[go: up one dir, main page]

CN107462173B - Microscopic vision-based displacement measurement method and system for micro-movement platform - Google Patents

Microscopic vision-based displacement measurement method and system for micro-movement platform Download PDF

Info

Publication number
CN107462173B
CN107462173B CN201710874305.9A CN201710874305A CN107462173B CN 107462173 B CN107462173 B CN 107462173B CN 201710874305 A CN201710874305 A CN 201710874305A CN 107462173 B CN107462173 B CN 107462173B
Authority
CN
China
Prior art keywords
micro
particle
image
search
micromotion platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710874305.9A
Other languages
Chinese (zh)
Other versions
CN107462173A (en
Inventor
卢国梁
朱永波
闫鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710874305.9A priority Critical patent/CN107462173B/en
Publication of CN107462173A publication Critical patent/CN107462173A/en
Application granted granted Critical
Publication of CN107462173B publication Critical patent/CN107462173B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开基于显微视觉的微动平台位移测量方法及系统,步骤:图像序列采集:通过微视觉系统采集一组图片序列;粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;最佳匹配位置获取:在以粗匹配位置为中心,利用全搜索块匹配算法在小邻域内搜索,获得最佳匹配位置;微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。本发明利用改进的粒子群算法和全区域搜索算法相结合,减少了计算资源消耗,实现了快速匹配与位移测量;该方法相对于已有微位移测量技术,测量设备成本低、精度高、可用于测量面内双自由度的微动系统。

The invention discloses a microscopic vision-based displacement measurement method and system for a micro-moving platform. The steps are as follows: image sequence acquisition: acquiring a set of image sequences through a micro-vision system; coarse matching position acquisition: using an improved particle swarm optimization algorithm to quickly perform a quick search in the entire search domain Search to obtain the rough matching position of the image block; obtain the best matching position: take the rough matching position as the center, use the full search block matching algorithm to search in a small neighborhood to obtain the best matching position; The imaging model of the vision system establishes the image Jacobian matrix, and converts the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-movement platform. Compared with the existing micro-displacement measurement technology, the method has the advantages of low cost of measurement equipment, high precision and high availability. A micro-motion system with two degrees of freedom in the measurement plane.

Description

基于显微视觉的微动平台位移测量方法及系统Microscopic vision-based displacement measurement method and system for micro-movement platform

技术领域technical field

本发明涉及基于显微视觉的微动平台位移测量方法及系统。The invention relates to a microscopic vision-based displacement measurement method and system for a micro-movement platform.

背景技术Background technique

现代科学技术正迅速向微小、超精密领域快速发展。微米、纳米技术的兴起,已经引发了制造、信息、材料、生物、医疗和国防等领域的重大变革。同时,微纳技术的发展也对超精密测量技术提出了更高的要求。由于非接触光学测量方法具有测量精度高、响应速度快、测量自由度多等优点从而在微纳领域得到了广泛的应用。目前,国内外的研究主要集中在计算机微视觉测量、频闪显微测量、激光多勒普测量、显微干涉测量等。其中,计算机微视觉测量是利用微视觉系统,通过对微视觉图像中运动矢量的分析,从而判断微动系统中运动部分位移情况,该系统成本较低,可测量自由度较多。但是,显微视觉中图像处理往往采用普通的图像块匹配法或者图像特征匹配估计微动平台位移,因而效率较低,难以满足测量系统的快速响应要求。Modern science and technology are rapidly developing into the micro and ultra-precision fields. The rise of micro and nanotechnology has triggered major changes in the fields of manufacturing, information, materials, biology, medical care and defense. At the same time, the development of micro-nano technology also puts forward higher requirements for ultra-precision measurement technology. The non-contact optical measurement method has been widely used in the micro-nano field due to its advantages of high measurement accuracy, fast response speed, and many degrees of measurement freedom. At present, researches at home and abroad mainly focus on computer microvision measurement, stroboscopic microscopic measurement, laser Dolphin measurement, microscopic interferometry and so on. Among them, the computer micro-vision measurement uses the micro-vision system to judge the displacement of the moving part in the micro-vision system by analyzing the motion vector in the micro-vision image. The system has low cost and can measure more degrees of freedom. However, in the image processing of microscopic vision, the common image block matching method or image feature matching is often used to estimate the displacement of the micro-movement platform, so the efficiency is low, and it is difficult to meet the fast response requirements of the measurement system.

发明内容SUMMARY OF THE INVENTION

针对上述现有技术及存在的问题,本发明的目的是提供基于显微视觉的微动平台位移测量方法及系统,可直接应用于微动平台测量,解决当前微纳操控平台测量中的技术问题。In view of the above-mentioned prior art and the existing problems, the purpose of the present invention is to provide a microscopic vision-based micro-movement platform displacement measurement method and system, which can be directly applied to the micro-movement platform measurement and solve the technical problems in the current micro-nano control platform measurement. .

本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:

基于显微视觉的微动平台位移测量方法,步骤如下:The microscopic vision-based displacement measurement method of the micro-movement platform, the steps are as follows:

步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): image sequence acquisition: collect a group of image sequences through the micro-vision system;

步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): coarse matching position acquisition: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the coarse matching position of the image block;

步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): obtaining the best matching position: taking the rough matching position as the center, using the full-area search matching algorithm to search in a small neighborhood to obtain the best matching position;

步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Calculation of displacement of the micro-movement platform: establish an image Jacobian matrix according to the imaging model of the micro-vision system, and convert the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-movement platform.

所述步骤(1)中,微视觉系统,包括:显微镜,所述显微镜顶部安装CCD相机,所述CCD相机与计算机终端连接,所述XY二自由度微动平台固定在显微镜载物台上,所述XY二自由度微动平台通过PZT控制驱动,所述XY二自由度微动平台上表面贴有标记物,标记物表面光滑;同轴光入射至标记物后反射经过显微镜光路在CCD相机靶平面成像,显微镜光轴垂直于标记物上表面,同时,显微镜光轴也垂直于CCD相机靶平面,CCD靶平面平行于标记物上表面。In the step (1), the micro-vision system includes: a microscope, a CCD camera is installed on the top of the microscope, the CCD camera is connected to a computer terminal, and the XY two-degree-of-freedom micro-movement platform is fixed on the microscope stage, The XY two-degree-of-freedom micro-movement platform is driven by PZT control, and the upper surface of the XY two-degree-of-freedom micro-movement platform is affixed with a marker, and the surface of the marker is smooth; after the coaxial light is incident on the marker, it is reflected through the optical path of the microscope and is detected in the CCD camera. In the target plane imaging, the optical axis of the microscope is perpendicular to the upper surface of the marker, and at the same time, the optical axis of the microscope is also perpendicular to the target plane of the CCD camera, and the CCD target plane is parallel to the upper surface of the marker.

所述步骤(2)中,粗匹配位置获取包括:In the described step (2), obtaining the rough matching position includes:

步骤(2-1):确定图像ROI区域,将ROI区域作为图像块匹配的解空间,ROI区域确定根据XY二自由度微动平台的位行程xR、显微镜放大倍数k、相机像元尺寸p以及图像块尺寸大小[X,Y]决定,选取的ROI区域尺寸最小为:Step (2-1): Determine the ROI area of the image, use the ROI area as the solution space for image block matching, and determine the ROI area according to the bit travel x R of the XY two-degree-of-freedom micro-movement platform, microscope magnification k, camera pixel size p And the size of the image block [X, Y] is determined, and the minimum size of the selected ROI area is:

步骤(2-2):选择累计绝对误差(summed absolute difference,SAD)作为匹配准则,累计绝对误差也是粒子群优化算法的目标函数,对每个图像中每个像素点[x+u,y+v]T,对应的适应值fit为:Step (2-2): Select the cumulative absolute difference (SAD) as the matching criterion. The cumulative absolute error is also the objective function of the particle swarm optimization algorithm. For each pixel in each image [x+u,y+ v] T , the corresponding fitness value fit is:

其中,x为图像像素点横坐标,y为图像像素点纵坐标,u为图像块横轴方向运动量,v为纵轴方向运动量。Among them, x is the abscissa of the image pixel, y is the ordinate of the image pixel, u is the movement amount of the image block in the horizontal axis direction, and v is the movement amount in the vertical axis direction.

步骤(2-3):粒子初始化:将I个初始粒子均匀分布在解空间,利用式(2)计算每个粒子对应的适应值;Step (2-3): Particle Initialization: I initial particles are evenly distributed in the solution space, and each particle is calculated by formula (2) corresponding fitness value;

步骤(2-4):将第i个粒子在n次迭代过程中得到适应值[fiti,1,fiti,2,...fiti,n]里面最小的适应值作为每个粒子的局部最优解pbest[i]:Step (2-4): put the i-th particle In the process of n iterations, the minimum fitness value in the fitness value [fit i,1 ,fit i,2 ,...fit i,n ] is obtained as the local optimal solution pbest[i] of each particle:

pbest[i]=min{fiti,1,fiti,2,...fiti,n};pbest[i]=min{fit i,1 ,fit i,2 ,...fit i,n };

选择所有粒子在n次迭代过程中适应值最小的粒子作为全局最优解gbest[n],即:Select the particle with the smallest fitness value of all particles in n iterations as the global optimal solution gbest[n], namely:

gbest[n]=min{pbest1,pbest2,...pbestI};gbest[n]=min{pbest 1 , pbest 2 ,...pbest I };

每个粒子以公式(3)更新自己的位置和速度:Each particle updates its position and velocity according to equation (3):

式中,n表示第n次迭代,C1,C2为学习因子,设为2,R1,R2为随机数,R1,R2∈[0,1]。In the formula, n represents the nth iteration, C 1 , C 2 are learning factors, set to 2, R 1 , R 2 are random numbers, and R 1 , R 2 ∈ [0,1].

表示第i个粒子在第n+1次迭代过程中的速度, represents the velocity of the i-th particle during the n+1-th iteration,

表示第i个粒子在第n+1次迭代过程中的位置, represents the position of the i-th particle during the n+1-th iteration,

表示第i个粒子在第n次迭代过程中的速度, represents the velocity of the ith particle during the nth iteration,

表示第i个粒子在第n次迭代过程中的位置; Indicates the position of the i-th particle during the n-th iteration;

步骤(2-5):计算第n次迭代后,粒子i与当前全局最优解的粒子之间的距离rgbest,iStep (2-5): Calculate the distance r gbest,i between particle i and the particle of the current global optimal solution after the nth iteration:

计算粒子i与整个粒子群所经过位置的最近距离rnearest,iCalculate the closest distance r nearest,i between the particle i and the position passed by the entire particle swarm:

其中,p∈[1,2,...I],q∈[1,2,...n-1];Among them, p∈[1,2,...I],q∈[1,2,...n-1];

每个粒子更新自己位置后,粒子根据设定规则更新自己的适应值fiti,n,所述粒子根据设定规则更新自己的适应值fiti,n如下:After each particle updates its own position, the particle updates its own fitness value fit i,n according to the set rule, and the particle updates its own fitness value fit i,n according to the set rule as follows:

a.如果rgbest,i<r0,式中r0为设定阈值,则新粒子i根据式(2)更新其适应值;a. If r gbest,i < r 0 , where r 0 is the set threshold, the new particle i updates its fitness value according to formula (2);

b.如果rgbest,i>r0且rnearest,i>r0,则新粒子i根据式(2)更新其适应值;b. If r gbest,i >r 0 and r nearest,i >r 0 , the new particle i updates its fitness value according to formula (2);

c.如果rgbest,i>r0且rnearest,i<r0,则用新粒子i距离整个粒子群所经过位置最近点的适应值代替新粒子的适应值,fiti,n=SADnearestc. If r gbest,i >r 0 and r nearest,i <r 0 , replace the fitness value of the new particle with the fitness value of the new particle i from the closest point to the entire particle swarm, fit i,n =SAD nearest ;

步骤(2-6):重复步骤(2-4)-(2-5),直到满足最大迭代次数,并计算出的全局最优解对应的坐标作为粗匹配位置 Step (2-6): Repeat steps (2-4)-(2-5) until the maximum number of iterations is satisfied, and the coordinates corresponding to the calculated global optimal solution are used as the rough matching position

所述步骤(3)中,以为粗匹配位置为中心,选择一小搜索区域,所述小搜索区域的尺寸大小设置为7×7像素,在小搜索区域内以全搜索块匹配算法搜索,计算出小搜索区域内49个像素点的适应值,选择其中适应值最小的点作为最终匹配结果 In the described step (3), for the rough matching position As the center, select a small search area, the size of the small search area is set to 7 × 7 pixels, search with the full search block matching algorithm in the small search area, and calculate the fitness value of 49 pixels in the small search area , select the point with the smallest fitness value as the final matching result

所述步骤(4)中,根据步骤(1)中所述,CCD靶平面平行于标记物上表面,将成像模型简化为针孔模型;图像空间和微动平台的雅各比矩阵如下:In the step (4), according to the step (1), the CCD target plane is parallel to the upper surface of the marker, and the imaging model is simplified to a pinhole model; the Jacobian matrix of the image space and the micro-movement platform is as follows:

式中ximg,yimg为图像空间坐标,x0,y0为微动平台位置坐标,是一个参数为常数的雅各比矩阵。where x img , y img are the image space coordinates, x 0 , y 0 are the position coordinates of the micro-movement platform, is a Jacobian matrix with constant parameters.

根据步骤(3)中所求的最终匹配结果计算微动平台所对应的位置:According to the final matching result obtained in step (3) Calculate the position corresponding to the micro-movement platform:

基于显微视觉的微动平台位移测量系统,包括:存储器、处理器和存储在存储器上并在处理器上运行的计算机指令,所述计算机指令在处理器上运行时完成以下步骤:A microscopic vision-based micro-movement platform displacement measurement system includes: a memory, a processor, and computer instructions stored on the memory and executed on the processor, and the computer instructions complete the following steps when executed on the processor:

步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): image sequence acquisition: collect a group of image sequences through the micro-vision system;

步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): coarse matching position acquisition: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the coarse matching position of the image block;

步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): obtaining the best matching position: taking the rough matching position as the center, using the full-area search matching algorithm to search in a small neighborhood to obtain the best matching position;

步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Calculation of displacement of the micro-movement platform: establish an image Jacobian matrix according to the imaging model of the micro-vision system, and convert the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-movement platform.

一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令在处理器上运行时完成以下步骤:A computer-readable storage medium having computer instructions stored thereon, the computer instructions completing the following steps when executed on a processor:

步骤(1):图像序列采集:通过微视觉系统采集一组图像序列;Step (1): image sequence acquisition: collect a group of image sequences through the micro-vision system;

步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;Step (2): coarse matching position acquisition: use the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the coarse matching position of the image block;

步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全区域搜索匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): obtaining the best matching position: taking the rough matching position as the center, using the full-area search matching algorithm to search in a small neighborhood to obtain the best matching position;

步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Calculation of displacement of the micro-movement platform: establish an image Jacobian matrix according to the imaging model of the micro-vision system, and convert the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-movement platform.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明利用改进的粒子群算法和全区域搜索算法相结合,减少了计算资源消耗,实现了快速匹配与位移测量;同时,该方法相对于已有微位移测量技术,具有测量设备成本低、精度高、可用于测量面内双自由度(X-Y)的微动系统等特点。The invention combines the improved particle swarm algorithm and the full-area search algorithm, reduces the consumption of computing resources, and realizes fast matching and displacement measurement; at the same time, compared with the existing micro-displacement measurement technology, the method has the advantages of low cost of measurement equipment and high precision. High, can be used to measure the in-plane two degrees of freedom (X-Y) micro-motion system and other characteristics.

附图说明Description of drawings

构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings that form a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute improper limitations on the present application.

图1为本发明的硬件连接关系图;Fig. 1 is the hardware connection relation diagram of the present invention;

图2为改进粒子群算法中粒子更新适应值规则的示意图;Figure 2 is a schematic diagram of the particle update fitness value rule in the improved particle swarm algorithm;

图3为以为中心,选择一小搜索域,并以全搜索块匹配算法搜索精确解的示意图;Figure 3 is a As the center, select a small search domain, and use the full search block matching algorithm to search for the exact solution;

图4为将成像模型简化为针孔模型示意图;4 is a schematic diagram of simplifying the imaging model into a pinhole model;

图5为本发明的方法流程图。FIG. 5 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.

如图5所示,基于显微视觉的微动平台位移测量方法,步骤如下:As shown in Figure 5, the microscopic vision-based displacement measurement method of the micro-movement platform, the steps are as follows:

步骤(1):图像序列采集:通过由标记特征点、微动平台、体式显微镜、CCD相机组成的微视觉系统采集一组图片序列;Step (1): image sequence acquisition: acquire a set of image sequences through a micro-vision system consisting of marked feature points, a micro-movement platform, a stereo microscope, and a CCD camera;

步骤(2):粗匹配位置获取:利用改进的粒子群优化算法在整个搜索域内快速搜索,获得图像块的粗匹配位置;如图2所示;Step (2): obtaining the rough matching position: using the improved particle swarm optimization algorithm to quickly search in the entire search domain to obtain the rough matching position of the image block; as shown in Figure 2;

步骤(3):最佳匹配位置获取:在以粗匹配位置为中心,利用全搜索块匹配算法在小邻域内搜索,获得最佳匹配位置;Step (3): obtaining the best matching position: taking the rough matching position as the center, using the full search block matching algorithm to search in a small neighborhood to obtain the best matching position;

步骤(4):微动平台位移计算:根据微视觉系统成像模型建立图像雅各比矩阵,将图像空间中最佳匹配位置对应的位移转换为微动平台实际位移。Step (4): Calculation of displacement of the micro-movement platform: establish an image Jacobian matrix according to the imaging model of the micro-vision system, and convert the displacement corresponding to the best matching position in the image space into the actual displacement of the micro-movement platform.

所述步骤(1)中,图像序列采集的原理为:图像采集原理如图1所示,PZT驱动XY二自由度微动平台执行部分,其中表面贴有标记物,标记物表面光滑。同轴光经标记物反射后经过显微镜光路在CCD靶平面成像。其中,显微镜光轴垂直于标记物上表面,同时显微镜光轴也垂直于相机靶平面。In the step (1), the principle of image sequence acquisition is as follows: the principle of image acquisition is shown in Figure 1, the PZT drives the execution part of the XY two-degree-of-freedom micro-movement platform, and the surface of the marker is attached, and the surface of the marker is smooth. After the coaxial light is reflected by the marker, it is imaged on the CCD target plane through the optical path of the microscope. The optical axis of the microscope is perpendicular to the upper surface of the marker, and the optical axis of the microscope is also perpendicular to the camera target plane.

所述步骤(2)中,粗匹配位置获取包括:In the described step (2), obtaining the rough matching position includes:

步骤(2-1)确定图像ROI区域,将整个ROI区域作为图像块匹配的解空间,整个ROI区域确定可以根据微动平台位行程xR以显微镜放大倍数k,相机像元尺寸p以及图像块大小[X,Y]决定,选取的ROI区域最小为:Step (2-1) Determine the ROI area of the image, and use the entire ROI area as the solution space for image block matching. The entire ROI area can be determined according to the position stroke x R of the micro-movement platform, the magnification k of the microscope, the size of the camera pixel p and the image block. The size [X, Y] is determined, and the minimum selected ROI area is:

步骤(2-2)选择累计绝对误差(summed absolute difference,SAD)作为匹配准则,其也是粒子群优化算法的目标函数,对每个图像中每个像素点[x+u,y+v]T,其对应的适应值为:Step (2-2) Select the cumulative absolute difference (summed absolute difference, SAD) as the matching criterion, which is also the objective function of the particle swarm optimization algorithm, for each pixel in each image [x+u,y+v] T , and its corresponding fitness value is:

步骤(2-3)粒子初始化:将I个初始粒子均匀分布在整个解空间,每个粒子利用(2)式计其对应的适应值。Step (2-3) particle initialization: distribute I initial particles uniformly in the entire solution space, each particle Use the formula (2) to calculate its corresponding fitness value.

步骤(2-4)第i个粒子粒子的在n次迭代过程中的适应值[fiti,1,fiti,2,...fiti,n]里面最小的一个值作为每个粒子的局部最优解,即pbest[i]=min{fiti,1,fiti,2,...fiti,n}。选择所有粒子在n次迭代过程中适应值最小的粒子作为全局最优解,即Step (2-4) i-th particle particle The smallest one of the fitness values [fit i,1 ,fit i,2 ,...fit i,n ] in the n iterations process is used as the local optimal solution of each particle, that is, pbest[i]= min{fit i,1 ,fit i,2 ,...fit i,n }. The particle with the smallest fitness value of all particles in n iterations is selected as the global optimal solution, that is,

gbest[n]=min{pbest1,pbest2,...pbestI}。gbest[n]=min{pbest 1 , pbest 2 , . . . pbest I }.

每个粒子以下式更新自己的位置和速度:Each particle updates its position and velocity as follows:

式中n表示第n迭代,C1,C2为学习因子,设为2,R1,R2为随机数,R1,R2∈[0,1]。where n represents the nth iteration, C 1 , C 2 are learning factors, set to 2, R 1 , R 2 are random numbers, and R 1 , R 2 ∈ [0,1].

步骤(2-5)计算第n次迭代后,粒子i与当前全局最优解的粒子之间的距离计算粒子i与整个粒子群所经过位置的最近距离,即其中p∈[1,2,...I],q∈[1,2,...n-1]。每个粒子更新自己位置后,粒子根据如下所述规则跟新自己的适应值fiti,n,具体如下:Step (2-5) Calculate the distance between particle i and the particle of the current global optimal solution after the nth iteration Calculate the closest distance between particle i and the position passed by the entire particle swarm, namely where p∈[1,2,...I],q∈[1,2,...n-1]. After each particle updates its own position, the particle updates its own fitness value fit i,n according to the following rules, as follows:

a.rgbest,i<r0,式中r0为阈值,新粒子i根据式(2)更新其适应值;ar gbest,i <r 0 , where r 0 is the threshold, and the new particle i updates its fitness value according to formula (2);

b.rgbest,i>r0且rnearest,i>r0,新粒子i根据式(2)更新其适应值;br gbest,i >r 0 and r nearest,i >r 0 , the new particle i updates its fitness value according to formula (2);

c.rgbest,i>r0且rnearest,i<r0,用新粒子i距离整个粒子群所经过位置最近点的适应值代替新粒子的适应值,即fiti,n=SADnearestcr gbest,i >r 0 and r nearest,i <r 0 , replace the fitness value of the new particle with the fitness value of the new particle i from the closest point to the position passed by the entire particle swarm, namely fit i,n =SAD nearest .

其中,r0为设定的阈值,可根据搜索窗口、粒子数目由经验公式确定。Among them, r 0 is a set threshold, which can be determined by an empirical formula according to the search window and the number of particles.

步骤(2-6)复步骤(2-4),(2-5),直到满足最大迭代次数,并以上述方法计算出的全局最优解对应的坐标作为粗匹配位置 Step (2-6) Repeat steps (2-4), (2-5) until the maximum number of iterations is satisfied, and the coordinates corresponding to the global optimal solution calculated by the above method are used as the rough matching position

所述步骤(3)中,以为中心,选择一小搜索域,其大小设置为7×7pixel,如图3所示。在整个区域内以全搜索块匹配算法搜索,计算出该区域内49个像素点的适应值,选择其中适应值最小的点作为最终匹配结果 In the described step (3), for In the center, select a small search field and set its size to 7×7pixel, as shown in Figure 3. Search the entire area with the full search block matching algorithm, calculate the fitness value of 49 pixels in the area, and select the point with the smallest fitness value as the final matching result

所述步骤(4)中,根据步骤(1)中所述,CCD靶平面平行于标记物上表面,因而可将成像模型简化为针孔模型,其具体如图4所示。根据图示几何关系,可以推导图像空间和微动平台的雅各比矩阵如下:In the step (4), according to the step (1), the CCD target plane is parallel to the upper surface of the marker, so the imaging model can be simplified to a pinhole model, as shown in FIG. 4 . According to the illustrated geometric relationship, the Jacobian matrix of the image space and the micro-movement platform can be derived as follows:

式中ximg,yimg为图像空间坐标,x0,y0为微动平台位置坐标,是一个参数为常数的雅各比矩阵。根据步骤(3)中所求,可以推出微动平台所对应的位置:where x img , y img are the image space coordinates, x 0 , y 0 are the position coordinates of the micro-movement platform, is a Jacobian matrix with constant parameters. According to the requirements in step (3), the position corresponding to the micro-movement platform can be deduced:

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.

Claims (8)

1. the micromotion platform displacement measurement method based on micro-vision, characterized in that steps are as follows:
Step (1): one group of image sequence image sequence acquisition: is acquired by micro- vision system;
Step (2): thick matching position obtains: utilizing improved particle swarm optimization algorithm fast search in entire region of search, obtains Obtain the thick matching position of image block;
Step (3): best match position obtains: again centered on thick matching position, using area coverage matching algorithm small Search in neighborhood, obtains best match position;
Step (4): micromotion platform displacement calculates: image Jacobin matrix is established according to micro- vision system imaging model, by image The corresponding displacement of best match position is converted to micromotion platform actual displacement in space;
In the step (2), thick matching position acquisition includes:
Step (2-1): determining image ROI region, and using ROI region as the matched solution space of image block, ROI region determines basis The position stroke x of XY two degrees of freedom micromotion platformR, microscope magnification k, camera pixel dimension p and image block size size [X, Y] is determined, the ROI region size of selection is minimum are as follows:
Step (2-2): select accumulative absolute error as matching criterior, accumulative absolute error is also the mesh of particle swarm optimization algorithm Scalar functions, to pixel [x+u, y+v] each in each imageT, corresponding adaptive value fit are as follows:
Wherein, x is image slices vegetarian refreshments abscissa, and y is image slices vegetarian refreshments ordinate, and u is image block X direction amount of exercise, and v is Y direction amount of exercise;fj(x, y) represents the position corresponding to each pixel in j moment each image;
Step (2-3): particle initialization: being evenly distributed on solution space for I primary, calculates each particle using formula (2)Corresponding adaptive value;
Step (2-4): by i-th of particleAdaptive value [fit is obtained in n times iterative processi,1,fiti,2, ...fiti,n] locally optimal solution pbest [i] of the smallest adaptive value in the inside as each particle:
Pbest [i]=min { fiti,1,fiti,2,...fiti,n};
Select all particles in n times iterative process the smallest particle of adaptive value as globally optimal solution gbest [n], it may be assumed that
Gbest [n]=min { pbest1,pbest2,...pbestI};
Each particle updates the position and speed of oneself with formula (3):
In formula, n indicates nth iteration, C1,C2For Studying factors, it is set as 2, R1,R2For random number, R1,R2∈[0,1];
Indicate speed of i-th of particle in (n+1)th iterative process,
Indicate position of i-th of particle in (n+1)th iterative process,
Indicate speed of i-th of particle during nth iteration,
Indicate position of i-th of particle during nth iteration;
Step (2-5): after calculating nth iteration, the distance between particle of particle i and current globally optimal solution rgbest,i:
Calculate particle i and entire population by position minimum distance rnearest,i:
Wherein, p ∈ [1,2 ... I], q ∈ [1,2 ... n-1];
After each particle updates oneself position, particle is according to the adaptive value fit for setting Policy Updates oneselfi,n
Step (2-6): step (2-4)-(2-5) is repeated, until meeting maximum number of iterations, and calculated globally optimal solution pair The coordinate answered is as thick matching position
The particle is according to the adaptive value fit for setting Policy Updates oneselfi,nIt is as follows:
A. if rgbest,i<r0, r in formula0For given threshold, then new particle i updates its adaptive value according to formula (2);
B. if rgbest,i>r0And rnearest,i>r0, then new particle i updates its adaptive value according to formula (2);
C. if rgbest,i>r0And rnearest,i<r0, then with new particle i apart from entire population institute by position closest approach fitting The adaptive value instead of new particle, fit should be worthi,n=SADnearest
2. the micromotion platform displacement measurement method based on micro-vision as described in claim 1, characterized in that the step (1) in, micro- vision system, comprising: CCD camera is installed at microscope, the microscope top, and the CCD camera and computer are whole End connection, XY two degrees of freedom micromotion platform are fixed on microscope carrier, and the XY two degrees of freedom micromotion platform is controlled by PZT Marker is posted in device drive control processed, the XY two degrees of freedom micromotion platform upper surface, and marker surface is smooth;Axis light is incident Be imaged to marker back reflection by microscopes optical path in CCD camera target plane, microscopes optical axis perpendicular to marker upper surface, Meanwhile microscopes optical axis is also perpendicularly to CCD camera target plane, CCD target plane is parallel to marker upper surface.
3. the micromotion platform displacement measurement method based on micro-vision as described in claim 1, characterized in that the step (3) in, with thick matching positionCentered on, a small region of search is selected, the size of the small region of search is set as 7 × 7 pixels calculate in small region of search 49 pixels with the search of area coverage matching algorithm in small region of search Adaptive value selects wherein adaptive value is the smallest to put as final matching results
4. the micromotion platform displacement measurement method based on micro-vision as claimed in claim 3, characterized in that the step (4) in, according to step (1), CCD target plane is parallel to marker upper surface, and imaging model is reduced to pin-hole model; The Jacobin matrix of image space and micromotion platform is as follows:
X in formulaimg, yimgFor image space coordinate, x0, y0For micromotion platform position coordinates,Be a parameter be constant Jacobin matrix.
5. the micromotion platform displacement measurement method based on micro-vision as claimed in claim 4, characterized in that
According to final matching results required in step (3)Calculate position corresponding to micromotion platform:
6. the micromotion platform displacement measurement system based on micro-vision, characterized in that include: memory, processor and be stored in The computer instruction run on memory and on a processor completes such as right when the computer instruction is run on a processor It is required that the step of micromotion platform displacement measurement method described in 1 based on micro-vision:
Step (1): one group of image sequence image sequence acquisition: is acquired by micro- vision system;
Step (2): thick matching position obtains: utilizing improved particle swarm optimization algorithm fast search in entire region of search, obtains Obtain the thick matching position of image block;
Step (3): best match position obtains: again centered on thick matching position, using area coverage matching algorithm small Search in neighborhood, obtains best match position;
Step (4): micromotion platform displacement calculates: image Jacobin matrix is established according to micro- vision system imaging model, by image The corresponding displacement of best match position is converted to micromotion platform actual displacement in space.
7. the micromotion platform displacement measurement system based on micro-vision as claimed in claim 6, characterized in that the step (1) in, micro- vision system, comprising: CCD camera is installed at microscope, the microscope top, and the CCD camera and computer are whole End connection, XY two degrees of freedom micromotion platform are fixed on microscope carrier, and the XY two degrees of freedom micromotion platform is driven by PZT Marker is posted in dynamic control, the XY two degrees of freedom micromotion platform upper surface, and marker surface is smooth;Axis light is incident to label Object back reflection by microscopes optical path CCD camera target plane be imaged, microscopes optical axis perpendicular to marker upper surface, meanwhile, Microscopes optical axis is also perpendicularly to CCD camera target plane, and CCD target plane is parallel to marker upper surface.
8. a kind of computer readable storage medium, is stored thereon with computer instruction, characterized in that the computer instruction is being located Manage the step of micromotion platform displacement measurement method based on micro-vision as described in claim 1 is completed when running on device:
Step (1): one group of image sequence image sequence acquisition: is acquired by micro- vision system;
Step (2): thick matching position obtains: utilizing improved particle swarm optimization algorithm fast search in entire region of search, obtains Obtain the thick matching position of image block;
Step (3): best match position obtains: again centered on thick matching position, using area coverage matching algorithm small Search in neighborhood, obtains best match position;
Step (4): micromotion platform displacement calculates: image Jacobin matrix is established according to micro- vision system imaging model, by image The corresponding displacement of best match position is converted to micromotion platform actual displacement in space.
CN201710874305.9A 2017-09-25 2017-09-25 Microscopic vision-based displacement measurement method and system for micro-movement platform Active CN107462173B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710874305.9A CN107462173B (en) 2017-09-25 2017-09-25 Microscopic vision-based displacement measurement method and system for micro-movement platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710874305.9A CN107462173B (en) 2017-09-25 2017-09-25 Microscopic vision-based displacement measurement method and system for micro-movement platform

Publications (2)

Publication Number Publication Date
CN107462173A CN107462173A (en) 2017-12-12
CN107462173B true CN107462173B (en) 2019-07-05

Family

ID=60553672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710874305.9A Active CN107462173B (en) 2017-09-25 2017-09-25 Microscopic vision-based displacement measurement method and system for micro-movement platform

Country Status (1)

Country Link
CN (1) CN107462173B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534683B (en) * 2018-03-06 2019-08-27 山东大学 Micro-nano platform motion measurement system and method based on visual image processing
CN109596053B (en) * 2019-01-14 2019-10-01 中山大学 A method of measurement high-speed rail bridge vertically moves degree of disturbing
CN114394843B (en) * 2021-12-03 2022-09-20 广东中旗新材料股份有限公司 Porous ceramic prepared from quartz stone waste and preparation method thereof
CN115063451B (en) * 2022-06-10 2024-06-04 华南理工大学 High-speed micro-vision tracking method and system for planar three-degree-of-freedom posture measurement
CN116805283B (en) * 2023-08-28 2023-11-24 山东大学 Submicron super-resolution microscopic imaging reconstruction method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546943A (en) * 2003-11-28 2004-11-17 天津大学 Micro-electromechanical system testing device and method based on micro-interference technology
CN1654923A (en) * 2005-02-28 2005-08-17 天津大学 System and method for measuring three-dimensional motion of microstructures using image matching and phase-shifting interferometry
KR20100126941A (en) * 2009-05-25 2010-12-03 주식회사 쓰리비 시스템 Micro Vision Inspection System for PCC defect inspection
CN102506710A (en) * 2011-10-25 2012-06-20 天津大学 Device for detecting in-plane error in micro/nano device out-of-plane motion test and compensating method
CN105180806A (en) * 2015-08-25 2015-12-23 大连理工大学 Trans-scale geometrical parameter measurement method based on microscopic visual sense
CN106018415A (en) * 2016-05-20 2016-10-12 哈尔滨理工大学 System for detecting quality of small parts based on micro-vision

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546943A (en) * 2003-11-28 2004-11-17 天津大学 Micro-electromechanical system testing device and method based on micro-interference technology
CN1654923A (en) * 2005-02-28 2005-08-17 天津大学 System and method for measuring three-dimensional motion of microstructures using image matching and phase-shifting interferometry
KR20100126941A (en) * 2009-05-25 2010-12-03 주식회사 쓰리비 시스템 Micro Vision Inspection System for PCC defect inspection
CN102506710A (en) * 2011-10-25 2012-06-20 天津大学 Device for detecting in-plane error in micro/nano device out-of-plane motion test and compensating method
CN105180806A (en) * 2015-08-25 2015-12-23 大连理工大学 Trans-scale geometrical parameter measurement method based on microscopic visual sense
CN106018415A (en) * 2016-05-20 2016-10-12 哈尔滨理工大学 System for detecting quality of small parts based on micro-vision

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Displacement measurement system for inverters using computer micro-vision;Heng Wu, et al;《Optics and Lasers in Engineering》;20160212;正文第2-3节及图1-图3
基于多种群粒子群算法和布谷鸟搜索的联合寻优算法;高云龙等;《控制与决策》;20160430;第31卷(第4期);正文第1-3节

Also Published As

Publication number Publication date
CN107462173A (en) 2017-12-12

Similar Documents

Publication Publication Date Title
CN107462173B (en) Microscopic vision-based displacement measurement method and system for micro-movement platform
Wu et al. Real-time digital image correlation for dynamic strain measurement
Subbarao et al. Accurate recovery of three-dimensional shape from image focus
WO2021042277A1 (en) Method for acquiring normal vector, geometry and material of three-dimensional object employing neural network
CN109873948B (en) A kind of optical microscope intelligent automatic focusing method, equipment and storage equipment
CN108152869A (en) A kind of small step-length focus adjustment method quickly focused suitable for bionical vision
Sha et al. Research on auto-focusing technology for micro vision system
CN105049723B (en) Atomatic focusing method based on defocusing amount difference qualitative analysis
CN114202490B (en) Wear particle surface reconstruction method and related device based on multi-focus image
CN110276768A (en) Image partition method, image segmentation device, image segmentation apparatus and medium
WO2021057422A1 (en) Microscope system, smart medical device, automatic focusing method and storage medium
CN108596947B (en) Rapid target tracking method suitable for RGB-D camera
CN113777769A (en) Automatic focusing method and device for microscopic instrument, intelligent terminal and storage medium
CN111915517A (en) Global positioning method for RGB-D camera in indoor illumination adverse environment
WO2017020393A1 (en) Motion estimation method and motion estimation system based on block matching, and application thereof
CN109544584B (en) Method and system for realizing inspection image stabilization precision measurement
Hao et al. Improving the performances of autofocus based on adaptive retina-like sampling model
CN119863530A (en) Operation method of cell operation platform combining piezoelectric actuator and six-axis mechanical arm
CN110288528B (en) An image stitching system and method for micro-nano visual observation
Shahid et al. A neural network-based method for coverage measurement of shot-peened panels
Ray Computation of fluid and particle motion from a time-sequenced image pair: A global outlier identification approach
CN205920270U (en) A dynamic focusing mechanism for high -speed microscan
Li et al. Off-Focus-Image-Restoration-Based Three-Dimensional Particle Localization for Improved Measurement Resolution
Song et al. 3D pose identification of moving Micro-and nanowires in fluid suspensions under bright-field microscopy
Wang et al. Design and test of a robustness evaluation system for micro-vision tracking algorithms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant