[go: up one dir, main page]

CN107591797A - A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot - Google Patents

A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot Download PDF

Info

Publication number
CN107591797A
CN107591797A CN201710715984.5A CN201710715984A CN107591797A CN 107591797 A CN107591797 A CN 107591797A CN 201710715984 A CN201710715984 A CN 201710715984A CN 107591797 A CN107591797 A CN 107591797A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
node
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710715984.5A
Other languages
Chinese (zh)
Inventor
赵金利
李雨薇
王成山
李鹏
宋关羽
冀浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710715984.5A priority Critical patent/CN107591797A/en
Publication of CN107591797A publication Critical patent/CN107591797A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Secondary Cells (AREA)

Abstract

一种智能软开关的集中和就地联合控制策略整定方法:根据选定的有源配电系统,输入有源配电系统结构及参数;依据有源配电系统结构及参数,考虑分布式电源出力和负荷的时序特性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型;对模型中的目标函数和非线性约束进行线性化或二阶锥转换,从而使有源配电网智能软开关的集中和就地联合控制策略整定模型转化为二阶锥模型;采用二阶锥规划算法对二阶锥模型进行计算求解得到:智能软开关的集中和就地联合控制策略的相关参数、系统中的电压分布情况、智能软开关的有功调节情况和无功补偿情况。本发明是考虑分布式电源和负荷的随机性和波动性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型。

A centralized and local joint control strategy setting method for intelligent soft switches: according to the selected active power distribution system, input the structure and parameters of the active power distribution system; according to the structure and parameters of the active power distribution system, consider the distributed power Based on the timing characteristics of output and load, the centralized and local joint control strategy tuning model of intelligent soft switch for active distribution network is established; The centralized and local joint control strategy setting model of intelligent soft switch in distribution network is transformed into a second-order cone model; the second-order cone model is calculated and solved by using the second-order cone programming algorithm: the centralized and local joint control strategy of intelligent soft switch The relevant parameters of the system, the voltage distribution in the system, the active power adjustment and reactive power compensation of the intelligent soft switch. The invention considers the randomness and fluctuation of distributed power sources and loads, and establishes a centralized and local joint control strategy setting model of an active distribution network intelligent soft switch.

Description

一种智能软开关的集中和就地联合控制策略整定方法A centralized and local combined control strategy setting method for intelligent soft switches

技术领域technical field

本发明涉及一种智能软开关的运行控制策略。特别是涉及一种智能软开关的集中和就地联合控制策略整定方法。The invention relates to an operation control strategy of an intelligent soft switch. In particular, it relates to a centralized and local combined control strategy setting method for an intelligent soft switch.

背景技术Background technique

对能源和环境的高度关注使得配电网的发展面临着新的压力和挑战,这些压力和挑战同时也是推动传统配电网向有源配电网发展的重要机遇。近年来,包括光伏(Photovoltaic,PV)、风机等在内的分布式电源(Distributed Generation,DG)渗透率的不断提高使有源配电网面临一系列新问题,如双向潮流、电压越限、网络阻塞等,其中电压越限情况尤为突出。在传统配电系统中,其调节手段有限,尤其是针对一次系统的控制手段严重匮乏,现有装备多是针对无功功率的调节,如电容器组、静止无功补偿器等。然而在配电网中,有功和无功功率之间的关系是相互耦合的,有功功率对电压分布的影响同样显著。因此,尤其对于含高渗透率分布式电源的配电网,单纯依靠无功调节很难消除电压越限问题。智能软开关(soft open point,SOP)是在上述背景下衍生出的取代传统联络开关的一种基于电力电子技术的新型配电装置。智能软开关能够实现有功功率和无功功率的联合调整,而且功率控制简单、可靠,从而有效应对包括电压越限在内的一系列问题。The high attention to energy and the environment makes the development of distribution networks face new pressures and challenges, and these pressures and challenges are also important opportunities to promote the development of traditional distribution networks to active distribution networks. In recent years, the increasing penetration rate of distributed generation (DG), including photovoltaic (PV) and wind turbines, has made the active distribution network face a series of new problems, such as bidirectional power flow, voltage over-limit, Network congestion, etc., in which the voltage limit is particularly prominent. In the traditional power distribution system, its adjustment methods are limited, especially the control methods for the primary system are seriously lacking. Most of the existing equipment is for the adjustment of reactive power, such as capacitor banks, static var compensators, etc. However, in the distribution network, the relationship between active and reactive power is mutually coupled, and the influence of active power on voltage distribution is also significant. Therefore, especially for distribution networks with high-penetration distributed power sources, it is difficult to eliminate the problem of voltage over-limit by simply relying on reactive power regulation. Intelligent soft switch (soft open point, SOP) is a new power distribution device based on power electronics technology derived from the above background to replace the traditional contact switch. Intelligent soft switching can realize the joint adjustment of active power and reactive power, and the power control is simple and reliable, so as to effectively deal with a series of problems including voltage limit.

目前,智能软开关主要采用集中式控制策略来实现其运行控制。集中式控制策略利用全局信息对智能软开关、分布式电源等可控资源进行全局优化,但过大的数据量会带来沉重的通信和数据处理负担,增大时间延迟;另外,有时出于隐私以及安全方面的考虑而难以获取全局的详细信息,此时将不适合采用集中式控制。而就地控制仅仅依靠本地测量信息,虽然无法实现全局最优,但不需要节点间的信息交流或远程量测,从而减少了通信的数据量,降低了控制变量的维度;并且,当分布式发电波动较大时,就地控制策略可以迅速响应,从而快速抑制波动。At present, the intelligent soft switch mainly adopts the centralized control strategy to realize its operation control. The centralized control strategy uses global information to optimize the controllable resources such as intelligent soft switches and distributed power sources globally, but excessive data volume will bring heavy communication and data processing burdens and increase time delay; in addition, sometimes due to Privacy and security considerations make it difficult to obtain global detailed information, and centralized control will not be suitable at this time. While local control only relies on local measurement information, although it cannot achieve global optimality, it does not require information exchange or remote measurement between nodes, thereby reducing the amount of communication data and the dimension of control variables; and, when distributed When the power generation fluctuates greatly, the local control strategy can respond quickly, thereby quickly suppressing the fluctuation.

目前关于智能软开关运行优化问题的研究,多是针对其功率输出量的集中控制策略展开的。但考虑到智能软开关两个变流器的无功输出因直流环节的隔离而互不影响的特点,可对其有功、无功输出分别进行集中、就地控制,实现智能软开关的集中与就地联合控制,从而在减小计算负担的前提下尽可能实现全局最优。At present, most of the research on the operation optimization of intelligent soft switches is carried out for the centralized control strategy of its power output. However, considering the fact that the reactive output of the two converters of the intelligent soft switch does not affect each other due to the isolation of the DC link, the active and reactive outputs can be controlled separately in a centralized manner to realize the centralized and on-site control of the intelligent soft switch. In-situ joint control, so as to achieve the global optimum as much as possible under the premise of reducing the computational burden.

由于智能软开关的运行优化具有很强的时序特征,因此必须要以时序的有源配电网智能软开关的集中和就地联合控制策略整定模型作为优化问题的求解基础。该模型数学本质上是混合整数非线性规划问题,给计算求解带来较大挑战。因此,需要一种能够快速求解上述混合整数非线性规划问题的模型与算法,用以求解有源配电网智能软开关的集中和就地联合控制策略整定模型,从而制定出智能软开关的集中和就地联合控制策略,包括智能软开关的有功集中控制策略和就地电压无功控制策略。Since the operation optimization of intelligent soft switches has strong time-sequential characteristics, the centralized and local joint control strategy tuning model of time-series active distribution network intelligent soft switches must be used as the basis for solving the optimization problem. The mathematics of this model is essentially a mixed integer nonlinear programming problem, which brings great challenges to the calculation and solution. Therefore, a model and algorithm that can quickly solve the above mixed integer nonlinear programming problem is needed to solve the centralized and local joint control strategy tuning model of the intelligent soft switch in the active distribution network, so as to formulate the centralized control strategy of the intelligent soft switch. And local joint control strategy, including active power centralized control strategy of intelligent soft switch and local voltage and reactive power control strategy.

发明内容Contents of the invention

本发明所要解决的技术问题是,提供一种建立有源配电网智能软开关的集中和就地联合控制策略整定模型,制定智能软开关的集中和就地联合控制策略的智能软开关的集中和就地联合控制策略整定方法。The technical problem to be solved by the present invention is to provide a centralized and on-site joint control strategy setting model for establishing an intelligent soft switch in an active distribution network, and to formulate a centralized and on-site joint control strategy for an intelligent soft switch. and local joint control strategy tuning method.

本发明所采用的技术方案是:一种智能软开关的集中和就地联合控制策略整定方法,包括如下步骤:The technical solution adopted in the present invention is: a centralized and local joint control strategy setting method for an intelligent soft switch, comprising the following steps:

1)根据选定的有源配电系统,输入线路参数、负荷水平、网络拓扑连接关系,系统安全运行电压约束和支路电流限制,分布式电源的接入位置和容量,分布式电源及负荷的日运行特性预测曲线,智能软开关的接入位置、容量及参数,系统基准电压和基准功率的初值;1) According to the selected active power distribution system, input line parameters, load level, network topology connection relationship, system safe operation voltage constraints and branch current limits, access location and capacity of distributed power sources, distributed power sources and loads The prediction curve of the daily operation characteristics, the access position, capacity and parameters of the intelligent soft switch, the initial value of the system reference voltage and reference power;

2)依据有源配电系统结构及参数,考虑分布式电源出力和负荷的时序特性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型,包括:选取根节点为平衡节点,设定有源配电系统损耗和电压偏差之和最小为目标函数,分别考虑系统潮流约束、系统安全运行约束、智能软开关运行与容量约束;2) Based on the structure and parameters of the active distribution system, considering the timing characteristics of distributed power output and load, a centralized and local joint control strategy setting model for the intelligent soft switch of the active distribution network is established, including: selecting the root node as the balance node, set the minimum sum of active power distribution system loss and voltage deviation as the objective function, and consider the system power flow constraints, system safety operation constraints, intelligent soft switching operation and capacity constraints respectively;

3)将步骤2)所述模型中的目标函数和非线性约束进行线性化或二阶锥转换,从而使有源配电网智能软开关的集中和就地联合控制策略整定模型转化为二阶锥模型;3) Perform linearization or second-order cone transformation on the objective function and nonlinear constraints in the model described in step 2), so that the centralized and local joint control strategy tuning model of the active distribution network intelligent soft switch is transformed into a second-order cone model;

4)采用二阶锥规划算法对二阶锥模型进行计算求解得到:智能软开关的集中和就地联合控制策略的相关参数、系统中的电压分布情况、智能软开关的有功调节情况和无功补偿情况;4) Using the second-order cone programming algorithm to calculate and solve the second-order cone model: the relevant parameters of the centralized and local joint control strategy of the intelligent soft switch, the voltage distribution in the system, the active power adjustment and reactive power of the intelligent soft switch Compensation;

5)输出步骤4)的求解结果。5) Output the solution result of step 4).

步骤2)中:In step 2):

(1)所述的有源配电系统损耗和电压偏差之和最小为目标函数表示为(1) The minimum sum of the active power distribution system loss and voltage deviation is the objective function expressed as

min f=αfL+βfV (1)min f=αf L +βf V (1)

式中,α和β分别为系统损耗fL和系统电压偏差情况fV的权重系数,其中,系统损耗fL和系统电压偏差情况fV的表达式如下:In the formula, α and β are the weight coefficients of the system loss f L and the system voltage deviation f V respectively, where the expressions of the system loss f L and the system voltage deviation f V are as follows:

式中,NT和NN分别为时间断面数和系统节点总数;Ωb为系统支路集合;Vt,i为t时段节点i的电压幅值;Rij为支路ij的电阻,It,ij为t时段节点i流向节点j的电流幅值;为t时段节点i上智能软开关的有功损耗值;为Vt,i的期望电压区间,当Vt,i不在此区间时,目标函数fV用来减小电压偏差;In the formula, N T and N N are the number of time sections and the total number of system nodes respectively; Ω b is the set of system branches; V t,i is the voltage amplitude of node i in period t; R ij is the resistance of branch ij, I t, ij is the current amplitude flowing from node i to node j during the t period; is the active power loss value of the intelligent soft switch on node i in the period t; is the expected voltage range of V t, i , when V t,i is not in this range, the objective function f V is used to reduce the voltage deviation;

(2)所述的系统潮流约束表示为(2) The power flow constraint of the system is expressed as

式中,Ωb为系统中所有支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;It,ij为t时段节点i流向节点j的电流幅值;Vt,i为t时段节点i的电压幅值,Vt,j为t时段节点j的电压幅值;Pt,i为t时段节点i上注入的有功功率之和,分别为t时段节点i上分布式电源注入的有功功率、智能软开关注入的有功功率、负荷消耗的有功功率,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、智能软开关注入的无功功率、负荷消耗的无功功率;In the formula, Ω b is the set of all branches in the system; P t,ij is the active power flowing from node i to node j during t period, Q t,ij is the reactive power flowing from node i to node j during t period; P t ,ij ik is the active power flowing from node i to node k in period t, Q t,ik is the reactive power flowing from node i to node k in period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; I t , ij is the current amplitude of node i flowing to node j in period t; V t,i is the voltage amplitude of node i in period t, V t,j is the voltage amplitude of node j in period t; P t,i is the amplitude of node j in period t The sum of active power injected on node i, Respectively, the active power injected by the distributed power supply, the active power injected by the intelligent soft switch, and the active power consumed by the load on node i during the t period, Q t,i is the sum of the reactive power injected on the node i during the t period, Respectively, the reactive power injected by the distributed power supply, the reactive power injected by the intelligent soft switch, and the reactive power consumed by the load on node i during the period t;

(3)所述的智能软开关有功集中控制约束表示为(3) The active power centralized control constraint of the intelligent soft switch is expressed as

式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率;In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively;

(4)所述的智能软开关就地电压无功控制约束表示为(4) The local voltage and reactive power control constraints of the intelligent soft switch are expressed as

式中,分别为t时段节点i、j上智能软开关注入的无功功率最大值;和g(Vt,j)共同构成智能软开关就地电压无功控制策略的表达式,和g(Vt,j)分别存在调节死区此时智能软开关产生的无功功率为0var;下式分别构成和g(Vt,j):In the formula, with Respectively, the maximum value of reactive power injected by intelligent soft switch on nodes i and j in period t; and g(V t,j ) constitute the expression of the local voltage and reactive power control strategy of the intelligent soft switch, and g(V t,j ) respectively have regulation dead zones with At this time, the reactive power generated by the intelligent soft switch is 0var; the following formulas respectively constitute and g(V t,j ):

步骤3)包括:Step 3) includes:

(1)采用U2,t,i和I2,t,ij替换目标函数、系统潮流约束和系统运行约束中的二次项将目标函数和系统潮流约束线性化:(1) Use U 2,t,i and I 2,t,ij to replace the quadratic terms in the objective function, system power flow constraints and system operation constraints with Linearize the objective function and system power flow constraints:

(Vmin)2≤U2,t,i≤(Vmax)2 (20)(V min ) 2 ≤U 2,t,i ≤(V max ) 2 (20)

I2,t,ij≤(Imax)2 (21)I 2,t,ij ≤(I max ) 2 (21)

式中,Ωb为支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;Pt,i为t时段节点i上注入的有功功率之和,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、负荷消耗的无功功率;为t时段节点i上智能软开关的有功损耗值;Vmax和Vmin为系统最大允许电压值和最小允许电压值;Imax为支路最大允许电流值;NT和NN分别为时间断面数和系统节点总数;为Vt,i的期望电压的最小值,为Vt,i的期望电压的最大值;In the formula, Ω b is the set of branches; P t,ij is the active power flowing from node i to node j in period t, Q t,ij is the reactive power flowing from node i to node j in period t; P t,ik is t Active power flowing from node i to node k in time period, Q t,ik is the reactive power flowing from node i to node k in time period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; P t,i is The sum of active power injected on node i in period t, Q t,i is the sum of reactive power injected on node i in period t, Respectively, the reactive power injected by the distributed power source and the reactive power consumed by the load on node i during the period t; is the active power loss value of the intelligent soft switch on node i in the period t; V max and V min are the maximum allowable voltage value and the minimum allowable voltage value of the system; I max is the maximum allowable current value of the branch; NT and N N are the time section and the total number of system nodes; is the minimum value of the desired voltage for V t,i , is the maximum value of the expected voltage of V t,i ;

(2)目标函数fV中含有绝对值项|U2,t,i-1|,引入辅助变量At,i,并增加约束:(2) The objective function f V contains an absolute value item |U 2,t,i -1|, introduces auxiliary variables A t,i , and adds constraints:

At,i≥0 (27);At t,i ≥ 0 (27);

(3)智能软开关就地电压无功控制策略的表达式和g(Vt,j)为非线性表达式,采用分段线性化实现对和g(Vt,j)的精确线性化;通过引入辅助变量at,i,n n=1,2,…,6、dt,i,nn=1,2,…,5和at,j,n n=1,2,…,6、dt,j,n n=1,2,…,5,采用线段来近似和g(Vt,j)所定义的曲线,如下所示:(3) Expression of local voltage and reactive power control strategy of intelligent soft switch and g(V t,j ) are nonlinear expressions, and piecewise linearization is used to realize the and g(V t,j ); by introducing auxiliary variables a t,i,n n=1,2,…,6, d t,i,n n=1,2,…,5 and a t,j,n n=1,2,…,6, d t,j,n n=1,2,…,5, approximated by line segments and the curve defined by g(V t,j ) as follows:

at,i,1≤dt,i,1,at,i,6≤dt,i,5 (30)a t,i,1 ≤d t,i,1 ,a t,i,6 ≤d t,i,5 (30)

at,i,n≤dt,i,n+dt,i,n-1,n=2,3,4,5 (31)a t,i,n ≤d t,i,n +d t,i,n-1 ,n=2,3,4,5 (31)

at,i,n≥0,dt,i,n∈{0,1} (32)a t,i,n ≥0,d t,i,n ∈{0,1} (32)

式中,at,i,n n=1,2,…,6为连续变量,dt,i,nn=1,2,…,5为整数变量;分别为曲线调节死区的最小值和最大值;In the formula, a t,i,n n=1,2,…,6 are continuous variables, d t,i,n n=1,2,…,5 are integer variables; with respectively The curve adjusts the minimum and maximum values of the dead zone;

g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (34)g(V t,j )=a t,j,1 +a t,j,2 -a t,j,5 -a t,j,6 (34)

at,j,1≤dt,j,1,at,j,6≤dt,j,5 (36)a t,j,1 ≤d t,j,1 ,a t,j,6 ≤d t,j,5 (36)

at,j,n≤dt,j,n+dt,j,n-1,n=2,3,4,5 (37)a t,j,n ≤d t,j,n +d t,j,n-1 ,n=2,3,4,5 (37)

at,j,n≥0,dt,j,n∈{0,1} (38)a t,j,n ≥ 0,d t,j,n ∈ {0,1} (38)

式中,at,j,n n=1,2,…,6为连续变量,dt,j,n n=1,2,…,5为整数变量;分别为g(Vt,j)曲线调节死区的最小值和最大值;In the formula, a t, j, n n=1,2,...,6 are continuous variables, d t, j, n n=1,2,...,5 are integer variables; with Adjust the minimum and maximum values of the dead zone for the g(V t,j ) curve, respectively;

引入辅助整数变量ci,1、ci,2和cj,1、cj,2分别将非线性乘积项线性化,则分别表示为:Introduce auxiliary integer variables c i,1 , c i,2 and c j,1 , c j,2 respectively to convert the non-linear product term with linearized, then with Respectively expressed as:

ci,1≤ci,2 (42)c i,1 ≤ c i ,2 (42)

cj,1≤cj,2 (45)c j,1 ≤ c j ,2 (45)

at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2依旧是非线性乘积项,因此引入二进制变量li,1,m、li,2,m和lj,1,m、lj,2,m m=0,1,…,4表示at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 are still nonlinear product terms, so Introduce binary variables l i,1,m , l i,2,m and l j,1,m , l j,2,m m=0,1,...,4 to represent a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 ;

引入辅助变量wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,m和wt,j,1,m=at,j,3lj,1,m、wt,j,2,m=at,j,4lj,2,m,并取M为1000,并增加以下约束:Introducing auxiliary variables w t,i,1,m = at,i,3 l i,1,m , w t,i,2,m = at,i,4 l i,2,m and w t, j,1,m =a t,j,3 l j,1,m 、w t,j,2,m =a t,j,4 l j,2,m , and take M as 1000, and add the following constraint:

at,i,3-(1i,1,m)M≤wt,i,1,m≤at,i,3 (50)a t,i,3 -(1 i,1,m )M≤w t,i,1,m ≤a t, i,3 (50)

0≤wt,i,1,m≤li,1,mM (51)0≤w t,i,1,m ≤l i,1,m M (51)

at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (52)a t,i,4 -(1-l i,2,m )M≤w t,i,2,m ≤a t, i,4 (52)

0≤wt,i,2,m≤li,2,mM (53)0≤w t,i,2,m ≤l i,2,m M (53)

at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (54)a t,j,3 -(1-l j,1,m )M≤w t,j,1,m ≤a t, j,3 (54)

0≤wt,j,1,m≤lj,1,mM (55)0≤w t,j,1,m ≤l j,1,m M (55)

at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (56)a t,j,4 -(1-l j,2,m )M≤w t,j,2,m ≤a t, j,4 (56)

0≤wt,j,2,m≤lj,2,mM (57)0≤w t,j,2,m ≤l j,2,m M (57)

(4)将智能软开关的损耗约束条件进行凸松弛,进而得到旋转锥约束式:(4) Convex relaxation is performed on the loss constraint of the intelligent soft switch, and then the rotating cone constraint is obtained:

(5)将约束条件式进行线性化,采用U2,t,i和I2,t,ij替换二次项 (5) The constraint condition Perform linearization, replacing quadratic terms with U 2,t,i and I 2,t,ij with

再进一步进行凸松弛,得到二阶锥约束式:Further convex relaxation is performed to obtain the second-order cone constraint formula:

式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率,分别为t时段接在节点i和节点j之间的智能软开关两端换流器的接入容量。In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively, with are the access capacity of the intelligent soft-switching two-terminal converter connected between node i and node j during the period t, respectively.

本发明的一种智能软开关的集中和就地联合控制策略整定方法,立足于解决连续时间序列下的智能软开关集中和就地联合控制策略的整定问题,充分考虑分布式电源和负荷的随机性和波动性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型,采用二阶锥规划方法进行求解,得到智能软开关的集中和就地联合控制策略。A centralized and local combined control strategy setting method for an intelligent soft switch of the present invention is based on solving the problem of setting a centralized and local combined control strategy for an intelligent soft switch under continuous time series, fully considering the randomness of distributed power sources and loads The centralized and local joint control strategy tuning model of the intelligent soft switch in active distribution network is established, and the solution is solved by the second-order cone programming method, and the centralized and local joint control strategy of the intelligent soft switch is obtained.

附图说明Description of drawings

图1是本发明的智能软开关的集中和就地联合控制策略整定方法流程图;Fig. 1 is the centralized and on-the-spot combined control strategy setting method flowchart of intelligent soft switch of the present invention;

图2是改进的PG&E69节点算例结构图;Figure 2 is the structure diagram of the improved PG&E69 node calculation example;

图3是分布式电源及负荷运行特性预测曲线;Figure 3 is the prediction curve of distributed power supply and load operation characteristics;

图4a是整定后的智能软开关1在节点27处变流器的就地电压无功控制策略;Fig. 4a is the local voltage and reactive power control strategy of the converter at node 27 of the intelligent soft switch 1 after setting;

图4b是整定后的智能软开关1在节点54处变流器的就地电压无功控制策略;Fig. 4b is the local voltage and reactive power control strategy of the converter at node 54 of the intelligent soft switch 1 after setting;

图4c是整定后的智能软开关2在节点35处变流器的就地电压无功控制策略;Fig. 4c is the local voltage and reactive power control strategy of the converter at node 35 of the intelligent soft switch 2 after setting;

图4d是整定后的智能软开关2在节点48处变流器的就地电压无功控制策略;Fig. 4d is the local voltage and reactive power control strategy of the converter at node 48 of the intelligent soft switch 2 after setting;

图5a是方案II下智能软开关1的有功传输情况;Fig. 5a is the active power transmission situation of the intelligent soft switch 1 under scheme II;

图5b是方案II下智能软开关2的有功传输情况;Fig. 5b is the active power transmission situation of the intelligent soft switch 2 under scheme II;

图6a是方案II下智能软开关1的无功补偿情况;Fig. 6a is the reactive power compensation situation of the intelligent soft switch 1 under scheme II;

图6b是方案II下智能软开关2的无功补偿情况;Fig. 6b is the reactive power compensation situation of the intelligent soft switch 2 under scheme II;

图7a是优化前后节点35处的电压分布情况;Fig. 7 a is the voltage distribution situation at node 35 before and after optimization;

图7b是优化前后节点54处的电压分布情况。Fig. 7b shows the voltage distribution at node 54 before and after optimization.

具体实施方式detailed description

下面结合实施例和附图对本发明的一种智能软开关的集中和就地联合控制策略整定方法做出详细说明。A centralized and local combined control strategy setting method for an intelligent soft switch of the present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings.

如图1所示,本发明的一种智能软开关的集中和就地联合控制策略整定方法,包括如下步骤:As shown in Figure 1, a centralized and local joint control strategy setting method of an intelligent soft switch of the present invention comprises the following steps:

1)根据选定的有源配电系统,输入线路参数、负荷水平、网络拓扑连接关系,系统安全运行电压约束和支路电流限制,分布式电源的接入位置和容量,分布式电源及负荷的日运行特性预测曲线,智能软开关的接入位置、容量及参数,系统基准电压和基准功率的初值;1) According to the selected active power distribution system, input line parameters, load level, network topology connection relationship, system safe operation voltage constraints and branch current limits, access location and capacity of distributed power sources, distributed power sources and loads The prediction curve of the daily operation characteristics, the access position, capacity and parameters of the intelligent soft switch, the initial value of the system reference voltage and reference power;

2)依据步骤1)提供的有源配电系统结构及参数,考虑分布式电源出力和负荷的时序特性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型,包括:选取根节点为平衡节点,设定有源配电系统损耗和电压偏差之和最小为目标函数,分别考虑系统潮流约束、系统安全运行约束、智能软开关运行与容量约束;其中:2) Based on the structure and parameters of the active distribution system provided in step 1), considering the timing characteristics of distributed power output and load, a centralized and local joint control strategy setting model for intelligent soft switches in active distribution networks is established, including: Select the root node as the balance node, set the minimum sum of the active power distribution system loss and voltage deviation as the objective function, and consider the system power flow constraints, system safety operation constraints, intelligent soft switching operation and capacity constraints respectively; where:

(1)所述的有源配电系统损耗和电压偏差之和最小为目标函数表示为(1) The minimum sum of the active power distribution system loss and voltage deviation is the objective function expressed as

min f=αfL+βfV (1)min f=αf L +βf V (1)

式中,α和β分别为系统损耗fL和系统电压偏差情况fV的权重系数,其中,系统损耗fL和系统电压偏差情况fV的表达式如下:In the formula, α and β are the weight coefficients of the system loss f L and the system voltage deviation f V respectively, where the expressions of the system loss f L and the system voltage deviation f V are as follows:

式中,NT和NN分别为时间断面数和系统节点总数;Ωb为系统支路集合;Vt,i为t时段节点i的电压幅值;Rij为支路ij的电阻,It,ij为t时段节点i流向节点j的电流幅值;为t时段节点i上智能软开关的有功损耗值;为Vt,i的期望电压区间,当Vt,i不在此区间时,目标函数fV用来减小电压偏差;In the formula, N T and N N are the number of time sections and the total number of system nodes respectively; Ω b is the set of system branches; V t,i is the voltage amplitude of node i in period t; R ij is the resistance of branch ij, I t, ij is the current amplitude flowing from node i to node j during the t period; is the active power loss value of the intelligent soft switch on node i in the period t; is the expected voltage range of V t, i , when V t,i is not in this range, the objective function f V is used to reduce the voltage deviation;

(2)所述的系统潮流约束表示为(2) The power flow constraint of the system is expressed as

式中,Ωb为系统中所有支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;It,ij为t时段节点i流向节点j的电流幅值;Vt,i为t时段节点i的电压幅值,Vt,j为t时段节点j的电压幅值;Pt,i为t时段节点i上注入的有功功率之和,分别为t时段节点i上分布式电源注入的有功功率、智能软开关注入的有功功率、负荷消耗的有功功率,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、智能软开关注入的无功功率、负荷消耗的无功功率;In the formula, Ω b is the set of all branches in the system; P t,ij is the active power flowing from node i to node j during t period, Q t,ij is the reactive power flowing from node i to node j during t period; P t ,ij ik is the active power flowing from node i to node k in period t, Q t,ik is the reactive power flowing from node i to node k in period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; I t , ij is the current amplitude of node i flowing to node j in period t; V t,i is the voltage amplitude of node i in period t, V t,j is the voltage amplitude of node j in period t; P t,i is the amplitude of node j in period t The sum of active power injected on node i, Respectively, the active power injected by the distributed power supply, the active power injected by the intelligent soft switch, and the active power consumed by the load on node i during the t period, Q t,i is the sum of the reactive power injected on the node i during the t period, Respectively, the reactive power injected by the distributed power supply, the reactive power injected by the intelligent soft switch, and the reactive power consumed by the load on node i during the period t;

(3)所述的系统安全运行约束表示为(3) The safe operation constraints of the system are expressed as

式中,Vmax和Vmin为系统最大允许电压值和最小允许电压值;Vt,i为t时段节点i的电压幅值;It,ij为t时段节点i流向节点j的电流幅值;Imax为支路最大允许电流值;In the formula, V max and V min are the maximum allowable voltage value and the minimum allowable voltage value of the system; V t,i is the voltage amplitude of node i during t period; I t,ij is the current amplitude of node i flowing to node j during t period ; I max is the maximum allowable current value of the branch;

(4)所述的智能软开关运行约束表示为(4) The operating constraints of the intelligent soft switch are expressed as

式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关注入的无功功率;分别为t时段接在节点i和节点j之间的智能软开关两端换流器的接入容量;分别为t时段节点i、j上智能软开关注入的有功功率最大值;分别为t时段节点i、j上智能软开关注入的无功功率最大值;In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively; with Respectively, the access capacity of the smart soft-switch two-terminal converter connected between node i and node j during the period t; with are the maximum active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with Respectively, the maximum value of reactive power injected by intelligent soft switch on nodes i and j in period t;

(5)所述的智能软开关有功集中控制约束表示为(5) The active power centralized control constraint of the intelligent soft switch is expressed as

式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率;In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively;

(6)所述的智能软开关就地电压无功控制约束表示为(6) The local voltage and reactive power control constraints of the intelligent soft switch are expressed as

式中,分别为t时段节点i、j上智能软开关注入的无功功率最大值;和g(Vt,j)共同构成智能软开关就地电压无功控制策略的表达式,和g(Vt,j)分别存在调节死区此时智能软开关产生的无功功率为0var;下式分别构成和g(Vt,j):In the formula, with Respectively, the maximum value of reactive power injected by intelligent soft switch on nodes i and j in period t; and g(V t,j ) constitute the expression of the local voltage and reactive power control strategy of the intelligent soft switch, and g(V t,j ) respectively have regulation dead zones with At this time, the reactive power generated by the intelligent soft switch is 0var; the following formulas respectively constitute and g(V t,j ):

3)将步骤2)所述模型中的目标函数和非线性约束进行线性化或二阶锥转换,从而使有源配电网智能软开关的集中和就地联合控制策略整定模型转化为二阶锥模型;包括:3) Perform linearization or second-order cone transformation on the objective function and nonlinear constraints in the model described in step 2), so that the centralized and local joint control strategy tuning model of the active distribution network intelligent soft switch is transformed into a second-order Cone model; includes:

(1)采用U2,t,i和I2,t,ij替换目标函数、系统潮流约束和系统运行约束中的二次项将目标函数、系统潮流约束和系统运行约束线性化:(1) Use U 2,t,i and I 2,t,ij to replace the quadratic terms in the objective function, system power flow constraints and system operation constraints with Linearize the objective function, system power flow constraints, and system operating constraints:

(Vmin)2≤U2,t,i≤(Vmax)2 (28)(V min ) 2 ≤U 2,t,i ≤(V max ) 2 (28)

I2,t,ij≤(Imax)2 (29)I 2,t,ij ≤(I max ) 2 (29)

式中,Ωb为支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;Pt,i为t时段节点i上注入的有功功率之和,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、负荷消耗的无功功率;为t时段节点i上智能软开关的有功损耗值;Vmax和Vmin为系统最大允许电压值和最小允许电压值;Imax为支路最大允许电流值;NT和NN分别为时间断面数和系统节点总数;为Vt,i的期望电压的最小值,为Vt,i的期望电压的最大值;In the formula, Ω b is the set of branches; P t,ij is the active power flowing from node i to node j in period t, Q t,ij is the reactive power flowing from node i to node j in period t; P t,ik is t Active power flowing from node i to node k in time period, Q t,ik is the reactive power flowing from node i to node k in time period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; P t,i is The sum of active power injected on node i in period t, Q t,i is the sum of reactive power injected on node i in period t, Respectively, the reactive power injected by the distributed power source and the reactive power consumed by the load on node i during the period t; is the active power loss value of the intelligent soft switch on node i in the period t; V max and V min are the maximum allowable voltage value and the minimum allowable voltage value of the system; I max is the maximum allowable current value of the branch; NT and N N are the time section and the total number of system nodes; is the minimum value of the desired voltage for V t,i , is the maximum value of the expected voltage of V t,i ;

(2)目标函数fV中含有绝对值项|U2,t,i-1|,引入辅助变量At,i,并增加约束:(2) The objective function f V contains an absolute value item |U 2,t,i -1|, introduces auxiliary variables A t,i , and adds constraints:

At,i≥0 (35);At t,i ≥ 0 (35);

(3)智能软开关就地电压无功控制策略的表达式和g(Vt,j)为非线性表达式,采用分段线性化实现对和g(Vt,j)的精确线性化;通过引入辅助变量at,i,n n=1,2,…,6、dt,i,nn=1,2,…,5和at,j,n n=1,2,…,6、dt,j,n n=1,2,…,5,采用线段来近似和g(Vt,j)所定义的曲线,如下所示:(3) Expression of local voltage and reactive power control strategy of intelligent soft switch and g(V t,j ) are nonlinear expressions, and piecewise linearization is used to realize the and g(V t,j ); by introducing auxiliary variables a t,i,n n=1,2,…,6, d t,i,n n=1,2,…,5 and a t,j,n n=1,2,…,6, d t,j,n n=1,2,…,5, approximated by line segments and the curve defined by g(V t,j ) as follows:

at,i,1≤dt,i,1,at,i,6≤dt,i,5 (38)a t,i,1 ≤d t,i,1 ,a t,i,6 ≤d t,i,5 (38)

at,i,n≤dt,i,n+dt,i,n-1,n=2,3,4,5 (39)a t,i,n ≤d t,i,n +d t,i,n-1 ,n=2,3,4,5 (39)

at,i,n≥0,dt,i,n∈{0,1} (40)a t,i,n ≥0,d t,i,n ∈{0,1} (40)

式中,at,i,n n=1,2,…,6为连续变量,dt,i,nn=1,2,…,5为整数变量;分别为曲线调节死区的最小值和最大值;In the formula, a t,i,n n=1,2,…,6 are continuous variables, d t,i,n n=1,2,…,5 are integer variables; with respectively The curve adjusts the minimum and maximum values of the dead zone;

g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (42)g(V t,j )=a t,j,1 +a t,j,2 -a t,j,5 -a t,j,6 (42)

at,j,1≤dt,j,1,at,j,6≤dt,j,5 (44)a t,j,1 ≤d t,j,1 ,a t,j,6 ≤d t,j,5 (44)

at,j,n≤dt,j,n+dt,j,n-1,n=2,3,4,5 (45)a t,j,n ≤d t,j,n +d t,j,n-1 ,n=2,3,4,5 (45)

at,j,n≥0,dt,j,n∈{0,1} (46)a t,j,n ≥ 0,d t,j,n ∈ {0,1} (46)

式中,at,j,n n=1,2,…,6为连续变量,dt,j,n n=1,2,…,5为整数变量;分别为g(Vt,j)曲线调节死区的最小值和最大值;In the formula, a t, j, n n=1,2,...,6 are continuous variables, d t, j, n n=1,2,...,5 are integer variables; with Adjust the minimum and maximum values of the dead zone for the g(V t,j ) curve, respectively;

引入辅助整数变量ci,1、ci,2和cj,1、cj,2分别将非线性乘积项线性化,则分别表示为:Introduce auxiliary integer variables c i,1 , c i,2 and c j,1 , c j,2 respectively to convert the non-linear product term with linearized, then with Respectively expressed as:

ci,1≤ci,2 (50)c i,1 ≤ c i ,2 (50)

cj,1≤cj,2 (53)c j,1 ≤c j,2 (53)

at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2依旧是非线性乘积项,因此引入二进制变量li,1,m、li,2,m和lj,1,m、lj,2,m m=0,1,…,4表示at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 are still nonlinear product terms, so Introduce binary variables l i,1,m , l i,2,m and l j,1,m , l j,2,m m=0,1,...,4 to represent a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 ;

引入辅助变量wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,m和wt,j,1,m=at,j,3lj,1,m、wt,j,2,m=at,j,4lj,2,m,并取M为1000,并增加以下约束:Introducing auxiliary variables w t,i,1,m = at,i,3 l i,1,m , w t,i,2,m = at,i,4 l i,2,m and w t, j,1,m =a t,j,3 l j,1,m 、w t,j,2,m =a t,j,4 l j,2,m , and take M as 1000, and add the following constraint:

at,i,3-(1-li,1,m)M≤wt,i,1,m≤at,i,3 (58)a t,i,3 -(1-l i,1,m )M≤w t,i,1,m ≤a t, i,3 (58)

0≤wt,i,1,m≤li,1,mM (59)0≤w t,i,1,m ≤l i,1,m M (59)

at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (60)a t,i,4 -(1-l i,2,m )M≤w t,i,2,m ≤a t, i,4 (60)

0≤wt,i,2,m≤li,2,mM (61)0≤w t,i,2,m ≤l i,2,m M (61)

at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (62)a t,j,3 -(1-l j,1,m )M≤w t,j,1,m ≤a t, j,3 (62)

0≤wt,j,1,m≤lj,1,mM (63)0≤w t,j,1,m ≤l j,1,m M (63)

at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (64)a t,j,4 -(1-l j,2,m )M≤w t,j,2,m ≤a t, j,4 (64)

0≤wt,j,2,m≤lj,2,mM (65)0≤w t,j,2,m ≤l j,2,m M (65)

(4)将智能软开关的损耗约束条件进行凸松弛,进而得到旋转锥约束式:(4) Convex relaxation is performed on the loss constraint of the intelligent soft switch, and then the rotating cone constraint is obtained:

(5)将约束条件式进行线性化,采用U2,t,i和I2,t,ij替换二次项 (5) The constraint condition Perform linearization, replacing quadratic terms with U 2,t,i and I 2,t,ij with

再进一步进行凸松弛,得到二阶锥约束式:Further convex relaxation is performed to obtain the second-order cone constraint formula:

式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率,分别为t时段接在节点i和节点j之间的智能软开关两端换流器的接入容量。In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively, with are the access capacity of the intelligent soft-switching two-terminal converter connected between node i and node j during the period t, respectively.

4)采用二阶锥规划算法对二阶锥模型进行计算求解得到:智能软开关的集中和就地联合控制策略的相关参数、系统中的电压分布情况、智能软开关的有功调节情况和无功补偿情况;4) Using the second-order cone programming algorithm to calculate and solve the second-order cone model: the relevant parameters of the centralized and local joint control strategy of the intelligent soft switch, the voltage distribution in the system, the active power adjustment and reactive power of the intelligent soft switch Compensation;

5)输出步骤4)的求解结果。5) Output the solution result of step 4).

本发明的一种智能软开关的集中和就地联合控制策略整定方法,实现了有源配电网智能软开关的集中和就地联合控制策略整定方法的求解。The centralized and local joint control strategy setting method of the intelligent soft switch of the present invention realizes the solution of the centralized and local joint control strategy setting method of the active distribution network intelligent soft switch.

对于本发明的实例,首先输入改进的PG&E69节点系统中线路元件的阻抗值、负荷元件的有功功率基准值和功率因数、网络拓扑连接关系,算例结构如图2所示,详细参数见表1和表2;节点33、35、52和54分别接入一组光伏系统,容量均为1MVA;设定两组智能软开关接入配电网的节点27与节点54、节点35与节点48之间,容量均为1MVA,损耗系数均为0.01;设置系统的基准电压为12.66kV、基准功率为1MVA,将系统中各值进行标幺化处理;最后设置各节点电压幅值(标幺值)的安全运行上下限分别为1.10和0.90。节点电压期望运行区间为0.98p.u.-1.02p.u.,系统损耗和电压偏差情况的权重系数分别取0.7和0.3,分布式电源及负荷运行特性预测曲线如图3所示。For the example of the present invention, first input the impedance value of the line element in the improved PG&E69 node system, the active power reference value and the power factor of the load element, the network topology connection relationship, the calculation example structure is as shown in Figure 2, and the detailed parameters are shown in Table 1 and Table 2; nodes 33, 35, 52 and 54 are respectively connected to a group of photovoltaic systems with a capacity of 1MVA; set two groups of intelligent soft switches connected to the distribution network between node 27 and node 54, node 35 and node 48 The capacity is 1MVA, and the loss coefficient is 0.01; set the reference voltage of the system to 12.66kV and the reference power to 1MVA, and process each value in the system as per unit; finally set the voltage amplitude of each node (per unit value) The upper and lower limits of safe operation are 1.10 and 0.90, respectively. The expected operating range of node voltage is 0.98p.u.-1.02p.u., and the weight coefficients of system loss and voltage deviation are 0.7 and 0.3 respectively. The prediction curves of distributed power supply and load operating characteristics are shown in Figure 3.

分别采用三种方案进行对比分析,方案I不使用控制手段,方案II采用智能软开关的集中和就地联合控制策略,方案III采用智能软开关的集中控制策略,仿真结果见表3。Three schemes are used for comparative analysis. Scheme I does not use control means, scheme II adopts the centralized and local joint control strategy of intelligent soft switch, and scheme III adopts the centralized control strategy of intelligent soft switch. The simulation results are shown in Table 3.

执行优化计算的计算机硬件环境为Intel(R)Xeon(R)CPU E5-1620,主频为3.70GHz,内存为32GB;软件环境为Windows 10操作系统。The computer hardware environment for performing optimization calculations is Intel(R) Xeon(R) CPU E5-1620, the main frequency is 3.70GHz, and the memory is 32GB; the software environment is Windows 10 operating system.

智能软开关集中和就地联合控制策略包括智能软开关有功集中控制策略和就地电压无功策略。利用预测数据可以优化出智能软开关集中和就地联合控制策略中电压无功控制策略的相关参数,见图4。然后智能软开关可以根据集中和就地联合控制策略来实时调节其有功传输量和无功补偿量,见图5和图6,从而有效地减小电压偏差,降低网络损耗,见表3和图7。由图7可以看出,当不使用控制手段时,光伏、风机等分布式电源的接入会导致剧烈的电压波动;采用智能软开关进行集中和就地联合控制调节后,有源配电网各节点电压水平得到了明显的改善,且接近智能软开关采用集中控制后的效果。The intelligent soft switch centralized and local joint control strategy includes the intelligent soft switch active power centralized control strategy and the local voltage and reactive power strategy. The relevant parameters of the voltage and reactive power control strategy in the centralized and local joint control strategy of intelligent soft switching can be optimized by using the predicted data, as shown in Figure 4. Then the intelligent soft switch can adjust its active power transmission and reactive power compensation in real time according to the centralized and local joint control strategy, as shown in Figure 5 and Figure 6, so as to effectively reduce the voltage deviation and network loss, as shown in Table 3 and Figure 6 7. It can be seen from Figure 7 that when the control means are not used, the access of distributed power sources such as photovoltaics and wind turbines will cause severe voltage fluctuations; The voltage level of each node has been significantly improved, and it is close to the effect of centralized control of intelligent soft switches.

表1 PG&E69节点算例负荷接入位置及功率Table 1 Load connection position and power of PG&E69 node example

表2 PG&E69节点算例线路参数Table 2 Line parameters of PG&E69 node example

表3不同控制策略下的仿真结果比较Table 3 Comparison of simulation results under different control strategies

控制策略Control Strategy 电压最小值/p.u.Voltage min/p.u. 电压最大值/p.u.Maximum voltage/p.u. 网损/kWhNetwork loss/kWh I.不使用控制策略I. Not using control strategies 0.93510.9351 1.04601.0460 1758.71758.7 II.联合控制策略II. Joint Control Strategy 0.96940.9694 1.02541.0254 1311.61311.6 III.集中控制策略III. Centralized Control Strategy 0.97010.9701 1.02521.0252 1250.51250.5

Claims (3)

1.一种智能软开关的集中和就地联合控制策略整定方法,其特征在于,包括如下步骤:1. a kind of centralized and on-the-spot joint control strategy setting method of intelligent soft switch is characterized in that, comprises the steps: 1)根据选定的有源配电系统,输入线路参数、负荷水平、网络拓扑连接关系,系统安全运行电压约束和支路电流限制,分布式电源的接入位置和容量,分布式电源及负荷的日运行特性预测曲线,智能软开关的接入位置、容量及参数,系统基准电压和基准功率的初值;1) According to the selected active power distribution system, input line parameters, load level, network topology connection relationship, system safe operation voltage constraints and branch current limits, access location and capacity of distributed power sources, distributed power sources and loads The prediction curve of the daily operation characteristics, the access position, capacity and parameters of the intelligent soft switch, the initial value of the system reference voltage and reference power; 2)依据有源配电系统结构及参数,考虑分布式电源出力和负荷的时序特性,建立有源配电网智能软开关的集中和就地联合控制策略整定模型,包括:选取根节点为平衡节点,设定有源配电系统损耗和电压偏差之和最小为目标函数,分别考虑系统潮流约束、系统安全运行约束、智能软开关运行与容量约束;2) Based on the structure and parameters of the active distribution system, considering the timing characteristics of distributed power output and load, a centralized and local joint control strategy setting model for the intelligent soft switch of the active distribution network is established, including: selecting the root node as the balance node, set the minimum sum of active power distribution system loss and voltage deviation as the objective function, and consider the system power flow constraints, system safety operation constraints, intelligent soft switching operation and capacity constraints respectively; 3)将步骤2)所述模型中的目标函数和非线性约束进行线性化或二阶锥转换,从而使有源配电网智能软开关的集中和就地联合控制策略整定模型转化为二阶锥模型;3) Perform linearization or second-order cone transformation on the objective function and nonlinear constraints in the model described in step 2), so that the centralized and local joint control strategy tuning model of the active distribution network intelligent soft switch is transformed into a second-order cone model; 4)采用二阶锥规划算法对二阶锥模型进行计算求解得到:智能软开关的集中和就地联合控制策略的相关参数、系统中的电压分布情况、智能软开关的有功调节情况和无功补偿情况;4) Using the second-order cone programming algorithm to calculate and solve the second-order cone model: the relevant parameters of the centralized and local joint control strategy of the intelligent soft switch, the voltage distribution in the system, the active power adjustment and reactive power of the intelligent soft switch Compensation; 5)输出步骤4)的求解结果。5) Output the solution result of step 4). 2.根据权利要求1所述的一种智能软开关的集中和就地联合控制策略整定方法,其特征在于,步骤2)中:2. the centralized and on-the-spot combined control strategy setting method of a kind of intelligent soft switch according to claim 1, is characterized in that, in step 2): (1)所述的有源配电系统损耗和电压偏差之和最小为目标函数表示为(1) The minimum sum of the active power distribution system loss and voltage deviation is the objective function expressed as minf=αfL+βfV (1)minf=αf L +βf V (1) 式中,α和β分别为系统损耗fL和系统电压偏差情况fv的权重系数,其中,系统损耗fL和系统电压偏差情况fv的表达式如下:In the formula, α and β are the weight coefficients of the system loss f L and the system voltage deviation f v , respectively, where the expressions of the system loss f L and the system voltage deviation f v are as follows: <mrow> <msub> <mi>f</mi> <mi>L</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>L</mi></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>T</mi></msub></msubsup><mrow><mo>(</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>j</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>N</mi></msub></msubsup><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <mo>|</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> <mo>|</mo> <mo>,</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>|</mo> <mo>|</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>V</mi></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>T</mi></msub></msubsup><msubsup><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>N</mi></msub></msubsup><mo>|</mo><mrow><msubsup><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mn>1</mn></mrow><mo>|</mo><mo>,</mo><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;GreaterEqual;</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>max</mi></msubsup><mo>|</mo><mo>|</mo><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;le;</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>min</mi></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 式中,NT和NN分别为时间断面数和系统节点总数;Ωb为系统支路集合;Vt,i为t时段节点i的电压幅值;Rij为支路ij的电阻,It,ij为t时段节点i流向节点j的电流幅值;为t时段节点i上智能软开关的有功损耗值;为Vt,i的期望电压区间,当Vt,i不在此区间时,目标函数fV用来减小电压偏差;In the formula, N T and N N are the number of time sections and the total number of system nodes respectively; Ω b is the set of system branches; V t,i is the voltage amplitude of node i in period t; R ij is the resistance of branch ij, I t, ij is the current amplitude flowing from node i to node j during the t period; is the active power loss value of the intelligent soft switch on node i in the period t; is the expected voltage range of V t, i , when V t,i is not in this range, the objective function f V is used to reduce the voltage deviation; (2)所述的系统潮流约束表示为(2) The power flow constraint of the system is expressed as <mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mi>i</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>R</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>k</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mi>mrow></msub><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>k</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mi>i</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><mrow><mo>(</mo><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>X</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>k</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mi>mrow></msub><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>k</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>X</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mn>2</mn><mrow><mo>(</mo><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> <mrow> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><msubsup><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mo>mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mi>O</mi> <mi>A</mi> <mi>D</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>D</mi><mi>G</mi></mrow></msubsup><mo>+</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>-</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>L</mi><mi>O</mi><mi>A</mi><mi>D</mi></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mi>O</mi> <mi>A</mi> <mi>D</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>D</mi><mi>G</mi></mrow></msubsup><mo>+</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>-</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>L</mi><mi>O</mi><mi>A</mi><mi>D</mi></mrow></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow> 式中,Ωb为系统中所有支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;It,ij为t时段节点i流向节点j的电流幅值;Vt,i为t时段节点i的电压幅值,Vt,j为t时段节点j的电压幅值;Pt,i为t时段节点i上注入的有功功率之和,分别为t时段节点i上分布式电源注入的有功功率、智能软开关注入的有功功率、负荷消耗的有功功率,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、智能软开关注入的无功功率、负荷消耗的无功功率;In the formula, Ω b is the set of all branches in the system; P t,ij is the active power flowing from node i to node j during t period, Q t,ij is the reactive power flowing from node i to node j during t period; P t ,ij ik is the active power flowing from node i to node k in period t, Q t,ik is the reactive power flowing from node i to node k in period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; I t , ij is the current amplitude of node i flowing to node j in period t; V t,i is the voltage amplitude of node i in period t, V t,j is the voltage amplitude of node j in period t; P t,i is the amplitude of node j in period t The sum of active power injected on node i, Respectively, the active power injected by the distributed power supply, the active power injected by the intelligent soft switch, and the active power consumed by the load on node i during the t period, Q t,i is the sum of the reactive power injected on the node i during the t period, Respectively, the reactive power injected by the distributed power supply, the reactive power injected by the intelligent soft switch, and the reactive power consumed by the load on node i during the period t; (3)所述的智能软开关有功集中控制约束表示为(3) The active power centralized control constraint of the intelligent soft switch is expressed as <mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>+</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>+</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>+</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>=</mo><mn>0</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>=</mo><msubsup><mi>A</mi><mi>i</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>=</mo><msubsup><mi>A</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow> 式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率;In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively; (4)所述的智能软开关就地电压无功控制约束表示为(4) The local voltage and reactive power control constraints of the intelligent soft switch are expressed as <mrow> <mfrac> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msubsup> <mi>Q</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msubsup> </mfrac> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msubsup><mi>Q</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msubsup></mfrac><mo>=</mo><mi>g</mi><mrow><mo>(</mo><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow> 式中,分别为t时段节点i、j上智能软开关注入的无功功率最大值;和g(Vt,j)共同构成智能软开关就地电压无功控制策略的表达式,和g(Vt,j)分别存在调节死区[Vi q,min,Vi q,max]和[Vj q,min,Vj q,max],此时智能软开关产生的无功功率为0var;下式分别构成和g(Vt,j):In the formula, with Respectively, the maximum value of reactive power injected by intelligent soft switch on nodes i and j in period t; and g(V t,j ) constitute the expression of the local voltage and reactive power control strategy of the intelligent soft switch, and g(V t,j ) have adjustment dead zones [V i q, min , V i q, max ] and [V j q, min ,V j q, max ] respectively, at this time the reactive power generated by intelligent soft switching The power is 0var; the following formulas respectively constitute and g(V t,j ): <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1.0</mn> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0.8</mn> <mo>,</mo> <mn>0.9</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>0.9</mn> <mo>-</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> </mrow> </mfrac> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mrow> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>-</mo> <mn>0.9</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0.9</mn> <mo>,</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>-</mo> <mn>1.1</mn> </mrow> </mfrac> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mrow> <mn>1.1</mn> <mo>-</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>,</mo> <mn>1.1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1.0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>1.1</mn> <mo>,</mo> <mn>1.2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> <mrow><mi>g</mi><mrow><mo>(</mo><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mn>1.0</mn></mtd><mtd><mrow><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>&amp;Element;</mo><mo>&amp;lsqb;</mo><mn>0.8</mn><mo>,</mo><mn>0.9</mn><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><mn>0.9</mn><mo>-</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>min</mi></mrow></msubsup></mrow></mfrac><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>+</mo><mfrac><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>min</mi></mrow></msubsup><mrow><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>min</mi></mrow></msubsup><mo>-</mo><mn>0.9</mn></mrow></mfrac></mrow></mtd><mtd><mrow><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>&amp;Element;</mo><mo>&amp;lsqb;</mo><mn>0.9</mn><mo>,</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>min</mi></mrow></msubsup><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mrow><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>&amp;Element;</mo><mo>&amp;lsqb;</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>min</mi></mrow></msubsup><mo>,</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>max</mi></mrow></msubsup><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>max</mi></mrow></msubsup><mo>-</mo><mn>1.1</mn></mrow></mi>mfrac><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>+</mo><mfrac><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>max</mi></mrow></msubsup><mrow><mn>1.1</mn><mo>-</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>max</mi></mrow></msubsup></mrow></mfrac></mrow></mtd><mtd><mrow><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>&amp;Element;</mo><mo>&amp;lsqb;</mo><msubsup><mi>V</mi><mi>j</mi><mrow><mi>q</mi><mo>,</mo><mi>max</mi></mrow></msubsup><mo>,</mo><mn>1.1</mn><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mn>1.0</mn></mrow></mtd><mtd><mrow><msub><mi>V</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>&amp;Element;</mo><mo>&amp;lsqb;</mo><mn>1.1</mn><mo>,</mo><mn>1.2</mn><mo>&amp;rsqb;</mo></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow><mo>.</mo></mrow> 3.根据权利要求1所述的一种智能软开关的集中和就地联合控制策略整定方法,其特征在于,步骤3)包括:3. the centralized and local joint control strategy setting method of a kind of intelligent soft switch according to claim 1, is characterized in that, step 3) comprises: (1)采用U2,t,i和I2,t,ij替换目标函数、系统潮流约束和系统运行约束中的二次项将目标函数和系统潮流约束线性化:(1) Use U 2,t,i and I 2,t,ij to replace the quadratic terms in the objective function, system power flow constraints and system operation constraints with Linearize the objective function and system power flow constraints: <mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mi>i</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>R</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>k</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi>mi></msub></mrow></msub><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>k</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mi>i</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><mrow><mo>(</mo><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>X</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>j</mi><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>k</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi>mi></msub></mrow></msub><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>k</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>+</mo><mrow><mo>(</mo><msubsup><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>X</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>2</mn><mrow><mo>(</mo><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow></mrow> (Vmin)2≤U2,t,i≤(Vmax)2 (20)(V min ) 2 ≤U 2,t,i ≤(V max ) 2 (20) I2,t,ij≤(Imax)2 (21)I 2,t,ij ≤(I max ) 2 (21) <mrow> <msub> <mi>f</mi> <mi>L</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>L</mi></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>T</mi></msub></msubsup><mrow><mo>(</mo><msub><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mi>j</mi><mo>&amp;Element;</mo><msub><mi>&amp;Omega;</mi><mi>b</mi></msub></mrow></msub><msub><mi>R</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>N</mi></msub></msubsup><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>22</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <mo>|</mo> <mrow> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>|</mo> <mo>,</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>|</mo> <mo>|</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>V</mi></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>T</mi></msub></msubsup><msubsup><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>N</mi></msub></msubsup><mo>|</mo><mrow><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><mn>1</mn></mrow><mo>|</mo><mo>,</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;GreaterEqual;</mo><msup><mrow><mo>(</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>max</mi></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>|</mo><mo>|</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;le;</mo><msup><mrow><mo>(</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>min</mi></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>23</mn><mo>)</mo></mrow></mrow> 式中,Ωb为支路的集合;Pt,ij为t时段节点i流向节点j的有功功率,Qt,ij为t时段节点i流向节点j的无功功率;Pt,ik为t时段节点i流向节点k的有功功率,Qt,ik为t时段节点i流向节点k的无功功率;Rij为支路ij的电阻,Xij为支路ij的电抗;Pt,i为t时段节点i上注入的有功功率之和,Qt,i为t时段节点i上注入的无功功率之和,分别为t时段节点i上分布式电源注入的无功功率、负荷消耗的无功功率;为t时段节点i上智能软开关的有功损耗值;Vmax和Vmin为系统最大允许电压值和最小允许电压值;Imax为支路最大允许电流值;NT和NN分别为时间断面数和系统节点总数;为Vt,i的期望电压的最小值,为Vt,i的期望电压的最大值;In the formula, Ω b is the set of branches; P t,ij is the active power flowing from node i to node j in period t, Q t,ij is the reactive power flowing from node i to node j in period t; P t,ik is t Active power flowing from node i to node k in time period, Q t,ik is the reactive power flowing from node i to node k in time period t; R ij is the resistance of branch ij, X ij is the reactance of branch ij; P t,i is The sum of active power injected on node i in period t, Q t,i is the sum of reactive power injected on node i in period t, Respectively, the reactive power injected by the distributed power source and the reactive power consumed by the load on node i during the period t; is the active power loss value of the intelligent soft switch on node i in the period t; V max and V min are the maximum allowable voltage value and the minimum allowable voltage value of the system; I max is the maximum allowable current value of the branch; NT and N N are the time section and the total number of system nodes; is the minimum value of the desired voltage for V t,i , is the maximum value of the expected voltage of V t,i ; (2)目标函数fv中含有绝对值项|U2,t,i-1|,引入辅助变量At,i,并增加约束:(2) The objective function f v contains an absolute value item |U 2,t,i -1|, introduce auxiliary variables A t,i , and add constraints: <mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>V</mi></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>T</mi></msub></msubsup><msubsup><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>N</mi><mi>N</mi></msub></msubsup><msub><mi>A</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>24</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>A</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;GreaterEqual;</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><msup><mrow><mo>(</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>max</mi></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>25</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>A</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>&amp;GreaterEqual;</mo><mo>-</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>V</mi><mrow><mi>t</mi><mi>h</mi><mi>r</mi></mrow><mi>min</mi></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>26</mn><mo>)</mo></mrow></mrow> At,i≥0 (27);At t,i ≥ 0 (27); (3)智能软开关就地电压无功控制策略的表达式和g(Vt,j)为非线性表达式,采用分段线性化实现对和g(Vt,j)的精确线性化;通过引入辅助变量at,i,nn=1,2,…,6、dt,i,nn=1,2,…,5和at,j,nn=1,2,…,6、dt,j,nn=1,2,…,5,采用线段来近似和g(Vt,j)所定义的曲线,如下所示:(3) Expression of local voltage and reactive power control strategy of intelligent soft switch and g(V t,j ) are nonlinear expressions, and piecewise linearization is used to realize the and g(V t,j ); by introducing auxiliary variables a t,i,n n=1,2,…,6, d t,i,n n=1,2,…,5 and a t,j,n n=1,2,…,6, d t,j,n n=1,2,…,5, approximated by line segments and the curve defined by g(V t,j ) as follows: Vt,i=0.8at,i,1+0.9at,i,2+at,i,3Vi q,min+at,i,4Vi q,max+1.1at,i,5+1.2at,i,6 (29)V t,i =0.8a t,i,1 +0.9a t,i,2 +a t,i,3 V i q,min +a t,i,4 V i q,max +1.1a t,i ,5 +1.2a t,i,6 (29) at,i,1≤dt,i,1,at,i,6≤dt,i,5 (30)a t,i,1 ≤d t,i,1 ,a t,i,6 ≤d t,i,5 (30) at,i,n≤dt,i,n+dt,i,n-1,n=2,3,4,5 (31)a t,i,n ≤d t,i,n +d t,i,n-1 ,n=2,3,4,5 (31) at,i,n≥0,dt,i,n∈{0,1} (32)a t,i,n ≥0,d t,i,n ∈{0,1} (32) <mrow> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </msubsup> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mo>&amp;Sigma;</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn>6</mn></msubsup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn>5</mn></msubsup><msub><mi>d</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>33</mn><mo>)</mo></mrow></mrow> 式中,at,i,nn=1,2,…,6为连续变量,dt,i,nn=1,2,…,5为整数变量;Vi q,min和Vi q,max分别为曲线调节死区的最小值和最大值;In the formula, a t,i,n n=1,2,…,6 are continuous variables, d t,i,n n=1,2,…,5 are integer variables; V i q,min and V i q , max are respectively The curve adjusts the minimum and maximum values of the dead zone; g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (34)g(V t,j )=a t,j,1 +a t,j,2 -a t,j,5 -a t,j,6 (34) Vt,j=0.8at,j,1+0.9at,j,2+at,j,3Vj q,min+at,j,4Vj q,max+1.1at,j,5+1.2at,j,6 (35)V t,j =0.8a t,j,1 +0.9a t,j,2 +a t,j,3 V j q,min +a t,j,4 V j q,max +1.1a t,j ,5 +1.2a t,j,6 (35) at,j,1≤dt,j,1,at,j,6≤dt,j,5 (36)a t,j,1 ≤d t,j,1 ,a t,j,6 ≤d t,j,5 (36) at,j,n≤dt,j,n+dt,j,n-1,n=2,3,4,5 (37)a t,j,n ≤d t,j,n +d t,j,n-1 ,n=2,3,4,5 (37) at,j,n≥0,dt,j,n∈{0,1} (38)a t,j,n ≥ 0,d t,j,n ∈ {0,1} (38) <mrow> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </msubsup> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>39</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mo>&amp;Sigma;</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn>6</mn></msubsup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn>5</mn></msubsup><msub><mi>d</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>39</mn><mo>)</mo></mrow></mrow> 式中,at,j,nn=1,2,…,6为连续变量,dt,j,nn=1,2,…,5为整数变量;Vj q,min和Vj q,max分别为g(Vt,j)曲线调节死区的最小值和最大值;In the formula, a t,j,n n=1,2,…,6 are continuous variables, d t,j,n n=1,2,…,5 are integer variables; V j q,min and V j q ,max are the minimum and maximum values of the g(V t,j ) curve adjustment dead zone respectively; 引入辅助整数变量ci,1、ci,2和cj,1、cj,2分别将非线性乘积项at,i,3Vi q,min、at,i,4Vi q,max和at,j,3Vj q,min、at,j,4Vj q,max线性化,则at,i,3Vi q,min、at,i,4Vi q,max和at,j,3Vj q,min、at,j,4Vj q,max分别表示为:Introduce the auxiliary integer variables c i,1 , c i,2 and c j,1 , c j,2 to make the non-linear product term a t,i,3 V i q,min , a t,i,4 V i q ,max and a t,j,3 V j q,min , a t,j,4 V j q,max are linearized, then a t,i,3 V i q,min , a t,i,4 V i q,max and a t,j,3 V j q,min , a t,j,4 V j q,max are respectively expressed as: at,i,3Vi q,min=0.90at,i,3+0.01at,i,3ci,1,0≤ci,1≤20 (40)a t,i,3 V i q,min =0.90a t,i,3 +0.01a t, i,3 c i,1 ,0≤ci ,1 ≤20 (40) at,i,4Vi q,max=0.90at,i,4+0.01at,i,4ci,2,0≤ci,2≤20 (41)a t,i,4 V i q,max =0.90a t,i,4 +0.01a t, i,4 c i,2 ,0≤c i,2 ≤20 (41) ci,1≤ci,2 (42)c i,1 ≤ c i ,2 (42) at,j,3Vj q,min=0.90at,j,3+0.01at,j,3cj,1,0≤cj,1≤20 (43)a t,j,3 V j q,min =0.90a t,j,3 +0.01a t, j,3 c j,1 ,0≤c j,1 ≤20 (43) at,j,4Vj q,max=0.90at,j,4+0.01at,j,4cj,2,0≤cj,2≤20 (44)a t,j,4 V j q,max =0.90a t,j,4 +0.01a t, j,4 c j,2 ,0≤c j,2 ≤20 (44) cj,1≤cj,2 (45)c j,1 ≤ c j ,2 (45) at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2依旧是非线性乘积项,因此引入二进制变量li,1,m、li,2,m和lj,1,m、lj,2,mm=0,1,…,4表示at,i,3ci,1、at,i,4ci,2和at,j,3cj,1、at,j,4cj,2a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 are still nonlinear product terms, so Introduce binary variables l i,1,m , l i,2,m and l j,1,m , l j,2,m m=0,1,...,4 to represent a t,i,3 c i,1 , a t,i,4 c i,2 and a t,j,3 c j,1 , a t,j,4 c j,2 ; <mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>46</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mn>3</mn></mrow></msub><msub><mi>c</mi><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mn>4</mn></msubsup><msup><mn>2</mn><mi>m</mi></msup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mn>3</mn></mrow></msub><msub><mi>l</mi><mrow><mi>i</mi><mo>,</mo><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>46</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>47</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mn>4</mn></mrow></msub><msub><mi>c</mi><mrow><mi>i</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mn>4</mn></msubsup><msup><mn>2</mn><mi>m</mi></msup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mo>,</mo><mn>4</mn></mrow></msub><msub><mi>l</mi><mrow><mi>i</mi><mo>,</mo><mn>2</mn><mo>,</mo><mi>m</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>48</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mn>3</mn></mrow></msub><msub><mi>c</mi><mrow><mi>j</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mn>4</mn></msubsup><msup><mn>2</mn><mi>m</mi></msup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mn>3</mn></mrow></msub><msub><mi>l</mi><mrow><mi>j</mi><mo>,</mo><mn>1</mn><mo>,</mo><mi>m</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>48</mn><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>49</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mn>4</mn></mrow></msub><msub><mi>c</mi><mrow><mi>j</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>=</mo><msubsup><mo>&amp;Sigma;</mo><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mn>4</mn></msubsup><msup><mn>2</mn><mi>m</mi></msup><msub><mi>a</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi><mo>,</mo><mn>4</mn></mrow></msub><msub><mi>l</mi><mrow><mi>j</mi><mo>,</mo><mn>2</mn><mo>,</mo><mi>m</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>49</mn><mo>)</mo></mrow></mrow> 引入辅助变量wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,m和wt,j,1,m=at,j,3lj,1,m、wt,j,2,m=at,j,4lj,2,m,并取M为1000,并增加以下约束:Introducing auxiliary variables w t,i,1,m = at,i,3 l i,1,m , w t,i,2,m = at,i,4 l i,2,m and w t, j,1,m =a t,j,3 l j,1,m 、w t,j,2,m =a t,j,4 l j,2,m , and take M as 1000, and add the following constraint: at,i,3-(1-li,1,m)M≤wt,i,1,m≤at,i,3 (50)a t,i,3 -(1-l i,1,m )M≤w t,i,1,m ≤a t, i,3 (50) 0≤wt,i,1,m≤li,1,mM (51)0≤w t,i,1,m ≤l i,1,m M (51) at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (52)a t,i,4 -(1-l i,2,m )M≤w t,i,2,m ≤a t, i,4 (52) 0≤wt,i,2,m≤li,2,mM (53)0≤w t,i,2,m ≤l i,2,m M (53) at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (54)a t,j,3 -(1-l j,1,m )M≤w t,j,1,m ≤a t, j,3 (54) 0≤wt,j,1,m≤lj,1,mM (55)0≤w t,j,1,m ≤l j,1,m M (55) at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (56)a t,j,4 -(1-l j,2,m )M≤w t,j,2,m ≤a t, j,4 (56) 0≤wt,j,2,m≤lj,2,mM (57)0≤w t,j,2,m ≤l j,2,m M (57) (4)将智能软开关的损耗约束条件进行凸松弛,进而得到旋转锥约束式:(4) Convex relaxation is performed on the loss constraint of the intelligent soft switch, and then the rotating cone constraint is obtained: <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>58</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>&amp;le;</mo><mn>2</mn><mfrac><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mrow><msqrt><mn>2</mn></msqrt><msubsup><mi>A</mi><mi>i</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup></mrow></mfrac><mfrac><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mrow><msqrt><mn>2</mn></msqrt><msubsup><mi>A</mi><mi>i</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow></mrow> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>59</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>&amp;le;</mo><mn>2</mn><mfrac><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mrow><msqrt><mn>2</mn></msqrt><msubsup><mi>A</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup></mrow></mfrac><mfrac><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi><mo>,</mo><mi>L</mi></mrow></msubsup><mrow><msqrt><mn>2</mn></msqrt><msubsup><mi>A</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>59</mn><mo>)</mo></mrow></mrow> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>S</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mfrac> <msubsup> <mi>S</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>60</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>&amp;le;</mo><mn>2</mn><mfrac><msubsup><mi>S</mi><mi>i</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mn>2</mn></msqrt></mfrac><mfrac><msubsup><mi>S</mi><mi>i</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mn>2</mn></msqrt></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>60</mn><mo>)</mo></mrow></mrow> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>S</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mfrac> <msubsup> <mi>S</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>61</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mrow><mo>(</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>&amp;le;</mo><mn>2</mn><mfrac><msubsup><mi>S</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mn>2</mn></msqrt></mfrac><mfrac><msubsup><mi>S</mi><mi>j</mi><mrow><mi>S</mi><mi>O</mi><mi>P</mi></mrow></msubsup><msqrt><mn>2</mn></msqrt></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>61</mn><mo>)</mo></mrow></mrow> (5)将约束条件式进行线性化,采用U2,t,i和I2,t,ij替换二次项 (5) The constraint condition Perform linearization, replacing quadratic terms with U 2,t,i and I 2,t,ij with <mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>62</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msubsup><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow></mrow> 再进一步进行凸松弛,得到二阶锥约束式:Further convex relaxation is performed to obtain the second-order cone constraint formula: <mrow> <msub> <mrow> <mo>||</mo> <mtable> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>||</mo> </mrow> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>63</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mrow><mo>||</mo><mtable><mtr><mtd><mrow><mn>2</mn><msub><mi>P</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><msub><mi>Q</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub></mrow></mtd></mtr></mo>mtable><mo>||</mo></mrow><mn>2</mn></msub><mo>&amp;le;</mo><msub><mi>I</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><msub><mi>U</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>63</mn><mo>)</mo></mrow></mrow> 式中,分别为t时段节点i、j上智能软开关注入的有功功率;分别为t时段节点i、j上智能软开关的有功损耗值;分别为t时段节点i、j上智能软开关的有功损耗系数;分别为t时段节点i、j上智能软开关注入的无功功率,分别为t时段接在节点i和节点j之间的智能软开关两端换流器的接入容量。In the formula, with are the active power injected by the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss values of the intelligent soft switch on nodes i and j in period t, respectively; with are the active power loss coefficients of the intelligent soft switch on nodes i and j in the period t, respectively; with are the reactive power injected by the intelligent soft switch on nodes i and j in period t, respectively, with are the access capacity of the intelligent soft-switching two-terminal converter connected between node i and node j during the period t, respectively.
CN201710715984.5A 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot Pending CN107591797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710715984.5A CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710715984.5A CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Publications (1)

Publication Number Publication Date
CN107591797A true CN107591797A (en) 2018-01-16

Family

ID=61041663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710715984.5A Pending CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Country Status (1)

Country Link
CN (1) CN107591797A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470231A (en) * 2018-01-24 2018-08-31 天津大学 Consider the power distribution network distributed energy storage addressing constant volume method of energy-storage system quantization characteristic
CN108767853A (en) * 2018-06-20 2018-11-06 山东大学 Mixed type intelligent soft switch topology structure, control system and control method back-to-back
CN108923418A (en) * 2018-07-10 2018-11-30 华北电力大学(保定) A kind of Poewr control method of three ends intelligence Sofe Switch
CN109004642A (en) * 2018-07-19 2018-12-14 天津大学 For stabilizing the distribution distributed energy storage evaluation method of distributed generation resource power swing
CN109149586A (en) * 2018-09-13 2019-01-04 国网天津市电力公司电力科学研究院 Active power distribution network subregion distributing voltage control method towards intelligent Sofe Switch
CN110289646A (en) * 2019-06-19 2019-09-27 国网天津市电力公司 Metamodel-based local control strategy optimization method for intelligent soft switch
CN110690709A (en) * 2019-10-22 2020-01-14 天津大学 A sensitivity-based intelligent soft-switching interval coordinated voltage control method
CN111654031A (en) * 2020-06-03 2020-09-11 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN113078678A (en) * 2021-04-13 2021-07-06 湖南大学 DG and SOP active-reactive collaborative planning method and device
CN113270871A (en) * 2020-02-17 2021-08-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Flexible interconnection device capacity configuration optimization method based on power distribution network N-1 safety assessment
CN114362188A (en) * 2022-01-07 2022-04-15 天津大学 Multi-terminal intelligent soft-switching voltage control method based on deep reinforcement learning
CN114899828A (en) * 2022-05-20 2022-08-12 中国矿业大学 Active power distribution network voltage control method considering operation potential of centralized energy source station
CN115313403A (en) * 2022-07-22 2022-11-08 浙江工业大学 Real-time voltage regulation and control method based on deep reinforcement learning algorithm

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719196A (en) * 2016-01-18 2016-06-29 天津大学 Active power distribution network pressure reactive power control method based on intelligent soft normally open point
WO2016109330A1 (en) * 2014-12-30 2016-07-07 Flexgen Power Systems, Inc. Transient power stabilization device with active and reactive power control
CN106329523A (en) * 2016-11-19 2017-01-11 中国南方电网有限责任公司电网技术研究中心 Active power distribution network intelligent soft switch robust optimization modeling method considering uncertainty
CN106655227A (en) * 2017-01-18 2017-05-10 天津大学 SOP-based active power distribution network feeder load balancing method
CN106786631A (en) * 2017-03-06 2017-05-31 天津大学 Distributed power source voltage & var control strategy setting method on the spot based on cone planning
CN106887852A (en) * 2017-03-06 2017-06-23 天津大学 A kind of batch (-type) distributed power source voltage & var control strategy setting method on the spot
CN106972539A (en) * 2017-05-13 2017-07-21 天津大学 A kind of distributed power source voltage control strategy setting method on the spot based on cone planning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109330A1 (en) * 2014-12-30 2016-07-07 Flexgen Power Systems, Inc. Transient power stabilization device with active and reactive power control
CN105719196A (en) * 2016-01-18 2016-06-29 天津大学 Active power distribution network pressure reactive power control method based on intelligent soft normally open point
CN106329523A (en) * 2016-11-19 2017-01-11 中国南方电网有限责任公司电网技术研究中心 Active power distribution network intelligent soft switch robust optimization modeling method considering uncertainty
CN106655227A (en) * 2017-01-18 2017-05-10 天津大学 SOP-based active power distribution network feeder load balancing method
CN106786631A (en) * 2017-03-06 2017-05-31 天津大学 Distributed power source voltage & var control strategy setting method on the spot based on cone planning
CN106887852A (en) * 2017-03-06 2017-06-23 天津大学 A kind of batch (-type) distributed power source voltage & var control strategy setting method on the spot
CN106972539A (en) * 2017-05-13 2017-07-21 天津大学 A kind of distributed power source voltage control strategy setting method on the spot based on cone planning

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470231B (en) * 2018-01-24 2021-07-16 天津大学 A method for site selection and capacity determination of distributed energy storage in distribution network considering the quantitative characteristics of energy storage system
CN108470231A (en) * 2018-01-24 2018-08-31 天津大学 Consider the power distribution network distributed energy storage addressing constant volume method of energy-storage system quantization characteristic
CN108767853A (en) * 2018-06-20 2018-11-06 山东大学 Mixed type intelligent soft switch topology structure, control system and control method back-to-back
CN108923418A (en) * 2018-07-10 2018-11-30 华北电力大学(保定) A kind of Poewr control method of three ends intelligence Sofe Switch
CN109004642B (en) * 2018-07-19 2022-03-08 天津大学 Distributed energy storage evaluation method in distribution network for smoothing power fluctuations of distributed power
CN109004642A (en) * 2018-07-19 2018-12-14 天津大学 For stabilizing the distribution distributed energy storage evaluation method of distributed generation resource power swing
CN109149586A (en) * 2018-09-13 2019-01-04 国网天津市电力公司电力科学研究院 Active power distribution network subregion distributing voltage control method towards intelligent Sofe Switch
CN109149586B (en) * 2018-09-13 2021-08-20 国网天津市电力公司电力科学研究院 Partitioned distributed voltage control method for active distribution network for intelligent soft-switching
CN110289646A (en) * 2019-06-19 2019-09-27 国网天津市电力公司 Metamodel-based local control strategy optimization method for intelligent soft switch
CN110289646B (en) * 2019-06-19 2022-12-20 国网天津市电力公司 Intelligent soft switch local control strategy optimization method based on meta-model
CN110690709A (en) * 2019-10-22 2020-01-14 天津大学 A sensitivity-based intelligent soft-switching interval coordinated voltage control method
CN110690709B (en) * 2019-10-22 2023-04-28 天津大学 A Sensitivity-Based Intelligent Soft Switch Interval Coordinated Voltage Control Method
CN113270871A (en) * 2020-02-17 2021-08-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Flexible interconnection device capacity configuration optimization method based on power distribution network N-1 safety assessment
CN111654031B (en) * 2020-06-03 2022-03-04 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN111654031A (en) * 2020-06-03 2020-09-11 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN113078678A (en) * 2021-04-13 2021-07-06 湖南大学 DG and SOP active-reactive collaborative planning method and device
CN114362188A (en) * 2022-01-07 2022-04-15 天津大学 Multi-terminal intelligent soft-switching voltage control method based on deep reinforcement learning
CN114362188B (en) * 2022-01-07 2023-06-02 天津大学 Multi-terminal intelligent soft switching voltage control method based on deep reinforcement learning
CN114899828A (en) * 2022-05-20 2022-08-12 中国矿业大学 Active power distribution network voltage control method considering operation potential of centralized energy source station
CN114899828B (en) * 2022-05-20 2025-04-11 中国矿业大学 An active distribution network voltage control method considering the operation potential of centralized energy stations
CN115313403A (en) * 2022-07-22 2022-11-08 浙江工业大学 Real-time voltage regulation and control method based on deep reinforcement learning algorithm

Similar Documents

Publication Publication Date Title
CN107591797A (en) A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot
CN105119280B (en) Alternating current-direct current mixed structure active power distribution network running optimizatin method based on cone optimization
CN105740973B (en) Integrated voltage and reactive power optimization method for intelligent distribution network based on mixed integer cone programming
CN108023364B (en) Calculation method of maximum access capacity of distributed power generation in distribution network based on convex difference programming
CN107800155B (en) Active power distribution network multi-period island operation method considering intelligent soft switch
CN106786631B (en) Distributed generation resource voltage &amp; var control strategy setting method on the spot based on cone planning
CN106887852B (en) A kind of intermittent distributed generation resource voltage &amp; var control strategy setting method on the spot
CN110690709B (en) A Sensitivity-Based Intelligent Soft Switch Interval Coordinated Voltage Control Method
CN106972539A (en) A kind of distributed power source voltage control strategy setting method on the spot based on cone planning
CN106655177B (en) Distributed power supply maximum access capacity calculation method based on extended second-order cone programming
CN106803677A (en) A kind of active distribution network voltage management-control method and system based on distributed power source
CN113346539B (en) An online voltage control method for coordinating multiple types of reactive power resources
CN105719196A (en) Active power distribution network pressure reactive power control method based on intelligent soft normally open point
CN112671047B (en) Active power distribution network reconstruction and reactive power joint robust optimization method considering limit scene
CN106655226A (en) Active power distribution network asymmetric operation optimization method based on intelligent soft open point
CN104362650B (en) A kind of Method for Reactive Power Optimization in Power for considering cost factor
CN115940136A (en) A two-stage affine adjustable robust voltage control method for active distribution networks
CN116345466A (en) A two-stage power flow optimization method for active distribution networks considering distribution network reconfiguration
CN106786630A (en) A kind of voltage power-less optimized controlling method containing polymorphic type distributed power source
CN108923459A (en) A kind of alternating current-direct current power distribution network optimal control method based on intelligent Sofe Switch
CN115933370A (en) Converter control method and system based on PID control
CN113394770A (en) Interconnected micro-grid group frequency complete distribution type optimization control method and system
CN107968445B (en) A Reactive Power Optimization Method for Distribution Networks Containing Distributed Power Sources
CN108306297B (en) A Calculation Method of Optimal Power Flow Based on Riemann Integral
CN110460048A (en) The active distribution network optimizing operation method of meter and Voltage unbalance and harmonic compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180116