CN107576314A - Float type depopulated zone rivers and lakes automatic monitoring system - Google Patents
Float type depopulated zone rivers and lakes automatic monitoring system Download PDFInfo
- Publication number
- CN107576314A CN107576314A CN201710889529.7A CN201710889529A CN107576314A CN 107576314 A CN107576314 A CN 107576314A CN 201710889529 A CN201710889529 A CN 201710889529A CN 107576314 A CN107576314 A CN 107576314A
- Authority
- CN
- China
- Prior art keywords
- water
- lakes
- rivers
- monitoring system
- automatic monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 119
- 238000004891 communication Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000007667 floating Methods 0.000 claims description 31
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 abstract 1
- 239000000945 filler Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于水域监测技术领域,具体涉及一种浮标式无人区河流湖泊自动监测系统。The invention belongs to the technical field of water area monitoring, and in particular relates to a buoy-type automatic monitoring system for rivers and lakes in uninhabited areas.
背景技术Background technique
目前,我国水资源紧张、水污染严重,水质监测是水资源管理与保护的重要基础,水质监测提供的水质信息显得尤为重要,尤其是一些亟待开发的湖泊水质的监测。对于需要随意改变监测点的海域、河流、湖泊水体的监测主要是通过浮标式水质监测站来实现,通过监测达到及时掌握主要流域重点断面水体的水深、流速以及水质状况等。At present, my country's water resources are tense and water pollution is serious. Water quality monitoring is an important basis for water resource management and protection. The water quality information provided by water quality monitoring is particularly important, especially the monitoring of water quality of some lakes that are in urgent need of development. The monitoring of sea areas, rivers, and lakes where monitoring points need to be changed at will is mainly realized through buoy-type water quality monitoring stations. Through monitoring, the water depth, flow velocity, and water quality of key sections of the main river basin can be grasped in a timely manner.
现有的浮标式水质监测系统大多数都应用于监测条件优越的的河流和湖泊,对于高寒、高盐、气候恶劣的无人区河流湖泊监测应用较少,现有的浮标式水质监测设备存在以下的缺点:(1)无法再不具备施工条件的无人区部署;(2)无法适应无人区恶劣的自然环境。Most of the existing buoy-type water quality monitoring systems are used in rivers and lakes with superior monitoring conditions. There are few applications for monitoring rivers and lakes in uninhabited areas with high cold, high salinity, and harsh climate. Existing buoy-type water quality monitoring equipment exists The following disadvantages: (1) can no longer be deployed in no-man's land without construction conditions; (2) cannot adapt to the harsh natural environment of no-man's land.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术中的不足,提供一种浮标式无人区河流湖泊自动监测系统,其能够在无人区恶劣气候下的河流、湖泊等环境下稳定运行,无需基建、无需建立通讯基站,运行和维护成本低。The purpose of the present invention is to overcome the deficiencies in the above-mentioned prior art, and provide a buoy-type automatic monitoring system for rivers and lakes in uninhabited areas, which can operate stably in rivers, lakes and other environments under harsh climates in uninhabited areas, without the need for infrastructure, There is no need to establish a communication base station, and the operation and maintenance costs are low.
为实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种浮标式无人区河流湖泊自动监测系统,包括浮球、水底装置和连接于浮球和水底装置之间的系留缆绳;所述水底装置自然嵌入在水底,所述的浮球内部设置有控制中枢和通讯设备,浮球的外部设置有太阳能电池板;湖泊自动监测系统设置有湖水传感器单元,实现水位、流速、水质、水温参数的测量;所述控制中枢与湖水传感器单元、太阳能电池板电联接,并将湖水传感器单元监测的数据通过通讯设备传输至外部的数据中心。A buoy-type automatic monitoring system for rivers and lakes in uninhabited areas, including a floating ball, an underwater device, and a mooring cable connected between the floating ball and the underwater device; the underwater device is naturally embedded in the bottom of the water, and the inside of the floating ball is set There is a control center and communication equipment, and the outside of the floating ball is equipped with a solar panel; the lake automatic monitoring system is equipped with a lake sensor unit to realize the measurement of water level, flow velocity, water quality, and water temperature parameters; the control center is connected with the lake water sensor unit, solar battery The board is electrically connected, and the data monitored by the lake sensor unit is transmitted to the external data center through the communication equipment.
进一步的,浮球的底部设置有水面压力传感器,水底装置的顶部设置有水底压力传感器,所述的系留缆绳内置传输电缆,将水底压力传感器与控制单元电联接;所述的系留缆绳的比重与测量湖水的密度相当;自动监测系统获取水面压力传感器和水底压力传感器数据,计算得到水面和水底压力差,进而测量得到河流、湖泊的相对水位参数。Further, the bottom of the floating ball is provided with a water surface pressure sensor, and the top of the underwater device is provided with a bottom pressure sensor, and the mooring cable has a built-in transmission cable to electrically connect the bottom pressure sensor with the control unit; The specific gravity is equivalent to the density of the measured lake water; the automatic monitoring system obtains the data of the water surface pressure sensor and the bottom pressure sensor, calculates the pressure difference between the water surface and the bottom of the water, and then measures the relative water level parameters of rivers and lakes.
进一步的,所述的水面压力传感器设置在水面以下0.3-2m。Further, the water surface pressure sensor is arranged 0.3-2m below the water surface.
进一步的,所述的浮球底部设置有流速传感器、水温传感器和水质传感装置。Further, the bottom of the floating ball is provided with a flow rate sensor, a water temperature sensor and a water quality sensing device.
进一步的,所述的太阳能电池板沿360°布置在浮球的上半球外圈。Further, the solar panels are arranged on the outer ring of the upper hemisphere of the floating ball along 360°.
进一步的,所述的通讯设备的天线设置在浮球的顶端。Further, the antenna of the communication device is set on the top of the floating ball.
进一步的,所述的水面压力传感器和水底压力传感器均为压力传感器,所述的压力传感器与控制中枢电连接。Further, both the water surface pressure sensor and the water bottom pressure sensor are pressure sensors, and the pressure sensor is electrically connected to the control center.
进一步的,所述的水质传感装置包括溶解氧、Ph值、密度、盐度和浊度指标的水质传感器,所述水质传感器均与控制中枢电连接。Further, the water quality sensing device includes water quality sensors for dissolved oxygen, Ph value, density, salinity and turbidity indicators, and the water quality sensors are all electrically connected to the control center.
进一步的,所述的流量传感器是一种超声波流量传感器,与控制中枢电连接。Further, the flow sensor is an ultrasonic flow sensor, which is electrically connected with the control center.
进一步的,所述的多功能系留缆绳由防护外皮及内置的多芯传输电缆、塑料填充物和芳纶绳组成。Further, the multi-functional mooring cable is composed of a protective sheath, a built-in multi-core transmission cable, a plastic filler and an aramid rope.
进一步的,所述水底装置外表面采用喷铝封闭的处理,同时水底装置下水前涂抹长效防污漆,以防止海洋生物的附着。Further, the outer surface of the underwater device is sealed by spraying aluminum, and the underwater device is coated with long-term antifouling paint before launching to prevent the attachment of marine organisms.
进一步的,所述的水底装置为船锚或金属重物。Further, the underwater device is a ship anchor or a metal weight.
本发明的有益效果是:The beneficial effects of the present invention are:
一、本发明的浮球上设置有通讯设备,浮球底部设置有流速传感器、水温传感器和水质传感装置能够有效的对检测到的信号进行传送,实现湖泊实时水流速度、水温以及水质的在线监测。1. The floating ball of the present invention is equipped with communication equipment, and the bottom of the floating ball is equipped with a flow rate sensor, a water temperature sensor and a water quality sensing device, which can effectively transmit the detected signals, and realize the online monitoring of the real-time water flow speed, water temperature and water quality of the lake. monitor.
二、本发明的控制中枢计算水底压力传感器和水面压力传感器的数据,计算得到水面和水底压力差,进而测量得到河流湖泊的相对水位,克服了大气压力变化等环境因素对水位测量的影响。同时系留缆绳的密度与水的密度相当,避免了对压力测量结果的影响。2. The control center of the present invention calculates the data of the water bottom pressure sensor and the water surface pressure sensor, calculates the pressure difference between the water surface and the water bottom, and then measures the relative water levels of rivers and lakes, which overcomes the influence of environmental factors such as atmospheric pressure changes on water level measurement. At the same time, the density of the mooring cable is equivalent to that of water, which avoids the influence on the pressure measurement results.
三、本发明的浮球外部由360°覆盖的太阳能电池板构成,可以实现自己供电,低功耗的运行。3. The outside of the floating ball of the present invention is composed of 360° covered solar panels, which can realize self-powered and low-power operation.
四、本发明装置可通过飞机船舶等抛投即可,无需基建。同时可以抵抗无人区恶劣的自然环境,稳定工作,彻底解决了无人区河流湖泊的长期自动监测问题。4. The device of the present invention can be thrown by aircraft, ships, etc. without infrastructure. At the same time, it can resist the harsh natural environment of no-man's land, work stably, and completely solve the problem of long-term automatic monitoring of rivers and lakes in no-man's land.
附图说明Description of drawings
图1本发明河流湖泊自动监测设备的结构示意图。Fig. 1 is a structural schematic diagram of the automatic monitoring equipment for rivers and lakes of the present invention.
图2本发明河流湖泊自动监测设备的信号传送示意图。Fig. 2 is a schematic diagram of signal transmission of the automatic monitoring equipment for rivers and lakes of the present invention.
图3本发明河流湖泊自动监测设备工作示意图。Fig. 3 is a working schematic diagram of the automatic monitoring equipment for rivers and lakes of the present invention.
图中:1.浮球,2.多功能系留缆绳,3.水底装置,4.通讯设备,5.流速传感器,6.水温传感器,7.水质传感装置,8.控制中枢,9.太阳能电池板,11.水面,12.水底,21.水面压力传感器,22.水底压力传感器。In the figure: 1. Floating ball, 2. Multifunctional mooring cable, 3. Underwater device, 4. Communication equipment, 5. Flow rate sensor, 6. Water temperature sensor, 7. Water quality sensing device, 8. Control center, 9. Solar panel, 11. water surface, 12. water bottom, 21. water surface pressure sensor, 22. water bottom pressure sensor.
具体实施方式detailed description
以下结合具体的实施方式对发明的原理和工作过程进行描述,所列举的实例只用于解释本发明,但非用于限定本发明的范围。The principle and working process of the invention will be described below in conjunction with specific embodiments, and the examples listed are only used to explain the present invention, but not to limit the scope of the present invention.
如图1-3所示,本发明的湖泊自动监测设备包括浮球1、水底装置3和连接于浮球1和水底装置3之间的系留缆绳2;所述的浮球1内部设置有通讯设备4和控制中枢8,浮球1的上半球外部设置有太阳能电池板9;所述的太阳能电池板9是360°布置在浮球1的上半球外圈,浮球1外部的太阳能电池板9用来吸收太阳能并且产生的能量用来维持该浮标式无人区河流湖泊自动监测设备的运行;所述的通讯设备4的天线设置在浮球1的顶端;所述的浮球1底部的流速传感器5、水温传感器6和水质传感装置7。As shown in Figures 1-3, the lake automatic monitoring equipment of the present invention includes a floating ball 1, an underwater device 3 and a mooring cable 2 connected between the floating ball 1 and the underwater device 3; the inside of the floating ball 1 is provided with The communication equipment 4 and the control center 8, the upper hemisphere of the floating ball 1 is provided with a solar cell panel 9; The plate 9 is used to absorb solar energy and the energy generated is used to maintain the operation of the buoy-type automatic monitoring equipment for rivers and lakes in uninhabited areas; the antenna of the communication device 4 is arranged on the top of the floating ball 1; the bottom of the floating ball 1 The flow rate sensor 5, the water temperature sensor 6 and the water quality sensing device 7.
所述的浮球1底部设置有水面压力传感器21;所述水底装置3嵌入在水底,水底装置3的顶部设置有水底压力传感器22,所述的多功能系留缆绳2内置传输电缆,将水底压力传感器22与控制单元电联接;所述的系留缆绳2的比重与测量湖水的密度相当;控制中枢8获取水面压力传感器21和水底压力传感器22数据,计算得到水面和水底压力差,进而测量得到湖泊的相对水位。所述的水面压力传感器21和水底压力传感器22均为振弦式压力传感器,所述的振弦式压力传感器与控制中枢8电连接。所述的水质监测传感装置7包括用于探测溶解氧、Ph值、密度、盐度和浊度指标的水质传感器,所述水质传感器均与控制中枢8电连接。The bottom of the buoy 1 is provided with a water surface pressure sensor 21; the bottom device 3 is embedded in the bottom, and the top of the bottom device 3 is provided with a bottom pressure sensor 22, and the multifunctional mooring cable 2 has a built-in transmission cable, and the bottom The pressure sensor 22 is electrically connected with the control unit; the specific gravity of the mooring cable 2 is equivalent to the density of the measured lake water; the control center 8 obtains the data of the water surface pressure sensor 21 and the water bottom pressure sensor 22, calculates the pressure difference between the water surface and the bottom of the water, and then measures Get the relative water level of the lake. Both the surface pressure sensor 21 and the bottom pressure sensor 22 are vibrating wire pressure sensors, and the vibrating wire pressure sensors are electrically connected to the control center 8 . The water quality monitoring sensing device 7 includes water quality sensors for detecting dissolved oxygen, Ph value, density, salinity and turbidity indicators, and the water quality sensors are all electrically connected to the control center 8 .
