life high-energy-density unmanned plane integrated drive generator of continuation of the journey of one kind |
CN108492995B (en) * | 2018-03-16 | 2020-02-07 | 华南师范大学 | Preparation method of high-voltage aqueous electrolyte lithium ion capacitor |
KR102764986B1 (en) | 2019-05-08 | 2025-02-12 | 주식회사 엘지에너지솔루션 | Pre-lithiatioin Method of Anode Electrodes for ALL SOLID STATE BATTERY |
CN111342123B (en) * | 2020-03-09 | 2023-06-13 | 中国科学院青岛生物能源与过程研究所 | A kind of selectively wettable polymer electrolyte and its preparation and application |
CN114613614B (en) * | 2022-04-11 | 2024-07-16 | 浙江浙能技术研究院有限公司 | All-solid-state lithium ion capacitor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102842436A (en) * | 2012-09-27 | 2012-12-26 | 中国科学院长春应用化学研究所 | Supercapacitor and preparation method thereof |
CN104201000A (en) * | 2014-08-21 | 2014-12-10 | 清华大学 | High-power lithium ion capacitor and manufacturing method thereof |
CN105098227A (en) * | 2015-08-22 | 2015-11-25 | 哈尔滨工业大学 | All-solid-state lithium ion battery and preparation method thereof |
CN105575670A (en) * | 2015-12-16 | 2016-05-11 | 上海奥威科技开发有限公司 | Relevant solid-state flexible polymer gel electrolyte hybrid supercapacitor and method |
CN106876146A (en) * | 2017-03-31 | 2017-06-20 | 中国科学院过程工程研究所 | A kind of high-voltage solid-state lithium-ion capacitor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2944503B2 (en) * | 1996-04-03 | 1999-09-06 | 日本電気株式会社 | All solid state electric double layer capacitor |
-
2017
- 2017-10-17 CN CN201710961344.2A patent/CN107731542B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102842436A (en) * | 2012-09-27 | 2012-12-26 | 中国科学院长春应用化学研究所 | Supercapacitor and preparation method thereof |
CN104201000A (en) * | 2014-08-21 | 2014-12-10 | 清华大学 | High-power lithium ion capacitor and manufacturing method thereof |
CN105098227A (en) * | 2015-08-22 | 2015-11-25 | 哈尔滨工业大学 | All-solid-state lithium ion battery and preparation method thereof |
CN105575670A (en) * | 2015-12-16 | 2016-05-11 | 上海奥威科技开发有限公司 | Relevant solid-state flexible polymer gel electrolyte hybrid supercapacitor and method |
CN106876146A (en) * | 2017-03-31 | 2017-06-20 | 中国科学院过程工程研究所 | A kind of high-voltage solid-state lithium-ion capacitor |
Also Published As
Publication number | Publication date |
---|---|
CN107731542A (en) | 2018-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105551815B (en) | A kind of lithium-ion capacitor and preparation method thereof | |
CN103904291B (en) | Aquo-lithium ion battery electrode and preparation method thereof, aquo-lithium ion battery | |
CN103401030B (en) | A kind of water system can be filled magnesium or zinc ion capacitor batteries | |
CN107731542B (en) | A kind of solid state battery capacitor | |
CN103700820B (en) | A kind of lithium ion selenium battery with long service life | |
WO2012146046A1 (en) | Polyimide capacitance battery and manufacturing method thereof | |
WO2018094773A1 (en) | Gel-polymer electrolyte power battery | |
CN108172823A (en) | Lithium-rich manganese material, lithium ion battery cathode material, lithium ion battery cathode sheet, lithium ion battery and preparation method thereof | |
WO2011103705A1 (en) | Manufacturing method for long-lived negative electrode and capacitor battery adopting the same | |
CN107482253A (en) | A low temperature lithium ion battery | |
WO2011103708A1 (en) | Capacitor cell with high-specific-energy organic system | |
CN102694200A (en) | Silicon-based negative lithium-ion battery and manufacturing method thereof | |
CN103515646A (en) | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film | |
WO2018059180A1 (en) | High-power, high-energy chemical power supply and preparation method therefor | |
CN204360933U (en) | Super lithium-ion capacitor | |
CN114512718B (en) | Composite solid electrolyte, preparation method thereof and high-performance all-solid battery | |
CN103762335B (en) | Lithium titanate electrode plate and lithium ion battery | |
CN108199044A (en) | A kind of secondary cell and preparation method thereof | |
CN103050729A (en) | A lithium-sulfur battery | |
CN103050732B (en) | Lithium titanate-based chemical power supply | |
CN110190331A (en) | A kind of electrolytic solution, preparation and application of stabilizing silicon carbon surface of lithium ion battery | |
CN112614703B (en) | Negative electrode material of ionic capacitor and preparation method and application thereof | |
CN101271989A (en) | Lithium-ion battery room temperature ionic liquid electrolyte and preparation method thereof | |
CN102456866A (en) | A kind of organic radical polymer electrode and its preparation and application | |
CN109786751A (en) | A kind of negative current collector and preparation method thereof and solid state battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |