CN103515646A - Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film - Google Patents
Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film Download PDFInfo
- Publication number
- CN103515646A CN103515646A CN201310405682.XA CN201310405682A CN103515646A CN 103515646 A CN103515646 A CN 103515646A CN 201310405682 A CN201310405682 A CN 201310405682A CN 103515646 A CN103515646 A CN 103515646A
- Authority
- CN
- China
- Prior art keywords
- lithium
- sulfur
- conductive
- conducting polymer
- adsorption layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 68
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 43
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 28
- 239000011593 sulfur Substances 0.000 claims abstract description 28
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- 239000006258 conductive agent Substances 0.000 claims abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 16
- 239000002002 slurry Substances 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- -1 p-phenylene vinylene Chemical group 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 17
- 239000002033 PVDF binder Substances 0.000 claims description 13
- 229920000767 polyaniline Polymers 0.000 claims description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 9
- 229920001197 polyacetylene Polymers 0.000 claims description 9
- 229920000128 polypyrrole Polymers 0.000 claims description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 6
- 239000002041 carbon nanotube Substances 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 239000004917 carbon fiber Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229920000123 polythiophene Polymers 0.000 claims description 5
- 235000010413 sodium alginate Nutrition 0.000 claims description 5
- 229940005550 sodium alginate Drugs 0.000 claims description 5
- 239000000661 sodium alginate Substances 0.000 claims description 5
- 239000004584 polyacrylic acid Substances 0.000 claims description 4
- 239000002322 conducting polymer Substances 0.000 claims 13
- 239000007767 bonding agent Substances 0.000 claims 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 6
- 239000010409 thin film Substances 0.000 claims 6
- 239000010408 film Substances 0.000 claims 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims 4
- 230000004888 barrier function Effects 0.000 claims 3
- 238000004581 coalescence Methods 0.000 claims 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims 2
- 239000000853 adhesive Substances 0.000 abstract description 10
- 230000001070 adhesive effect Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 3
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 229920001021 polysulfide Polymers 0.000 description 9
- 239000005077 polysulfide Substances 0.000 description 9
- 150000008117 polysulfides Polymers 0.000 description 9
- 239000011149 active material Substances 0.000 description 8
- 238000001291 vacuum drying Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920003026 Acene Polymers 0.000 description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- ZNYRFEPBTVGZDN-UHFFFAOYSA-N 5S,6S-epoxy-15R-hydroxy-ETE Chemical compound COCCOCCOCCOCCO ZNYRFEPBTVGZDN-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910003003 Li-S Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QTJOIXXDCCFVFV-UHFFFAOYSA-N [Li].[O] Chemical compound [Li].[O] QTJOIXXDCCFVFV-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种具有导电吸附层的锂硫电池及导电聚合物薄膜的应用,属于锂硫电池体系技术领域。The invention relates to a lithium-sulfur battery with a conductive adsorption layer and the application of a conductive polymer film, and belongs to the technical field of lithium-sulfur battery systems.
背景技术Background technique
硫最早于1962年被提出可以用于电池正极材料,而后出现了最早的Li-S电池。当被应用于二次锂电池时,假设放电过程中完全生成Li2S,则硫的理论比容量为1672mAh g-1,理论放电电压为2.287V,二次锂硫电池的电极理论能量密度为2600Wh kg-1,是目前已知的除锂氧以外能量密度最高的二次锂电池体系。Sulfur was first proposed in 1962 as a positive electrode material for batteries, and then the earliest Li-S batteries appeared. When applied to a secondary lithium battery, assuming that Li 2 S is completely generated during the discharge process, the theoretical specific capacity of sulfur is 1672mAh g -1 , the theoretical discharge voltage is 2.287V, and the theoretical energy density of the electrode of the secondary lithium-sulfur battery is 2600Wh kg -1 , is currently known as the secondary lithium battery system with the highest energy density except lithium oxygen.
典型的二次锂硫电池放电过程中存在两个放电平台。第一个放电平台为2.4~2.1V,在此过程中单质硫转化为高价态聚硫离子Sn 2-(5≤n≤8);第二个放电平台为2.1~1.5V,在这个过程中高价态聚硫离子继续被还原成低价态聚硫离子Sn 2-(2≤n≤4)和Li2S。研究结果表明,充放电过程中产生的中间产物聚硫离子特别是高价态聚硫离子易溶于有机电解液,当其扩散至锂负极发生副反应生成不可逆的硫化锂以后会严重影响二次锂硫电池的循环性能。如果中间产物聚硫离子迁移到负极与金属锂反应发生自放电,然后再迁移到正极,则会发生二次锂硫电池的内循环,即所谓的“穿梭”现象,这一过程会使得电池的库伦效率降低。另外,单质硫及其放电产物的绝缘性会造成电极中活性物质利用率较低。由于硫与多硫化锂的密度不同,使得充放电过程中电极活性物质体积变化较大,容易造成电极结构恶化等问题。这些问题都制约了二次锂硫电池的性能提高。There are two discharge plateaus in the discharge process of a typical secondary lithium-sulfur battery. The first discharge platform is 2.4~2.1V, during which elemental sulfur is transformed into high-valence polysulfide ion S n 2- (5≤n≤8); the second discharge platform is 2.1~1.5V, during this process The middle and high valence state polysulfide ions are continuously reduced to low valence state polysulfide ions S n 2- (2≤n≤4) and Li 2 S. The research results show that the intermediate polysulfide ions produced during the charge and discharge process, especially the high-valent polysulfide ions, are easily soluble in the organic electrolyte. When they diffuse to the lithium negative electrode and produce irreversible lithium sulfide, they will seriously affect the secondary lithium. Cycle performance of sulfur batteries. If the intermediate product polysulfide ion migrates to the negative electrode to react with metal lithium for self-discharge, and then migrates to the positive electrode, the internal circulation of the secondary lithium-sulfur battery will occur, the so-called "shuttle" phenomenon, which will make the battery Coulombic efficiency decreases. In addition, the insulating properties of elemental sulfur and its discharge products will lead to low utilization of active materials in electrodes. Due to the difference in density between sulfur and lithium polysulfide, the volume of the electrode active material changes greatly during the charging and discharging process, which easily causes problems such as deterioration of the electrode structure. These problems restrict the performance improvement of secondary lithium-sulfur batteries.
近年来,为解决硫电极的这些问题,人们从制备碳硫复合材料、电极结构设计改进等角度对解决这些问题进行了很多有益的探索。In recent years, in order to solve these problems of sulfur electrodes, people have carried out many useful explorations to solve these problems from the perspectives of preparing carbon-sulfur composite materials and improving electrode structure design.
目前通常是将单质硫负载(装填、附着、混合、外延生长、包覆等)到各类具有高比表面积、高孔隙率及良好导电性能特征的碳素类材料中,形成复合材料,以限制循环过程中多硫化物溶入电解液和由此引起的各种负面作用。例如,硫/中空碳球的复合材料(Angew.Chem.Int.Ed.,2011,50,5904-5908.),硫/碳纳米管的复合材料(Nano Letter,2011,11,4288-4294.),硫/介孔球的复合材料(Angew.Chem.Int.Ed.2012,51,3591–3595),硫/氧化石墨烯的复合材料(J.Am.Chem.Soc.2011,133,18522–18525.)等碳硫复合材料,这些材料很大程度上改善了锂硫电池的电化学性能。但是,受碳材料本身导电性、孔容、比表面积的限制,普遍存在库仑效率低、副反应高导致循环寿命短等问题;并且存在制作相对复杂和成本高的问题,使得锂硫二次电池难以实现工业化生产。At present, elemental sulfur is usually loaded (loaded, attached, mixed, epitaxially grown, coated, etc.) into various carbon materials with high specific surface area, high porosity and good electrical conductivity to form composite materials to limit During the cycle, polysulfides dissolve into the electrolyte and various negative effects caused by it. For example, composite materials of sulfur/hollow carbon spheres (Angew.Chem.Int.Ed., 2011,50,5904-5908.), composite materials of sulfur/carbon nanotubes (Nano Letter, 2011,11,4288-4294. ), composites of sulfur/mesoporous spheres (Angew.Chem.Int.Ed.2012,51,3591–3595), composites of sulfur/graphene oxide (J.Am.Chem.Soc.2011,133,18522 –18525.) and other carbon-sulfur composite materials, which greatly improve the electrochemical performance of lithium-sulfur batteries. However, limited by the conductivity, pore volume, and specific surface area of carbon materials, there are generally problems such as low coulombic efficiency, high side reactions, and short cycle life; and there are problems of relatively complicated fabrication and high cost, making lithium-sulfur secondary batteries Difficult to realize industrialized production.
发明内容Contents of the invention
本发明针对现有技术中含硫正极的锂硫电池存在库仑效率低、因副反应而导致循环寿命短、使用成本高等问题,目的是在于提供一种具有比容量高、库伦效率高、循环寿命长、成本低等特点的锂硫电池,该电池制作简单、成本低廉、可大规模工业化生产。The present invention aims at the problems of low coulombic efficiency, short cycle life due to side reactions, and high cost of use in lithium-sulfur batteries with sulfur-containing positive electrodes in the prior art. A lithium-sulfur battery with the characteristics of long length and low cost. The battery is simple to manufacture, low in cost, and can be produced on a large scale.
本发明的另一个目的是在于提供导电聚合物薄膜的应用,将导电聚合物薄膜设置在锂硫电池的含硫正极片和隔膜之间作为导电吸附层制得的锂硫电池具有高比容量、高库伦效率和循环寿命长的特点,且使用成本低。Another object of the present invention is to provide the application of conductive polymer film, the lithium-sulfur battery that the conductive polymer film is arranged between the sulfur-containing positive plate of lithium-sulfur battery and separator as conductive adsorption layer has high specific capacity, High coulombic efficiency and long cycle life, and low cost of use.
本发明提供了一种具有导电吸附层的锂硫电池,包括含硫正极片、隔膜、锂负极片,在含硫正极片和隔膜之间设有导电吸附层;所述的导电吸附层是将导电聚合物、导电剂和粘接剂按质量比5~8:1~4:1~4制成的厚度为0.1~2.0mm的导电聚合物薄膜。The invention provides a lithium-sulfur battery with a conductive adsorption layer, comprising a sulfur-containing positive electrode sheet, a separator, and a lithium negative electrode sheet, and a conductive adsorption layer is arranged between the sulfur-containing positive electrode sheet and the separator; the conductive adsorption layer is A conductive polymer film with a thickness of 0.1-2.0mm is prepared by conducting the polymer, the conductive agent and the adhesive according to the mass ratio of 5-8:1-4:1-4.
所述的导电聚合物薄膜通过以下方法制备得到:将导电聚合物、导电剂和粘接剂在溶剂中混合形成固含量为20~80%的浆料,碾压成膜后,在50~100℃真空干燥10~20h,即得。The conductive polymer film is prepared by the following method: the conductive polymer, the conductive agent and the adhesive are mixed in a solvent to form a slurry with a solid content of 20-80%. ℃ vacuum drying 10 ~ 20h, that is.
所述的导电聚合物为聚苯胺、聚吡咯、聚噻吩、聚并苯、聚对苯乙炔、聚乙炔、聚对苯乙烯撑中的一种或几种。The conductive polymer is one or more of polyaniline, polypyrrole, polythiophene, polyacene, polyparaphenylene vinylene, polyacetylene and polyparaphenylene vinylene.
所述的导电剂为导电炭黑、碳纳米管、碳纤维、石墨、石墨烯中的一种或几种。The conductive agent is one or more of conductive carbon black, carbon nanotubes, carbon fibers, graphite, and graphene.
所述的粘接剂为聚四氟乙烯、聚丙烯酸、聚偏二氟乙烯、海藻酸钠中的一种或几种。The adhesive is one or more of polytetrafluoroethylene, polyacrylic acid, polyvinylidene fluoride and sodium alginate.
本发明还提供了一种导电吸附聚合物薄膜的应用,该应用是将导电聚合物、导电剂和粘接剂制成的导电聚合物薄膜设置在锂硫电池的含硫正极片和隔膜之间作为导电吸附层应用于锂硫电池的制备。The present invention also provides an application of a conductive adsorption polymer film, the application is that the conductive polymer film made of a conductive polymer, a conductive agent and an adhesive is arranged between the sulfur-containing positive electrode sheet and the diaphragm of a lithium-sulfur battery It is used as a conductive adsorption layer in the preparation of lithium-sulfur batteries.
所述的导电聚合物、导电剂和粘接剂质量比为5~8:1~4:1~4。The mass ratio of the conductive polymer, conductive agent and adhesive is 5-8:1-4:1-4.
所述的导电聚合物为聚苯胺、聚吡咯、聚噻吩、聚并苯、聚对苯乙炔、聚乙炔、聚对苯乙烯撑中的一种或几种;所述的导电剂为导电炭黑、碳纳米管、碳纤维、石墨、石墨烯中的一种或几种;所述粘接剂为聚四氟乙烯、聚丙烯酸、聚偏二氟乙烯、海藻酸钠中的一种或几种。The conductive polymer is one or more of polyaniline, polypyrrole, polythiophene, polyacene, polyparaphenylene vinylene, polyacetylene, polyparaphenylene vinylene; the conductive agent is conductive carbon black , one or more of carbon nanotubes, carbon fibers, graphite, and graphene; the adhesive is one or more of polytetrafluoroethylene, polyacrylic acid, polyvinylidene fluoride, and sodium alginate.
所述的导电聚合物薄膜厚度为0.1~2.0mm。The thickness of the conductive polymer film is 0.1-2.0mm.
所述的导电聚合物薄膜通过以下方法制备得到:将导电聚合物、导电剂和粘接剂在溶剂中混合形成固含量为20~80%的浆料,碾压成膜后,在50~100℃真空干燥10~20h,即得。The conductive polymer film is prepared by the following method: the conductive polymer, the conductive agent and the adhesive are mixed in a solvent to form a slurry with a solid content of 20-80%. ℃ vacuum drying 10 ~ 20h, that is.
所述的溶剂为去离子水、乙醇、NMP中的一种或几种。The solvent is one or more of deionized water, ethanol, and NMP.
本发明的锂硫电池可以采用的电解液为非水电解液,电解液溶剂为碳酸乙烯酯、二甲基碳酸酯和碳酸甲乙酯混合溶剂,或者为二氧戊环和四乙二醇二甲醚混合溶剂,电解液溶质为六氟磷酸锂或三氟甲基磺酸锂。The electrolyte that can be used in the lithium-sulfur battery of the present invention is a non-aqueous electrolyte, and the solvent of the electrolyte is a mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, or dioxolane and tetraethylene glycol Methyl ether mixed solvent, electrolyte solute is lithium hexafluorophosphate or lithium trifluoromethanesulfonate.
所述的隔膜为多孔隔膜,为聚四氟乙烯、聚丙烯、聚乙烯、聚偏氟乙烯中的一种材料制成。The diaphragm is a porous diaphragm made of a material selected from polytetrafluoroethylene, polypropylene, polyethylene and polyvinylidene fluoride.
所述的含硫正极极片中活性物质硫的质量百分含量为10%~90%。The mass percent content of active material sulfur in the sulfur-containing positive electrode sheet is 10%-90%.
本发明的具有导电吸附层的锂硫电池的制备方法,包括以下步骤:The preparation method of the lithium-sulfur battery with conductive adsorption layer of the present invention comprises the following steps:
(1)制备导电聚合物薄膜:将导电聚合物、导电剂和粘接剂按5~8:1~4:1~4的质量比在溶剂中混合均匀,加入少量的去离子水和乙醇,通过水浴加热搅拌1~5h,形成固含量为20~80%的浆料,然后将浆料在对辊机上反复碾压成厚度为0.1~2.0mm的薄膜,置于真空干燥箱中在50~100℃干燥10~20h,得到导电聚合物薄膜;(1) Preparation of conductive polymer film: Mix the conductive polymer, conductive agent and adhesive in the solvent at a mass ratio of 5 to 8:1 to 4:1 to 4, add a small amount of deionized water and ethanol, Heat and stir in a water bath for 1-5 hours to form a slurry with a solid content of 20-80%, and then repeatedly roll the slurry on a double-roll machine to form a film with a thickness of 0.1-2.0mm, and place it in a vacuum drying oven at 50- Dry at 100°C for 10-20 hours to obtain a conductive polymer film;
(2)制备锂硫电池:含硫正极极片上面依次放置步骤(1)所得的导电聚合物薄膜、隔膜、锂负极片以及泡沫镍网,注入电解液,再压制成一体,密封好后,得到锂硫电池。(2) Preparation of lithium-sulfur battery: Place the conductive polymer film, separator, lithium negative electrode and foamed nickel mesh obtained in step (1) on the sulfur-containing positive electrode in sequence, inject the electrolyte, and then press it into one body. After sealing, A lithium-sulfur battery is obtained.
本发明的有益效果:本发明首次将导电聚合物、导电剂和粘接剂混合制成的导电聚合物薄膜作为导电吸附层设置在锂硫电池的含硫正极片和隔膜之间,意外发现制得的锂硫电池具有较高的比容量及优异的库伦效率和循环稳定性。本发明在锂硫电池的研究中意外发现:将导电聚合物、导电剂和粘接剂按一定的质量比制备的导电聚合物薄膜设置在含硫正极片和隔膜之间,该导电聚合物薄膜一方面对含硫正极片的导电性起到辅助作用,大大增加了硫正极的导电作用;另一方面能很好吸附溶解在电解液中的多硫化物,抑制“穿梭效应”;同时,导电聚合物薄膜具有良好的弹性和柔韧性,能缓冲硫正极在充放电时产生的体积膨胀,从而有效提高了硫锂电池的库伦效率和循环性能。研究表明:本发明的锂硫电池在0.2C(335mA/g)的电流密度下,第一次放电比容量在1350~1560mAh/g之间,100次循环后放电比容量在860~960mAh/g之间,而库伦效率将近100%。此外,导电聚合物薄膜原料廉价,制备方法简单,可以工业化生产。Beneficial effects of the present invention: In the present invention, for the first time, a conductive polymer film made by mixing a conductive polymer, a conductive agent and an adhesive is placed between the sulfur-containing positive electrode sheet and the diaphragm of a lithium-sulfur battery as a conductive adsorption layer. The obtained lithium-sulfur battery has high specific capacity, excellent coulombic efficiency and cycle stability. In the research of lithium-sulfur batteries, the present invention unexpectedly finds that: the conductive polymer film prepared by a certain mass ratio of conductive polymer, conductive agent and binder is arranged between the sulfur-containing positive electrode sheet and the diaphragm, and the conductive polymer film On the one hand, it plays an auxiliary role in the conductivity of the sulfur-containing cathode, greatly increasing the conductivity of the sulfur cathode; on the other hand, it can well absorb polysulfides dissolved in the electrolyte and inhibit the "shuttle effect"; at the same time, the conductivity The polymer film has good elasticity and flexibility, which can buffer the volume expansion of the sulfur cathode during charging and discharging, thus effectively improving the Coulombic efficiency and cycle performance of the sulfur-lithium battery. Research shows that: under the current density of 0.2C (335mA/g), the lithium-sulfur battery of the present invention has a discharge specific capacity of 1350-1560mAh/g for the first time, and a discharge specific capacity of 860-960mAh/g after 100 cycles. between, and the Coulombic efficiency is nearly 100%. In addition, the raw material of the conductive polymer film is cheap, the preparation method is simple, and it can be produced industrially.
附图说明Description of drawings
【图1】为实施例1得到的导电聚合物聚苯胺(PANI)吸附层的SEM图。[Fig. 1] is the SEM figure of the conductive polymer polyaniline (PANI) adsorption layer that embodiment 1 obtains.
【图2】为实施例1得到的锂硫电池结构示意图。[ Fig. 2 ] is a schematic diagram of the structure of the lithium-sulfur battery obtained in Example 1.
【图3】为实施例1得到的锂硫电池与未设置导电吸附层的锂硫电池在0.2C(335mA/g)电流密度下100圈循环性能对比图。[Figure 3] It is a comparison chart of the 100-cycle cycle performance of the lithium-sulfur battery obtained in Example 1 and the lithium-sulfur battery without a conductive adsorption layer at a current density of 0.2C (335mA/g).
【图4】为实施例1得到的锂硫电池的倍率性能图。[ FIG. 4 ] is a rate performance diagram of the lithium-sulfur battery obtained in Example 1.
具体实施方式Detailed ways
以下实施例旨在进一步说明本发明,而不是限制本发明的保护范围。The following examples are intended to further illustrate the present invention, but not to limit the protection scope of the present invention.
实施例1Example 1
导电聚合物聚苯胺(PANI)吸附层的制备:Preparation of conductive polymer polyaniline (PANI) adsorption layer:
将导电聚合物PANI、导电碳黑和聚四氟乙烯(PTFE)按8:1:1的质量比在去离子水中混合均匀,水浴加热搅拌2h,形成固含量为80%的浆料,然后将浆料在对辊机上反复碾压成厚度为0.5mm的薄膜,在真空干燥箱中70℃干燥12h,再切成直径为1.0cm的小圆片,得到导电聚合物PANI吸附层。导电聚合物PANI吸附层的SEM图如图1所示。Conductive polymer PANI, conductive carbon black and polytetrafluoroethylene (PTFE) were mixed uniformly in deionized water at a mass ratio of 8:1:1, heated and stirred in a water bath for 2 hours to form a slurry with a solid content of 80%, and then The slurry was rolled repeatedly on a roller machine to form a film with a thickness of 0.5mm, dried in a vacuum oven at 70°C for 12h, and then cut into small discs with a diameter of 1.0cm to obtain a conductive polymer PANI adsorption layer. The SEM image of the conductive polymer PANI adsorption layer is shown in Figure 1.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、导电炭黑(SP)、聚偏氟乙烯(PVDF)按质量比8:1:1在N-甲基吡咯烷酮(NMP)溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物PANI吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池,其电池内部结构示意图见图2。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1560mAh/g,100次循环后比容量为950mAh/g,库伦效率将近100%,体现了非常好的循环性能,同时对比了不含导电聚合物PANI吸附层的锂硫电池,其100圈循环性能比较图见图3。另外还对其进行了倍率性能测试,如图4所示,从图中可以发现它的倍率性能也是非常优异的。Mix elemental sulfur, conductive carbon black (SP), and polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP) solvent at a mass ratio of 8:1:1 to form a slurry with a solid content of 30% as The positive electrode material is coated on the aluminum foil positive current collector, dried at 60°C in a vacuum oven for 12 hours, and then pressed into a positive electrode sheet with a diameter of 1.0 cm; the conductive polymer PANI adsorption layer is placed on the positive electrode sheet and the porous diaphragm In between, a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one body to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. The internal structure of the battery is shown in Figure 2. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). Doing the charge-discharge cycle test, the specific capacity of the first discharge is 1560mAh/g, the specific capacity after 100 cycles is 950mAh/g, and the Coulombic efficiency is nearly 100%, which reflects a very good cycle performance. The 100-cycle cycle performance comparison diagram of the lithium-sulfur battery with the PANI adsorption layer is shown in Figure 3. In addition, the rate performance test was carried out on it, as shown in Figure 4, it can be found from the figure that its rate performance is also very excellent.
实施例2Example 2
导电聚合物聚吡咯(PPy)吸附层的制备:Preparation of conductive polymer polypyrrole (PPy) adsorption layer:
将导电聚合物PPy、碳纳米管和PVDF按5:4:1的质量比在NMP中混合均匀,水浴加热搅拌1h,形成固含量为50%的浆料,然后将浆料在对辊机上反复碾压成厚度为0.1mm的薄膜,在真空干燥箱中60℃干燥20h,再切成直径为1.2cm的小圆片,得到导电聚合物PPy吸附层。Mix conductive polymer PPy, carbon nanotubes and PVDF in NMP at a mass ratio of 5:4:1, heat and stir in a water bath for 1 hour to form a slurry with a solid content of 50%, and then repeatedly place the slurry on a double-roll machine Rolled into a film with a thickness of 0.1mm, dried in a vacuum oven at 60°C for 20h, and then cut into small discs with a diameter of 1.2cm to obtain the conductive polymer PPy adsorption layer.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、SP、PVDF按质量比7:2:1在NMP溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物PPy吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1450mAh/g,100次循环后比容量为900mAh/g,库伦效率将近100%,体现了非常好的循环性能。Mix elemental sulfur, SP, and PVDF in NMP solvent at a mass ratio of 7:2:1 to form a slurry with a solid content of 30% as the positive electrode material, which is coated on the aluminum foil positive electrode current collector, and placed in a vacuum drying oven for 60 After drying at ℃ for 12 hours, it was pressed into a positive electrode piece with a diameter of 1.0 cm; the conductive polymer PPy adsorption layer was placed between the positive electrode piece and the porous diaphragm, and a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one , to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). In the charge-discharge cycle test, the specific capacity of the first discharge is 1450mAh/g, and the specific capacity after 100 cycles is 900mAh/g, and the Coulombic efficiency is nearly 100%, reflecting very good cycle performance.
实施例3Example 3
导电聚合物聚对苯乙烯撑(PEDOT)吸附层的制备:Preparation of conductive polymer poly(paraphenylene vinylene) (PEDOT) adsorption layer:
将导电聚合物PEDOT、碳纤维和PAA按5:1:4的质量比在去离子水中混合均匀,水浴加热搅拌5h,形成固含量为60%的浆料,然后将浆料在对辊机上反复碾压成厚度为1.5mm的薄膜,在真空干燥箱中100℃干燥10h,再切成直径为1.5cm的小圆片,得到导电聚合物PEDOT吸附层。Mix conductive polymer PEDOT, carbon fiber and PAA in deionized water at a mass ratio of 5:1:4, heat and stir in a water bath for 5 hours to form a slurry with a solid content of 60%, and then repeatedly grind the slurry on a double-roll machine Press it into a film with a thickness of 1.5mm, dry it in a vacuum oven at 100°C for 10h, and then cut it into small discs with a diameter of 1.5cm to obtain the conductive polymer PEDOT adsorption layer.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、SP、PVDF按质量比6:2:2在NMP溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物PEDOT吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1510mAh/g,100次循环后比容量为920mAh/g,库伦效率将近100%,体现了非常好的循环性能。Mix elemental sulfur, SP, and PVDF in NMP solvent at a mass ratio of 6:2:2 to form a slurry with a solid content of 30% as the positive electrode material, which is coated on the aluminum foil positive electrode current collector, and placed in a vacuum drying oven for 60 After drying at ℃ for 12 hours, it was pressed into a positive electrode sheet with a diameter of 1.0 cm; the conductive polymer PEDOT adsorption layer was placed between the positive electrode sheet and the porous diaphragm, and a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one , to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). In the charge-discharge cycle test, the specific capacity of the first discharge is 1510mAh/g, the specific capacity after 100 cycles is 920mAh/g, and the Coulombic efficiency is nearly 100%, reflecting very good cycle performance.
实施例4Example 4
导电聚合物聚对苯乙炔(PPv)吸附层的制备:Preparation of conductive polymer poly(p-phenylene vinylene) (PPv) adsorption layer:
将导电聚合物PPv、石墨和海藻酸钠按7:2:1的质量比在去酒精中混合均匀,水浴加热搅拌2h,形成固含量为70%的浆料,然后将浆料在对辊机上反复碾压成厚度为0.5mm的薄膜,在真空干燥箱中50℃干燥15h,再切成直径为1.3cm的小圆片,得到导电聚合物PPv吸附层。Mix the conductive polymer PPv, graphite and sodium alginate uniformly in a de-alcoholized medium at a mass ratio of 7:2:1, heat and stir in a water bath for 2 hours to form a slurry with a solid content of 70%, and then put the slurry on a roller machine Repeated rolling into a film with a thickness of 0.5mm, dried in a vacuum oven at 50°C for 15h, and then cut into small discs with a diameter of 1.3cm to obtain the conductive polymer PPv adsorption layer.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、SP、PVDF按质量比5:3:2在NMP溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物PPv吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1480mAh/g,100次循环后比容量为880mAh/g,库伦效率将近100%,体现了非常好的循环性能。Mix elemental sulfur, SP, and PVDF uniformly in NMP solvent at a mass ratio of 5:3:2 to form a slurry with a solid content of 30% as the positive electrode material, which is coated on the aluminum foil positive electrode current collector, and placed in a vacuum drying oven for 60 After drying at ℃ for 12 hours, it was pressed into a positive electrode piece with a diameter of 1.0 cm; the conductive polymer PPv adsorption layer was placed between the positive electrode piece and the porous diaphragm, and a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one , to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). Doing the charge-discharge cycle test, the specific capacity of the first discharge is 1480mAh/g, the specific capacity after 100 cycles is 880mAh/g, and the Coulombic efficiency is nearly 100%, which reflects a very good cycle performance.
实施例5Example 5
导电聚合物聚乙炔(PAC)吸附层的制备:Preparation of conductive polymer polyacetylene (PAC) adsorption layer:
将导电聚合物PAC、石墨烯和PAA按6:2:2的质量比在NMP中混合均匀,水浴加热搅拌3h,形成固含量为20%的浆料,然后将浆料在对辊机上反复碾压成厚度为1.0mm的薄膜,在真空干燥箱中80℃干燥12h,再切成直径为1.4cm的小圆片,得到导电聚合物PAC吸附层。Mix conductive polymer PAC, graphene and PAA in NMP at a mass ratio of 6:2:2, heat and stir in a water bath for 3 hours to form a slurry with a solid content of 20%, and then repeatedly grind the slurry on a pair of rollers Press it into a film with a thickness of 1.0 mm, dry it in a vacuum oven at 80°C for 12 hours, and then cut it into small discs with a diameter of 1.4 cm to obtain a conductive polymer PAC adsorption layer.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、SP、PVDF按质量比6:3:1在NMP溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物PAC吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1350mAh/g,100次循环后比容量为860mAh/g,库伦效率将近100%,体现了非常好的循环性能。Mix elemental sulfur, SP, and PVDF in NMP solvent at a mass ratio of 6:3:1 to form a slurry with a solid content of 30% as the positive electrode material, which is coated on the aluminum foil positive electrode current collector, and placed in a vacuum drying oven for 60 After drying at ℃ for 12 hours, it was pressed into a positive electrode piece with a diameter of 1.0 cm; the conductive polymer PAC adsorption layer was placed between the positive electrode piece and the porous diaphragm, and a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one , to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). Doing the charge-discharge cycle test, the specific capacity of the first discharge is 1350mAh/g, the specific capacity after 100 cycles is 860mAh/g, and the Coulombic efficiency is nearly 100%, which reflects a very good cycle performance.
实施例6Example 6
导电聚合物聚噻吩(Pth)吸附层的制备:Preparation of conductive polymer polythiophene (Pth) adsorption layer:
将导电聚合物Pth、石墨烯和PTFE按7:1:2的质量比在去离子水中混合均匀,水浴加热搅拌4h,形成固含量为40%的浆料,然后将浆料在对辊机上反复碾压成厚度为0.8mm的薄膜,在真空干燥箱中90℃干燥16h,再切成直径为1.5cm的小圆片,得到导电聚合物Pth吸附层。Mix conductive polymer Pth, graphene and PTFE in deionized water at a mass ratio of 7:1:2, heat and stir in a water bath for 4 hours to form a slurry with a solid content of 40%, and then repeatedly place the slurry on a roller machine Rolled into a film with a thickness of 0.8mm, dried in a vacuum oven at 90°C for 16h, and then cut into small discs with a diameter of 1.5cm to obtain a conductive polymer Pth adsorption layer.
锂硫电池的制备:Preparation of lithium-sulfur battery:
将单质硫、SP、PVDF按质量比8:1:1在NMP溶剂中混合均匀,形成固含量为30%的浆料作为正极材料,涂覆在铝箔正极集流体上,在真空干燥箱中60℃下干燥12h后,压制成直径为1.0cm的正极极片;将导电聚合物Pth吸附层置于正极极片和多孔隔膜之间,多孔隔膜另一面放置一片作为负极的锂片,压制成一体,制备带有导电吸附层的CR2025型锂硫二次扣式电池。制成电池后进行测试,电池充放电截止电压为1.5~3.0V(vs.Li/Li+),充电和放电比容量基于单质硫活性材料进行计算,以0.2C(335mA/g)的电流密度做充放电循环测试,第一次放电比容量为1510mAh/g,100次循环后比容量为920mAh/g,库伦效率将近100%,体现了非常好的循环性能。Mix elemental sulfur, SP, and PVDF in NMP solvent at a mass ratio of 8:1:1 to form a slurry with a solid content of 30% as the positive electrode material, which is coated on the aluminum foil positive electrode current collector, and placed in a vacuum drying oven for 60 After drying at ℃ for 12 hours, it was pressed into a positive electrode sheet with a diameter of 1.0 cm; the conductive polymer Pth adsorption layer was placed between the positive electrode sheet and the porous diaphragm, and a lithium sheet as the negative electrode was placed on the other side of the porous diaphragm, and pressed into one , to prepare a CR2025 lithium-sulfur secondary button battery with a conductive adsorption layer. After the battery is made, it is tested. The battery charge and discharge cut-off voltage is 1.5~3.0V (vs. Li/Li + ), and the charge and discharge specific capacity is calculated based on the elemental sulfur active material. The current density is 0.2C (335mA/g). In the charge-discharge cycle test, the specific capacity of the first discharge is 1510mAh/g, the specific capacity after 100 cycles is 920mAh/g, and the Coulombic efficiency is nearly 100%, reflecting very good cycle performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310405682.XA CN103515646A (en) | 2013-09-09 | 2013-09-09 | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310405682.XA CN103515646A (en) | 2013-09-09 | 2013-09-09 | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103515646A true CN103515646A (en) | 2014-01-15 |
Family
ID=49897994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310405682.XA Pending CN103515646A (en) | 2013-09-09 | 2013-09-09 | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103515646A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103985840A (en) * | 2014-06-04 | 2014-08-13 | 中国科学院上海硅酸盐研究所 | A lithium negative electrode with a functional protective layer and a lithium-sulfur battery |
CN104577060A (en) * | 2013-10-11 | 2015-04-29 | 通用汽车环球科技运作有限责任公司 | Porous interlayer for a lithium-sulfur battery |
CN104600251A (en) * | 2014-12-26 | 2015-05-06 | 中南大学 | Lithium-sulfur battery positive electrode and preparation method thereof |
CN104716382A (en) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | Lithium-sulfur battery structure |
CN105280867A (en) * | 2015-09-18 | 2016-01-27 | 长沙矿冶研究院有限责任公司 | A special modified diaphragm for lithium-sulfur battery and its preparation method and lithium-sulfur battery |
CN105552281A (en) * | 2014-11-04 | 2016-05-04 | 中国电子科技集团公司第十八研究所 | Production method of carbon coated diaphragm used for lithium sulfur battery |
CN105552282A (en) * | 2015-11-13 | 2016-05-04 | 北京理工大学 | Lithium-sulfur battery based on functional carbon fiber cloth as positive electrode barrier layer |
CN105633471A (en) * | 2014-11-04 | 2016-06-01 | 中国电子科技集团公司第十八研究所 | Preparation method of carbon-coated membrane lithium-sulfur battery |
CN105720231A (en) * | 2014-12-05 | 2016-06-29 | 中国科学院大连化学物理研究所 | Sulfonated graphene-modified sulfur-carbon electrode and preparation and application thereof |
CN106356488A (en) * | 2015-07-13 | 2017-01-25 | 中国科学院金属研究所 | Composite diaphragm for lithium ion battery for lithium-sulfur battery and preparation method and application of composite diaphragm for lithium ion battery |
CN106848319A (en) * | 2016-12-29 | 2017-06-13 | 清华大学深圳研究生院 | A kind of lithium-sulfur cell positive plate and the lithium-sulfur cell comprising the positive plate |
CN106935773A (en) * | 2015-12-31 | 2017-07-07 | 中国人民解放军63971部队 | A kind of interlayer for lithium-sulfur cell |
CN107394256A (en) * | 2017-07-18 | 2017-11-24 | 天津工业大学 | A kind of long-acting lithium-sulfur cell and preparation method thereof |
CN107507958A (en) * | 2017-07-17 | 2017-12-22 | 河南师范大学 | A kind of powder in situ cladding for lithium-sulfur cell prepares integral method with pole plate |
CN108774459A (en) * | 2018-06-05 | 2018-11-09 | 桑德集团有限公司 | A kind of coating and preparation method thereof, battery electrode |
CN109698365A (en) * | 2018-12-05 | 2019-04-30 | 上海空间电源研究所 | A kind of lithium metal battery with elastic buffer structure |
CN109742359A (en) * | 2019-01-07 | 2019-05-10 | 清华大学深圳研究生院 | Lithium sulfur battery anode material, preparation method, positive plate and lithium-sulfur cell |
CN109923693A (en) * | 2016-08-31 | 2019-06-21 | 威廉马歇莱思大学 | For the anode of battery, cathode and diaphragm and its manufacturing method and purposes |
CN110679010A (en) * | 2017-06-20 | 2020-01-10 | 株式会社Lg化学 | Lithium-sulfur battery |
CN111081947A (en) * | 2019-12-25 | 2020-04-28 | 武汉中兴创新材料技术有限公司 | Preparation method of gel polymer coating diaphragm and diaphragm |
CN111628208A (en) * | 2019-02-27 | 2020-09-04 | 中国科学院宁波材料技术与工程研究所 | Composite shielding layer of lithium-sulfur battery and preparation method thereof |
CN112701418A (en) * | 2020-12-28 | 2021-04-23 | 江苏厚生新能源科技有限公司 | Lithium battery diaphragm with overcharge protection function and preparation method thereof |
US11984576B1 (en) | 2019-10-01 | 2024-05-14 | William Marsh Rice University | Alkali-metal anode with alloy coating applied by friction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1495937A (en) * | 2002-08-07 | 2004-05-12 | ����Sdi��ʽ���� | Positive electrode for lithium-sulfur battery, manufacturing method thereof, and lithium-sulfur battery |
CN103050667A (en) * | 2012-12-13 | 2013-04-17 | 中南大学 | Composite anode of multi-layer structure for lithium-sulfur rechargeable battery and preparation method |
CN103066255A (en) * | 2012-12-26 | 2013-04-24 | 浙江工业大学 | A nano-metal coated sulfur composite material and applications thereof |
CN103208618A (en) * | 2013-04-24 | 2013-07-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | Carbon-sulfur composite positive electrode material of lithium-ion battery and preparation method of material |
-
2013
- 2013-09-09 CN CN201310405682.XA patent/CN103515646A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1495937A (en) * | 2002-08-07 | 2004-05-12 | ����Sdi��ʽ���� | Positive electrode for lithium-sulfur battery, manufacturing method thereof, and lithium-sulfur battery |
CN103050667A (en) * | 2012-12-13 | 2013-04-17 | 中南大学 | Composite anode of multi-layer structure for lithium-sulfur rechargeable battery and preparation method |
CN103066255A (en) * | 2012-12-26 | 2013-04-24 | 浙江工业大学 | A nano-metal coated sulfur composite material and applications thereof |
CN103208618A (en) * | 2013-04-24 | 2013-07-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | Carbon-sulfur composite positive electrode material of lithium-ion battery and preparation method of material |
Non-Patent Citations (1)
Title |
---|
YU-SHENG SU,ET AL: "Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer", 《NATURE COMMUNICATIONS》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104577060A (en) * | 2013-10-11 | 2015-04-29 | 通用汽车环球科技运作有限责任公司 | Porous interlayer for a lithium-sulfur battery |
US10141559B2 (en) | 2013-10-11 | 2018-11-27 | GM Global Technology Operations LLC | Porous interlayer for a lithium-sulfur battery |
CN104577060B (en) * | 2013-10-11 | 2018-01-12 | 通用汽车环球科技运作有限责任公司 | Porous interlayer for lithium-sulfur cell group |
CN104716382B (en) * | 2013-12-15 | 2017-08-25 | 中国科学院大连化学物理研究所 | A kind of lithium-sulfur cell structure |
CN104716382A (en) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | Lithium-sulfur battery structure |
CN103985840A (en) * | 2014-06-04 | 2014-08-13 | 中国科学院上海硅酸盐研究所 | A lithium negative electrode with a functional protective layer and a lithium-sulfur battery |
CN105552281A (en) * | 2014-11-04 | 2016-05-04 | 中国电子科技集团公司第十八研究所 | Production method of carbon coated diaphragm used for lithium sulfur battery |
CN105633471A (en) * | 2014-11-04 | 2016-06-01 | 中国电子科技集团公司第十八研究所 | Preparation method of carbon-coated membrane lithium-sulfur battery |
CN105720231B (en) * | 2014-12-05 | 2018-12-14 | 中国科学院大连化学物理研究所 | A kind of modified sulphur carbon electrode of sulfonated graphene and its preparation and application |
CN105720231A (en) * | 2014-12-05 | 2016-06-29 | 中国科学院大连化学物理研究所 | Sulfonated graphene-modified sulfur-carbon electrode and preparation and application thereof |
CN104600251A (en) * | 2014-12-26 | 2015-05-06 | 中南大学 | Lithium-sulfur battery positive electrode and preparation method thereof |
CN106356488A (en) * | 2015-07-13 | 2017-01-25 | 中国科学院金属研究所 | Composite diaphragm for lithium ion battery for lithium-sulfur battery and preparation method and application of composite diaphragm for lithium ion battery |
CN105280867A (en) * | 2015-09-18 | 2016-01-27 | 长沙矿冶研究院有限责任公司 | A special modified diaphragm for lithium-sulfur battery and its preparation method and lithium-sulfur battery |
CN105552282A (en) * | 2015-11-13 | 2016-05-04 | 北京理工大学 | Lithium-sulfur battery based on functional carbon fiber cloth as positive electrode barrier layer |
CN106935773A (en) * | 2015-12-31 | 2017-07-07 | 中国人民解放军63971部队 | A kind of interlayer for lithium-sulfur cell |
US12087933B2 (en) | 2016-08-31 | 2024-09-10 | William Marsh Rice University | Anodes, cathodes, and separators for batteries and methods to make and use same |
CN109923693A (en) * | 2016-08-31 | 2019-06-21 | 威廉马歇莱思大学 | For the anode of battery, cathode and diaphragm and its manufacturing method and purposes |
CN106848319A (en) * | 2016-12-29 | 2017-06-13 | 清华大学深圳研究生院 | A kind of lithium-sulfur cell positive plate and the lithium-sulfur cell comprising the positive plate |
CN106848319B (en) * | 2016-12-29 | 2019-04-26 | 清华大学深圳研究生院 | A kind of lithium-sulfur cell positive plate and the lithium-sulfur cell comprising the positive plate |
US11545720B2 (en) * | 2017-06-20 | 2023-01-03 | Lg Energy Solution, Ltd. | Lithium-sulfur battery |
CN110679010A (en) * | 2017-06-20 | 2020-01-10 | 株式会社Lg化学 | Lithium-sulfur battery |
CN107507958A (en) * | 2017-07-17 | 2017-12-22 | 河南师范大学 | A kind of powder in situ cladding for lithium-sulfur cell prepares integral method with pole plate |
CN107507958B (en) * | 2017-07-17 | 2021-09-10 | 河南师范大学 | In-situ powder coating and polar plate preparation integrated method for lithium-sulfur battery |
CN107394256A (en) * | 2017-07-18 | 2017-11-24 | 天津工业大学 | A kind of long-acting lithium-sulfur cell and preparation method thereof |
CN108774459A (en) * | 2018-06-05 | 2018-11-09 | 桑德集团有限公司 | A kind of coating and preparation method thereof, battery electrode |
CN109698365A (en) * | 2018-12-05 | 2019-04-30 | 上海空间电源研究所 | A kind of lithium metal battery with elastic buffer structure |
CN109742359B (en) * | 2019-01-07 | 2021-07-02 | 清华大学深圳研究生院 | Lithium-sulfur battery positive electrode material, preparation method thereof, positive plate and lithium-sulfur battery |
CN109742359A (en) * | 2019-01-07 | 2019-05-10 | 清华大学深圳研究生院 | Lithium sulfur battery anode material, preparation method, positive plate and lithium-sulfur cell |
CN111628208A (en) * | 2019-02-27 | 2020-09-04 | 中国科学院宁波材料技术与工程研究所 | Composite shielding layer of lithium-sulfur battery and preparation method thereof |
US11984576B1 (en) | 2019-10-01 | 2024-05-14 | William Marsh Rice University | Alkali-metal anode with alloy coating applied by friction |
CN111081947A (en) * | 2019-12-25 | 2020-04-28 | 武汉中兴创新材料技术有限公司 | Preparation method of gel polymer coating diaphragm and diaphragm |
CN112701418A (en) * | 2020-12-28 | 2021-04-23 | 江苏厚生新能源科技有限公司 | Lithium battery diaphragm with overcharge protection function and preparation method thereof |
CN112701418B (en) * | 2020-12-28 | 2022-06-17 | 江苏厚生新能源科技有限公司 | Lithium battery diaphragm with overcharge protection function and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103515646A (en) | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film | |
Bao et al. | Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder | |
JP5939990B2 (en) | Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate | |
CN104600247B (en) | Sulfur-carbon composite positive electrode material for lithium-sulfur battery and preparation method of sulfur-carbon composite positive electrode material | |
CN108155383B (en) | Binder for lithium-sulfur battery and preparation method thereof, and positive electrode of lithium-sulfur battery | |
Kazazi et al. | Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: a kinetic study by electrochemical impedance spectroscopy | |
KR20140004773A (en) | Polyimide capacitance battery and manufacturing method thereof | |
CN106450102A (en) | Modified graphite separator for lithium-sulfur battery, preparation method of modified graphite separator and lithium-sulfur battery | |
CN104347881A (en) | Preparation method and applications of battery graphene-base current collector | |
CN105280949A (en) | Lithium sulfur battery using manganese dioxide/graphene as cathode barrier layer | |
CN103367791B (en) | A kind of new type lithium ion battery | |
KR101503807B1 (en) | A manufacture method of lithium ion capacitor using lithium metal powder | |
CN103985840A (en) | A lithium negative electrode with a functional protective layer and a lithium-sulfur battery | |
CN106033815B (en) | Lithium-sulphur cell positive electrode, preparation method and application | |
CN103474695A (en) | Sodium/perfluorocarbon secondary battery and preparation method thereof | |
CN105489901A (en) | Preparation method and application of lithium-sulfur battery three-dimensional carbon current collector | |
CN110611084B (en) | Lithium-sulfur secondary battery with long cycle life and 100% coulombic efficiency | |
CN103050729A (en) | A lithium-sulfur battery | |
CN107731542B (en) | A kind of solid state battery capacitor | |
JP2020009548A (en) | Power storage device | |
WO2018059180A1 (en) | High-power, high-energy chemical power supply and preparation method therefor | |
CN108461712B (en) | Potassium/potassium ferrite/Prussian blue solid-state battery and preparation method thereof | |
CN105789557A (en) | Lithium-sulfur pole piece with function protection layer and preparation method and application thereof | |
WO2019024313A1 (en) | Lithium sulfur battery and assembly thereof, and application of functional material layer in lithium sulfur battery | |
CN118406452B (en) | Binder, battery and electrical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140115 |