所述水底装置3可以为船锚或金属重物,用于将系留缆绳2及水底压力传感器22沉在水底的任意位置,并保持位置不动,其外表面采用喷铝封闭的处理,下水前涂抹长效防污漆,以防止海洋生物的附着。The underwater device 3 can be a ship's anchor or a metal weight, which is used to sink the mooring cable 2 and the underwater pressure sensor 22 to any position on the bottom of the water, and keep the position still. Apply a long-lasting antifouling paint to prevent marine life from attaching.
如何测量无人区河流湖泊的相对水位变化是本技术领域的难点之一。常规的方法需要人为干预,给其实施带来难度,本发明采取了一个巧妙的方法解决了这个问题。How to measure the relative water level changes of rivers and lakes in uninhabited areas is one of the difficulties in this technical field. Conventional methods require human intervention, which brings difficulty to its implementation. The present invention solves this problem by adopting an ingenious method.
本发明采用直升机或船只将监测系统投入湖泊,水底装置3会沉入水底的任意位置处,浮球1漂浮在水面11上,水底装置3嵌入至水底12的固定位置后保持不动,水底压力传感器22固定在船锚的顶部,相当于提供了一个压力的测量基准,由于多功能系留缆绳2比最深处的湖深还要长,故浮球1则浮出水面,水面压力传感器21设置在浮球的底部也就是水下0.5m-2m的位置处的固定位置,随着河流湖泊水的涨落而上升或下降。The present invention uses a helicopter or a ship to put the monitoring system into the lake, the underwater device 3 will sink to any position on the bottom of the water, the floating ball 1 will float on the water surface 11, and the underwater device 3 will remain still after being embedded in the fixed position of the bottom 12. The sensor 22 is fixed on the top of the anchor, which is equivalent to providing a pressure measurement reference. Since the multifunctional mooring cable 2 is longer than the depth of the deepest lake, the floating ball 1 then emerges from the water surface, and the water surface pressure sensor 21 is set At the bottom of the floating ball, which is a fixed position at a position of 0.5m-2m underwater, it rises or falls with the fluctuation of the water in rivers and lakes.
本发明采用水面压力传感器21和水底压力传感器22同时测量压力差,再根据水质传感器实测的湖水的密度,计算得到水面压力传感器21和水底压力传感器22之间的高度差,也就是水位差即水位的相对变化。这种双压力传感器的优势在于通过差值的方法克服了或者减小了大气压力、环境温度等对水深测量结果的影响,由于采用相同规格且一致性较好的压力传感器,确保了水位的测量精度。此外多功能系留缆绳2进行了配重设计,通过内部增加塑料填充物与传输的金属电缆匹配,确保其比重与湖水相当,不会将浮球1拉入水中,也不会将水底装置3带走偏离固定的湖床位置,确保了测量精度。The present invention adopts the water surface pressure sensor 21 and the water bottom pressure sensor 22 to measure the pressure difference at the same time, and then calculates the height difference between the water surface pressure sensor 21 and the water bottom pressure sensor 22 according to the density of the lake water measured by the water quality sensor, that is, the water level difference is the water level relative changes. The advantage of this dual pressure sensor is that it overcomes or reduces the influence of atmospheric pressure, ambient temperature, etc. on the water depth measurement results through the method of difference. Because the pressure sensor with the same specification and good consistency is used, the measurement of water level is ensured. precision. In addition, the multi-functional mooring cable 2 has a counterweight design, and the internal plastic filler is added to match the metal cable for transmission to ensure that its specific gravity is equivalent to that of the lake water, and will not pull the floating ball 1 into the water, nor will the underwater device 3 Taking away the deviation from the fixed lake bed position ensures the measurement accuracy.
工作时,浮标式无人区河流湖泊自动监测设备固定在湖床,通过浮球1表面的太阳能电池板9产生的能量供应整个系统的正常运行。水底装置3嵌入在水底,水底压力传感器将采集的信息通过多功能系留缆绳2的电单元传送数据到浮球底部中的控制中枢8,浮球1底部的水面压力传感器21通过电单元传送数据到浮球底部中的控制中枢8,控制中枢8通过相应的数据运算计算水面压力传感器和水底压力传感器测量的压力差,进而得出动态的水深情况;将水深的数据通过通讯设备4将数据信息传送到数据中心,水位高度超过预设的水位高度时,数据中心进行报警。When working, the buoy-type automatic monitoring equipment for rivers and lakes in uninhabited areas is fixed on the lake bed, and the energy generated by the solar panel 9 on the surface of the floating ball 1 supplies the normal operation of the entire system. The underwater device 3 is embedded in the bottom of the water, and the underwater pressure sensor transmits the collected information to the control center 8 in the bottom of the floating ball through the electric unit of the multifunctional mooring cable 2, and the water surface pressure sensor 21 at the bottom of the floating ball 1 transmits data through the electric unit To the control center 8 in the bottom of the float, the control center 8 calculates the pressure difference measured by the water surface pressure sensor and the bottom pressure sensor through corresponding data calculations, and then obtains the dynamic water depth situation; the data of the water depth is sent to the data information through the communication device 4 It is transmitted to the data center, and when the water level exceeds the preset water level, the data center will give an alarm.
所述的水质传感器将对溶解氧、Ph值、密度、盐度和浊度进行检测,将检测后的数据传送控制中枢8,控制中枢8通过通讯设备4将处理后的信息传送到数据中心,水质达标,则数据中心显示正常;水质不达标,数据中心进行报警。The water quality sensor will detect dissolved oxygen, Ph value, density, salinity and turbidity, and transmit the detected data to the control center 8, and the control center 8 transmits the processed information to the data center through the communication device 4, If the water quality is up to standard, the data center will display normal; if the water quality is not up to standard, the data center will give an alarm.
所述的水温传感器将对湖泊的水体温度进行测量,将检测到的数据传送控制中枢8,控制中枢8通过通讯设备4将数据信息传送到数据中心。The water temperature sensor will measure the water body temperature of the lake, and transmit the detected data to the control center 8, and the control center 8 will transmit the data information to the data center through the communication device 4.
系留缆绳由防护外皮及内置的多芯传输电缆、塑料填充物等组成,塑料填充物电性能好、密度小、价格低、成型容易被广泛的应用于电缆的填充;在实际的制作过程中,应保证系留缆绳的比重与测量湖水的密度大致相当,测量时系留缆绳不上浮也不下沉,避免对测量结果的影响。The tethered cable is composed of a protective sheath, a built-in multi-core transmission cable, and plastic fillers. The plastic filler has good electrical properties, low density, low price, and is easy to form and is widely used in cable filling; in the actual production process , It should be ensured that the specific gravity of the mooring cable is roughly equivalent to the density of the measured lake water, and the mooring cable does not float or sink during the measurement, so as to avoid the influence on the measurement results.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710889529.7A CN107576314A (en) | 2017-09-27 | 2017-09-27 | Float type depopulated zone rivers and lakes automatic monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710889529.7A CN107576314A (en) | 2017-09-27 | 2017-09-27 | Float type depopulated zone rivers and lakes automatic monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107576314A true CN107576314A (en) | 2018-01-12 |
Family
ID=61039277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710889529.7A Pending CN107576314A (en) | 2017-09-27 | 2017-09-27 | Float type depopulated zone rivers and lakes automatic monitoring system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107576314A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108613834A (en) * | 2018-06-28 | 2018-10-02 | 黄嘉鑫 | A kind of water conservancy water quality detection sample devices |
CN109085612A (en) * | 2018-09-20 | 2018-12-25 | 中车大连电力牵引研发中心有限公司 | Positioning device |
CN109110061A (en) * | 2018-10-16 | 2019-01-01 | 无锡鑫智科技有限公司 | A kind of float type water monitoring device and system |
CN109764929A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | Piezoelectric intelligent solution depth measurement device and measurement method |
CN109764928A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | A strain-type intelligent solution depth and density measurement device and measurement method |
CN109764927A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | Float-type intelligent solution depth measuring device and measuring method |
CN109827632A (en) * | 2019-04-04 | 2019-05-31 | 商丘师范学院 | Watermark Mapping Management and Maintenance System |
CN110116786A (en) * | 2019-04-30 | 2019-08-13 | 中国人民解放军海军工程大学 | Marine resources quick detection device and its Detection location platform localization method can be positioned |
CN110646573A (en) * | 2019-09-30 | 2020-01-03 | 浙江海洋大学 | Device and method for evaluating sea level rise caused by brine invasion |
CN110715749A (en) * | 2019-09-30 | 2020-01-21 | 河海大学 | Three-dimensional water temperature intelligent monitoring device, system and method suitable for complex waters |
CN110887534A (en) * | 2019-11-07 | 2020-03-17 | 中交天航港湾建设工程有限公司 | Rainstorm runoff experiment point location arrangement and detection system and method |
CN111121922A (en) * | 2020-02-29 | 2020-05-08 | 唐山现代工控技术有限公司 | Float type reservoir water level meter and measuring method thereof |
CN111505060A (en) * | 2020-05-25 | 2020-08-07 | 国家海洋技术中心 | Ocean skin layer salinity measurement buoy |
CN111693108A (en) * | 2020-07-23 | 2020-09-22 | 湖南星图空间信息技术有限公司 | Water level monitoring device based on computer sensing technology |
CN112033381A (en) * | 2019-04-09 | 2020-12-04 | 李敬文 | River channel barrier-free monitoring method |
CN112462024A (en) * | 2020-12-16 | 2021-03-09 | 上海海事大学 | Water quality monitoring device |
CN112623118A (en) * | 2021-01-05 | 2021-04-09 | 扎赉诺尔煤业有限责任公司 | Mine ecological pond water level and pollution condition monitor and using method thereof |
CN112683364A (en) * | 2020-12-14 | 2021-04-20 | 山东劳动职业技术学院(山东劳动技师学院) | Portable water level monitor, water level monitoring method and using method |
CN112857474A (en) * | 2021-01-20 | 2021-05-28 | 河北建筑工程学院 | River rainy season flow dynamic monitoring system and monitoring method thereof |
CN112903941A (en) * | 2021-01-21 | 2021-06-04 | 深圳市市政设计研究院有限公司 | Underground water detection alarm device |
CN113253304A (en) * | 2020-02-11 | 2021-08-13 | 中国石油天然气股份有限公司 | Positioning floating ball and method for monitoring river bank erosion condition by using same |
CN113341098A (en) * | 2021-07-15 | 2021-09-03 | 武汉永清环保科技工程有限公司 | Buoy type water quality monitoring system for mobile sewage treatment plant |
EP4001170A1 (en) * | 2020-11-23 | 2022-05-25 | Micro-Sensys GmbH | Device for measuring a liquid fill level in a container |
CN114689813A (en) * | 2022-03-28 | 2022-07-01 | 中国农业大学 | water quality monitoring system |
CN115574870A (en) * | 2022-11-24 | 2023-01-06 | 黑龙江省水利科学研究院 | A device and method for monitoring the health status of rivers and lakes |
CN116625465A (en) * | 2023-07-24 | 2023-08-22 | 青岛彬源科技有限公司 | Buoy type ocean water level observation platform |
RU2812614C1 (en) * | 2022-12-01 | 2024-01-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет"(ФГБОУ ВО "ИРНИТУ") | Method for measuring average water level in open reservoirs and device for its implementation |
CN118758272A (en) * | 2024-09-06 | 2024-10-11 | 陕西晖煌建筑劳务有限公司 | An intelligent flood control monitoring device and monitoring method for water conservancy projects |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201203456Y (en) * | 2008-06-06 | 2009-03-04 | 中国地质调查局水文地质环境地质调查中心 | Groundwater dynamic automatic monitor |
CN101696967A (en) * | 2009-10-29 | 2010-04-21 | 中国科学院上海微系统与信息技术研究所 | Lake water texture and water quality monitoring system and method based on wireless sensing network |
CN203965870U (en) * | 2014-07-23 | 2014-11-26 | 湖北亿立能科技股份有限公司 | Integral type Groundwater Monitoring system |
CN104670424A (en) * | 2014-12-24 | 2015-06-03 | 中国船舶重工集团公司第七一五研究所 | Section measuring buoy monitoring system |
CN105092810A (en) * | 2015-08-28 | 2015-11-25 | 烟台东润仪表有限公司 | Intelligent multiparameter-monitoring buoy device |
CN205049202U (en) * | 2015-10-13 | 2016-02-24 | 国家气候中心 | Liquid level detector |
CN106153150A (en) * | 2015-03-09 | 2016-11-23 | 天津奥优星通传感技术有限公司 | A kind of throwing type Level monitor |
CN207351441U (en) * | 2017-09-27 | 2018-05-11 | 长江水利委员会长江科学院 | Float type depopulated zone rivers and lakes automatic monitoring system |
-
2017
- 2017-09-27 CN CN201710889529.7A patent/CN107576314A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201203456Y (en) * | 2008-06-06 | 2009-03-04 | 中国地质调查局水文地质环境地质调查中心 | Groundwater dynamic automatic monitor |
CN101696967A (en) * | 2009-10-29 | 2010-04-21 | 中国科学院上海微系统与信息技术研究所 | Lake water texture and water quality monitoring system and method based on wireless sensing network |
CN203965870U (en) * | 2014-07-23 | 2014-11-26 | 湖北亿立能科技股份有限公司 | Integral type Groundwater Monitoring system |
CN104670424A (en) * | 2014-12-24 | 2015-06-03 | 中国船舶重工集团公司第七一五研究所 | Section measuring buoy monitoring system |
CN106153150A (en) * | 2015-03-09 | 2016-11-23 | 天津奥优星通传感技术有限公司 | A kind of throwing type Level monitor |
CN105092810A (en) * | 2015-08-28 | 2015-11-25 | 烟台东润仪表有限公司 | Intelligent multiparameter-monitoring buoy device |
CN205049202U (en) * | 2015-10-13 | 2016-02-24 | 国家气候中心 | Liquid level detector |
CN207351441U (en) * | 2017-09-27 | 2018-05-11 | 长江水利委员会长江科学院 | Float type depopulated zone rivers and lakes automatic monitoring system |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108613834B (en) * | 2018-06-28 | 2020-08-18 | 瑞安市可智科技有限公司 | Water quality testing sampling equipment |
CN108613834A (en) * | 2018-06-28 | 2018-10-02 | 黄嘉鑫 | A kind of water conservancy water quality detection sample devices |
CN109085612A (en) * | 2018-09-20 | 2018-12-25 | 中车大连电力牵引研发中心有限公司 | Positioning device |
CN109110061A (en) * | 2018-10-16 | 2019-01-01 | 无锡鑫智科技有限公司 | A kind of float type water monitoring device and system |
CN109764929A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | Piezoelectric intelligent solution depth measurement device and measurement method |
CN109764928A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | A strain-type intelligent solution depth and density measurement device and measurement method |
CN109764927A (en) * | 2019-03-14 | 2019-05-17 | 长沙学院 | Float-type intelligent solution depth measuring device and measuring method |
CN109764927B (en) * | 2019-03-14 | 2023-12-19 | 长沙学院 | Float-type intelligent solution depth measurement device and measurement method |
CN109764928B (en) * | 2019-03-14 | 2023-10-13 | 长沙学院 | Device and method for measuring depth and density of strain type intelligent solution |
CN109764929B (en) * | 2019-03-14 | 2023-10-13 | 长沙学院 | Piezoelectric intelligent solution depth measuring device and measuring method |
CN109827632A (en) * | 2019-04-04 | 2019-05-31 | 商丘师范学院 | Watermark Mapping Management and Maintenance System |
CN112033380A (en) * | 2019-04-09 | 2020-12-04 | 李敬文 | River channel barrier-free monitoring system |
CN112033381A (en) * | 2019-04-09 | 2020-12-04 | 李敬文 | River channel barrier-free monitoring method |
CN110116786B (en) * | 2019-04-30 | 2024-01-26 | 中国人民解放军海军工程大学 | Quick detection device capable of positioning ocean resources and detection positioning platform positioning method thereof |
CN110116786A (en) * | 2019-04-30 | 2019-08-13 | 中国人民解放军海军工程大学 | Marine resources quick detection device and its Detection location platform localization method can be positioned |
CN110715749A (en) * | 2019-09-30 | 2020-01-21 | 河海大学 | Three-dimensional water temperature intelligent monitoring device, system and method suitable for complex waters |
CN110715749B (en) * | 2019-09-30 | 2021-03-16 | 河海大学 | Three-dimensional water temperature intelligent monitoring device, system and method suitable for complex water area |
CN110646573A (en) * | 2019-09-30 | 2020-01-03 | 浙江海洋大学 | Device and method for evaluating sea level rise caused by brine invasion |
CN110887534A (en) * | 2019-11-07 | 2020-03-17 | 中交天航港湾建设工程有限公司 | Rainstorm runoff experiment point location arrangement and detection system and method |
CN110887534B (en) * | 2019-11-07 | 2020-10-30 | 中交天航港湾建设工程有限公司 | Rainstorm runoff experiment point location arrangement and detection system and method |
CN113253304A (en) * | 2020-02-11 | 2021-08-13 | 中国石油天然气股份有限公司 | Positioning floating ball and method for monitoring river bank erosion condition by using same |
CN111121922A (en) * | 2020-02-29 | 2020-05-08 | 唐山现代工控技术有限公司 | Float type reservoir water level meter and measuring method thereof |
CN111505060A (en) * | 2020-05-25 | 2020-08-07 | 国家海洋技术中心 | Ocean skin layer salinity measurement buoy |
CN111505060B (en) * | 2020-05-25 | 2020-10-30 | 国家海洋技术中心 | Ocean skin layer salinity measurement buoy |
CN111693108A (en) * | 2020-07-23 | 2020-09-22 | 湖南星图空间信息技术有限公司 | Water level monitoring device based on computer sensing technology |
CN111693108B (en) * | 2020-07-23 | 2022-05-20 | 湖南星图空间信息技术有限公司 | Water level monitoring device based on computer sensing technology |
US11867549B2 (en) | 2020-11-23 | 2024-01-09 | Micro-Sensys Gmbh | Device for determining a filling level of a liquid in a container |
DE102020214695B4 (en) | 2020-11-23 | 2022-06-09 | Micro-Sensys Gmbh | Device for determining the fill level of a liquid in a container |
EP4001170A1 (en) * | 2020-11-23 | 2022-05-25 | Micro-Sensys GmbH | Device for measuring a liquid fill level in a container |
DE102020214695A1 (en) | 2020-11-23 | 2022-05-25 | Micro-Sensys Gmbh | Device for determining the fill level of a liquid in a container |
CN112683364A (en) * | 2020-12-14 | 2021-04-20 | 山东劳动职业技术学院(山东劳动技师学院) | Portable water level monitor, water level monitoring method and using method |
CN112462024A (en) * | 2020-12-16 | 2021-03-09 | 上海海事大学 | Water quality monitoring device |
CN112623118B (en) * | 2021-01-05 | 2022-07-05 | 扎赉诺尔煤业有限责任公司 | Mine ecological pond water level and pollution condition monitor and using method thereof |
CN112623118A (en) * | 2021-01-05 | 2021-04-09 | 扎赉诺尔煤业有限责任公司 | Mine ecological pond water level and pollution condition monitor and using method thereof |
CN112857474A (en) * | 2021-01-20 | 2021-05-28 | 河北建筑工程学院 | River rainy season flow dynamic monitoring system and monitoring method thereof |
CN112903941A (en) * | 2021-01-21 | 2021-06-04 | 深圳市市政设计研究院有限公司 | Underground water detection alarm device |
CN113341098A (en) * | 2021-07-15 | 2021-09-03 | 武汉永清环保科技工程有限公司 | Buoy type water quality monitoring system for mobile sewage treatment plant |
CN114689813A (en) * | 2022-03-28 | 2022-07-01 | 中国农业大学 | water quality monitoring system |
CN114689813B (en) * | 2022-03-28 | 2023-09-26 | 中国农业大学 | water quality monitoring system |
CN115574870A (en) * | 2022-11-24 | 2023-01-06 | 黑龙江省水利科学研究院 | A device and method for monitoring the health status of rivers and lakes |
RU2812614C1 (en) * | 2022-12-01 | 2024-01-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет"(ФГБОУ ВО "ИРНИТУ") | Method for measuring average water level in open reservoirs and device for its implementation |
CN116625465B (en) * | 2023-07-24 | 2023-10-13 | 青岛彬源科技有限公司 | Buoy type ocean water level observation platform |
CN116625465A (en) * | 2023-07-24 | 2023-08-22 | 青岛彬源科技有限公司 | Buoy type ocean water level observation platform |
CN118758272A (en) * | 2024-09-06 | 2024-10-11 | 陕西晖煌建筑劳务有限公司 | An intelligent flood control monitoring device and monitoring method for water conservancy projects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107576314A (en) | Float type depopulated zone rivers and lakes automatic monitoring system | |
CN108189969B (en) | A deep-sea mooring submersible system based on real-time transmission of satellite communication data | |
CN109835438B (en) | An elevating submersible device | |
CN202624586U (en) | Online sea water quality monitoring buoy | |
CN206766283U (en) | A kind of novel solid observes oceanic buoy system | |
KR101011887B1 (en) | Marine observation buoy | |
CN207791067U (en) | A kind of buoy convenient for obtaining seafloor data monitors system | |
CN104670424A (en) | Section measuring buoy monitoring system | |
CN207351441U (en) | Float type depopulated zone rivers and lakes automatic monitoring system | |
CN108168957B (en) | Cylindrical anti-wind-wave ocean layered sampling water quality monitoring buoy | |
CN108583788A (en) | Three anchor formula buoys and method for Marine Sciences experiment and real-time profiling observation | |
CN206031703U (en) | Unmanned on duty formula is subsurface buoy system of early warning independently | |
CN110426076A (en) | A kind of floatation type environment monitoring device | |
CN110498017A (en) | A marine information comprehensive online monitoring buoy system | |
CN107702698A (en) | A kind of deep-sea is against formula echo sounding system and measuring method | |
CN104266637A (en) | Marine vertical profiling monitoring device | |
CN213455463U (en) | Integrated thermohaline deep flow detection device, detection chain and observation buoy system thereof | |
CN205506262U (en) | Seawater temperature section measuring device | |
CN111521160A (en) | Bottom-sitting type turbulence microstructure observation system | |
CN204037864U (en) | The anti-unrestrained aquatic monitoring ship of a kind of deepwater field | |
CN204642078U (en) | The multiple dimensioned simultaneous observation subsurface buoy of a kind of novel sea dynamic environment | |
CN108195357A (en) | A kind of observation and analysis system for coastal waters wave water level scene | |
CN204807161U (en) | Throw type water level monitoring devices | |
CN115792166B (en) | River flow speed buffer type underwater water quality monitoring device | |
CN104567828A (en) | Marine environment profile observation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |