[go: up one dir, main page]

CN107579115A - A silicon carbide light-triggered thyristor with a double-layer thin n-base region and its manufacturing method - Google Patents

A silicon carbide light-triggered thyristor with a double-layer thin n-base region and its manufacturing method Download PDF

Info

Publication number
CN107579115A
CN107579115A CN201710711313.1A CN201710711313A CN107579115A CN 107579115 A CN107579115 A CN 107579115A CN 201710711313 A CN201710711313 A CN 201710711313A CN 107579115 A CN107579115 A CN 107579115A
Authority
CN
China
Prior art keywords
epitaxial layer
thickness
type
boss
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710711313.1A
Other languages
Chinese (zh)
Other versions
CN107579115B (en
Inventor
蒲红斌
王曦
刘青
李佳琪
杜利祥
王雅芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710711313.1A priority Critical patent/CN107579115B/en
Publication of CN107579115A publication Critical patent/CN107579115A/en
Application granted granted Critical
Publication of CN107579115B publication Critical patent/CN107579115B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thyristors (AREA)

Abstract

本发明公开了一种具有双层薄n基区的碳化硅光触发晶闸管,包括SiC衬底,在SiC衬底之上依次制作有第一外延层、第二外延层、第三外延层、第四外延层、第五外延层、第六外延层,第六外延层分为多个凸台;在第三外延层上部镶嵌有结终端,并且结终端位于第四外延层和第五外延层的末端之外;还包括绝缘介质薄膜,绝缘介质薄膜覆盖在各个凸台侧壁、各个凸台之间的第五外延层表面以及结终端台面的侧壁与表面;在第六外延层的各个凸台上端面覆盖有阳极;在SiC衬底下端面覆盖有阴极。本发明还公开了该种具有双层薄n基区的碳化硅光触发晶闸管的制作方法。本发明的结构独特,器件性能优异;本发明的制作方法,便于实施。

The invention discloses a silicon carbide light-triggered thyristor with a double-layer thin n-base region, which comprises a SiC substrate, on which a first epitaxial layer, a second epitaxial layer, a third epitaxial layer, and a second epitaxial layer are sequentially fabricated. The fourth epitaxial layer, the fifth epitaxial layer, and the sixth epitaxial layer, the sixth epitaxial layer is divided into a plurality of bosses; a junction terminal is embedded in the upper part of the third epitaxial layer, and the junction terminal is located between the fourth epitaxial layer and the fifth epitaxial layer In addition to the end; it also includes an insulating dielectric film, and the insulating dielectric film covers the side walls of each boss, the surface of the fifth epitaxial layer between each boss, and the side walls and surfaces of the junction terminal mesa; each boss of the sixth epitaxial layer The upper surface of the stage is covered with an anode; the lower surface of the SiC substrate is covered with a cathode. The invention also discloses a manufacturing method of the silicon carbide light-triggered thyristor with double-layer thin n-base regions. The invention has a unique structure and excellent device performance; the manufacturing method of the invention is convenient for implementation.

Description

一种具有双层薄n基区的碳化硅光触发晶闸管及制作方法A silicon carbide light-triggered thyristor with a double-layer thin n-base region and its manufacturing method

技术领域technical field

本发明属于半导体器件技术领域,涉及一种具有双层薄n基区的碳化硅光触发晶闸管,本发明还涉及该种具有双层薄n基区的碳化硅光触发晶闸管的制作方法。The invention belongs to the technical field of semiconductor devices, and relates to a silicon carbide light-triggered thyristor with a double-layer thin n-base region, and also relates to a manufacturing method of the silicon carbide light-triggered thyristor with a double-layer thin n-base region.

背景技术Background technique

碳化硅(SiC)材料具有禁带宽度大、热导率高、临界雪崩击穿电场强度高、饱和载流子漂移速度大及热稳定性好等优点,是制造电力半导体器件的理想材料。SiC高压器件与同等级的硅器件相比,具有更低的通态压降、更高的工作频率、更低的功耗、更小的体积以及更好的耐高温特性,更适合应用于电力电子电路。SiC晶闸管作为SiC高压器件中的一种,具有阻断电压高、通态压降低、安全工作区(SOA)大以及无栅氧化层可靠性问题等优点,能突破硅晶闸管的物理极限,有效提升高压直流输电系统(HVDC)与智能电网电能传输系统的功率密度与效率。相比于SiC电控晶闸管(SiC ETT),SiC光触发晶闸管(SiC LTT)在简化驱动电路与抗电磁干扰方面具有更多优势。Silicon carbide (SiC) material has the advantages of large band gap, high thermal conductivity, high critical avalanche breakdown electric field strength, high saturated carrier drift velocity and good thermal stability, and is an ideal material for manufacturing power semiconductor devices. Compared with silicon devices of the same level, SiC high-voltage devices have lower on-state voltage drop, higher operating frequency, lower power consumption, smaller volume and better high temperature resistance characteristics, and are more suitable for power applications electronic circuit. As a kind of SiC high-voltage device, SiC thyristor has the advantages of high blocking voltage, low on-state voltage, large safe operating area (SOA) and no reliability problem of gate oxide layer. It can break through the physical limit of silicon thyristor and effectively improve Power Density and Efficiency of High Voltage Direct Current Transmission (HVDC) and Smart Grid Power Transmission Systems. Compared with SiC electronically controlled thyristor (SiC ETT), SiC light-triggered thyristor (SiC LTT) has more advantages in simplifying the driving circuit and anti-electromagnetic interference.

因铝受主在SiC中的电离能较高(0.19eV),p型SiC材料具有较高的电阻率。为了避免使用电阻率较高的p型衬底,耐压10kV及以下的SiC晶闸管一般需采用p型长基区结构。采用p型长基区结构的SiC晶闸管,p+发射区空穴浓度较低,影响p+-n发射结注入效率,导致SiCLTT存在开通延迟时间大的问题。为了缩短开通延迟时间,一般使用紫外激光脉冲对SiCLTT进行触发,而激光源存在体积大、效率低的问题。鉴于此,紫外发光二极管(UV LED)被用于触发SiC LTT。但UV LED光功率密度较小,难以满足高压SiC LTT的触发需求。Due to the higher ionization energy (0.19eV) of aluminum acceptors in SiC, the p-type SiC material has higher resistivity. In order to avoid the use of p-type substrates with high resistivity, SiC thyristors with a withstand voltage of 10kV and below generally need to adopt a p-type long base structure. For SiC thyristors with a p-type long base structure, the hole concentration in the p + emitter region is low, which affects the injection efficiency of the p + -n emitter junction, resulting in the problem of large turn-on delay time in SiCLTT. In order to shorten the turn-on delay time, an ultraviolet laser pulse is generally used to trigger the SiCLTT, but the laser source has the problems of large volume and low efficiency. In view of this, ultraviolet light-emitting diodes (UV LEDs) are used to trigger SiC LTTs. However, the light power density of UV LEDs is small, and it is difficult to meet the triggering requirements of high-voltage SiC LTTs.

N.Dheilly等2011年在Electronics Letters发表文章《Optical triggering ofSiC thyristors using UV LEDs》,文中利用330nm波长的UV LED对SiC LTT进行了触发,光脉冲宽度为20μs,SiC LTT经2.6μs的延迟后电压才开始下降。N.Dheilly等的工作首次实现了SiC LTT的UV LEDs触发,但SiC LTT开通延迟时间较大,仍需改进。N.Dheilly et al. published an article "Optical triggering of SiC thyristors using UV LEDs" in Electronics Letters in 2011. In this paper, a UV LED with a wavelength of 330nm was used to trigger SiC LTT. Only then began to decline. The work of N.Dheilly et al. realized the triggering of UV LEDs of SiC LTT for the first time, but the delay time of SiC LTT turn-on is relatively large, which still needs to be improved.

S.L.Rumyantsev等2013年在Semiconductor Science and Technology发表文章《Optical triggering of high-voltage(18kV-class)4H-SiC thyristors》,文中首次在SiC LTT中引入了放大门极结构,通过引入放大门极,触发光功率密度得到降低,但仍旧存在开通延迟时间大的问题。S.L.Rumyantsev et al. published the article "Optical triggering of high-voltage (18kV-class) 4H-SiC thyristors" in Semiconductor Science and Technology in 2013. In this paper, the amplified gate structure was introduced into SiC LTT for the first time. By introducing the amplified gate, the trigger The optical power density is reduced, but the problem of large turn-on delay time still exists.

