CN107689065A - A kind of GPS binocular cameras demarcation and spatial point method for reconstructing - Google Patents
A kind of GPS binocular cameras demarcation and spatial point method for reconstructing Download PDFInfo
- Publication number
- CN107689065A CN107689065A CN201610631808.9A CN201610631808A CN107689065A CN 107689065 A CN107689065 A CN 107689065A CN 201610631808 A CN201610631808 A CN 201610631808A CN 107689065 A CN107689065 A CN 107689065A
- Authority
- CN
- China
- Prior art keywords
- gps
- camera
- receiving antenna
- coordinate system
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/20—Linear translation of whole images or parts thereof, e.g. panning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Studio Devices (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提出一种GPS双目摄像机标定及空间点重建方法,采用GPS接收天线代替2D或3D靶标进行双目摄像机的参数标定,将GPS接收天线在两个摄像机公共视场中的任意位置进行移动,获得GPS接收天线质心的经纬高坐标信息;并由双目摄像机拍摄多幅含有GPS接收天线的图像,利用空间物体三维坐标与图像平面中二维坐标之间的投影矩阵关系,根据摄像机成像模型和双目摄像机标定原理,计算出双目摄像机的参数,并对空间点坐标进行精确重建。本发明能够减轻双目摄像机标定过程中对高精度靶标的依赖问题,得到的空间点重建坐标具有较高的精度。
The present invention proposes a GPS binocular camera calibration and spatial point reconstruction method, using a GPS receiving antenna instead of a 2D or 3D target for parameter calibration of the binocular camera, and moving the GPS receiving antenna to any position in the common field of view of the two cameras , to obtain the longitude and latitude coordinate information of the centroid of the GPS receiving antenna; and the binocular camera takes multiple images containing the GPS receiving antenna, using the projection matrix relationship between the three-dimensional coordinates of the space object and the two-dimensional coordinates in the image plane, according to the camera imaging model Based on the calibration principle of the binocular camera, the parameters of the binocular camera are calculated, and the coordinates of the spatial points are accurately reconstructed. The invention can alleviate the problem of dependence on high-precision targets in the calibration process of the binocular camera, and the reconstruction coordinates of the obtained spatial points have high precision.
Description
技术领域technical field
本发明属于计算机视觉处理技术领域,具体涉及一种GPS双目摄像机标定及空间点重建方法。The invention belongs to the technical field of computer vision processing, and in particular relates to a GPS binocular camera calibration and spatial point reconstruction method.
背景技术Background technique
目前,因具有速度快、精度高、无需接触、自动化等优势,计算机视觉在三维物体识别、空间物体三维姿态重建、机器人导引等领域已经得到了广泛的应用。双目摄像机标定技术作为计算机视觉研究中的一个重要组成部分,其标定精度对后续的研究工作具有较大的影响,因此提高双目摄像机标定精度也成为研究的一个重要课题。摄像机的标定,就是通过建立图像平面上物体二维投影点坐标与空间中相应的三维空间坐标之间的对应关系,计算出精确的摄像机成像模型参数。但是在许多场合中,摄像机内部几何参数和光学参数,以及不同摄像机之间的位置关系并不需要具体解出,只需要建立图像平面上物体二维投影点坐标与其相应的空间坐标之间的映射关系。At present, due to the advantages of fast speed, high precision, no contact, and automation, computer vision has been widely used in the fields of 3D object recognition, 3D pose reconstruction of space objects, and robot guidance. As an important part of computer vision research, binocular camera calibration technology has a great influence on the subsequent research work. Therefore, improving the calibration accuracy of binocular cameras has become an important research topic. The calibration of the camera is to calculate the precise camera imaging model parameters by establishing the correspondence between the two-dimensional projection point coordinates of the object on the image plane and the corresponding three-dimensional space coordinates in space. However, in many occasions, the internal geometric parameters and optical parameters of the camera, as well as the positional relationship between different cameras do not need to be solved specifically, only the mapping between the coordinates of the two-dimensional projection point of the object on the image plane and its corresponding spatial coordinates needs to be established relation.
全球定位系统(Global Position System,GPS)利用卫星通过测时和测距实现目标的导航和定位。在实际应用过程中,GPS接收机通过接收标准的GPS导航电文来获取基础的定位和导航数据。由于GPS对运动目标的导航定位具有全方位、全天候、数据实时、高精度等特点,已经在许多领域得到广泛的应用。The Global Positioning System (Global Position System, GPS) uses satellites to achieve navigation and positioning of targets through timing and ranging. In practical applications, GPS receivers obtain basic positioning and navigation data by receiving standard GPS navigation messages. Since GPS has the characteristics of all-round, all-weather, real-time data, and high precision in the navigation and positioning of moving targets, it has been widely used in many fields.
考虑到与传统的2D或3D标定靶标相比,GPS能够提供精度更高的空间坐标系坐标,本发明提出了一种新颖的基于GPS的双目摄像机标定及空间点重建方法,采用GPS代替传统标定方法中的2D或3D靶标,对双目摄像机进行精确标定,并使用标定后双目摄像机对空间任意点进行高精度三维坐标重建。Considering that compared with the traditional 2D or 3D calibration target, GPS can provide higher precision spatial coordinate system coordinates, this invention proposes a novel GPS-based binocular camera calibration and spatial point reconstruction method, using GPS instead of traditional The 2D or 3D target in the calibration method is used to accurately calibrate the binocular camera, and use the calibrated binocular camera to reconstruct high-precision three-dimensional coordinates of any point in space.
发明内容Contents of the invention
本发明的目的在于提出一种GPS双目摄像机标定及空间点重建方法,该方法采用GPS接收天线质心的精确坐标代替传统的2D或3D标定靶标,进行双目摄像机参数标定和空间任意点的三维重建,解决了双目摄像机标定中对于高精度靶标的依赖问题,提高了靶标标定精度,减少空间点重建相对距离误差。The purpose of the present invention is to propose a GPS binocular camera calibration and spatial point reconstruction method, the method uses the precise coordinates of the GPS receiving antenna centroid to replace the traditional 2D or 3D calibration target, to perform binocular camera parameter calibration and three-dimensional arbitrary point in space Reconstruction solves the problem of dependence on high-precision targets in binocular camera calibration, improves the accuracy of target calibration, and reduces the relative distance error of spatial point reconstruction.
为了解决上述技术问题,本发明提供一种GPS双目摄像机标定及空间点重建方法,使用如公式(1)所示的方法计算双目摄像机标定过程中所需的投影矩阵Mj(j=1,2),从而实现双目摄像机参数的标定,In order to solve the above technical problems, the present invention provides a GPS binocular camera calibration and spatial point reconstruction method, using the method shown in the formula (1) to calculate the projection matrix M j (j=1) required in the binocular camera calibration process ,2), so as to realize the calibration of binocular camera parameters,
式(1)中,是双目摄像机参数标定过程中所需的投影矩阵,Zc1,Zc2为比例因子,为Mj(j=1,2)矩阵第a行第b列元素;In formula (1), is the projection matrix required in the calibration process of binocular camera parameters, Z c1 and Z c2 are scale factors, is the element in row a and column b of M j (j=1,2) matrix;
式(1)中,为GPS接收天线质心在不同位置处的世界坐标系中的齐次坐标表示;In formula (1), is the homogeneous coordinate representation in the world coordinate system of the centroid of the GPS receiving antenna at different positions;
式(1)中,为GPS接收天线质心在双目摄像机拍摄的两组图像中对应的齐次图像坐标表示,n为每个摄像机拍摄的图像数;In formula (1), is the homogeneous image coordinate representation corresponding to the centroid of the GPS receiving antenna in the two sets of images captured by the binocular camera, and n is the number of images captured by each camera;
式(1)中,j表示双目摄像机1,2。In formula (1), j represents binocular cameras 1, 2.
使用如公式(2)所示的方法计算空间重建点P(X,Y,Z)坐标,从而实现空间点坐标重建,Use the method shown in formula (2) to calculate the coordinates of the spatial reconstruction point P (X, Y, Z), so as to realize the reconstruction of spatial point coordinates,
式(2)中,通过双目摄像机参数标定得到的投影矩阵,Zc1,Zc2为比例因子,为Mj(j=1,2)矩阵第a行第b列元素;In formula (2), The projection matrix obtained by calibration of binocular camera parameters, Z c1 and Z c2 are scale factors, is the element in row a and column b of M j (j=1,2) matrix;
式(2)中,分别为GPS接收天线质心在双目摄像机拍摄的两幅图像中对应的齐次图像坐标表示;In formula (2), Respectively represent the homogeneous image coordinates corresponding to the centroid of the GPS receiving antenna in the two images captured by the binocular camera;
式(2)中,为空间重建点P(X,Y,Z)坐标的齐次表示。In formula (2), Homogeneous representation of coordinates of point P(X,Y,Z) for spatial reconstruction.
所述GPS接收天线质心在不同位置处的世界坐标系的齐次坐标通过以下方法计算获得:The homogeneous coordinates of the world coordinate system at different positions of the centroid of the GPS receiving antenna Calculated by the following method:
使用公式(3),通过GPS导航坐标系(B,L,H)与世界坐标系之间转换求解出GPS接收天线质心在不同位置处的世界坐标系的齐次坐标 Using formula (3), through the conversion between the GPS navigation coordinate system (B, L, H) and the world coordinate system, the homogeneous coordinates of the world coordinate system with the centroid of the GPS receiving antenna at different positions are solved
公式(3)中,(B,L,H)为GPS导航坐标系WGS-84坐标系中的经度、纬度和高度坐标信息,N为椭球曲率半径,E为椭球第一偏心率。In formula (3), (B, L, H) is the longitude, latitude and height coordinate information in the GPS navigation coordinate system WGS-84 coordinate system, N is the radius of curvature of the ellipsoid, and E is the first eccentricity of the ellipsoid.
所述GPS接收天线质心在拍摄图像中对应的齐次图像坐标通过Harris角点检测方法计算获得。The homogeneous image coordinates corresponding to the centroid of the GPS receiving antenna in the captured image Calculated by Harris corner detection method.
本发明与现有技术相比,其显著优点在于:传统双目摄像机标定方法的精度往往依赖于标定过程中使用的2D或3D靶标,如R.Tsai提出的基于径向约束的两步标定法。在标定过程中,使用的2D或3D靶标通常需要进行精密的加工,而且靶标要求尽可能地覆盖整个视场。然而,在实际应用中,大型高精度的2D或3D靶标难于加工和维护,而采用小型靶标进行标定由于视场中精度的不均匀分布,会造成巨大的标定误差,影响后续的工作。由于GPS能够提供精度更高的空间坐标,并能够任意移动,移动范围覆盖整个视场,因此,在标定过程中无需依赖2D或3D靶标。本发明利用空间物体三维坐标与图像平面中二维坐标之间的投影矩阵关系,将GPS在视场中任意位置摆放,由双目摄像机拍摄多幅含有GPS的图像,根据摄像机成像模型和双目标定原理,同时计算出摄像机的参数。Compared with the prior art, the present invention has the remarkable advantage that the accuracy of the traditional binocular camera calibration method often depends on the 2D or 3D target used in the calibration process, such as the two-step calibration method based on radial constraints proposed by R.Tsai . During the calibration process, the 2D or 3D targets used usually need to be precisely processed, and the targets are required to cover the entire field of view as much as possible. However, in practical applications, large and high-precision 2D or 3D targets are difficult to process and maintain, and the use of small targets for calibration will cause huge calibration errors due to the uneven distribution of accuracy in the field of view, which will affect subsequent work. Since GPS can provide more accurate spatial coordinates and can move arbitrarily, and the moving range covers the entire field of view, there is no need to rely on 2D or 3D targets during the calibration process. The present invention utilizes the projection matrix relationship between the three-dimensional coordinates of the space object and the two-dimensional coordinates in the image plane, places the GPS at any position in the field of view, and shoots multiple images containing GPS by the binocular camera. According to the camera imaging model and the binocular The principle of the target is determined, and the parameters of the camera are calculated at the same time.
附图说明Description of drawings
图1是本发明方法流程图。Fig. 1 is a flow chart of the method of the present invention.
图2是摄像机成像模型。Figure 2 is the camera imaging model.
图3是双目测量模型。Figure 3 is a binocular measurement model.
具体实施方式detailed description
一、本发明基本思想One, basic thought of the present invention
本发明提出了一种GPS双目摄像机标定及空间点重建方法,其基本原理是:The present invention proposes a GPS binocular camera calibration and spatial point reconstruction method, its basic principle is:
首先,通过GPS接收天线获取其质心在WGS-84坐标系中的经度、纬度和高度坐标信息,同时用双目摄像机采集GPS接收天线质心在不同位置的图像;First, obtain the longitude, latitude and height coordinate information of its centroid in the WGS-84 coordinate system through the GPS receiving antenna, and at the same time use binocular cameras to collect images of the centroid of the GPS receiving antenna at different positions;
然后,根据WGS-84坐标系与世界坐标系之间的关系进行坐标转换,获得世界坐标中的坐标信息,并采用Harris角点检测算法获得GPS接收天线质心在图像中的坐标;Then, coordinate conversion is performed according to the relationship between the WGS-84 coordinate system and the world coordinate system to obtain the coordinate information in the world coordinate system, and the coordinates of the centroid of the GPS receiving antenna in the image are obtained by using the Harris corner detection algorithm;
接着,根据相机成像模型求解出相机参数矩阵,实现相机内外参数的标定;Then, according to the camera imaging model, the camera parameter matrix is solved to realize the calibration of the internal and external parameters of the camera;
最后,根据双目摄像机组成的双目测量模型求解出空间任意点坐标,实现双目摄像机的空间点重建。Finally, according to the binocular measurement model composed of binocular cameras, the coordinates of any point in space are solved, and the spatial point reconstruction of binocular cameras is realized.
二、摄像机成像模型的概念2. The concept of camera imaging model
双目摄像机标定过程中包含的四个坐标系,分别为世界坐标系Ow-XwYwZw,摄像机坐标系Oc-XcYcZc,图像坐标系oc-xy和计算机图像坐标系o-uv。The four coordinate systems included in the binocular camera calibration process are the world coordinate system O w -X w Y w Z w , the camera coordinate system O c -X c Y c Z c , the image coordinate system o c -xy and the computer Image coordinate system o-uv.
根据理想摄像机成像模型,可以得到摄像机坐标系Oc-XcYcZc与图像坐标系o-uv之间的变换关系为:According to the ideal camera imaging model, the transformation relationship between the camera coordinate system O c -X c Y c Z c and the image coordinate system o-uv can be obtained as:
其中,αx,αy分别为u轴、v轴上的尺度因子,或称为u轴、v轴上归一化焦距;s为比例因子,A为摄像机内参矩阵,I为单位矩阵。Among them, α x , α y are scale factors on the u-axis and v-axis respectively, or called normalized focal lengths on the u-axis and v-axis; s is the scale factor, A is the internal reference matrix of the camera, and I is the identity matrix.
摄像机坐标系Oc-XcYcZc与世界坐标系Ow-XwYwZw之间的变换关系为:The transformation relationship between the camera coordinate system O c -X c Y c Z c and the world coordinate system O w -X w Y w Z w is:
其中,R为一个3×3的旋转矩阵;t为一个3×1的平移矩阵。Among them, R is a 3×3 rotation matrix; t is a 3×1 translation matrix.
由式(1)和式(2)可以得到图像坐标系o-uv与世界坐标系Ow-XwYwZw之间的变换关系为:From formula (1) and formula (2), the transformation relationship between the image coordinate system o-uv and the world coordinate system O w -X w Y w Z w can be obtained as:
其中,M=A[R|t]为摄像机投影矩阵,A为摄像机内参矩阵,[R|t]为摄像机外参矩阵。双目摄像机标定过程即为求解摄像机投影矩阵M的过程。Among them, M=A[R|t] is the camera projection matrix, A is the camera internal reference matrix, and [R|t] is the camera external reference matrix. The binocular camera calibration process is the process of solving the camera projection matrix M.
所述理想摄像机成像模型详见文献(吴丹.计算机视觉中相机标定算法研究[D].华中科技大学,2014.)。The ideal camera imaging model can be found in the literature (Wu Dan. Research on Camera Calibration Algorithms in Computer Vision [D]. Huazhong University of Science and Technology, 2014.).
三、GPS坐标系转换的概念3. The concept of GPS coordinate system conversion
本发明使用的GPS为北斗星通GPS,并处于RTK工作模式,以WGS-84坐标系(WorldGeodetic System)为导航坐标系,该坐标系以纬度B,经度L,高度H进行表示,其内容包含在GPS导航电文中,输出形式为ASCII码。The GPS used in the present invention is Beidou Xingtong GPS, and is in RTK working mode, takes WGS-84 coordinate system (WorldGeodetic System) as navigation coordinate system, and this coordinate system is expressed with latitude B, longitude L, altitude H, and its content is contained in In the GPS navigation message, the output format is ASCII code.
获得GPS导航坐标系(B,L,H)的信息之后,需要将其先转换到地球直角坐标系。设地球表面任意一点P在GPS导航坐标系中为PG(B,L,H),在地球直角坐标系中为PE(XE,YE,ZE)。则GPS导航坐标系与地球直角坐标系之间的关系为:After obtaining the information of the GPS navigation coordinate system (B, L, H), it needs to be converted to the earth's Cartesian coordinate system first. Let any point P on the earth's surface be P G (B, L, H) in the GPS navigation coordinate system, and P E (X E , Y E , Z E ) in the earth's Cartesian coordinate system. Then the relationship between the GPS navigation coordinate system and the earth's Cartesian coordinate system is:
式(4)中,N为椭球的曲率半径,E为椭球的第一偏心率。设地球的长半径为a=6378137m,短半径为b=6356752m,则有:In formula (4), N is the radius of curvature of the ellipsoid, and E is the first eccentricity of the ellipsoid. Suppose the long radius of the earth is a=6378137m, and the short radius is b=6356752m, then:
得到地球直角坐标系后,还要将其转换为世界坐标系P(X,Y,Z)。该世界坐标系以GPS接收天线主站O为坐标原点。设GPS接收天线主站O在地球直角坐标系中为PE0(XE0,YE0,ZE0),GPS接收天线从站A在地球直角坐标系中为PE(XE,YE,ZE),则A相对于O的坐标为:After obtaining the earth's Cartesian coordinate system, it must be transformed into the world coordinate system P(X,Y,Z). The world coordinate system takes the GPS receiving antenna main station O as the coordinate origin. Let the GPS receiving antenna master station O be P E0 (X E0 , Y E0 , Z E0 ) in the earth’s rectangular coordinate system, and the GPS receiving antenna slave station A be in the earth’s rectangular coordinate system be P E (X E , Y E , Z E ), then the coordinates of A relative to O are:
所述协议世界大地坐标系详见文献(李志远。GPS在目标跟踪坐标转换的应用研究[J].电脑编程技巧与维护,2012(19):7-8.)。The world geodetic coordinate system of the protocol is detailed in the literature (Li Zhiyuan. Application Research of GPS in Target Tracking Coordinate Transformation [J]. Computer Programming Skills and Maintenance, 2012(19):7-8.).
四、基于GPS的相机参数标定的概念4. The concept of camera parameter calibration based on GPS
将相机成像模型式(3)表示成如下形式:The camera imaging model (3) is expressed in the following form:
式(7)中,是双目摄像机参数标定过程中所需的投影矩阵,Zc1,Zc2为比例因子,为Mj(j=1,2)矩阵第a行第b列元素; 为GPS接收天线质心在不同位置处的世界坐标系中的齐次坐标表示;为GPS接收天线质心在双目摄像机拍摄的两组图像中对应的齐次图像坐标表示,n为每个摄像机拍摄的图像数;j表示双目摄像机1,2。In formula (7), is the projection matrix required in the calibration process of binocular camera parameters, Z c1 and Z c2 are scale factors, is the element in row a and column b of M j (j=1,2) matrix; is the homogeneous coordinate representation in the world coordinate system of the centroid of the GPS receiving antenna at different positions; is the homogeneous image coordinate representation of the centroid of the GPS receiving antenna in the two sets of images captured by the binocular camera, n is the number of images captured by each camera; j represents the binocular camera 1, 2.
将式(7)展开,得:Expanding formula (7), we get:
消去式(8)中的Zcj,(j=1,2)得:Eliminate Z cj in formula (8), (j=1,2) to get:
对于n个已知的世界坐标系坐标和对应的图像坐标系坐标采用直接线性变换(DLT)方法可以解出Mj(j=1,2)矩阵中的每个元素,即:For n known world coordinate system coordinates and the corresponding image coordinate system coordinates Each element in the M j (j=1,2) matrix can be solved by using the direct linear transformation (DLT) method, namely:
令式(10)中从而得到关于Mj(j=1,2)矩阵元素的2n个线性方程。令:In formula (10) So as to get about M j (j=1,2) matrix 2n linear equations of elements. make:
则式(10)可以改写为:Then formula (10) can be rewritten as:
Kjmj=Uj (12)K j m j =U j (12)
采用最小二乘法可以求出式(12)中的mj,即:Using the least square method, m j in formula (12) can be obtained, namely:
即完成了双目摄像机的标定。That is, the calibration of the binocular camera is completed.
所述直接线性变换(DLT)方法详见文献(葛宝臻,李晓洁,邱实.基于共面点直接线性变换的相机畸变校正[J].中国激光,2010(2):488-494.)。The direct linear transformation (DLT) method can be found in the literature (Ge Baozhen, Li Xiaojie, Qiu Shi. Camera distortion correction based on direct linear transformation of coplanar points[J]. China Laser, 2010(2):488-494.).
所述最小二乘方法详见文献(贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报:自然科学版,2006,36(3):507-511.)。The least squares method can be found in the literature (Jia Xiaoyong, Xu Chuansheng, Bai Xin. The establishment of the least squares method and its thinking method [J]. Journal of Northwest University: Natural Science Edition, 2006,36(3):507-511.) .
五、空间点重建的概念5. The concept of spatial point reconstruction
假设空间中任意一点P(X,Y,Z)在两个相机C1与C2所拍摄的图像上为点p1(u1,v1),p2(u2,v2),相机C1与C2的投影矩阵分别为M1与Μ2,则有:Assume that any point P(X,Y,Z) in the space is point p 1 (u 1 ,v 1 ), p 2 (u 2 ,v 2 ) on the images captured by two cameras C 1 and C 2 , the camera The projection matrices of C 1 and C 2 are M 1 and M 2 respectively, then:
消去式(14)中的Zc1,Zc2,得到关于(X,Y,Z)的四个线性方程:Eliminate Z c1 and Z c2 in formula (14), and get four linear equations about (X, Y, Z):
将式(15)写成矩阵形式,有:To write formula (15) in matrix form, we have:
采用最小二乘法即可以求出空间重建点P的坐标(X,Y,Z)。The coordinates (X, Y, Z) of the spatial reconstruction point P can be obtained by using the least square method.
将计算得到的空间重建点P坐标(X,Y,Z)与GPS实际测量得到的点P坐标(XP,YP,ZP)进行比较,分析空间重建点分别在X,Y,Z方向上的误差dX,dY,dZ,有:Compare the calculated spatial reconstruction point P coordinates (X, Y, Z) with the actual GPS measured point P coordinates (X P , Y P , Z P ), and analyze the spatial reconstruction points in the X, Y, and Z directions respectively. On the error dX, dY, dZ, there are:
由式(17)可以得到空间重建点的相对距离误差err为:From formula (17), the relative distance error err of the spatial reconstruction point can be obtained as:
六、执行本发明方法的一个流程Six, carry out a flow process of the inventive method
步骤一:放置GPS接收天线主站O与从站A,连接好电台、GPS与电脑,使GPS处于RTK(Real-time kinematic,载波相位差分技术)工作模式,记录GPS接收天线主站O经纬高信息PG0(B0,L0,H0);Step 1: Place the GPS receiving antenna master station O and slave station A, connect the radio station, GPS and computer, make the GPS work in RTK (Real-time kinematic, carrier phase difference technology) working mode, record the latitude and longitude height of the GPS receiving antenna master station O Information P G0 (B 0 ,L 0 ,H 0 );
步骤二:移动GPS接收天线从站A至不同位置,并尽量使移动范围覆盖视场全部范围,用两个摄像机C1与C2采集GPS从站A位于视场不同位置的图像 并记录从站A对应的纬度、经度和高度信息 Step 2: Move the GPS receiving antenna from station A to different positions, and try to make the moving range cover the entire range of the field of view, and use two cameras C 1 and C 2 to collect images of GPS slave station A at different positions in the field of view And record the latitude, longitude and height information corresponding to slave station A
步骤三:根据式(4)~(6)将经纬高信息转换为世界坐标系坐标Pi(Xi,Yi,Zi)(i=1,2,...,n);Step 3: According to the formula (4) ~ (6), the longitude and latitude height information Convert to world coordinate system coordinates P i (X i ,Y i ,Z i )(i=1,2,...,n);
步骤四:对采集到的图像进行二值化、平滑滤波等图像预处理;Step 4: Collected images Perform image preprocessing such as binarization and smoothing filtering;
步骤五:采用Harris角点检测算法提取图像中GPS接收天线的质心坐标所述Harris角点检测算法详见文献[陈白帆,蔡自兴。基于尺度空间理论的Harris角点检测[J].中南大学学报:自然科学版,2005,36(5):751-754]。Step 5: Use the Harris corner detection algorithm to extract the image The centroid coordinates of the GPS receiving antenna in The Harris corner detection algorithm can be found in the literature [Chen Baifan, Cai Zixing. Harris corner detection based on scale space theory [J]. Journal of Central South University: Natural Science Edition, 2005, 36(5): 751-754].
步骤六:根据式(7)~(13)分别求出两个相机C1与C2的投影矩阵M1,M2。Step 6: Calculate the projection matrices M 1 , M 2 of the two cameras C 1 and C 2 according to formulas (7)-(13).
步骤七:根据式(14)~(16)求出空间重建点P坐标(X,Y,Z),并与GPS实际测量得Step 7: Calculate the coordinates (X, Y, Z) of the spatial reconstruction point P according to formulas (14)~(16), and compare them with the actual GPS measurement
到的坐标(Xp,Yp,Zp)进行比较,根据式(17)~(18)分析空间重建点误差。The coordinates (X p , Y p , Z p ) are compared, and the spatial reconstruction point error is analyzed according to formulas (17)-(18).
本发明的有益效果可以通过以下实验进一步说明:Beneficial effect of the present invention can further illustrate by following experiment:
本实验采用北斗星通GPS,相机为Basler acA640-90gc,CCD尺寸为4.88mm×3.66mm,分辨率为658×492,镜头标注焦距为F=12mm。This experiment uses BDStar GPS, the camera is Basler acA640-90gc, the CCD size is 4.88mm×3.66mm, the resolution is 658×492, and the focal length of the lens is F=12mm.
实验中,根据本发明方法的具体步骤,GPS接收天线主站O位置固定,并记录其纬度、经度和高度信息。在两个摄像机的公共视场范围内移动GPS接收天线从站A,同时分别拍摄其在C1与C2中的图像,并记录相应的GPS质心坐标信息。根据式(7)~(13)求出双目摄像机的M1,M2矩阵。求出的M1,M2矩阵为:In the experiment, according to the specific steps of the method of the present invention, the position of the master station O of the GPS receiving antenna is fixed, and its latitude, longitude and height information are recorded. Move the GPS receiving antenna slave station A within the common field of view of the two cameras, and at the same time take its images in C1 and C2 respectively, and record the corresponding GPS centroid coordinate information. Calculate the M 1 and M 2 matrices of the binocular camera according to formulas (7)-(13). The calculated M 1 and M 2 matrices are:
根据式(14)~(16)计算出空间重建点P坐标为P=(-2.3413,-1.6226,2.2023)。According to formulas (14) ~ (16), the coordinates of the space reconstruction point P are calculated as P = (-2.3413, -1.6226, 2.2023).
根据式(17)~(18)得到空间点重建相对距离误差err=0.52%。According to formulas (17)-(18), the relative distance error err=0.52% of spatial point reconstruction is obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610631808.9A CN107689065A (en) | 2016-08-03 | 2016-08-03 | A kind of GPS binocular cameras demarcation and spatial point method for reconstructing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610631808.9A CN107689065A (en) | 2016-08-03 | 2016-08-03 | A kind of GPS binocular cameras demarcation and spatial point method for reconstructing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107689065A true CN107689065A (en) | 2018-02-13 |
Family
ID=61151571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610631808.9A Pending CN107689065A (en) | 2016-08-03 | 2016-08-03 | A kind of GPS binocular cameras demarcation and spatial point method for reconstructing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107689065A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108720825A (en) * | 2018-03-29 | 2018-11-02 | 合肥工业大学 | A kind of seamless detection method of the non-contact vital sign parameter based on multi-cam |
CN109242918A (en) * | 2018-11-15 | 2019-01-18 | 中国直升机设计研究所 | A kind of helicopter-mounted binocular stereo vision scaling method |
CN109269525A (en) * | 2018-10-31 | 2019-01-25 | 北京空间机电研究所 | A kind of space probe takes off or landing mission optical measuring system and method |
CN109490926A (en) * | 2018-09-28 | 2019-03-19 | 浙江大学 | A kind of paths planning method based on binocular camera and GNSS |
CN109785388A (en) * | 2018-12-28 | 2019-05-21 | 东南大学 | A kind of short distance precise relative positioning method based on binocular camera |
CN110244284A (en) * | 2019-07-29 | 2019-09-17 | 南通润邦重机有限公司 | It is a kind of for multi-line laser radar and GPS INS calibration scaling board and its method |
CN111291585A (en) * | 2018-12-06 | 2020-06-16 | 杭州海康威视数字技术股份有限公司 | Target tracking system, method and device based on GPS and dome camera |
CN112541951A (en) * | 2020-11-13 | 2021-03-23 | 国网浙江省电力有限公司舟山供电公司 | Monitoring system and monitoring method for preventing ship from hooking off cross-sea overhead power line |
CN112652019A (en) * | 2020-11-24 | 2021-04-13 | 合肥中科贝伦科技有限公司 | Binocular vision three-dimensional positioning method |
CN112673284A (en) * | 2018-09-21 | 2021-04-16 | 日立建机株式会社 | Coordinate conversion system and working machine |
CN112925002A (en) * | 2021-02-07 | 2021-06-08 | 沈阳航空航天大学 | Distributed visual positioning method for non-cooperative target in air |
CN112991463A (en) * | 2021-03-17 | 2021-06-18 | 北京百度网讯科技有限公司 | Camera calibration method, device, equipment, storage medium and program product |
CN113627273A (en) * | 2021-07-19 | 2021-11-09 | 成都圭目机器人有限公司 | Highway mileage stake mark positioning method based on vision |
CN117928383A (en) * | 2024-03-09 | 2024-04-26 | 广州泰宣科技有限公司 | Image pickup measurement method and system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101228412A (en) * | 2005-07-21 | 2008-07-23 | 波音公司 | System and method for data mapping and map discrepancy reporting |
CN102945544A (en) * | 2012-11-28 | 2013-02-27 | 国家测绘地理信息局卫星测绘应用中心 | Simulation method of low orbit satellite images |
CN103344252A (en) * | 2013-06-17 | 2013-10-09 | 北京航空航天大学 | Analysis method for positioning errors of aviation hyperspectral imaging system |
CN103426165A (en) * | 2013-06-28 | 2013-12-04 | 吴立新 | Precise registration method of ground laser-point clouds and unmanned aerial vehicle image reconstruction point clouds |
CN103438887A (en) * | 2013-09-18 | 2013-12-11 | 上海海事大学 | Absolute coordinate obtaining method used for positioning mobile robot and reconstructing environment |
CN103438906A (en) * | 2013-09-10 | 2013-12-11 | 上海海事大学 | Vision and satellite positioning sensor joint calibrating method suitable for robot navigation |
CN103822644A (en) * | 2014-02-14 | 2014-05-28 | 北京航天控制仪器研究所 | Camera calibration method of three-dimensional laser imaging system |
CN104655106A (en) * | 2015-02-15 | 2015-05-27 | 武汉大学 | Self-positioning orientation plotting method based on GPS RTK and panoramic image |
-
2016
- 2016-08-03 CN CN201610631808.9A patent/CN107689065A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101228412A (en) * | 2005-07-21 | 2008-07-23 | 波音公司 | System and method for data mapping and map discrepancy reporting |
CN102945544A (en) * | 2012-11-28 | 2013-02-27 | 国家测绘地理信息局卫星测绘应用中心 | Simulation method of low orbit satellite images |
CN103344252A (en) * | 2013-06-17 | 2013-10-09 | 北京航空航天大学 | Analysis method for positioning errors of aviation hyperspectral imaging system |
CN103426165A (en) * | 2013-06-28 | 2013-12-04 | 吴立新 | Precise registration method of ground laser-point clouds and unmanned aerial vehicle image reconstruction point clouds |
CN103438906A (en) * | 2013-09-10 | 2013-12-11 | 上海海事大学 | Vision and satellite positioning sensor joint calibrating method suitable for robot navigation |
CN103438887A (en) * | 2013-09-18 | 2013-12-11 | 上海海事大学 | Absolute coordinate obtaining method used for positioning mobile robot and reconstructing environment |
CN103822644A (en) * | 2014-02-14 | 2014-05-28 | 北京航天控制仪器研究所 | Camera calibration method of three-dimensional laser imaging system |
CN104655106A (en) * | 2015-02-15 | 2015-05-27 | 武汉大学 | Self-positioning orientation plotting method based on GPS RTK and panoramic image |
Non-Patent Citations (1)
Title |
---|
郭杰荣等: "《光电信息技术试验教程》", 30 September 2015, 西安电子科技大学出版社 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108720825A (en) * | 2018-03-29 | 2018-11-02 | 合肥工业大学 | A kind of seamless detection method of the non-contact vital sign parameter based on multi-cam |
CN108720825B (en) * | 2018-03-29 | 2020-11-06 | 合肥工业大学 | Multi-camera-based seamless detection method for non-contact vital sign parameters |
CN112673284A (en) * | 2018-09-21 | 2021-04-16 | 日立建机株式会社 | Coordinate conversion system and working machine |
CN109490926A (en) * | 2018-09-28 | 2019-03-19 | 浙江大学 | A kind of paths planning method based on binocular camera and GNSS |
CN109490926B (en) * | 2018-09-28 | 2021-01-26 | 浙江大学 | A path planning method based on binocular camera and GNSS |
CN109269525A (en) * | 2018-10-31 | 2019-01-25 | 北京空间机电研究所 | A kind of space probe takes off or landing mission optical measuring system and method |
CN109269525B (en) * | 2018-10-31 | 2021-06-11 | 北京空间机电研究所 | Optical measurement system and method for take-off or landing process of space probe |
CN109242918A (en) * | 2018-11-15 | 2019-01-18 | 中国直升机设计研究所 | A kind of helicopter-mounted binocular stereo vision scaling method |
CN109242918B (en) * | 2018-11-15 | 2022-07-15 | 中国直升机设计研究所 | Helicopter-borne binocular stereo vision calibration method |
CN111291585A (en) * | 2018-12-06 | 2020-06-16 | 杭州海康威视数字技术股份有限公司 | Target tracking system, method and device based on GPS and dome camera |
CN111291585B (en) * | 2018-12-06 | 2023-12-08 | 杭州海康威视数字技术股份有限公司 | GPS-based target tracking system, method and device and ball machine |
CN109785388A (en) * | 2018-12-28 | 2019-05-21 | 东南大学 | A kind of short distance precise relative positioning method based on binocular camera |
CN109785388B (en) * | 2018-12-28 | 2023-04-18 | 东南大学 | Short-distance accurate relative positioning method based on binocular camera |
CN110244284A (en) * | 2019-07-29 | 2019-09-17 | 南通润邦重机有限公司 | It is a kind of for multi-line laser radar and GPS INS calibration scaling board and its method |
CN112541951A (en) * | 2020-11-13 | 2021-03-23 | 国网浙江省电力有限公司舟山供电公司 | Monitoring system and monitoring method for preventing ship from hooking off cross-sea overhead power line |
CN112652019A (en) * | 2020-11-24 | 2021-04-13 | 合肥中科贝伦科技有限公司 | Binocular vision three-dimensional positioning method |
CN112925002B (en) * | 2021-02-07 | 2023-09-26 | 沈阳航空航天大学 | Distributed visual positioning method for non-cooperative targets in the air |
CN112925002A (en) * | 2021-02-07 | 2021-06-08 | 沈阳航空航天大学 | Distributed visual positioning method for non-cooperative target in air |
CN112991463A (en) * | 2021-03-17 | 2021-06-18 | 北京百度网讯科技有限公司 | Camera calibration method, device, equipment, storage medium and program product |
CN113627273A (en) * | 2021-07-19 | 2021-11-09 | 成都圭目机器人有限公司 | Highway mileage stake mark positioning method based on vision |
CN113627273B (en) * | 2021-07-19 | 2023-05-26 | 成都圭目机器人有限公司 | Expressway mileage stake mark positioning method based on vision |
CN117928383A (en) * | 2024-03-09 | 2024-04-26 | 广州泰宣科技有限公司 | Image pickup measurement method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107689065A (en) | A kind of GPS binocular cameras demarcation and spatial point method for reconstructing | |
CN107301654B (en) | A multi-sensor high-precision real-time localization and mapping method | |
CN105043259B (en) | Digit Control Machine Tool rotary shaft error detection method based on binocular vision | |
CN108828606A (en) | Laser radar and binocular visible light camera-based combined measurement method | |
CN107464264A (en) | A kind of camera parameter scaling method based on GPS | |
CN103267491B (en) | The method and system of automatic acquisition complete three-dimensional data of object surface | |
CN108198224B (en) | A linear array camera calibration device and calibration method for stereo vision measurement | |
CN103438798B (en) | Initiative binocular vision system overall calibration | |
CN106990776B (en) | Robot homing positioning method and system | |
CN109242918B (en) | Helicopter-borne binocular stereo vision calibration method | |
CN102221331B (en) | Measuring method based on asymmetric binocular stereovision technology | |
CN109579695B (en) | Part measuring method based on heterogeneous stereoscopic vision | |
CN110017852B (en) | Navigation positioning error measuring method | |
CN101901501A (en) | A Method of Generating Laser Color Cloud Image | |
CN111091076B (en) | Measurement method of tunnel boundary data based on stereo vision | |
CN113419235A (en) | Unmanned aerial vehicle positioning method based on millimeter wave radar | |
CN110443854A (en) | Based on fixed target without relative pose scaling method between public view field camera | |
CN106500625A (en) | A kind of telecentricity stereo vision measuring apparatus and its method for being applied to the measurement of object dimensional pattern micron accuracies | |
CN105783754B (en) | GBInSAR 3-D displacement field extracting method based on 3 D laser scanning | |
CN105046715A (en) | Space analytic geometry-based line-scan camera calibration method | |
CN115371673A (en) | A binocular camera target location method based on Bundle Adjustment in an unknown environment | |
CN101782642A (en) | Method and device for absolutely positioning measurement target by multi-sensor fusion | |
Wu et al. | Passive ranging based on planar homography in a monocular vision system | |
Zhang et al. | An overlap-free calibration method for LiDAR-camera platforms based on environmental perception | |
CN104123726B (en) | Heavy forging measuring system scaling method based on vanishing point |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180213 |
|
RJ01 | Rejection of invention patent application after publication |