因此,针对上述技术问题,有必要提供一种高性能、高可行性的技术方案,用于改善UV LED触发SiC LTT开通延迟时间大的问题。Therefore, in view of the above technical problems, it is necessary to provide a high-performance, high-feasibility technical solution for improving the problem of large turn-on delay time of UV LED triggering SiC LTT.

发明内容Contents of the invention

本发明的目的是提供一种具有双层薄n基区的碳化硅光触发晶闸管,解决了现有SiC LTT p+-n发射结注入效率低,开通延迟时间大,所需触发光功率高的问题。The purpose of the present invention is to provide a silicon carbide light-triggered thyristor with a double-layer thin n-base region, which solves the problems of low injection efficiency of the existing SiC LTT p + -n emitter junction, large turn-on delay time, and high trigger optical power question.

本发明的另一目的是提供该种具有双层薄n基区的碳化硅光触发晶闸管的制作方法。Another object of the present invention is to provide a method for manufacturing the silicon carbide light-triggered thyristor with a double-layer thin n-base region.

本发明所采用的技术方案是,一种具有双层薄n基区的碳化硅光触发晶闸管,包括SiC衬底,该SiC衬底的材料为n型4H-SiC,The technical solution adopted in the present invention is a silicon carbide light-triggered thyristor with a double-layer thin n-base region, including a SiC substrate, the material of which is n-type 4H-SiC,

在SiC衬底之上制作有第一外延层,即n+发射区,该第一外延层的材料为n型4H-SiC;A first epitaxial layer, that is, an n + emitter region, is formed on the SiC substrate, and the material of the first epitaxial layer is n-type 4H-SiC;

在第一外延层之上制作有第二外延层,即p+缓冲层,该第二外延层的材料为p型4H-SiC;A second epitaxial layer, that is, a p + buffer layer, is formed on the first epitaxial layer, and the material of the second epitaxial layer is p-type 4H-SiC;

在第二外延层之上制作有第三外延层,即p-长基区,该第三外延层的材料为p型4H-SiC;A third epitaxial layer, that is, a p - long base region, is fabricated on the second epitaxial layer, and the material of the third epitaxial layer is p-type 4H-SiC;

在第三外延层之上制作有第四外延层,即下层薄n基区,该第四外延层的材料为n型4H-SiC;A fourth epitaxial layer is formed on the third epitaxial layer, that is, the lower thin n-base region, and the material of the fourth epitaxial layer is n-type 4H-SiC;

在第四外延层之上制作有第五外延层,即上层薄n-基区,该第五外延层的材料为n型4H-SiC;A fifth epitaxial layer, namely the upper thin n - base region, is formed on the fourth epitaxial layer, and the material of the fifth epitaxial layer is n-type 4H-SiC;

在第五外延层之上制作有第六外延层,即p+发射区,分为尺寸相同的多个凸台,每个凸台的侧壁为平面,该第六外延层的材料为p型4H-SiC;On the fifth epitaxial layer, a sixth epitaxial layer, that is, the p + emission region, is divided into a plurality of bosses with the same size, and the side wall of each boss is flat, and the material of the sixth epitaxial layer is p-type 4H-SiC;

在第三外延层上部镶嵌有结终端,并且结终端位于第四外延层和第五外延层的末端之外,呈p型;A junction terminal is embedded in the upper part of the third epitaxial layer, and the junction terminal is located outside the ends of the fourth epitaxial layer and the fifth epitaxial layer, and is p-type;

还包括绝缘介质薄膜,绝缘介质薄膜覆盖在第六外延层的各个凸台侧壁、各个凸台之间的第五外延层表面以及结终端台面的侧壁与表面,位于各个凸台之间的部分的高度低于凸台的上端面;It also includes an insulating dielectric film, the insulating dielectric film covers the side walls of each boss of the sixth epitaxial layer, the surface of the fifth epitaxial layer between each boss, and the side walls and surfaces of the junction terminal mesa, and the side walls and surfaces of the junction terminals are located between the bosses. The height of part is lower than the upper end surface of the boss;

在第六外延层的各个凸台上端面覆盖有阳极;在SiC衬底下端面覆盖有阴极。An anode is covered on the upper surface of each boss of the sixth epitaxial layer; a cathode is covered on the lower surface of the SiC substrate.

本发明的另一技术方案是,一种具有双层薄n基区的碳化硅光触发晶闸管的制作方法,按照以下步骤实施:Another technical solution of the present invention is a method for manufacturing a silicon carbide light-triggered thyristor with a double-layer thin n-base region, which is implemented according to the following steps:

步骤1:采用CVD的方法,在SiC衬底上表面向上依次生长第一外延层、第二外延层、第三外延层、第四外延层、第五外延层、第六外延层;Step 1: using the CVD method to sequentially grow the first epitaxial layer, the second epitaxial layer, the third epitaxial layer, the fourth epitaxial layer, the fifth epitaxial layer, and the sixth epitaxial layer on the upper surface of the SiC substrate;

其中SiC衬底的掺杂类型为n型,厚度为1μm-500μm,其掺杂浓度为1×1014-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the SiC substrate is n-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第一外延层的掺杂类型为n型,厚度为0.1μm-3μm,其掺杂浓度为5×1017-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the first epitaxial layer is n-type, the thickness is 0.1 μm-3 μm, the doping concentration is 5×10 17 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第二外延层的掺杂类型为p型,厚度为0.1μm-3μm,其掺杂浓度为5×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the second epitaxial layer is p-type, the thickness is 0.1 μm-3 μm, the doping concentration is 5×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第三外延层的掺杂类型为p型,厚度为1μm-500μm,其掺杂浓度为1×1014-3×1016cm-3,上端表面积为1μm2-2000cm2The doping type of the third epitaxial layer is p-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -3×10 16 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第四外延层的掺杂类型为n型,厚度为0.1μm-2.4μm,其掺杂浓度为1×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the fourth epitaxial layer is n-type, the thickness is 0.1 μm-2.4 μm, the doping concentration is 1×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第五外延层的掺杂类型为n-型,厚度为0.1μm-2.4μm,其掺杂浓度为1×1014-1×1017cm-3,上端表面积为1μm2-2000cm2The doping type of the fifth epitaxial layer is n - type, the thickness is 0.1 μm-2.4 μm, the doping concentration is 1×10 14 -1×10 17 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第六外延层的掺杂类型为p型,厚度为0.1μm-6μm,其掺杂浓度为1×1018-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the sixth epitaxial layer is p-type, the thickness is 0.1 μm-6 μm, the doping concentration is 1×10 18 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

步骤2:在第六外延层上采用曝光技术,获得图形化表面;Step 2: Using exposure technology on the sixth epitaxial layer to obtain a patterned surface;

步骤3:在图形化表面上进行刻蚀,采用干法刻蚀,形成第六外延层的多个凸台,各凸台的间距为0.1μm-1cm,各凸台的高度为0.1μm-6.1μm,各凸台的高度不小于第六外延层的厚度;Step 3: Etching is carried out on the patterned surface, and a plurality of bosses of the sixth epitaxial layer are formed by dry etching, the distance between each boss is 0.1 μm-1 cm, and the height of each boss is 0.1 μm-6.1 μm, the height of each boss is not less than the thickness of the sixth epitaxial layer;

步骤4:在外延层上表面采用曝光技术,获得图形化表面;Step 4: Use exposure technology on the upper surface of the epitaxial layer to obtain a patterned surface;

步骤5:在图形化表面上进行刻蚀,采用干法刻蚀,形成终端台面,该终端台面高度为0.2μm-500μm,其高度不小于第四外延层与第五外延层厚度之和;Step 5: Etching on the patterned surface, using dry etching to form a terminal mesa, the height of the terminal mesa is 0.2 μm-500 μm, and its height is not less than the sum of the thickness of the fourth epitaxial layer and the fifth epitaxial layer;

步骤6:对步骤5得到的器件进行离子注入,在终端台面向下形成结终端,注入离子为铝离子或硼离子;结终端的厚度不大于1μm,宽度为1μm-1mm;离子注入的能量为100eV-700KeV,注入温度为0℃-900℃,注入的剂量为1×1010-1×1016cm-2Step 6: Perform ion implantation on the device obtained in step 5, and form a junction terminal on the terminal mesa downward, and the implanted ions are aluminum ions or boron ions; the thickness of the junction terminal is not greater than 1 μm, and the width is 1 μm-1mm; the energy of ion implantation is 100eV-700KeV, the implantation temperature is 0°C-900°C, and the implantation dose is 1×10 10 -1×10 16 cm -2 ;

步骤7:去除光刻掩膜,进行高温退火,高温退火温度为900℃-2100℃,退火气氛为惰性气体氛围;Step 7: remove the photolithography mask, perform high-temperature annealing, the high-temperature annealing temperature is 900°C-2100°C, and the annealing atmosphere is an inert gas atmosphere;

步骤8:在器件上表面生长绝缘介质薄膜,所述绝缘介质薄膜覆盖第六外延层的凸台侧壁、凸台之间第五外延层的表面以及终端台面的侧壁与表面;所述绝缘介质薄膜厚度为0.1μm-2μm;Step 8: growing an insulating dielectric film on the upper surface of the device, the insulating dielectric film covers the sidewalls of the bosses of the sixth epitaxial layer, the surface of the fifth epitaxial layer between the bosses, and the sidewalls and surfaces of the terminal mesas; the insulating The thickness of the dielectric film is 0.1μm-2μm;

步骤9:对绝缘介质薄膜进行刻蚀,将第六外延层的各个凸台上表面的绝缘介质薄膜去除,保留其他部分的绝缘介质薄膜;Step 9: Etching the insulating dielectric film, removing the insulating dielectric film on the upper surface of each boss of the sixth epitaxial layer, and retaining other parts of the insulating dielectric film;

步骤10:在第六外延层的凸台上表面淀积阳极金属;Step 10: Depositing anode metal on the surface of the boss of the sixth epitaxial layer;

步骤11:在SiC衬底的背面淀积阴极金属;Step 11: Deposit cathode metal on the back side of the SiC substrate;

步骤12:对步骤11得到的制品在氮气或惰性气体保护下快速热退火,退火温度为500℃-1200℃,退火时间为10秒-10分钟;Step 12: rapid thermal annealing of the product obtained in step 11 under the protection of nitrogen or an inert gas, the annealing temperature is 500°C-1200°C, and the annealing time is 10 seconds-10 minutes;

步骤13:在阳极金属上淀积阳极压焊块;Step 13: Depositing an anode pressure solder bump on the anode metal;

步骤14:在阴极金属上淀积阴极压焊块,完成制备。Step 14: Deposit the cathode pad on the cathode metal to complete the preparation.

本发明的有益效果是,该SiC LTT薄n基区具有双层结构,增强了p+发射区的注入效率,改善了由于空穴浓度低导致的上pnp晶体管增益小的问题,缩短了SiC LTT的开通延迟时间,为UV LED触发SiC LTT提供可行的技术方案。The beneficial effect of the present invention is that the thin n base region of the SiC LTT has a double-layer structure, which enhances the injection efficiency of the p + emitter region, improves the problem of small gain of the upper pnp transistor due to the low hole concentration, and shortens the SiC LTT The turn-on delay time provides a feasible technical solution for UV LED triggering SiC LTT.

附图说明Description of drawings

图1本发明实施例具有双层薄n基区的SiC LTT结构示意图;Fig. 1 is a schematic diagram of the structure of a SiC LTT with a double-layer thin n-base region according to an embodiment of the present invention;

图2本发明应用于10kV 4H-SiC LTT的主器件结构示意图(图1的局部);Fig. 2 is a schematic diagram of the main device structure of the present invention applied to 10kV 4H-SiC LTT (part of Fig. 1);

图3本发明SiC LTT开通延迟时间与第六外延层的掺杂浓度关系曲线;Fig. 3 SiC LTT turn-on delay time of the present invention and the doping concentration curve of the sixth epitaxial layer;

图4是本发明方法步骤1完成后的器件结构示意图;Fig. 4 is a schematic diagram of the device structure after step 1 of the method of the present invention is completed;

图5是本发明方法步骤3完成后的器件结构示意图;Fig. 5 is a schematic diagram of the device structure after step 3 of the method of the present invention is completed;

图6是本发明方法步骤5完成后的器件结构示意图;Fig. 6 is a schematic diagram of the device structure after step 5 of the method of the present invention is completed;

图7是本发明方法步骤7完成后的器件结构示意图;Fig. 7 is a schematic diagram of the device structure after step 7 of the method of the present invention is completed;

图8是本发明方法步骤9完成后的器件结构示意图;Fig. 8 is a schematic diagram of the device structure after step 9 of the method of the present invention is completed;

图9是本发明方法步骤12完成后的器件结构示意图。FIG. 9 is a schematic diagram of the device structure after step 12 of the method of the present invention is completed.

图中,1.衬底,2.第一外延层,3.第二外延层,4.第三外延层,5.第四外延层,6.第五外延层,7.第六外延层,8.绝缘介质薄膜,9.阳极,10.结终端,11.阴极。In the figure, 1. substrate, 2. first epitaxial layer, 3. second epitaxial layer, 4. third epitaxial layer, 5. fourth epitaxial layer, 6. fifth epitaxial layer, 7. sixth epitaxial layer, 8. Insulating dielectric film, 9. Anode, 10. Junction terminal, 11. Cathode.

具体实施方式detailed description

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

参照图1,本发明具有双层薄n基区的SiC LTT结构是,Referring to Fig. 1, the SiC LTT structure with a double-layer thin n-base region of the present invention is,

包括SiC衬底1,该SiC衬底1的材料为n型4H-SiC,该SiC衬底1的厚度为1μm-500μm,该SiC衬底1的上端表面积为1μm2-2000cm2Including a SiC substrate 1, the material of the SiC substrate 1 is n-type 4H-SiC, the thickness of the SiC substrate 1 is 1 μm-500 μm, and the upper surface area of the SiC substrate 1 is 1 μm 2 -2000 cm 2 ;

在SiC衬底1之上制作有第一外延层2,即n+发射区,该第一外延层2的材料为n型4H-SiC,该第一外延层2的厚度为0.1μm-3μm,该第一外延层2的上端表面积为1μm2-2000cm2On the SiC substrate 1, a first epitaxial layer 2, that is, an n + emitter region, is formed. The material of the first epitaxial layer 2 is n-type 4H-SiC, and the thickness of the first epitaxial layer 2 is 0.1 μm-3 μm. The upper end surface area of the first epitaxial layer 2 is 1 μm 2 -2000 cm 2 ;

在第一外延层2之上制作有第二外延层3,即p+缓冲层,该第二外延层3的材料为p型4H-SiC,该第二外延层3的厚度为0.1μm-3μm,该第二外延层3的上端表面积为1μm2-2000cm2On the first epitaxial layer 2, there is a second epitaxial layer 3, that is, a p + buffer layer, the material of the second epitaxial layer 3 is p-type 4H-SiC, and the thickness of the second epitaxial layer 3 is 0.1 μm-3 μm , the surface area of the upper end of the second epitaxial layer 3 is 1 μm 2 -2000 cm 2 ;

在第二外延层3之上制作有第三外延层4,即p-长基区,该第三外延层4的材料为p型4H-SiC,该第三外延层4的厚度为1μm-500μm,该第三外延层4的上端表面积为1μm2-2000cm2A third epitaxial layer 4 is formed on the second epitaxial layer 3, that is, a p - long base region, the material of the third epitaxial layer 4 is p-type 4H-SiC, and the thickness of the third epitaxial layer 4 is 1 μm-500 μm , the surface area of the upper end of the third epitaxial layer 4 is 1 μm 2 -2000 cm 2 ;

在第三外延层4之上制作有第四外延层5,即下层薄n基区,该第四外延层5的材料为n型4H-SiC,该第四外延层5的厚度为0.1μm-2.4μm,该第四外延层5的上端表面积为1μm2-2000cm2A fourth epitaxial layer 5 is formed on the third epitaxial layer 4, that is, the lower thin n-base region. The material of the fourth epitaxial layer 5 is n-type 4H-SiC, and the thickness of the fourth epitaxial layer 5 is 0.1 μm- 2.4 μm, the surface area of the upper end of the fourth epitaxial layer 5 is 1 μm 2 -2000 cm 2 ;

在第四外延层5之上制作有第五外延层6,即上层薄n-基区,该第五外延层6的材料为n型4H-SiC,该第五外延层6的厚度为0.1μm-2.4μm,该第五外延层6的上端表面积为1μm2-2000cm2A fifth epitaxial layer 6 is formed on the fourth epitaxial layer 5, that is, the upper thin n - base region, the material of the fifth epitaxial layer 6 is n-type 4H-SiC, and the thickness of the fifth epitaxial layer 6 is 0.1 μm -2.4 μm, the upper surface area of the fifth epitaxial layer 6 is 1 μm 2 -2000 cm 2 ;

在第五外延层6之上制作有第六外延层7,即p+发射区,分为尺寸相同的多个凸台,每个凸台的侧壁为平面,该第六外延层7的材料为p型4H-SiC,该第六外延层7的厚度为0.1μm-6μm,单个凸台的上端表面积为1μm2-2000cm2On the fifth epitaxial layer 6, a sixth epitaxial layer 7, that is, the p + emission region, is formed, which is divided into a plurality of bosses with the same size, and the side wall of each boss is a plane, and the material of the sixth epitaxial layer 7 It is p-type 4H-SiC, the thickness of the sixth epitaxial layer 7 is 0.1 μm-6 μm, and the surface area of the upper end of a single boss is 1 μm 2 -2000 cm 2 ;

在第三外延层4上部镶嵌有结终端10,并且结终端10位于第四外延层5和第五外延层6的末端之外,呈p型,其厚度不大于1μm,宽度为1μm-1mm;A junction terminal 10 is inlaid on the upper part of the third epitaxial layer 4, and the junction terminal 10 is located outside the ends of the fourth epitaxial layer 5 and the fifth epitaxial layer 6, is p-type, has a thickness not greater than 1 μm, and a width of 1 μm-1 mm;

还包括绝缘介质薄膜8,绝缘介质薄膜8覆盖在第六外延层7的各个凸台侧壁、各个凸台之间的第五外延层6表面以及结终端10台面的侧壁与表面,位于各个凸台之间的部分的高度低于凸台的上端面,其厚度为0.1μm-2μm;It also includes an insulating dielectric film 8, the insulating dielectric film 8 covers the side walls of each boss of the sixth epitaxial layer 7, the surface of the fifth epitaxial layer 6 between each boss, and the side walls and surfaces of the mesa of the junction terminal 10, located in each The height of the part between the bosses is lower than the upper surface of the bosses, and its thickness is 0.1 μm-2 μm;

在第六外延层7的各个凸台上端面覆盖有阳极9,阳极9由阳极金属与阳极压焊块组成,阳极压焊块覆盖在阳极金属的上表面,厚度为0.1μm-100μm;The upper surface of each boss of the sixth epitaxial layer 7 is covered with an anode 9, the anode 9 is composed of an anode metal and an anode pressure welding block, and the anode pressure welding block covers the upper surface of the anode metal, with a thickness of 0.1 μm-100 μm;

在SiC衬底1下端面(背面)覆盖有阴极11,阴极11由阴极金属与阴极压焊块组成,阴极压焊块覆盖在阴极金属的背面,厚度为0.1μm-100μm。The lower end surface (back side) of the SiC substrate 1 is covered with a cathode 11, the cathode 11 is composed of a cathode metal and a cathode pad, and the cathode pad covers the back side of the cathode metal with a thickness of 0.1 μm-100 μm.

第六外延层7的各个凸台为叉指结构、平行长条状、圆环形、正方形或渐开线形台面之一,或其组合形状,各凸台的间距为0.1μm-1cm,各凸台的高度为0.1μm-6.1μm,各凸台的高度不小于p+发射区的厚度。Each boss of the sixth epitaxial layer 7 is one of interdigitated structure, parallel strip shape, circular ring, square or involute mesa, or a combination thereof, and the distance between each boss is 0.1 μm-1 cm. The height of the mesa is 0.1 μm-6.1 μm, and the height of each raised mesa is not less than the thickness of the p + emitting region.

上述的上层薄n基区与下层薄n基区的材料为n型,其中上层薄n基区的掺杂浓度低于下层薄n基区的掺杂浓度。The material of the upper thin n base region and the lower thin n base region is n-type, wherein the doping concentration of the upper thin n base region is lower than that of the lower thin n base region.

上述的阳极金属、阴极金属、阳极压焊块及阴极压焊块的材料为Ti、Ni、W、Ta、Al、Ag或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au中任意两种或多种的组合。The material of the above-mentioned anode metal, cathode metal, anode welding block and cathode welding block is one of Ti, Ni, W, Ta, Al, Ag or Au, or Ti, Ni, W, Ta, Al, Ag, Au A combination of any two or more of them.

由于上述的下层薄n基区和上层薄n-基区的设置,本申请才称为具有双层薄n基区的SiC LTT。Due to the above arrangement of the lower thin n-base region and the upper thin n - base region, this application is called SiC LTT with double-layer thin n-base region.

本发明具有双层薄n基区的SiC LTT的制作方法,按照以下步骤实施:The manufacturing method of the SiC LTT with double-layer thin n-base region of the present invention is implemented according to the following steps:

步骤1:采用CVD的方法,在SiC衬底1上表面向上依次生长第一外延层2、第二外延层3、第三外延层4、第四外延层5、第五外延层6、第六外延层7,见图4;Step 1: Using the CVD method, grow the first epitaxial layer 2, the second epitaxial layer 3, the third epitaxial layer 4, the fourth epitaxial layer 5, the fifth epitaxial layer 6, and the sixth epitaxial layer upwards on the upper surface of the SiC substrate 1. Epitaxial layer 7, see Figure 4;

其中SiC衬底1的掺杂类型为n型,厚度为1μm-500μm,其掺杂浓度为1×1014-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of SiC substrate 1 is n-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第一外延层2的掺杂类型为n型,厚度为0.1μm-3μm,其掺杂浓度为5×1017-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the first epitaxial layer 2 is n-type, the thickness is 0.1 μm-3 μm, its doping concentration is 5×10 17 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000 cm 2 ;

第二外延层3的掺杂类型为p型,厚度为0.1μm-3μm,其掺杂浓度为5×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the second epitaxial layer 3 is p-type, the thickness is 0.1 μm-3 μm, the doping concentration is 5×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000 cm 2 ;

第三外延层4的掺杂类型为p型,厚度为1μm-500μm,其掺杂浓度为1×1014-3×1016cm-3,上端表面积为1μm2-2000cm2The doping type of the third epitaxial layer 4 is p-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -3×10 16 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ;

第四外延层5的掺杂类型为n型,厚度为0.1μm-2.4μm,其掺杂浓度为1×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the fourth epitaxial layer 5 is n-type, the thickness is 0.1 μm-2.4 μm, the doping concentration is 1×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000 cm 2 ;

第五外延层6的掺杂类型为n-型(该n-型中的-为上标),厚度为0.1μm-2.4μm,其掺杂浓度为1×1014-1×1017cm-3,上端表面积为1μm2-2000cm2The doping type of the fifth epitaxial layer 6 is n - type (the - in the n - type is a superscript), the thickness is 0.1 μm-2.4 μm, and the doping concentration is 1×10 14 -1×10 17 cm − 3 , the upper surface area is 1μm 2 -2000cm 2 ;

第六外延层7的掺杂类型为p型,厚度为0.1μm-6μm,其掺杂浓度为1×1018-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the sixth epitaxial layer 7 is p-type, the thickness is 0.1 μm-6 μm, the doping concentration is 1×10 18 -1×10 22 cm −3 , and the upper surface area is 1 μm 2 -2000 cm 2 .

步骤2:在第六外延层7上采用曝光技术,获得图形化表面,所述曝光技术为光学曝光或电子束曝光;Step 2: using an exposure technique on the sixth epitaxial layer 7 to obtain a patterned surface, the exposure technique being optical exposure or electron beam exposure;

步骤3:在图形化表面上进行刻蚀,采用干法刻蚀,形成第六外延层7的多个凸台,所述凸台为叉指结构、平行长条状、圆环形、正方形或渐开线形台面之一或其组合形状,各凸台的间距为0.1μm-1cm,各凸台的高度为0.1μm-6.1μm,各凸台的高度不小于第六外延层7的厚度,见图5;Step 3: Etching on the patterned surface, using dry etching to form a plurality of bosses of the sixth epitaxial layer 7, the bosses are interdigitated, parallel strips, circular, square or One of the involute-shaped mesa or its combined shape, the distance between each boss is 0.1 μm-1 cm, the height of each boss is 0.1 μm-6.1 μm, and the height of each boss is not less than the thickness of the sixth epitaxial layer 7, see Figure 5;

步骤4:在外延层上表面采用曝光技术,获得图形化表面,所述曝光技术为光学曝光或电子束曝光;(此处是指经上述步骤3之后,在整个器件结构的上端表面重复步骤2的工艺,区别仅在于曝光所获得的表面图形不同);Step 4: Using exposure technology on the upper surface of the epitaxial layer to obtain a patterned surface, the exposure technology is optical exposure or electron beam exposure; (Here, after the above step 3, repeat step 2 on the upper surface of the entire device structure process, the difference is only in the surface pattern obtained by exposure);

步骤5:在图形化表面上进行刻蚀,采用干法刻蚀,形成终端台面,该终端台面高度为0.2μm-500μm,其高度不小于第四外延层5与第五外延层6厚度之和,见图6;(经此步骤5的处理后,第三外延层4的末端上表面暴露出来);Step 5: Etching on the patterned surface, using dry etching to form a terminal mesa, the height of the terminal mesa is 0.2 μm-500 μm, and its height is not less than the sum of the thicknesses of the fourth epitaxial layer 5 and the fifth epitaxial layer 6 , see FIG. 6; (after the treatment in step 5, the upper surface of the end of the third epitaxial layer 4 is exposed);

步骤6:对步骤5得到的器件进行离子注入,在终端台面向下形成结终端10,注入离子为铝离子或硼离子;结终端10的厚度不大于1μm,宽度为1μm-1mm;离子注入的能量为100eV-700KeV,注入温度为0℃-900℃,注入的剂量为1×1010-1×1016cm-2Step 6: Perform ion implantation on the device obtained in step 5, and form a junction terminal 10 downward on the terminal mesa, and the implanted ions are aluminum ions or boron ions; the thickness of the junction terminal 10 is not greater than 1 μm, and the width is 1 μm-1 mm; The energy is 100eV-700KeV, the implantation temperature is 0°C-900°C, and the implantation dose is 1×10 10 -1×10 16 cm -2 ;

步骤7:去除光刻掩膜,所述光刻掩膜为光刻胶、氧化硅、氮化硅及其组合;所述去除光刻掩膜的方法为通过酸性或碱性溶液漂洗去除或通过干法刻蚀技术去除;进行高温退火,高温退火温度为900℃-2100℃,退火气氛为惰性气体氛围,见图7;Step 7: remove the photoresist mask, the photoresist mask is photoresist, silicon oxide, silicon nitride and a combination thereof; the method of removing the photoresist mask is to remove by rinsing with an acidic or alkaline solution or by Removal by dry etching technology; perform high-temperature annealing, the high-temperature annealing temperature is 900°C-2100°C, and the annealing atmosphere is an inert gas atmosphere, see Figure 7;

步骤8:在器件上表面生长绝缘介质薄膜8,所述绝缘介质薄膜8覆盖第六外延层7的凸台侧壁、凸台之间第五外延层6的表面以及终端台面的侧壁与表面;所述绝缘介质薄膜8采用高温氧化法、化学气相淀积法、物理气相淀积法及其组合的方法生长,其厚度为0.1μm-2μm;Step 8: growing an insulating dielectric film 8 on the upper surface of the device, the insulating dielectric film 8 covers the sidewalls of the bosses of the sixth epitaxial layer 7, the surface of the fifth epitaxial layer 6 between the bosses, and the sidewalls and surfaces of the terminal mesas ; The insulating dielectric film 8 is grown by high temperature oxidation, chemical vapor deposition, physical vapor deposition and combinations thereof, and its thickness is 0.1 μm-2 μm;

步骤9:对绝缘介质薄膜8进行刻蚀,将第六外延层7的各个凸台上表面的绝缘介质薄膜8去除,保留其他部分的绝缘介质薄膜8,见图8;Step 9: Etching the insulating dielectric film 8, removing the insulating dielectric film 8 on the upper surface of each boss of the sixth epitaxial layer 7, and retaining other parts of the insulating dielectric film 8, see FIG. 8;

步骤10:在第六外延层7的凸台上表面淀积阳极金属;Step 10: Depositing anode metal on the surface of the boss of the sixth epitaxial layer 7;

步骤11:在SiC衬底1的背面淀积阴极金属;Step 11: Deposit cathode metal on the back side of SiC substrate 1;

步骤12:对步骤11得到的制品在氮气或惰性气体保护下快速热退火,退火温度为500℃-1200℃,退火时间为10秒-10分钟,见图9;Step 12: Rapid thermal annealing of the product obtained in step 11 under the protection of nitrogen or an inert gas, the annealing temperature is 500°C-1200°C, and the annealing time is 10 seconds-10 minutes, see Figure 9;

步骤13:在阳极金属上淀积阳极压焊块;Step 13: Depositing an anode pressure solder bump on the anode metal;

步骤14:在阴极金属上淀积阴极压焊块,完成制备,得到具有双层薄n基区的SiCLTT成品,见图1。Step 14: Deposit the cathode pad on the cathode metal to complete the preparation and obtain the finished SiCLTT with double-layer thin n-base region, as shown in FIG. 1 .

实施例1Example 1

下面以10kV 4H-SiC LTT为例,对本发明进行进一步的详细说明。Hereinafter, the present invention will be further described in detail by taking 10kV 4H-SiC LTT as an example.

本实施例的主器件结构如图2所示,该主器件包括SiC衬底1,以及沉积在SiC衬底1上的第一外延层2、第二外延层3、第三外延层4、第四外延层5、第五外延层6、第六外延层7、覆盖在第五外延层6上表面与第六外延层7侧壁的绝缘介质薄膜8、位于第六外延层7表面的阳极9、位于SiC衬底1背面的阴极11。The main device structure of this embodiment is shown in Figure 2, the main device includes a SiC substrate 1, and a first epitaxial layer 2, a second epitaxial layer 3, a third epitaxial layer 4, a first epitaxial layer deposited on the SiC substrate 1 Four epitaxial layers 5, fifth epitaxial layer 6, sixth epitaxial layer 7, insulating dielectric film 8 covering the upper surface of the fifth epitaxial layer 6 and the sidewall of the sixth epitaxial layer 7, an anode 9 located on the surface of the sixth epitaxial layer 7 , the cathode 11 located on the back side of the SiC substrate 1 .

该4H-SiC LTT的制备方法具体按照以下步骤实施:The preparation method of the 4H-SiC LTT is specifically implemented according to the following steps:

步骤1、制作4H-SiC材质的SiC衬底1。Step 1. Fabricate a SiC substrate 1 made of 4H-SiC.

步骤2、采用低压热壁化学气相淀积法在SiC衬底1上依次生长第一、第二、第三、第四、第五、第六外延层(4H-SiC),形成用于4H-SiCLTT制作的外延结构;第一、第二、第三、第四、第五、第六外延层的浓度与厚度分别为5×18cm-3/1μm、5×17cm-3/2μm、2×14cm-3/80μm、1×17cm-3/1.5μm、2×14cm-3/0.5μm、2×18cm-3/2.5μm。Step 2, using the low pressure hot wall chemical vapor deposition method to sequentially grow the first, second, third, fourth, fifth and sixth epitaxial layers (4H-SiC) on the SiC substrate 1 to form 4H-SiC Epitaxial structure made of SiCLTT; the concentration and thickness of the first, second, third, fourth, fifth, and sixth epitaxial layers are 5×18cm -3 /1μm, 5×17cm -3 /2μm, 2×14cm respectively -3 /80μm, 1×17cm -3 /1.5μm, 2×14cm -3 /0.5μm, 2×18cm- 3 /2.5μm.

步骤3、在第六外延层7上采用曝光技术,获得图形化表面;Step 3, using exposure technology on the sixth epitaxial layer 7 to obtain a patterned surface;

步骤4、在图形化表面上进行干法刻蚀,形成平行长条状凸台,凸台宽4μm,各凸台间的间距为6μm,凸台的高度为2.5μm;Step 4. Perform dry etching on the patterned surface to form parallel strip-shaped bosses, the width of the bosses is 4 μm, the distance between the bosses is 6 μm, and the height of the bosses is 2.5 μm;

步骤5、在器件上表面采用化学气相淀积法生长绝缘介质薄膜8,绝缘介质薄膜8覆盖凸台侧壁、凸台之间第五外延层6的上表面,厚度为0.5μm;Step 5, growing an insulating dielectric film 8 on the upper surface of the device by chemical vapor deposition, the insulating dielectric film 8 covers the side walls of the bosses and the upper surface of the fifth epitaxial layer 6 between the bosses, with a thickness of 0.5 μm;

步骤6:对绝缘介质薄膜8进行干法刻蚀,将凸台上表面的绝缘介质薄膜8去除,保留其他部分的绝缘介质薄膜8;Step 6: performing dry etching on the insulating dielectric film 8, removing the insulating dielectric film 8 on the upper surface of the boss, and retaining the insulating dielectric film 8 on other parts;

步骤7:在凸台上表面淀积阳极金属Ti;Step 7: deposit anodic metal Ti on the surface of the boss;

步骤8:在SiC衬底1的背面淀积阴极金属Ni;Step 8: Deposit cathode metal Ni on the back side of SiC substrate 1;

步骤9:氩气保护下快速热退火,退火温度为1050℃,退火时间为3min;Step 9: rapid thermal annealing under argon protection, the annealing temperature is 1050°C, and the annealing time is 3min;

步骤10:在阳极金属上淀积阳极压焊块Al;Step 10: Depositing an anode pressure solder bump Al on the anode metal;

步骤11:在阴极金属上淀积阴极压焊块Al,完成制备。Step 11: Deposit the cathode pad Al on the cathode metal to complete the preparation.

本发明具有双层薄n基区SiC LTT的性能,通过以下数值模拟进行验证。The present invention has the performance of double-layer thin n-base SiC LTT, which is verified by the following numerical simulation.

使用Sentaurus TCAD软件对上述具有双层薄n基区的10kV SiC LTT的开通特性进行了数值模拟,模拟中采用的器件结构如图2所示。经数值模拟,具有双层薄n基区的10kVSiC LTT开通延迟时间与第六外延层7的掺杂浓度关系曲线如图3所示,通过对比可以看出,双层薄n基区结构能改变SiC LTT开通延迟时间,上层薄n基区浓度越低,SiC LTT开通延迟时间越短。Using Sentaurus TCAD software, a numerical simulation was carried out on the turn-on characteristics of the above-mentioned 10kV SiC LTT with a double-layer thin n-base region. The device structure used in the simulation is shown in Figure 2. Through numerical simulation, the relationship between the turn-on delay time of the 10kVSiC LTT with a double-layer thin n-base region and the doping concentration of the sixth epitaxial layer 7 is shown in Figure 3. Through comparison, it can be seen that the structure of the double-layer thin n-base region can change SiC LTT turn-on delay time, the lower the concentration of the upper thin n-base region, the shorter the SiC LTT turn-on delay time.

本发明的结构,包括碳化硅SiC衬底1,以及沉积在碳化硅衬底上的第一外延层2、第二外延层3、第三外延层4、第四外延层5、第五外延层6、第六外延层7、覆盖在第五外延层6表面与第六外延层7侧壁的绝缘介质薄膜8、位于第六外延层7表面的阳极9、位于SiC衬底1背面的阴极10。增强了p+发射区的注入效率,改善了由于空穴浓度低导致的上pnp晶体管增益小的问题,缩短了碳化硅光触发晶闸管的开通延迟时间,为紫外发光二极管触发碳化硅光触发晶闸管提供可行的技术方案。The structure of the present invention includes a silicon carbide SiC substrate 1, and a first epitaxial layer 2, a second epitaxial layer 3, a third epitaxial layer 4, a fourth epitaxial layer 5, and a fifth epitaxial layer deposited on the silicon carbide substrate 6. The sixth epitaxial layer 7, the insulating dielectric film 8 covering the surface of the fifth epitaxial layer 6 and the sidewall of the sixth epitaxial layer 7, the anode 9 located on the surface of the sixth epitaxial layer 7, and the cathode 10 located on the back of the SiC substrate 1 . The injection efficiency of the p+ emitter is enhanced, the problem of small gain of the upper pnp transistor caused by the low hole concentration is improved, the turn-on delay time of the silicon carbide light-triggered thyristor is shortened, and it is feasible for the ultraviolet light-emitting diode to trigger the silicon carbide light-triggered thyristor technical solutions.

Claims (10)

1.一种具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:包括SiC衬底(1),该SiC衬底(1)的材料为n型4H-SiC,1. A silicon carbide light-triggered thyristor with a double-layer thin n-base region, characterized in that: comprising a SiC substrate (1), the material of the SiC substrate (1) is n-type 4H-SiC, 在SiC衬底(1)之上制作有第一外延层(2),即n+发射区,该第一外延层(2)的材料为n型4H-SiC;A first epitaxial layer (2), that is, an n + emitter region, is formed on the SiC substrate (1), and the material of the first epitaxial layer (2) is n-type 4H-SiC; 在第一外延层(2)之上制作有第二外延层(3),即p+缓冲层,该第二外延层(3)的材料为p型4H-SiC;A second epitaxial layer (3), i.e. a p + buffer layer, is formed on the first epitaxial layer (2), and the material of the second epitaxial layer (3) is p-type 4H-SiC; 在第二外延层(3)之上制作有第三外延层(4),即p-长基区,该第三外延层(4)的材料为p型4H-SiC;A third epitaxial layer (4), i.e. a p - long base region, is formed on the second epitaxial layer (3), and the material of the third epitaxial layer (4) is p-type 4H-SiC; 在第三外延层(4)之上制作有第四外延层(5),即下层薄n基区,该第四外延层(5)的材料为n型4H-SiC;A fourth epitaxial layer (5), that is, the lower thin n-base region, is formed on the third epitaxial layer (4), and the material of the fourth epitaxial layer (5) is n-type 4H-SiC; 在第四外延层(5)之上制作有第五外延层(6),即上层薄n-基区,该第五外延层(6)的材料为n型4H-SiC;On the fourth epitaxial layer (5), a fifth epitaxial layer (6), that is, the upper thin n - base region, is formed, and the material of the fifth epitaxial layer (6) is n-type 4H-SiC; 在第五外延层(6)之上制作有第六外延层(7),即p+发射区,分为尺寸相同的多个凸台,每个凸台的侧壁为平面,该第六外延层(7)的材料为p型4H-SiC;On the fifth epitaxial layer (6), a sixth epitaxial layer (7), that is, the p + emission region, is formed, which is divided into a plurality of bosses with the same size, and the side wall of each boss is a plane, and the sixth epitaxial layer The material of layer (7) is p-type 4H-SiC; 在第三外延层(4)上部镶嵌有结终端(10),并且结终端(10)位于第四外延层(5)和第五外延层(6)的末端之外,呈p型;A junction terminal (10) is embedded on the upper part of the third epitaxial layer (4), and the junction terminal (10) is located outside the ends of the fourth epitaxial layer (5) and the fifth epitaxial layer (6), and is p-type; 还包括绝缘介质薄膜(8),绝缘介质薄膜(8)覆盖在第六外延层(7)的各个凸台侧壁、各个凸台之间的第五外延层(6)表面以及结终端(10)台面的侧壁与表面,位于各个凸台之间的部分的高度低于凸台的上端面;It also includes an insulating dielectric film (8), and the insulating dielectric film (8) covers the side walls of each boss of the sixth epitaxial layer (7), the surface of the fifth epitaxial layer (6) between each boss, and the junction terminal (10 ) The height of the side wall and surface of the table, the part between each boss is lower than the upper end surface of the boss; 在第六外延层(7)的各个凸台上端面覆盖有阳极(9);在SiC衬底(1)下端面覆盖有阴极(11)。An anode (9) is covered on the upper surface of each boss of the sixth epitaxial layer (7); a cathode (11) is covered on the lower surface of the SiC substrate (1). 2.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的第六外延层(7)的各个凸台为叉指结构、平行长条状、圆环形、正方形或渐开线形台面之一,或其组合形状;2. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: each boss of the sixth epitaxial layer (7) is an interdigitated structure, parallel strip-shaped , one of circular, square or involute table tops, or a combination thereof; 各凸台的间距为0.1μm-1cm,各凸台的高度为0.1μm-6.1μm,各凸台的高度不小于p+发射区的厚度。The pitch of each boss is 0.1 μm-1 cm, the height of each boss is 0.1 μm-6.1 μm, and the height of each boss is not less than the thickness of the p + emitting region. 3.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的上层薄n基区的掺杂浓度低于下层薄n基区的掺杂浓度。3. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: the doping concentration of the upper thin n-base region is lower than that of the lower thin n-base region . 4.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的SiC衬底(1)的厚度为1μm-500μm,该SiC衬底(1)的上端表面积为1μm2-2000cm24. The silicon carbide light-triggered thyristor with a double-layer thin n-base region according to claim 1, characterized in that: the thickness of the SiC substrate (1) is 1 μm-500 μm, and the SiC substrate (1) The surface area of the upper end is 1 μm 2 -2000 cm 2 . 5.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:5. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: 所述的第一外延层(2)的厚度为0.1μm-3μm,该第一外延层(2)的上端表面积为1μm2-2000cm2The thickness of the first epitaxial layer (2) is 0.1 μm-3 μm, and the upper end surface area of the first epitaxial layer (2) is 1 μm 2 -2000 cm 2 ; 第二外延层(3)的厚度为0.1μm-3μm,该第二外延层(3)的上端表面积为1μm2-2000cm2The thickness of the second epitaxial layer (3) is 0.1 μm-3 μm, and the surface area of the upper end of the second epitaxial layer (3) is 1 μm 2 -2000 cm 2 ; 第三外延层(4)的厚度为1μm-500μm,该第三外延层(4)的上端表面积为1μm2-2000cm2The thickness of the third epitaxial layer (4) is 1 μm-500 μm, and the surface area of the upper end of the third epitaxial layer (4) is 1 μm 2 -2000 cm 2 ; 第四外延层(5)的厚度为0.1μm-2.4μm,该第四外延层(5)的上端表面积为1μm2-2000cm2The thickness of the fourth epitaxial layer (5) is 0.1 μm-2.4 μm, and the surface area of the upper end of the fourth epitaxial layer (5) is 1 μm 2 -2000 cm 2 ; 第五外延层(6)的厚度为0.1μm-2.4μm,该第五外延层(6)的上端表面积为1μm2-2000cm2The thickness of the fifth epitaxial layer (6) is 0.1 μm-2.4 μm, and the upper end surface area of the fifth epitaxial layer (6) is 1 μm 2 -2000 cm 2 ; 第六外延层(7)的厚度为0.1μm-6μm,单个凸台的上端表面积为1μm2-2000cm2The thickness of the sixth epitaxial layer (7) is 0.1 μm-6 μm, and the surface area of the upper end of a single boss is 1 μm 2 -2000 cm 2 . 6.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的阳极(9)由阳极金属与阳极压焊块组成,阳极压焊块覆盖在阳极金属的上表面,厚度为0.1μm-100μm;所述的阴极(11)由阴极金属与阴极压焊块组成,阴极压焊块覆盖在阴极金属的背面,厚度为0.1μm-100μm。6. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: the anode (9) is composed of an anode metal and an anode welding block, and the anode welding block covers the The upper surface of the anode metal has a thickness of 0.1 μm-100 μm; the cathode (11) is composed of cathode metal and cathode welding block, and the cathode welding block covers the back of the cathode metal with a thickness of 0.1 μm-100 μm. 7.根据权利要求6所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的阳极金属、阴极金属、阳极压焊块及阴极压焊块的材料为Ti、Ni、W、Ta、Al、Ag或Au之一,或Ti、Ni、W、Ta、Al、Ag、Au中任意两种或多种的组合。7. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 6, characterized in that: the materials of the anode metal, the cathode metal, the anode soldering block and the cathode soldering block are Ti, One of Ni, W, Ta, Al, Ag or Au, or a combination of any two or more of Ti, Ni, W, Ta, Al, Ag, Au. 8.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的绝缘介质薄膜(8)厚度为0.1μm-2μm。8. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: the thickness of the insulating dielectric film (8) is 0.1 μm-2 μm. 9.根据权利要求1所述的具有双层薄n基区的碳化硅光触发晶闸管,其特征在于:所述的结终端(10)厚度不大于1μm,宽度为1μm-1mm。9. The silicon carbide light-triggered thyristor with double-layer thin n-base region according to claim 1, characterized in that: the thickness of the junction terminal (10) is not greater than 1 μm, and the width is 1 μm-1 mm. 10.一种具有双层薄n基区的碳化硅光触发晶闸管的制作方法,其特征在于,按照以下步骤实施:10. A method for manufacturing a silicon carbide light-triggered thyristor with a double-layer thin n-base region, characterized in that, it is implemented according to the following steps: 步骤1:采用CVD的方法,在SiC衬底(1)上表面向上依次生长第一外延层(2)、第二外延层(3)、第三外延层(4)、第四外延层(5)、第五外延层(6)、第六外延层(7);Step 1: Using the CVD method, the first epitaxial layer (2), the second epitaxial layer (3), the third epitaxial layer (4), and the fourth epitaxial layer (5) are sequentially grown on the upper surface of the SiC substrate (1). ), the fifth epitaxial layer (6), the sixth epitaxial layer (7); 其中SiC衬底(1)的掺杂类型为n型,厚度为1μm-500μm,其掺杂浓度为1×1014-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the SiC substrate (1) is n-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ; 第一外延层(2)的掺杂类型为n型,厚度为0.1μm-3μm,其掺杂浓度为5×1017-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the first epitaxial layer (2) is n-type, the thickness is 0.1 μm-3 μm, its doping concentration is 5×10 17 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ; 第二外延层(3)的掺杂类型为p型,厚度为0.1μm-3μm,其掺杂浓度为5×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the second epitaxial layer (3) is p-type, the thickness is 0.1 μm-3 μm, its doping concentration is 5×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000 cm 2 ; 第三外延层(4)的掺杂类型为p型,厚度为1μm-500μm,其掺杂浓度为1×1014-3×1016cm-3,上端表面积为1μm2-2000cm2The doping type of the third epitaxial layer (4) is p-type, the thickness is 1 μm-500 μm, the doping concentration is 1×10 14 -3×10 16 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ; 第四外延层(5)的掺杂类型为n型,厚度为0.1μm-2.4μm,其掺杂浓度为1×1016-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the fourth epitaxial layer (5) is n-type, the thickness is 0.1 μm-2.4 μm, the doping concentration is 1×10 16 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ; 第五外延层(6)的掺杂类型为n-型,厚度为0.1μm-2.4μm,其掺杂浓度为1×1014-1×1017cm-3,上端表面积为1μm2-2000cm2The doping type of the fifth epitaxial layer (6) is n - type, the thickness is 0.1 μm-2.4 μm, the doping concentration is 1×10 14 -1×10 17 cm -3 , and the upper surface area is 1 μm 2 -2000cm 2 ; 第六外延层(7)的掺杂类型为p型,厚度为0.1μm-6μm,其掺杂浓度为1×1018-1×1022cm-3,上端表面积为1μm2-2000cm2The doping type of the sixth epitaxial layer (7) is p-type, the thickness is 0.1 μm-6 μm, its doping concentration is 1×10 18 -1×10 22 cm -3 , and the upper surface area is 1 μm 2 -2000 cm 2 ; 步骤2:在第六外延层(7)上采用曝光技术,获得图形化表面;Step 2: using exposure technology on the sixth epitaxial layer (7) to obtain a patterned surface; 步骤3:在图形化表面上进行刻蚀,采用干法刻蚀,形成第六外延层(7)的多个凸台,各凸台的间距为0.1μm-1cm,各凸台的高度为0.1μm-6.1μm,各凸台的高度不小于第六外延层(7)的厚度;Step 3: Etching is carried out on the patterned surface, and a plurality of bosses of the sixth epitaxial layer (7) are formed by dry etching, the distance between each boss is 0.1 μm-1 cm, and the height of each boss is 0.1 μm-1 cm. μm-6.1μm, the height of each boss is not less than the thickness of the sixth epitaxial layer (7); 步骤4:在外延层上表面采用曝光技术,获得图形化表面;Step 4: Use exposure technology on the upper surface of the epitaxial layer to obtain a patterned surface; 步骤5:在图形化表面上进行刻蚀,采用干法刻蚀,形成终端台面,该终端台面高度为0.2μm-500μm,其高度不小于第四外延层(5)与第五外延层(6)厚度之和;Step 5: Etching is performed on the patterned surface, and a terminal mesa is formed by dry etching. The height of the terminal mesa is 0.2 μm-500 μm, and its height is not less than that of the fourth epitaxial layer (5) and the fifth epitaxial layer (6 ) sum of thicknesses; 步骤6:对步骤5得到的器件进行离子注入,在终端台面向下形成结终端(10),注入离子为铝离子或硼离子;结终端(10)的厚度不大于1μm,宽度为1μm-1mm;离子注入的能量为100eV-700KeV,注入温度为0℃-900℃,注入的剂量为1×1010-1×1016cm-2Step 6: Perform ion implantation on the device obtained in step 5, and form a junction terminal (10) downward on the terminal mesa, the implanted ions are aluminum ions or boron ions; the thickness of the junction terminal (10) is not greater than 1 μm, and the width is 1 μm-1mm ; The ion implantation energy is 100eV-700KeV, the implantation temperature is 0°C-900°C, and the implantation dose is 1×10 10 -1×10 16 cm -2 ; 步骤7:去除光刻掩膜,进行高温退火,高温退火温度为900℃-2100℃,退火气氛为惰性气体氛围;Step 7: remove the photolithography mask, perform high-temperature annealing, the high-temperature annealing temperature is 900°C-2100°C, and the annealing atmosphere is an inert gas atmosphere; 步骤8:在器件上表面生长绝缘介质薄膜(8),所述绝缘介质薄膜(8)覆盖第六外延层(7)的凸台侧壁、凸台之间第五外延层(6)的表面以及终端台面的侧壁与表面;所述绝缘介质薄膜(8)厚度为0.1μm-2μm;Step 8: growing an insulating dielectric film (8) on the upper surface of the device, the insulating dielectric film (8) covering the side walls of the bosses of the sixth epitaxial layer (7) and the surface of the fifth epitaxial layer (6) between the bosses And the side wall and surface of the terminal table; the thickness of the insulating dielectric film (8) is 0.1 μm-2 μm; 步骤9:对绝缘介质薄膜(8)进行刻蚀,将第六外延层(7)的各个凸台上表面的绝缘介质薄膜(8)去除,保留其他部分的绝缘介质薄膜(8);Step 9: Etching the insulating dielectric film (8), removing the insulating dielectric film (8) on the upper surface of each boss of the sixth epitaxial layer (7), and retaining other parts of the insulating dielectric film (8); 步骤10:在第六外延层(7)的凸台上表面淀积阳极金属;Step 10: Depositing anode metal on the surface of the boss of the sixth epitaxial layer (7); 步骤11:在SiC衬底(1)的背面淀积阴极金属;Step 11: Deposit cathode metal on the back side of SiC substrate (1); 步骤12:对步骤11得到的制品在氮气或惰性气体保护下快速热退火,退火温度为500℃-1200℃,退火时间为10秒-10分钟;Step 12: rapid thermal annealing the product obtained in step 11 under the protection of nitrogen or inert gas, the annealing temperature is 500°C-1200°C, and the annealing time is 10 seconds-10 minutes; 步骤13:在阳极金属上淀积阳极压焊块;Step 13: Depositing an anode pressure solder bump on the anode metal; 步骤14:在阴极金属上淀积阴极压焊块,完成制备。Step 14: Deposit the cathode pad on the cathode metal to complete the preparation.
CN201710711313.1A 2017-08-18 2017-08-18 A silicon carbide light-triggered thyristor with a double-layer thin n-base region and a manufacturing method thereof Active CN107579115B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710711313.1A CN107579115B (en) 2017-08-18 2017-08-18 A silicon carbide light-triggered thyristor with a double-layer thin n-base region and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710711313.1A CN107579115B (en) 2017-08-18 2017-08-18 A silicon carbide light-triggered thyristor with a double-layer thin n-base region and a manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN107579115A true CN107579115A (en) 2018-01-12
CN107579115B CN107579115B (en) 2020-05-22

Family

ID=61033794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710711313.1A Active CN107579115B (en) 2017-08-18 2017-08-18 A silicon carbide light-triggered thyristor with a double-layer thin n-base region and a manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN107579115B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717945A (en) * 2018-05-24 2018-10-30 西安理工大学 A kind of SiC light triggered thyristors with NiO/SiC heterogeneous propellant knots
CN111564533A (en) * 2020-04-07 2020-08-21 中国科学院上海微系统与信息技术研究所 Preparation method of 1550nm waveband single photon source, single photon source and optical device
CN112289857A (en) * 2020-11-02 2021-01-29 湖南大学 A Novel SiC GTO Device with Dual Base Regions and Dual Emitter Regions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU209746U1 (en) * 2021-11-19 2022-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" (НовГУ) Magnetoelectric thyristor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703642B1 (en) * 2000-02-08 2004-03-09 The United States Of America As Represented By The Secretary Of The Army Silicon carbide (SiC) gate turn-off (GTO) thyristor structure for higher turn-off gain and larger voltage blocking when in the off-state
JP2010147083A (en) * 2008-12-16 2010-07-01 Kansai Electric Power Co Inc:The Gate turnoff thyristor device and bipolar transistor apparatus
CN205881908U (en) * 2016-07-15 2017-01-11 厦门集顺半导体制造有限公司 Two wavy base region GCT devices with two gate poles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703642B1 (en) * 2000-02-08 2004-03-09 The United States Of America As Represented By The Secretary Of The Army Silicon carbide (SiC) gate turn-off (GTO) thyristor structure for higher turn-off gain and larger voltage blocking when in the off-state
JP2010147083A (en) * 2008-12-16 2010-07-01 Kansai Electric Power Co Inc:The Gate turnoff thyristor device and bipolar transistor apparatus
CN205881908U (en) * 2016-07-15 2017-01-11 厦门集顺半导体制造有限公司 Two wavy base region GCT devices with two gate poles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RANADEEP DUTTA ET AL: "Optimal design of two layered n base in a gate turn-off thyristor", 《21ST ANNUAL IEEE CONFERENCE ON POWER ELECTRONICS SPECIALISTS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717945A (en) * 2018-05-24 2018-10-30 西安理工大学 A kind of SiC light triggered thyristors with NiO/SiC heterogeneous propellant knots
CN108717945B (en) * 2018-05-24 2022-01-07 西安理工大学 SiC light-triggered thyristor with NiO/SiC heterojunction emitter
CN111564533A (en) * 2020-04-07 2020-08-21 中国科学院上海微系统与信息技术研究所 Preparation method of 1550nm waveband single photon source, single photon source and optical device
CN111564533B (en) * 2020-04-07 2021-06-22 中国科学院上海微系统与信息技术研究所 Preparation method of single photon source in 1550nm band, single photon source and optical device
CN112289857A (en) * 2020-11-02 2021-01-29 湖南大学 A Novel SiC GTO Device with Dual Base Regions and Dual Emitter Regions

Also Published As

Publication number Publication date
CN107579115B (en) 2020-05-22

Similar Documents

Publication Publication Date Title
CN105633168A (en) SiC grooved metal oxide semiconductor field effect transistor (MOSFET) with integration of Schottky diode and fabrication method of SiC grooved MOSFET
CN105977154A (en) Diffusion-technology-based manufacture method for fast recovery diode chip having double buffering layers
CN107579115A (en) A silicon carbide light-triggered thyristor with a double-layer thin n-base region and its manufacturing method
CN103022154B (en) A kind of fast recovery diode and manufacture method
CN106601826B (en) Fast recovery diode and manufacturing method thereof
US8835935B2 (en) Trench MOS transistor having a trench doped region formed deeper than the trench gate
CN103904135A (en) Schottky diode and manufacturing method thereof
CN106611776A (en) N-type silicon carbide Schottky diode structure
CN102779858B (en) Power diode device and preparation method thereof
CN106684157A (en) Three-stage field plate terminal-based 4H-SiC schottky diode and manufacturing method
CN103872108B (en) IGBT structure and preparation method thereof
CN103441152A (en) Trench MOS barrier Schottky diode and manufacturing method
CN115832057A (en) A kind of silicon carbide MOSFET device and preparation method
CN112466936A (en) High-voltage IGBT device and preparation method thereof
CN108717945B (en) SiC light-triggered thyristor with NiO/SiC heterojunction emitter
CN108493243B (en) A silicon carbide phototriggered thyristor with variable doping short base region
CN106057914A (en) Double step field plate terminal based 4H-SiC Schottky diode and manufacturing method thereof
CN104167436A (en) Semiconductor power device structure
CN103681817B (en) IGBT device and manufacturing method thereof
JP2011204716A (en) Power semiconductor device and method of manufacturing the same
CN102891173A (en) Trap cut plane terminal structure suitable for GCT (gate commutation transistor) device and preparation method thereof
CN107863384A (en) Injection enhancing buffer layer structure and the SiC light triggered thyristors containing the structure
CN111129137B (en) SiC insulated gate bipolar transistor with NiO/SiC pn heterojunction
CN112038412A (en) Silicon carbide-based DSRD device with p-type variable doping base region and preparation method thereof
JP5696815B2 (en) Semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant